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Abstract

Discovering knowledge and effectively predict-001
ing target events are two main goals of medical002
data mining. However, few models can achieve003
them simultaneously. In this study, we investi-004
gated the possibility of discovering knowledge005
and predicting diagnosis at once via raw med-006
ical text. We proposed the Enhanced Neural007
Topic Model (ENTM), a variant of the neural008
topic model, to learn interpretable representa-009
tions. We introduced the auxiliary loss set to010
improve the effectiveness of learned represen-011
tations. Then, we used learned representations012
to train a softmax regression model to predict013
target events. As each element in represen-014
tations learned by ENTM has an explicit se-015
mantic meaning, weights in softmax regression016
represent knowledge of whether an element is017
a significant factor in predicting diagnosis. We018
adopted two independent medical text datasets019
to evaluate our ENTM model. Results indicate020
that our model obtained better performance021
compared to the latest pretrained neural lan-022
guage models. Meanwhile, analysis of model023
parameters indicates our model can discover024
reliable knowledge from data.025

1 Introduction026

A large volume of patient information is recorded027

in text in the electronic health record (EHR) system.028

It is the primary evidence for doctors to realize029

disease characteristics and diagnoses. Extracting030

knowledge and diagnosing disease based on large,031

complex medical text data have been investigated032

for a long time in machine learning research (Chu033

et al., 2018; Koleck et al., 2019).034

Intuitively, these two tasks are supposed to be035

tackled simultaneously. If a model achieves high036

disease predictive performance but is inexplainable,037

we will worry about whether the model makes de-038

cisions via sound inference evidence. If a model039

can extract knowledge from data but obtain poor040

disease predictive performance, we may suspect041

the reliability of the extracted knowledge. Doctors 042

trust a model only when it can diagnose diseases 043

accurately and it helps them understand the dis- 044

ease. However, recent studies usually tackled two 045

tasks separately. Deep learning (DL) based stud- 046

ies typically obtained promising predictive perfor- 047

mance but cannot provide any extra knowledge to 048

doctors because of the black-box property (Payrov- 049

naziri et al., 2020). On the contrary, knowledge 050

discovery-oriented studies still use traditional mod- 051

els and ignore the DL techniques, which usually 052

cannot obtain impressive disease predictive perfor- 053

mance (Bellou et al., 2019; Shin et al., 2021). 054

The main goal of this study is to propose a 055

method that can effectively predict patient diag- 056

nosis and discover knowledge at once via raw med- 057

ical text. The term “effective” means our model 058

needs to achieve comparable performance com- 059

pared to the latest large-scale pretrained language 060

models (PLM). In this study, we treat the predictive 061

performance of large PLMs as the state-of-the-art 062

(SOTA) performance of medical-text-based diag- 063

nosing tasks. The term “discover knowledge” indi- 064

cates finding population-level characteristics that 065

correlate to the occurrence of diseases. We regard 066

discovered knowledge as reliable when in accord 067

with current medical literature. 068

We proposed a two-phase model to achieve the 069

goal of this study. The first phase is to learn rep- 070

resentations of medical text. The second phase 071

adopts the softmax regression method to predict 072

diagnoses via representations. Of note, we adopted 073

the assumption that linear models are interpretable. 074

Softmax regression is one of the most widely used 075

linear models to make predictions and discover 076

knowledge in medical research. If the weight of 077

a feature learned by the model is statistically sig- 078

nificantly larger than zero, the feature may be a 079

risk factor for the disease. Otherwise, it may be a 080

protective factor. 081

Learning effective text representations whose el- 082
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ement has explicit semantic meanings is the core083

challenge in achieving our goal. Only when each084

element in the representation has explicit meaning085

analyzing the feature weight learned by softmax re-086

gression is meaningful and discovering knowledge087

is possible. Topic model, e.g., Latent Dirichlet088

Allocation (LDA), can compress an unstructured089

text into an interpretable representation, a.k.a.,090

the document-topic distribution (Blei et al., 2001).091

Each element in the representation can be mapped092

to a topic-word distribution, which can be endowed093

with an explanation by summarizing the word fre-094

quency. The element value indicates the impor-095

tance of the corresponding topic-word distribution096

in a document. However, the representation is097

usually not effective enough because inferencing098

the true posterior of a complex topic model is in-099

tractable due to the high dimension integrals (Blei100

et al., 2017; Miao et al., 2017).101

We introduced the enhanced neural topic model102

(ENTM) to extract more effective representations103

than LDA without loss of interpretability. The main104

principle of the ENTM is to use neural variational105

inference to model the posterior probability of an106

LDA. Besides, we introduced three auxiliary losses107

to leverage contrastive learning, knowledge dis-108

tillation, and topic diversity information to train109

the model more effectively. Previous studies have110

demonstrated that the LDA can obtain unbiased and111

low variance representations using the neural varia-112

tional inference reparameterization method (Miao113

et al., 2017; Nguyen and Luu, 2021). However,114

these models did not detailly investigate their pre-115

dictive potential. To our knowledge, these models116

were not applied in medical research, either.117

We conducted experiments to evaluate represen-118

tations learned by the ENTM via disease diagnos-119

ing tasks on two medical datasets. Experimental120

results indicated that the representation learned by121

the ENTM is as effective as the representations122

learned by the latest PLMs as they achieved compa-123

rable performance. Meanwhile, disease knowledge124

discovered from topic-word distributions and soft-125

max weights conformed to clinical literature and126

were advocated by clinical professionals.127

2 Related Work128

The emergence of DL technology inspired studies129

to propose neural network (NN) based interpretable130

models. They adopt NN to generate the weight of131

each feature to interpret predictions, a.k.a., the at-132

tention mechanism. The main difference between 133

these prediction models and traditional linear mod- 134

els is that the weight of a feature is sample-specific 135

in NN models, while the weight of a feature is 136

a scalar shared in different samples in traditional 137

linear models. RETAIN is the first model to gener- 138

ate feature weights to interpret its prediction (Choi 139

et al., 2016). Its design was widely inherited in 140

subsequent studies (Yin et al., 2019; Zhang et al., 141

2019; Ye et al., 2021; Zhang et al., 2020). Although 142

useful, these studies only accept structured data to 143

conduct interpretable predictions. Of note, struc- 144

turing medical text inevitably introduces errors and 145

biases. Sometimes it is even infeasible because 146

of patient heterogeneity or lack of tools. Mean- 147

while, these studies did not systematically discuss 148

or investigate the soundness of model-generated 149

feature weights. Recent studies demonstrated that 150

NN-based feature weights are unstable. Feature 151

weights only have weak relations to other feature 152

importance measures and cannot be treated as reli- 153

able explanations, or knowledge (Jain and Wallace, 154

2019; Kim et al., 2020). 155

The development of neural generative models 156

provides new potential to topic models. Kingma 157

et al. demonstrated it is possible to use a parame- 158

terized neural variational inference framework to 159

simulate the posterior whose evidence is intractable 160

(Kingma et al., 2014). Miao et al. proposed the 161

neural variational document model (NVDM) and 162

its variants, which can be regarded as a NN param- 163

eterized version of LDA, to generate the representa- 164

tions of documents (Miao et al., 2017). Srivastava 165

et al. proposed the prodLDA independent to the 166

NVDM (Srivastava and Sutton, 2017). They con- 167

structed a Laplace approximation to the Dirichlet 168

prior, making their prodLDA model interpretable, 169

while the NVDM is an uninterpretable model. Di- 170

eng et al. introduced logistic-normal distribution 171

to generate document-topic distribution, and they 172

applied word embeddings to optimize the perfor- 173

mance of the model (Dieng et al., 2020). 174

3 Methodology 175

Fig. 1 describes our ENTM model, which can be 176

regarded as a revision of the NVDM (Miao et al., 177

2016). We revised the word sampling strategy in 178

this study to make our model explainable, while the 179

original NVDM is an inexplainable model. Mean- 180

while, we introduced three auxiliary losses to train 181

the model more effectively. 182
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3.1 Neural Topic Model183

Neural Topic Model (NTM) is the core of the184

ENTM. The NTM generally followed the frame-185

work of LDA in modeling text (Blei et al., 2001).186

Specifically, it presumes each word wdn in a docu-187

ment d from corpus D is generated independently188

via the following process:189

zdn ∼ Categorical(hd) (1)190
191

wdn ∼ Categorical(θzdn) (2)192

where d ∈ D is the document index, n ∈ Nd193

is the word index, Nd indicates the word number194

in document d, and xd denotes bag-of-words rep-195

resentation of a document. hd ∈ RT indicates the196

document-topic distribution over document d, zdn197

indicates the topic of wdn, θzdn ∈ RV indicates the198

topic-word distribution over the topic zdn, T and199

V indicate the topic number and vocabulary size,200

respectively. Categorical(·) is a categorical distri-201

bution. We treat θ as parameters and h as hidden202

variables. The log-likelihood of D is:203

log p(D; θ) = log

D∏
d=1

∫
p(h)

Nd∏
n=1

(hθ)wdn
dh

(3)204

It is challenging to optimize Eq. 3 as its integral205

is intractable. We sidestep the integral with varia-206

tional inference. Specifically, we introduce varia-207

tional distributions q(h| d;φ) that approximate the208

posterior p(h| d; θ), where φ are the variational209

parameters. Equipped with the neural variational210

inference framework, the log-likelihood can be re-211

organized as (Blei et al., 2017):212

log p(D; θ) = KL(q(h| d;φ)||p(h|D; θ))

+ ELBO(q| d; θ, φ)
(4)213

214
ELBO(q| d; θ, φ) = Eq(log p(d|h; θ))

−KL(q(h| d;φ)||p(h))
(5)215

where KL indicates the Kullback-Leibler diver-216

gence, the ELBO (evidence lower bound) can be217

regarded as a lower bound of log probabilities. In218

this study, we optimize Eq.4 indirectly by optimiz-219

ing ELBO (and omit the KL divergence term in220

Eq.4). It usually works well in practice, although221

theoretical correctness has not been justified yet.222

Note log p(d|h; θ) is irrelevant to q(h|d ;φ), the223

first term in Eq. 5 can be rewritten as:224

Eq(log p(d|h; θ)) =
D∑

d=1

Nd∑
n=1

log(hdθ)wdn
(6)225

𝑥

𝜇

log Σ

𝒩(𝜇,Σ)
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Figure 1: Model Diagram

We presume the prior p(h) is a standard Gaus- 226

sian distribution with a softmax function. Previ- 227

ous studies also used the log-normalize function 228

or Laplace approximation to generate normalized 229

topic distribution (Dieng et al., 2020). We followed 230

the design of (Kingma et al., 2014) to introduce an 231

inference network. q(h| d;φ) is modeled as a Gaus- 232

sian distribution with a softmax function as well. 233

µ, Σd = fφ(xd) are location and covariance matrix 234

of q(h| d;φ), where fφ(·) is a NN parameterized 235

by φ. To evaluate the KL divergence analytically, 236

we use the KL divergence of unnormalized p(h) 237

and q(h| d;φ) distributions as the proxy of the true 238

KL divergence. The proxy KL divergence follows: 239

KL(N (µ, Σd)||N (0, I)) =

− 1

2
(T − µµT − tr(Σd) + log|Σd|)

(7) 240

The document loss function of a minibatch B 241

can be summarized as: 242

Ld = −
B∑

d=1

Nd∑
n=1

log(hdθ)wdn
−

B∑
d=1

1

2
(T − µµT − tr(Σd) + log|Σd|)

(8) 243

We can optimize document loss via a gradient- 244

based method. The training process is summarized 245

in Algorithm 1. 246

3.2 Auxiliary Loss Set 247

As Eq.8 is just an approximation of the true log- 248

likelihood, and the training dataset may not be suffi- 249

ciently large, we argue that the learned parameters 250

may not be effective and robust. We introduced 251

three auxiliary losses to improve the model. 252
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Algorithm 1 NTM Training Process
Input: Corpus D
Output: φ, θ

1: Random initialize : φ, β ∈ RT×V

2: while φ and β not converge do
3: for iteration d = 0 to D do
4: θd = softmax(βd)
5: end for
6: Sample minibatch B from D
7: for each xd in B do
8: Compute µ, Σd = fφ(xd)
9: Sample hd = softmax(N (µ, Σd))

10: end for
11: for each word wdn in document d do
12: Compute p(wdn) = (hdθ)wdn

13: end for
14: Compute gradient of Ld according to Eq.8
15: Update parameters β, φ
16: end while
17: return φ, θ

3.2.1 Contrastive Loss253

The document label, e.g., diagnosis, is available in254

the medical document but is not used. The label255

may improve the NTM by providing additional256

high-level similarity information. In this study, we257

introduce a contrastive learning-based loss term258

to utilize the information (Chen et al., 2020). We259

encourage the representations with the same label260

to become similar and those with different labels261

to become dissimilar.262

Lc =
B∑
d1

B∑
d2 ̸=d1

(I(yd1 ̸= yd2)− I(yd1 = yd2))

(
hd1h

T
d2

∥hd1∥ ∥hd2∥
)

(9)263

Where d1, d2 are document indices. yd1 , yd2 are264

document labels. I(·) is indicator function.265

3.2.2 Knowledge Distillation Loss266

We developed a simple method to transfer the267

knowledge of PLM into our ENTM model (Hinton268

et al., 2015). Specifically, given arbitrary document269

pairs, we argue that the representation similarity270

learned by ENTM should be the same as the repre-271

sentation similarity generated by PLM. According272

to the assumption, we introduce the knowledge273

distillation loss (Eq. 10).274

Lk =
B∑
d1

B∑
d2 ̸=d1

[
rd1r

T
d2

∥rd1∥ ∥rd2∥
−

hd1h
T
d2

∥hd1∥ ∥hd2∥

]2

(10) 275

where rd1 , rd2 are document representations 276

generated by a PLM. 277

3.2.3 Topic Diversity Loss 278

Existing studies have found that optimizing log- 279

likelihood negatively correlates with the quality of 280

extracted topic (Chang et al., 2009). To extract 281

meaningful semantic topics, we introduce a topic 282

diversity loss that encourages different topics to 283

become dissimilar (Eq. 11). 284

Lt =

T∑
t1

T∑
t2 ̸=t1

(
θt1θ

T
t2

∥θt1∥ ∥θt2∥
) (11) 285

3.2.4 Joint Loss 286

In summary, the joint loss follows: 287

L = αLd + βLc + γLk + δLt (12) 288

where α, β, γ, δ are loss weights. We call 289

the NTM equipped with three auxiliary losses 290

the ENTM. The sum of the four hyperparameters 291

should equal one, i.e., α+ β + γ + δ = 1 292

4 Experiment 293

4.1 Experiment Settings 294

4.1.1 Dataset and Preprocessing 295

In this study, we experimented on two datasets. The 296

first dataset is a Chinese EHR dataset from a ter- 297

tiary psychiatric hospital in China (HZSPH), which 298

includes clinical narratives of 1,500 patients with 299

anxiety, depression, or bipolar affective disorder ad- 300

mitted to the hospital between 2019 and 2021. The 301

second dataset is the MIMIC-III, a public dataset 302

that includes complete EHR data of 58,997 hos- 303

pitalizations of patients who visited the intensive 304

care unit of Beth Israel Deaconess Medical Cen- 305

ter between 2001 and 2012 (Johnson et al., 2016). 306

We described sample data in the Supplementary 307

Material. 308

As one goal of this study is to predict the diag- 309

nosis of patients, we only utilize the information 310

collected in the admission phase. Other informa- 311

tion, e.g., diagnosis information and summary of 312

hospital course, was removed to avoid leaking the 313

label. We adopted the pkuseg toolkit to tokenize the 314
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HZSPH MIMIC-III
Samples 1,463 8,827
Avg. # tokens 2,245 1,521
Max. # tokens 3,563 5,467
Min. # tokens 374 320
Class number 3 10

Table 1: Data Statistics

HZSPH dataset and the tokenizer of Deberta to to-315

kenize the MIMIC-III dataset (Luo et al., 2019; He316

et al., 2021). We used the TF-IDF method to select317

the most important 10,000 tokens within the two318

datasets to construct bag-of-words representations.319

We adopted MacBert and Longformer, which are320

SOTA PLMs in Chinese and English, to generate321

the representations of documents in HZSPH and322

MIMIC-III datasets, respectively (Cui et al., 2020;323

Beltagy et al., 2020). Documents that are longer324

than the maximum length of a PLM were truncated325

from the beginning because the information was326

written in the order of importance.327

Patients in the MIMIC-III dataset typically have328

multiple diagnoses, and the distribution of diag-329

noses is highly imbalanced. We only reserve pa-330

tients whose primary diagnosis is in the top ten331

frequent diagnoses. We only use the primary diag-332

nosis as the label to formulate our task as a multi-333

class prediction task. We did not filter the HZSPH334

dataset because it is balanced. The statistics of two335

preprocessed datasets are in Table 1.336

4.1.2 Implementation337

The model training process can be divided into two338

phases. In the first phase, we trained the ENTM339

according to the method we introduced in the last340

section. In the second phase, we locked the param-341

eter in the ENTM and utilized the representations342

generated by the ENTM to predict the correspond-343

ing diagnosis via a softmax regression classifier.344

We investigated the interpretability and the po-345

tential of discovering knowledge of ENTM by346

analyzing topic-word distribution parameters and347

feature weights of the softmax regression. Con-348

sidering the space limit, we only described topic-349

word distributions and feature weights of HZSPH350

datasets in this paper.351

We used the grid search strategy to find the best352

loss weights. We used the five-fold cross-validation353

approach to fully utilize the data and reported the354

mean performance of the cross-validation exper-355

iments to evaluate the model. We set the topic356

number to ten according to the perplexity analysis. 357

The source code was released in the Supplementary 358

Material. 359

4.1.3 Baseline Models 360

(1) LDA (Blei et al., 2001). LDA is a topic model 361

that can extract interpretable document representa- 362

tions. (2) sLDA (Mcauliffe and Blei, 2007). Super- 363

vised LDA (sLDA) is an LDA variant that utilizes 364

document labels. (3) NVDM (Miao et al., 2016). 365

NVDM is an LDA variant that utilizes a neural 366

variational inference framework. (4) MacBert (Cui 367

et al., 2020). MacBert is a variant of BERT that 368

introduces a novel masking strategy. (5) Deberta 369

(He et al., 2021). Deberta is a variant of BERT 370

that utilizes the disentangled attention mechanism. 371

(6) Longformer (Beltagy et al., 2020). Longformer 372

is a variant of BERT that accepts a maximum of 373

4,096 tokens, while most BERT models only accept 374

a maximum of 512 tokens. Deberta, Longformer 375

is only available in English, and MacBert is only 376

available in Chinese. All PLMs were fine-tuned 377

via our datasets. 378

4.1.4 Metrics 379

We used accuracy and (macro-) F1 to evaluate the 380

predictive performance. Perplexity was used to de- 381

termine the number of topics (Blei et al., 2001). We 382

additionally used topic coherence to evaluate topic 383

quality quantitatively. We chose the normalized 384

pointwise mutual information (NPMI) to evaluate 385

topic coherence as it was widely used in previous 386

studies (Eq. 13) (Aletras and Stevenson, 2013). 387

NPMI =
2

TN(N − 1)

T∑
t=1

N−1∑
i=1

N∑
j=i+1

log
p(wti,wtj)

p(wti)p(wtj)

−logp(wti, wtj)

(13) 388

where wt means the Top N tokens in topic t. 389

We set N to ten. p(wti) indicates the proportion 390

that wti is in a document, p(wti, wtj) indicates the 391

proportion that both wti and wtj are in a document. 392

4.2 Predictive Performance 393

Table 2 shows the predictive ability of the ENTM 394

and baselines. Models’ performances on HZSPH 395

are systematically better because the MIMIC-III 396

has ten classes to predict, while the HZSPH dataset 397

only has three classes. It is not surprising that 398

the performances of LDA and sLDA are worse 399
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HZSPH MIMIC-III
Acc. F1 Acc. F1

LDA 0.71 0.70 0.54 0.27
sLDA 0.73 0.71 0.55 0.28
MacBert 0.85 0.86 - -
Deberta - - 0.67 0.48
Longformer - - 0.74 0.56
NVDM 0.75 0.73 0.56 0.30
NTM 0.76 0.75 0.57 0.30
NTM+CL 0.83 0.84 0.72 0.56
NTM+KL 0.79 0.79 0.60 0.44
NTM+TL 0.78 0.78 0.59 0.42
ENTM-512 0.84 0.84 0.68 0.49
ENTM 0.86 0.86 0.75 0.59

Table 2: Prediction Performance

than other models, as inferencing posterior is dif-400

ficult. PLM-based models obtained significantly401

better performance than topic models. The ENTM402

obtained better performance than PLMs in both403

datasets, demonstrating our ENTM is efficient in404

diagnosing via raw medical text.405

We noticed that the MacBert achieved compara-406

ble, while the Deberta obtained significantly worse407

performance than the ENTM. This phenomenon408

may be attributed to the data characteristics. We409

argue the vital information of HZSPH is recorded410

at the beginning of the text, while the vital informa-411

tion of MIMIC-III is relatively distributed evenly.412

Therefore, the data truncation procedure signifi-413

cantly deteriorates the performance of Deberta.414

4.3 Ablation Study415

We investigated the effectiveness of our design by416

conducting ablation studies (Table 2). The NVDM417

and NTM obtained comparable performance in418

both datasets. The NTMs trained with different419

losses, i.e., contrastive loss (CL), knowledge dis-420

tillation loss (KL), and topic diversity loss (TL),421

obtained performance improvement independently,422

while improvements in introducing KL and TL are423

relatively marginal, and the improvement of in-424

troducing CL is significant. The ENTM obtained425

the best performance, indicating the combination426

of auxiliary losses can further improve representa-427

tions’ effectiveness. The ENTM-512, i.e., a variant428

of ENTM that only uses the first 512 tokens of429

a document, obtained comparable performance to430

Deberta and MacBert, indicating representations431

generated by our ENTM are as effective as those432

HZSPH MIMIC-III
LDA N/A N/A
sLDA N/A N/A
NTM 0.104 0.093
NTM+CL 0.181 0.182
NTM+KL 0.131 0.112
NTM+TL 0.135 0.109
ENTM 0.197 0.192

Table 3: Topic Coherence

learned by the latest PLMs in the same experimen- 433

tal setting. 434

4.4 Topic Coherence 435

Table 3 described the topic coherence of our model 436

and baselines. We failed to calculate the NPMI of 437

LDA and sLDA because a part of Top N token pairs 438

wti and wtj never co-exist in a document, which 439

causes numerical error in calculating NPMI. These 440

results indicated that the quality of some topics 441

extracted by LDA and sLDA was poor. 442

All NTM-based models obtained NPMI scores 443

successfully. The incorporation of CL significantly 444

improved the quality of topics. The NTM+KL 445

and NTM+TL models also obtained higher NPMI 446

than the NTM model, though the improvement is 447

marginal. The ENTM obtained the best NPMI 448

in two datasets, indicating that all three auxiliary 449

losses are effective in learning better topic-word 450

distributions, while the combination of losses can 451

further improve the quality of topics. 452

4.5 Knowledge Discovery Ability 453

Fig. 2 describes the result of the weight matrix of 454

the softmax regression and the topic-word distri- 455

bution of an HZSPH experiment. The larger the 456

weight, the stronger the positive/negative influence 457

of a topic in diagnosing a disease. We select 15 458

tokens with a high occurrence probability for each 459

topic to explain their semantic meanings. We only 460

investigated topics one, two, five, seven, and nine 461

to reveal the characteristics of bipolar disorder, de- 462

pression, and anxiety because they are the strongest 463

factors. 464

The five topic-word distributions have signifi- 465

cant differences. Each high-frequency token list 466

can be regarded as a patient group depicting typical 467

characteristics of the three diseases. We can easily 468

find that topics one, two, and nine reflect a patient 469

group that feels unsafe. They also described three 470
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

Bipolar -5.56 -6.83 -1.61 -0.46 6.08 0.65 -2.76 -4.57 -6.91 1.92

Depression -3.62 -0.25 -2.97 0.15 -6.30 2.29 6.01 2.84 -1.00 -2.32

Anxiety 5.88 6.03 2.91 -1.02 -5.63 -3.00 -6.32 2.18 4.50 -1.98

worry delusion without without self happy self decrease deny decrease

nervous worry normal normal excitement improve suicide happy can change

body anxiety deny deny lose temper again dispirited think worry suicide

anxiety nervous sensitive no abnormal repeatedly turndown proactive anxiety hypologia

disturbance uncomfort good not reach repeatedly stable decrease decrease poor sleep poor sleep

uncomfort flustered normal normal irritation insist arm perturbed uncomfort bad

flustered hypochondria quarrel obvious again good decrase poor difficult improve

suicide scurviness worry tenderness in a mess depression classmate suicide illusion dispirited

chest tight grotesque improve not draw out repeat words uncomfort go to school illusion misanthropic anxiety

interest indifferently no incentive dispirited suspicious improve cry turndown light sleep excitement

impulsion bradyphrenia headache coordinate insist turndown grade anxiety poor sleep quiet

misanthropic poor sleep conscious harmonize exaggerate feeble wrist repeat words dispirited paralogic

poor sleep compulsive refreshed misanthropic impulsion excitement school flustered impulsion delusion

asthenia break out nausea abnormal temper fluctuation parent sophism destruction rave

painful negativism cooperation asthenia abuse boring family paralogic delusion misanthropic

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

Fifteen High Frequency Tokens (Translated from Chinese)

Topic Weights in Disease Risk Prediction

Figure 2: Knowledge Discovery Analysis

subtypes of anxiety as token lists are different. For471

example, the word “delusion” was first placed in472

topic two but was not included in topic one. Topic473

five revealed the symptom of mania as we can find474

a word such as “lose temper” and “irritation” in475

the list. Topic seven indicated a low-mood patient476

group as we found “dispirited” and “turndown” in477

the list. Another characteristic of the token list of478

topic seven is that it included tokens related to body479

parts, e.g., “wrist”, and tokens related to students,480

e.g., “classmates” and “parents”. These tokens are481

not included in other lists. We found these tokens482

were included because many depression patients483

are students and typically had self-harm records.484

Although the patient pattern characteristic needs485

to be interpreted carefully, it reveals the possibility486

that teenagers may be the most vulnerable popula-487

tion group to depression in China. All the charac-488

teristics discovered in this subsection accord with 489

current clinical literature and are advocated by our 490

clinical collaborators (Association, 2013). There- 491

fore, we argue that the found characteristics can be 492

regarded as reliable knowledge. 493

4.6 Influence of Loss Weights 494

Fig. 3 describes the performance of ENTM with 495

different loss weights combinations. We set the 496

weight of β, γ, δ to 0, 0.05, 0.1, and 0.15, and 497

implemented 64 five-fold cross-validation exper- 498

iments in two datasets, respectively. Each point 499

in the figure reports the average accuracy differ- 500

ence between the ENTM with the correspond- 501

ing loss weight set and the original NTM, i.e., 502

accENTM − accNTM . The more yellow the point, 503

the more the improvement. The influence of three 504

auxiliary losses is relatively insensitive to weight 505

7



Figure 3: Influence of loss weight. (a) Accuracy difference on HZSPH dataset. (b) Accuracy difference on
MIMIC-III dataset.
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Figure 4: Perplexity

values as the ENTM model was improved in all506

combinations. The CL loss plays the main role in507

improving model performance. However, the other508

two losses are not negligible as the incorporation of509

KL and TL improved our model further. These ex-510

perimental results indicated that the improvement511

effect of three auxiliary losses is obvious and sta-512

ble.513

4.7 Perplexity514

Fig. 4 shows the perplexity of ENTM with different515

topic numbers. In the HZSPH dataset, perplexities516

decrease with the increase of topic numbers when517

they are less than ten. Perplexities gradually in-518

crease with the increase of topic numbers when519

they are larger than 15. Perplexities are basically520

unchanged when the topic number is between ten521

to 15. In the MIMIC-III dataset, perplexities de-522

crease with the increase of topic numbers when523

they are less than ten. Perplexities gradually in- 524

crease with the increase of topic numbers when 525

they are larger than ten. Therefore, we chose ten as 526

the topic number to conduct experiments. 527

5 Conclusion 528

Our ENTM inherits the advantage of the LDA 529

in knowledge discovery ability. We introduced 530

the neural variational inference framework and 531

auxiliary loss set to improve the representation 532

generated by ENTM. The predictive performance 533

of the ENTM was evaluated on two independent 534

EHR datasets. The experiment result indicates that 535

ENTM obtained better performance than the lat- 536

est PLMs with significantly fewer computational 537

resources, and our model design is effective. The 538

knowledge discovery analysis demonstrates that the 539

ENTM can extract representative patient character- 540

istics from raw data, and the characteristics accord 541

with current medical literature, which is beyond 542

the ability of PLMs. In summary, we achieved the 543

goal of predicting patient diagnosis effectively and 544

discovering knowledge at once via raw medical. 545
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