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Abstract

Discovering knowledge and effectively predict-
ing target events are two main goals of medical
data mining. However, few models can achieve
them simultaneously. In this study, we investi-
gated the possibility of discovering knowledge
and predicting diagnosis at once via raw med-
ical text. We proposed the Enhanced Neural
Topic Model (ENTM), a variant of the neural
topic model, to learn interpretable representa-
tions. We introduced the auxiliary loss set to
improve the effectiveness of learned represen-
tations. Then, we used learned representations
to train a softmax regression model to predict
target events. As each element in represen-
tations learned by ENTM has an explicit se-
mantic meaning, weights in softmax regression
represent knowledge of whether an element is
a significant factor in predicting diagnosis. We
adopted two independent medical text datasets
to evaluate our ENTM model. Results indicate
that our model obtained better performance
compared to the latest pretrained neural lan-
guage models. Meanwhile, analysis of model
parameters indicates our model can discover
reliable knowledge from data.

1 Introduction

A large volume of patient information is recorded
in text in the electronic health record (EHR) system.
It is the primary evidence for doctors to realize
disease characteristics and diagnoses. Extracting
knowledge and diagnosing disease based on large,
complex medical text data have been investigated
for a long time in machine learning research (Chu
et al., 2018; Koleck et al., 2019).

Intuitively, these two tasks are supposed to be
tackled simultaneously. If a model achieves high
disease predictive performance but is inexplainable,
we will worry about whether the model makes de-
cisions via sound inference evidence. If a model
can extract knowledge from data but obtain poor
disease predictive performance, we may suspect

the reliability of the extracted knowledge. Doctors
trust a model only when it can diagnose diseases
accurately and it helps them understand the dis-
ease. However, recent studies usually tackled two
tasks separately. Deep learning (DL) based stud-
ies typically obtained promising predictive perfor-
mance but cannot provide any extra knowledge to
doctors because of the black-box property (Payrov-
naziri et al., 2020). On the contrary, knowledge
discovery-oriented studies still use traditional mod-
els and ignore the DL techniques, which usually
cannot obtain impressive disease predictive perfor-
mance (Bellou et al., 2019; Shin et al., 2021).

The main goal of this study is to propose a
method that can effectively predict patient diag-
nosis and discover knowledge at once via raw med-
ical text. The term “effective” means our model
needs to achieve comparable performance com-
pared to the latest large-scale pretrained language
models (PLM). In this study, we treat the predictive
performance of large PLMs as the state-of-the-art
(SOTA) performance of medical-text-based diag-
nosing tasks. The term “discover knowledge” indi-
cates finding population-level characteristics that
correlate to the occurrence of diseases. We regard
discovered knowledge as reliable when in accord
with current medical literature.

We proposed a two-phase model to achieve the
goal of this study. The first phase is to learn rep-
resentations of medical text. The second phase
adopts the softmax regression method to predict
diagnoses via representations. Of note, we adopted
the assumption that linear models are interpretable.
Softmax regression is one of the most widely used
linear models to make predictions and discover
knowledge in medical research. If the weight of
a feature learned by the model is statistically sig-
nificantly larger than zero, the feature may be a
risk factor for the disease. Otherwise, it may be a
protective factor.

Learning effective text representations whose el-



ement has explicit semantic meanings is the core
challenge in achieving our goal. Only when each
element in the representation has explicit meaning
analyzing the feature weight learned by softmax re-
gression is meaningful and discovering knowledge
is possible. Topic model, e.g., Latent Dirichlet
Allocation (LDA), can compress an unstructured
text into an interpretable representation, a.k.a.,
the document-topic distribution (Blei et al., 2001).
Each element in the representation can be mapped
to a topic-word distribution, which can be endowed
with an explanation by summarizing the word fre-
quency. The element value indicates the impor-
tance of the corresponding topic-word distribution
in a document. However, the representation is
usually not effective enough because inferencing
the true posterior of a complex topic model is in-
tractable due to the high dimension integrals (Blei
et al., 2017; Miao et al., 2017).

We introduced the enhanced neural topic model
(ENTM) to extract more effective representations
than LDA without loss of interpretability. The main
principle of the ENTM is to use neural variational
inference to model the posterior probability of an
LDA. Besides, we introduced three auxiliary losses
to leverage contrastive learning, knowledge dis-
tillation, and topic diversity information to train
the model more effectively. Previous studies have
demonstrated that the LDA can obtain unbiased and
low variance representations using the neural varia-
tional inference reparameterization method (Miao
et al., 2017; Nguyen and Luu, 2021). However,
these models did not detailly investigate their pre-
dictive potential. To our knowledge, these models
were not applied in medical research, either.

We conducted experiments to evaluate represen-
tations learned by the ENTM via disease diagnos-
ing tasks on two medical datasets. Experimental
results indicated that the representation learned by
the ENTM is as effective as the representations
learned by the latest PLMs as they achieved compa-
rable performance. Meanwhile, disease knowledge
discovered from topic-word distributions and soft-
max weights conformed to clinical literature and
were advocated by clinical professionals.

2 Related Work

The emergence of DL technology inspired studies
to propose neural network (NN) based interpretable
models. They adopt NN to generate the weight of
each feature to interpret predictions, a.k.a., the at-

tention mechanism. The main difference between
these prediction models and traditional linear mod-
els is that the weight of a feature is sample-specific
in NN models, while the weight of a feature is
a scalar shared in different samples in traditional
linear models. RETAIN is the first model to gener-
ate feature weights to interpret its prediction (Choi
et al., 2016). Its design was widely inherited in
subsequent studies (Yin et al., 2019; Zhang et al.,
2019; Ye et al., 2021; Zhang et al., 2020). Although
useful, these studies only accept structured data to
conduct interpretable predictions. Of note, struc-
turing medical text inevitably introduces errors and
biases. Sometimes it is even infeasible because
of patient heterogeneity or lack of tools. Mean-
while, these studies did not systematically discuss
or investigate the soundness of model-generated
feature weights. Recent studies demonstrated that
NN-based feature weights are unstable. Feature
weights only have weak relations to other feature
importance measures and cannot be treated as reli-
able explanations, or knowledge (Jain and Wallace,
2019; Kim et al., 2020).

The development of neural generative models
provides new potential to topic models. Kingma
et al. demonstrated it is possible to use a parame-
terized neural variational inference framework to
simulate the posterior whose evidence is intractable
(Kingma et al., 2014). Miao et al. proposed the
neural variational document model (NVDM) and
its variants, which can be regarded as a NN param-
eterized version of LDA, to generate the representa-
tions of documents (Miao et al., 2017). Srivastava
et al. proposed the prodLDA independent to the
NVDM (Srivastava and Sutton, 2017). They con-
structed a Laplace approximation to the Dirichlet
prior, making their prodLDA model interpretable,
while the NVDM is an uninterpretable model. Di-
eng et al. introduced logistic-normal distribution
to generate document-topic distribution, and they
applied word embeddings to optimize the perfor-
mance of the model (Dieng et al., 2020).

3 Methodology

Fig. 1 describes our ENTM model, which can be
regarded as a revision of the NVDM (Miao et al.,
2016). We revised the word sampling strategy in
this study to make our model explainable, while the
original NVDM is an inexplainable model. Mean-
while, we introduced three auxiliary losses to train
the model more effectively.



3.1 Neural Topic Model

Neural Topic Model (NTM) is the core of the
ENTM. The NTM generally followed the frame-
work of LDA in modeling text (Blei et al., 2001).
Specifically, it presumes each word wg, in a docu-
ment d from corpus D is generated independently
via the following process:

Zan ~ Categorical(hg) (1
way ~ Categorical(f,,, ) 2)

where d € D is the document index, n € Ny
is the word index, N, indicates the word number
in document d, and x4 denotes bag-of-words rep-
resentation of a document. hy € RT indicates the
document-topic distribution over document d, z4,
indicates the topic of wgp, 6., € R" indicates the
topic-word distribution over the topic z4,, 1" and
V indicate the topic number and vocabulary size,
respectively. Categorical(-) is a categorical distri-
bution. We treat 6 as parameters and h as hidden
variables. The log-likelihood of D is:

D Ny
logp(D;0) =log | | / p(h) [ (n9),,, dh
d=1 n=1
3)

It is challenging to optimize Eq. 3 as its integral
is intractable. We sidestep the integral with varia-
tional inference. Specifically, we introduce varia-
tional distributions ¢(h| d; ) that approximate the
posterior p(h|d;#), where ¢ are the variational
parameters. Equipped with the neural variational
inference framework, the log-likelihood can be re-
organized as (Blei et al., 2017):

log p(D;0) = KL(q(h|d; )||p(h| D;0))
+ ELBO(q| d; 0, )

ELBO(q| d; 0, ¢) = E4(log p(d| h; 0))

— KL(q(h[ d; ¢)|Ip(h))

where KL indicates the Kullback-Leibler diver-
gence, the ELBO (evidence lower bound) can be
regarded as a lower bound of log probabilities. In
this study, we optimize Eq.4 indirectly by optimiz-
ing ELBO (and omit the KL divergence term in
Eq.4). It usually works well in practice, although
theoretical correctness has not been justified yet.

Note log p(d| h; 6) is irrelevant to g(h|d ; ¢), the
first term in Eq. 5 can be rewritten as:
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Figure 1: Model Diagram

We presume the prior p(h) is a standard Gaus-
sian distribution with a softmax function. Previ-
ous studies also used the log-normalize function
or Laplace approximation to generate normalized
topic distribution (Dieng et al., 2020). We followed
the design of (Kingma et al., 2014) to introduce an
inference network. g(h| d; ¢) is modeled as a Gaus-
sian distribution with a softmax function as well.
1, £q = fo(xq) are location and covariance matrix
of q(h|d; ¢), where f,(-) is a NN parameterized
by ¢. To evaluate the KL divergence analytically,
we use the KL divergence of unnormalized p(h)
and q(h| d; ¢) distributions as the proxy of the true
KL divergence. The proxy KL divergence follows:

KL(N (1, £q)|IV(0,1))

(N
(T — pp™ —tr(Xq) + log|Xal)

1

2

The document loss function of a minibatch B
can be summarized as:

B Ng
Lq==)_ log(hdb),, —
5 d=1n=1 (8)
1
> 5T = pp® = tr(Sa) + log|Zal)

d=1

We can optimize document loss via a gradient-
based method. The training process is summarized
in Algorithm 1.

3.2 Auxiliary Loss Set

As Eq.8 is just an approximation of the true log-
likelihood, and the training dataset may not be suffi-
ciently large, we argue that the learned parameters
may not be effective and robust. We introduced
three auxiliary losses to improve the model.



Algorithm 1 NTM Training Process
Input: Corpus D
Output: ¢, 6

1: Random initialize : o, 3 € RT*V

2: while ¢ and (5 not converge do

3:  foriterationd = 0 to D do

4 04 = softmax(8y)

5:  end for

6:  Sample minibatch B from D

7 for each z; in B do

8 Compute 1, Xg = fo(xq)

9: Sample hy = softmax (N (i, X4))
10:  end for

11:  for each word w, in document d do
12: Compute p(wg,) = (hqf)
13:  end for

14:  Compute gradient of £, according to Eq.8
15:  Update parameters 3, ¢

16: end while

17: return ¢, 0

Wdn

3.2.1 Contrastive Loss

The document label, e.g., diagnosis, is available in
the medical document but is not used. The label
may improve the NTM by providing additional
high-level similarity information. In this study, we
introduce a contrastive learning-based loss term
to utilize the information (Chen et al., 2020). We
encourage the representations with the same label
to become similar and those with different labels
to become dissimilar.

B B
L.= Z Z (H(yd1 # ydg) - ]I(ych - de))
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Where dj, da are document indices. ygq, , Y4, are
document labels. I(-) is indicator function.

3.2.2 Knowledge Distillation Loss

We developed a simple method to transfer the
knowledge of PLM into our ENTM model (Hinton
etal., 2015). Specifically, given arbitrary document
pairs, we argue that the representation similarity
learned by ENTM should be the same as the repre-
sentation similarity generated by PLM. According
to the assumption, we introduce the knowledge
distillation loss (Eq. 10).

B B T T
Td,Tq ha, hy
Ly = 2 _ 2
2 2 \Teallrall ™ Thallha]
(10)

where rg4,, rq, are document representations
generated by a PLM.

3.2.3 Topic Diversity Loss

Existing studies have found that optimizing log-
likelihood negatively correlates with the quality of
extracted topic (Chang et al., 2009). To extract
meaningful semantic topics, we introduce a topic
diversity loss that encourages different topics to
become dissimilar (Eq. 11).
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3.2.4 Joint Loss
In summary, the joint loss follows:
L=alg+ BL.+ L+ 0L (12)

where «, (3, 7, 0 are loss weights. We call
the NTM equipped with three auxiliary losses
the ENTM. The sum of the four hyperparameters
should equal one, i.e.,a+ 5 +v+d =1

4 Experiment

4.1 Experiment Settings
4.1.1 Dataset and Preprocessing

In this study, we experimented on two datasets. The
first dataset is a Chinese EHR dataset from a ter-
tiary psychiatric hospital in China (HZSPH), which
includes clinical narratives of 1,500 patients with
anxiety, depression, or bipolar affective disorder ad-
mitted to the hospital between 2019 and 2021. The
second dataset is the MIMIC-III, a public dataset
that includes complete EHR data of 58,997 hos-
pitalizations of patients who visited the intensive
care unit of Beth Israel Deaconess Medical Cen-
ter between 2001 and 2012 (Johnson et al., 2016).
We described sample data in the Supplementary
Material.

As one goal of this study is to predict the diag-
nosis of patients, we only utilize the information
collected in the admission phase. Other informa-
tion, e.g., diagnosis information and summary of
hospital course, was removed to avoid leaking the
label. We adopted the pkuseg toolkit to tokenize the



HZSPH MIMIC-III

Samples 1,463 8,827
Avg. # tokens 2,245 1,521
Max. # tokens 3,563 5,467
Min. # tokens 374 320
Class number 3 10

Table 1: Data Statistics

HZSPH dataset and the tokenizer of Deberta to to-
kenize the MIMIC-III dataset (Luo et al., 2019; He
et al., 2021). We used the TF-IDF method to select
the most important 10,000 tokens within the two
datasets to construct bag-of-words representations.
We adopted MacBert and Longformer, which are
SOTA PLMs in Chinese and English, to generate
the representations of documents in HZSPH and
MIMIC-III datasets, respectively (Cui et al., 2020;
Beltagy et al., 2020). Documents that are longer
than the maximum length of a PLM were truncated
from the beginning because the information was
written in the order of importance.

Patients in the MIMIC-III dataset typically have
multiple diagnoses, and the distribution of diag-
noses is highly imbalanced. We only reserve pa-
tients whose primary diagnosis is in the top ten
frequent diagnoses. We only use the primary diag-
nosis as the label to formulate our task as a multi-
class prediction task. We did not filter the HZSPH
dataset because it is balanced. The statistics of two
preprocessed datasets are in Table 1.

4.1.2 Implementation

The model training process can be divided into two
phases. In the first phase, we trained the ENTM
according to the method we introduced in the last
section. In the second phase, we locked the param-
eter in the ENTM and utilized the representations
generated by the ENTM to predict the correspond-
ing diagnosis via a softmax regression classifier.

We investigated the interpretability and the po-
tential of discovering knowledge of ENTM by
analyzing topic-word distribution parameters and
feature weights of the softmax regression. Con-
sidering the space limit, we only described topic-
word distributions and feature weights of HZSPH
datasets in this paper.

We used the grid search strategy to find the best
loss weights. We used the five-fold cross-validation
approach to fully utilize the data and reported the
mean performance of the cross-validation exper-
iments to evaluate the model. We set the topic

number to ten according to the perplexity analysis.
The source code was released in the Supplementary
Material.

4.1.3 Baseline Models

(1) LDA (Blei et al., 2001). LDA is a topic model
that can extract interpretable document representa-
tions. (2) sLDA (Mcauliffe and Blei, 2007). Super-
vised LDA (sLDA) is an LDA variant that utilizes
document labels. (3) NVDM (Miao et al., 2016).
NVDM is an LDA variant that utilizes a neural
variational inference framework. (4) MacBert (Cui
et al., 2020). MacBert is a variant of BERT that
introduces a novel masking strategy. (5) Deberta
(He et al., 2021). Deberta is a variant of BERT
that utilizes the disentangled attention mechanism.
(6) Longformer (Beltagy et al., 2020). Longformer
is a variant of BERT that accepts a maximum of
4,096 tokens, while most BERT models only accept
a maximum of 512 tokens. Deberta, Longformer
is only available in English, and MacBert is only
available in Chinese. All PLMs were fine-tuned
via our datasets.

4.1.4 Metrics

We used accuracy and (macro-) F1 to evaluate the
predictive performance. Perplexity was used to de-
termine the number of topics (Blei et al., 2001). We
additionally used topic coherence to evaluate topic
quality quantitatively. We chose the normalized
pointwise mutual information (NPMI) to evaluate
topic coherence as it was widely used in previous
studies (Eq. 13) (Aletras and Stevenson, 2013).

(13)

p(wi,wej)

N
3 108 o )plus,)

—logp(wii, we;)

where w; means the Top N tokens in topic ¢.
We set N to ten. p(wy;) indicates the proportion
that wy; is in a document, p(wy;, wy;) indicates the
proportion that both wy; and w;; are in a document.

4.2 Predictive Performance

Table 2 shows the predictive ability of the ENTM
and baselines. Models’ performances on HZSPH
are systematically better because the MIMIC-III
has ten classes to predict, while the HZSPH dataset
only has three classes. It is not surprising that
the performances of LDA and sLDA are worse



HZSPH MIMIC-III
Acc. F1 Acc. Fl

LDA 0.71 0.70 054 0.27
sLDA 0.73 0.71 0.55 0.28
MacBert 0.85 0.86 - -
Deberta - - 0.67 048
Longformer - - 0.74 0.56
NVDM 0.75 0.73 0.56 0.30
NTM 0.76  0.75 0.57 0.30
NTM+CL 0.83 0.84 0.72 0.56
NTM+KL 0.79 0.79 0.60 0.44
NTM+TL 0.78 0.78 0.59 0.42
ENTM-512 0.84 0.84 0.68 0.49
ENTM 08 086 0.75 0.59

Table 2: Prediction Performance

than other models, as inferencing posterior is dif-
ficult. PLM-based models obtained significantly
better performance than topic models. The ENTM
obtained better performance than PLMs in both
datasets, demonstrating our ENTM is efficient in
diagnosing via raw medical text.

We noticed that the MacBert achieved compara-
ble, while the Deberta obtained significantly worse
performance than the ENTM. This phenomenon
may be attributed to the data characteristics. We
argue the vital information of HZSPH is recorded
at the beginning of the text, while the vital informa-
tion of MIMIC-III is relatively distributed evenly.
Therefore, the data truncation procedure signifi-
cantly deteriorates the performance of Deberta.

4.3 Ablation Study

We investigated the effectiveness of our design by
conducting ablation studies (Table 2). The NVDM
and NTM obtained comparable performance in
both datasets. The NTMs trained with different
losses, i.e., contrastive loss (CL), knowledge dis-
tillation loss (KL), and topic diversity loss (TL),
obtained performance improvement independently,
while improvements in introducing KL and TL are
relatively marginal, and the improvement of in-
troducing CL is significant. The ENTM obtained
the best performance, indicating the combination
of auxiliary losses can further improve representa-
tions’ effectiveness. The ENTM-512, i.e., a variant
of ENTM that only uses the first 512 tokens of
a document, obtained comparable performance to
Deberta and MacBert, indicating representations
generated by our ENTM are as effective as those

HZSPH MIMIC-III

LDA N/A N/A

sLDA N/A N/A

NTM 0.104 0.093
NTM+CL  0.181 0.182
NTM+KL  0.131 0.112
NTM+TL 0.135 0.109
ENTM 0.197 0.192

Table 3: Topic Coherence

learned by the latest PLMs in the same experimen-
tal setting.

4.4 Topic Coherence

Table 3 described the topic coherence of our model
and baselines. We failed to calculate the NPMI of
LDA and sLLDA because a part of Top N token pairs
wy; and wyg; never co-exist in a document, which
causes numerical error in calculating NPMI. These
results indicated that the quality of some topics
extracted by LDA and sLDA was poor.

All NTM-based models obtained NPMI scores
successfully. The incorporation of CL significantly
improved the quality of topics. The NTM+KL
and NTM+TL models also obtained higher NPMI
than the NTM model, though the improvement is
marginal. The ENTM obtained the best NPMI
in two datasets, indicating that all three auxiliary
losses are effective in learning better topic-word
distributions, while the combination of losses can
further improve the quality of topics.

4.5 Knowledge Discovery Ability

Fig. 2 describes the result of the weight matrix of
the softmax regression and the topic-word distri-
bution of an HZSPH experiment. The larger the
weight, the stronger the positive/negative influence
of a topic in diagnosing a disease. We select 15
tokens with a high occurrence probability for each
topic to explain their semantic meanings. We only
investigated topics one, two, five, seven, and nine
to reveal the characteristics of bipolar disorder, de-
pression, and anxiety because they are the strongest
factors.

The five topic-word distributions have signifi-
cant differences. Each high-frequency token list
can be regarded as a patient group depicting typical
characteristics of the three diseases. We can easily
find that topics one, two, and nine reflect a patient
group that feels unsafe. They also described three



Topic Weights in Disease Risk Prediction

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
Bipolar -5.56 -6.83 -1.61 -0.46 0.65 -2.76 -4.57 -6.91 1.92
Depression -3.62 -0.25 -2.97 0.15 -6.30 2.29 6.01 2.84 -1.00 -2.32
Anxiety 5.88 6.03 291 -1.02 -5.63 -3.00 -6.32 2.18 4.50 -1.98
worry delusion without without happy self decrease deny decrease
nervous worry normal normal excitement improve suicide happy can change
body anxiety deny deny lose temper again dispirited think worry suicide
anxiety nervous sensitive no abnormal = repeatedly = turndown = proactive anxiety hypologia
disturbance = uncomfort good notreach = repeatedly stable decrease decrease poor sleep ~ poor sleep
uncomfort flustered normal normal irritation insist arm perturbed = uncomfort bad
flustered hypochondria  quarrel obvious again good decrase poor difficult improve
suicide scurviness worry tenderness  inamess = depression = classmate suicide illusion dispirited
chest tight = grotesque improve  not draw out repeat words uncomfort go toschool illusion  misanthropic  anxiety
interest  indifferently no incentive dispirited ~ suspicious improve cry turndown  lightsleep = excitement
impulsion bradyphrenia headache = coordinate insist turndown grade anxiety poor sleep quiet
misanthropic. poorsleep = conscious = harmonize = exaggerate feeble wrist repeat words  dispirited paralogic
poor sleep = compulsive = refreshed misanthropic impulsion = excitement school flustered impulsion delusion
asthenia break out nausea abnormal temper fluctuation parent sophism  destruction rave
painful negativism = cooperation  asthenia abuse boring family paralogic delusion  misanthropic
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

Fifteen High Frequency Tokens (Translated from Chinese)

Figure 2: Knowledge Discovery Analysis

subtypes of anxiety as token lists are different. For
example, the word “delusion” was first placed in
topic two but was not included in topic one. Topic
five revealed the symptom of mania as we can find
a word such as “lose temper” and “irritation” in
the list. Topic seven indicated a low-mood patient
group as we found “dispirited” and “turndown” in
the list. Another characteristic of the token list of
topic seven is that it included tokens related to body
parts, e.g., “wrist”, and tokens related to students,
e.g., “classmates” and “parents”. These tokens are
not included in other lists. We found these tokens
were included because many depression patients
are students and typically had self-harm records.
Although the patient pattern characteristic needs
to be interpreted carefully, it reveals the possibility
that teenagers may be the most vulnerable popula-
tion group to depression in China. All the charac-

teristics discovered in this subsection accord with
current clinical literature and are advocated by our
clinical collaborators (Association, 2013). There-
fore, we argue that the found characteristics can be
regarded as reliable knowledge.

4.6 Influence of Loss Weights

Fig. 3 describes the performance of ENTM with
different loss weights combinations. We set the
weight of 3, v, § to 0, 0.05, 0.1, and 0.15, and
implemented 64 five-fold cross-validation exper-
iments in two datasets, respectively. Each point
in the figure reports the average accuracy differ-
ence between the ENTM with the correspond-
ing loss weight set and the original NTM, i.e.,
accgNTM — accyTis- The more yellow the point,
the more the improvement. The influence of three
auxiliary losses is relatively insensitive to weight
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Figure 3: Influence of loss weight. (a) Accuracy difference on HZSPH dataset. (b) Accuracy difference on

MIMIC-III dataset.
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Figure 4: Perplexity

values as the ENTM model was improved in all
combinations. The CL loss plays the main role in
improving model performance. However, the other
two losses are not negligible as the incorporation of
KL and TL improved our model further. These ex-
perimental results indicated that the improvement
effect of three auxiliary losses is obvious and sta-
ble.

4.7 Perplexity

Fig. 4 shows the perplexity of ENTM with different
topic numbers. In the HZSPH dataset, perplexities
decrease with the increase of topic numbers when
they are less than ten. Perplexities gradually in-
crease with the increase of topic numbers when
they are larger than 15. Perplexities are basically
unchanged when the topic number is between ten
to 15. In the MIMIC-III dataset, perplexities de-
crease with the increase of topic numbers when

they are less than ten. Perplexities gradually in-
crease with the increase of topic numbers when
they are larger than ten. Therefore, we chose ten as
the topic number to conduct experiments.

5 Conclusion

Our ENTM inherits the advantage of the LDA
in knowledge discovery ability. We introduced
the neural variational inference framework and
auxiliary loss set to improve the representation
generated by ENTM. The predictive performance
of the ENTM was evaluated on two independent
EHR datasets. The experiment result indicates that
ENTM obtained better performance than the lat-
est PLMs with significantly fewer computational
resources, and our model design is effective. The
knowledge discovery analysis demonstrates that the
ENTM can extract representative patient character-
istics from raw data, and the characteristics accord
with current medical literature, which is beyond
the ability of PLMs. In summary, we achieved the
goal of predicting patient diagnosis effectively and
discovering knowledge at once via raw medical.
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