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ABSTRACT

Invariance learning methods aim to learn invariant features in the hope that they gen-
eralize under distributional shifts. Although many tasks are naturally characterized
by continuous domains, current invariance learning techniques generally assume
categorically indexed domains. For example, auto-scaling in cloud computing often
needs a CPU utilization prediction model that generalizes across different times
(e.g., time of a day and date of a year), where ‘time’ is a continuous domain index.
In this paper, we start by theoretically showing that existing invariance learning
methods can fail for continuous domain problems. Specifically, the naive solution
of splitting continuous domains into discrete ones ignores the underlying relation-
ship among domains, and therefore potentially leads to suboptimal performance. To
address this challenge, we propose Continuous Invariance Learning (CIL), which
extracts invariant features across continuously indexed domains. CIL is a novel
adversarial procedure that measures and controls the conditional independence
between the labels and continuous domain indices given the extracted features. Our
theoretical analysis demonstrates the superiority of CIL over existing invariance
learning methods. Empirical results on both synthetic and real-world datasets
(including data collected from production systems) show that CIL consistently
outperforms strong baselines among all the tasks.

1 INTRODUCTION

Machine learning models have shown impressive success in many applications, including computer
vision (He et al., 2016), natural language processing (Liu et al., 2019), speech recognition (Deng et al.,
2013), etc. These models normally take the independent identically distributed (IID) assumption
and assume that the testing samples are drawn from the same distribution as the training samples.
However, these assumptions can be easily violated when there are distributional shifts in the testing
datasets. This is also known as the out-of-distribution (OOD) generalization problem.

Learning invariant features that remain stable under distributional shifts is a promising research area
to address OOD problems. However, current invariance methods mandate the division of datasets
into discrete categorical domains, which is inconsistent with many real-world tasks that are naturally
continuous. For example, in cloud computing, Auto-scaling (a technique that dynamically adjusts
computing resources to better match the varying demands) often needs a CPU utilization prediction
model that generalizes across different times (e.g., time of a day and date of a year), where ‘time’ is a
continuous domain index. Figure 1 illustrates the problems with discrete and continuous domains.

Consider invariant features that can be generalized under distributional shift and spurious features that
are unstable. Let x denote the input, y denote the output, t denote the domain index, and Et denote
taking expectation in domain t. Consider the model composed of a featurizer Φ and a classifier w
(Arjovsky et al., 2019). Invariant Risk Minimization (IRM) proposes to learn Φ(x) by merely using
invariant features, which yields the same conditional distribution Pt(y|Φ(x)) across all domains t,
i.e., P(y|Φ(x)) = P(y|Φ(x), t), which is equivalent to y ⊥ t|Φ(x) (Arjovsky et al., 2019). Existing
approximation methods propose to learn a featurizer by matching Et[y|Φ(x)] for different t (See
Section 2.1 for details).

*These authors contributed equally to this work. Corresponding to Lintao Ma(lintao.mlt@antgroup.com).
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A case study on REx. However, in the continuous environment setting, there are only very limited
samples in each environment. So the finite sample estimations Êt[y|Φ(x)] can deviate significantly
from the expectation Et[y|Φ(x)]. In Section 2.2, We conduct a theoretical analysis of REx (Krueger
et al., 2021), a popular variant of IRM. Our analysis shows that when there is a large number of
domains and limited sample sizes per domain (i.e., in the continuous domain tasks), REx fails to
identify invariant features with a constant probability. This is in contrast to the results in discrete
domain tasks, where REx can reliably identify invariant features given sufficient samples in each
discrete domain.

The generality of our results. Other popular approximations of IRM also suffer from this lim-
itation, such as IRMv1 (Arjovsky et al., 2019), REx (Krueger et al., 2021), IB-IRM (Ahuja
et al., 2021), IRMx (Chen et al., 2022), IGA (Koyama & Yamaguchi, 2020), BIRM (Lin et al.,
2022a), IRM Game (Ahuja et al., 2020), Fisher (Rame et al., 2022) and SparseIRM (Zhou
et al., 2022). They employ positive losses on each environment t to assess whether Êt[y|Φ(x)]
matches with the other environments. However, since the estimations Êt[y|Φ(x)] are inac-
curate, these methods fail to identify invariant features. We then empirically verify the inef-
fectiveness of these popular invariance learning methods in handling continuous domain prob-
lems. One potential naive solution is to split continuous domains into discrete ones. How-
ever, this splitting scheme ignores the underlying relationship among domains and therefore
can lead to sub-optimal performance, which is further empirically verified in Section 2.2
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Figure 1: Illustration of distributional
shifts in discrete and continuous do-
mains (Wang et al., 2020). Existing
IRM methods focus on discrete domains,
which is inconsistent with many real-
world tasks. Our work therefore aims
to extend IRM to continuous domains.

Our methods. Recall that our task is to learn a feature
extractor Φ(·) that extracts invariant features from x, i.e.,
learn Φ which elicits y ⊥ t|Φ(x). Previous analysis
shows that it is infeasible to align Et[y|Φ(x)] among dif-
ferent domains t in continuous domain tasks. Instead, we
propose to align Ey[t|Φ(x)] for each class y. We can
start by training two domain regressors, i.e., h(Φ(x)) and
g(Φ(x),y), to regress over the continuous domain index t
using L1 or L2 loss. Notably, the L1/L2 distance between
the predicted and ground-truth domains captures the un-
derlying relationship between continuous domain indices
and can lead to similar domain index prediction losses
between domains on both h and g if Φ(x) only extracts
invariant features. Specifically, the loss achieved by h,
i.e., E∥t − h(Φ(x))∥22, and the loss achieved by g, i.e.,

E∥t−g(Φ(x),y)∥22 would be the same if Φ(x) only extracts invariant features. The whole procedure
is then formulated into a mini-max framework as shown in Section 3.

In Section 3.1, we emphasize the theoretical advantages of CIL over existing IRM approximation
methods in continuous domain tasks. The limited number of samples in each domain makes it
challenging to obtain an accurate estimation for Et[y|Φ(x)], leading to the ineffectiveness of existing
methods. However, CIL does not suffer from this problem because it aims to align Ey[t|Φ(x)],
which can be accurately estimated due to the ample number of samples available in each class
(also see Appendix D for the discussion of the relationship between Et[y|Φ(x)] and Ey[t|Φ(x)]).
In Section 4, we carry out experiments on both synthetic and real-world datasets (including data
collected from production systems in Alipay and vision datasets from Wilds-time (Yao et al., 2022)).
CIL consistently outperforms existing invariance learning baselines in all the tasks. We summarize
our contributions as follows:

• We identify the problem of learning invariant features under continuous domains and
theoretically demonstrate that existing methods that treat domains as categorical indexes
can fail with constant probability, which is further verified by empirical study.

• We propose Continuous Invariance Learning (CIL) as the first general training framework to
address this problem. We also show the theoretical advantages of CIL over existing IRM
approximation methods on continuous domain tasks.

• We provide empirical results on both synthetic and real-world tasks, including an industrial
application in Alipay and vision datasets in Wilds-time (Yao et al., 2022), showing that CIL
consistently achieves significant improvement over state-of-the-art baselines.
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2 DIFFICULTY OF EXISTING METHODS IN CONTINUOUS DOMAIN TASKS

2.1 PRELIMINARIES

Notations. Consider the input and output (x,y) in the space X × Y . Our task is to learn a function
fθ ∈ F : X −→ Y , parameterized by θ. We further denote the domain index as t ∈ T . We have
(x,y, t) ∼ P(x,y|t)× P(t). Denote the training dataset as Dtr := {(xtr

i ,y
tr
i , t

tr
i )}ni=1. The goal of

domain generalization is to learn a function fθ on Dtr that can perform well in unseen testing dataset
Dte. (This is different from continuously indexed domain adaptation (Wang et al., 2020), as our setting
does not have access to target-domain data.) Since the testing domain tte differs from ttr, P(x,y|tte)
is also different from P(x,y|ttr) due to distributional shift. Following Arjovsky et al. (2019), we
assume that x is generated from invariant feature xv and spurious feature xs by some unknown
function ξ, i.e., x = ξ(xv,xs). By the invariance property (more details shown in Appendix C), we
have y ⊥ t|xv for all t ∈ T . The target of invariance learning is to make fθ only dependent on xv .

Invariance Learning. To learn invariant features, Invariant Risk Minimization (IRM) first divides
the neural network θ into two parts, i.e., the feature extractor Φ and the classifier w (Arjovsky et al.,
2019). The goal of invariance learning is to extract Φ(x) which satisfies y ⊥ t|Φ(x).
Existing Approximation Methods. Suppose we have collected the data from a set of discrete
domains, T = {t1, t2, ..., tM}. The loss in domain t isRt(w,Φ) := Et[ℓ(w(Φ(x)),y)] . Since is
hard to validate y ⊥ t|Φ(x) in practice, existing works propose to align Et[y|Φ(x)] for all t as an
approximation. Specifically, if Φ(x) merely extract invariant features, Et[y|Φ(x)] would be the same
in all t. Let wt denote the optimal classifier for domain t, i.e., wt := argminwRt(w,Φ). We have
wt(Φ(x)) = Et[y|Φ(x)] hold if the function space of w is sufficiently large (Li et al., 2022). So if
Φ(x) relies on invariant features, wt would be the same in all t. Existing approximation methods try
to ensure wt that is the same for all environments to align Et[y|Φ(x)] (Arjovsky et al., 2019; Lin
et al., 2022a; Ahuja et al., 2021). Further variants also include checking whether Rt(w,Φ) is the
same (Krueger et al., 2021; Ahuja et al., 2020; Zhou et al., 2022; Chen et al., 2022), or the gradient is
the same for all t (Rame et al., 2022; Koyama & Yamaguchi, 2020). For example, REx (Krueger
et al., 2021) penalizes the variance of the loss in domains:

LREx =
∑

t∈T
Rt(w,Φ) + λ|T |Var(Rt(w,Φ)). (1)

where Var(Rt(w,Φ)) is the variance of the losses among domains.

Remark: The REx loss is conventionally LREx = 1
|T |
∑

t∈T Rt(w,Φ) + λVar(Rt(w,Φ)). We
re-scale both terms by |T | for ease of presentation, which does not change the results.

2.2 THE RISKS OF EXISTING METHODS ON CONTINUOUS DOMAIN TASKS

Existing approximation methods propose to learn a feature extractor by matching Et[y|Φ(x)] for
different t. However, in the continuous environment setting, there are a lot of domains and each
domain contains limited amount of samples, leading to noisy empirical estimations Êt[y|Φ(x)].
Specifically, existing methods employ positive losses on each environment t to assess whether
Êt[y|Φ(x)] matches the other environments. However, since the estimated Êt[y|Φ(x)] can deviate
significantly from Et[y|Φ(x)], these methods fail to identify invariant features. In this part, we first
use REx as an example to theoretically illustrate this issue and then show experimental results for
other variants.

Theoretical analysis of REx on continuous domain tasks. Consider a simplified case where x
is a concatenation of a spurious feature xs and an invariant feature xv, i.e., x = [xs, xv]. Further,
Φ is a feature mask, i.e., Φ ∈ {0, 1}2. Let Φs and Φv denote the feature mask that merely select
spurious and invariant feature, i.e., Φs = [1, 0] and Φv = [0, 1], respectively. Let R̂t(w,Φ) =
1
nt

∑ne

i=1 ℓ(w(Φ(xi)), yi) denote the finite sample loss on domain t where nt is the sample size in
domain t. Denote L̂REx(Φ) as the finite-sample REx loss in Eq. equation 1. We omit the subscript
‘REx’ when it is clear from the context in this subsection. REx can identify the invariant feature mask
Φv if and only if L̂(Φv) < L̂(Φ),∀Φ ∈ {0, 1}2. Suppose the dataset S that contains |T | domains.
For simplicity, we assume that there are equally nt = n/|T | samples in each domain.
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Assumption 1. The expected loss of the model using spurious features in each domain,Rt(w,Φs),
follows a Gaussian distribution, i.e.,Rt(w,Φs) ∼ N (R(w,Φs), δR), where the meanR(w,Φs) is
the average loss over all domains. Given a feature mask Φ ∈ {Φs,Φv}, the loss of an individual
sample (x, y) from environment t deviates from the expectation loss (of domain t) by a Gaussian,
ℓ(y,w(Φ(x)))− Et [ℓ(y,w(Φ(x)))] ∼ N (0, σ2

Φ). The variance σΦ is drawn from a hyper exponen-
tial distribution with density function p(σΦ;λ) = λ exp(−λσΦ) for each Φ.

Remark on the Setting and Assumption. Recall that Rt(w,Φ) represents the expected loss of
(w,Φ) in domain t. When Φ = Φv , the loss is the same across all domains, resulting in zero penalty.
However, when Φ = Φs, the loss in domain t deviates from the average loss, introducing a penalty
that increases linearly with the number of environments. In this case, REx can easily identify the
invariant feature if we have an infinite number of samples in each domain. However, if we have
multiple environments with limited sample sizes in each, REx can fail with a constant probability.
This limitation will be discussed further in the following parts.

Let G−1 : [0, 1] −→ [0,∞) denote the inverse of the cumulative density function: G(t) = P (z ≤ t) of
the distribution whose density is p(z) = 1− 1/2 exp(−λz) for z > 0. Proposition 1 below shows
that REx fails when there are many domains but with a limited number of samples in each domain.

Proposition 1. If n
|T | −→∞, with probability approaching 1, we have E[L̂(Φv)] < E[L̂(Φs)], where

the expectation is taken over the random draw of the domain and each sample given σΦ. However, if
the domain number |T | is comparable with n, REx can fail with a constant probability. For example,
if |T | ≥ σR

√
n

∆G−1(1/4) , then with probability at least 1/4, E[L̂(Φv)] > E[L̂(Φs)].

Proof Sketch and Main Motivation. The complete proof is included in Appendix F. When there
are only a few samples in each domain (i.e., |T | is comparable to n), the empirical loss R̂t(w,Φ)
deviates from its expectation by a Gaussian variable ϵt ∼ N (0, σ2

Φ/nt). After taking square, we
have E[ϵ2t ] = σ2

Φ/nt. There are |T | domains and nt = n/|T |. So we have
∑

t E[ϵ2t ] = |T |2σ2
Φ/n,

indicating that the data randomness can induce an estimation error that is quadratic in |T |. Note
that the expected penalty (assuming we have infinite samples in each domain) grows linearly in
|T |. Therefore the estimation error dominates the empirical loss L̂ with large |T |, which means the
algorithm selects features based on the data noise rather than the invariance property. Intuitively,
existing IRM methods try to find a feature Φ which aligns Êt[Y |Φ(x)] among different t. Due to the
finite-sample estimation error, Êt[Y |Φ(x)] can be far away from Et[Y |Φ(x)], leading to the failure
of invariance learning. One can also show that other variants, e.g., IRMv1, also suffer from this issue
(see empirical verification later in this section).

101 102 103

Number of Domains

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y

IRMv1
REx
CIL

The performance of invariant learning methods

Figure 2: Empirical validation of how the performance of
IRM deteriorates with the number of domains while the
total sample size is fixed. The experiments are conducted
on CMNIST (Arjovsky et al., 2019) with 50,000 samples.
We equally split the original 2 domains into more domains.
Since CMNIST only contains 2 classes, 50% test accuracy is
close to random guessing. Notably, the data with continuous
domains can contain an infinite number of domains with only
one sample in each domain.

Implications for Continuous Do-
mains. Proposition 1 shows that if
we have a large number of domains
and each domain contains limited data,
REx can fail to identify the invariant
feature. Specifically, as long as |T |
is larger than O(

√
n), REx can fail

even if each domain contains O(
√
n)

samples.

When we have a continuous domain
in real-world applications, each sam-
ple (xi, yi) has a distinct domain in-
dex, i.e., there is only one sample in
each domain. Therefore when |T | ≈
n, REx can fail with probability 1/4

when n ≥
(

σR

δG−1(1/4)

)2
.

Empirical verification. We conduct
experiments on CMNIST (Arjovsky
et al., 2019) to corroborate our theoret-
ical analysis. The original CMNIST
contains 50,000 samples with 2 do-
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mains. We keep the total sample size fixed and split the 2 domains into 4, 8, 16,..., and 1024 domains
(more details in Appendix L). The results in Figure 2 show that the testing accuracy of REx and
IRMv1 decreases as the number of domains increases. Their accuracy eventually drops to 50% (close
to random guessing) when the number of domain numbers is 1,024. These results show that existing
invariance methods can struggle when there are many domains with limited samples in each domain.
Refer Table 1 for results on more existing methods.

Method IRMv1 REx IB-IRM IRMx IGA InvRat-EC BIRM IRM Game SIRM CIL (Ours)
Acc(%) 50.4 51.7 55.3 52.4 48.7 57.3 47.2 58.3 52.2 67.2

Table 1: OOD performance of existing methods on continuous CMNIST with 1024 domains.

Further discussion on merging domains. A potential method to improve existing invariance
learning methods in continuous domain problems is to merge the samples with similar domain indices
into a ‘larger’ domain. However, since we may have no prior knowledge of the latent heterogeneity
of the spurious feature, merging domains is very hard in practice (also see Section 4 for empirical
results on merged domains).

3 OUR METHOD

We propose Continuous Invariance Learning (CIL) as a general training framework for learning
invariant features among continuous domains.

Formulation. Suppose Φ(x) successfully extracts invariant features, and we have y ⊥ t|Φ(x)
according to Arjovsky et al. (2019). The previous analysis shows that it is difficult to align Et[y|Φ(x)]
for each domain t since there are only very limited samples in t in the continuous domain tasks.
This also explains why most existing methods fail in continuous domain tasks. In this part, we
propose to align Ey[t|Φ(x)] for each class y (see Appendix D for the discussion on the relationship
between Et[y|Φ(x)] and Ey[t|Φ(x)]). Since there is a sufficient number of samples in each class
y, we can obtain an accurate estimation of Ey[t|Φ(x)]. We perform the following steps to verify
whether Ey[t|Φ(x)] is the same for each y : we first fit a function h ∈ H to predict t based on
Φ(x). Since t is continuous, we adopt L2 loss to measure the distance between t and h(Φ(x)), i.e.,
E[∥h(Φ(x)) − t∥22]. We use another function g to predict t based on Φ(x) and y, and minimize
E∥g(Φ(x),y) − t∥22. If y ⊥ t|Φ(x) holds, y does not bring more information to predict t when
conditioned on Φ(x). Then the loss achieved by g(Φ(x),y) would be similar to the loss achieved by
h(Φ(x)), i.e., E[∥g(Φ(x),y)− t∥22] = E[∥h(Φ(x))− t∥22].
In conclusion, we solve the following framework:

min
Φ,w

Ex,yℓ(w(Φ(x)),y) s.t.min
h∈H

max
g∈G

E[∥h(Φ(x))− t∥22 − ∥g(Φ(x),y)− t∥22] = 0

In practice, we can replace the hard constraint in equation 2 with a soft regularization term as follows:

min
w,Φ,h

max
g

Q(w,Φ, g, h) = Ex,y,t

[
ℓ(w(Φ(x)),y) + λ

(
∥h(Φ(x))− t∥22 − ∥g(Φ(x),y)− t∥22

)]
,

where λ ∈ R+ is the penalty weight.

Algorithm. We adapt Stochastic Gradient Ascent and Descent (SGDA) to solve equation 2. SGDA
alternates between inner maximization and outer minimization by performing one step of gradient
each time. The full algorithm is shown in Appendix A.

Remark: Our method is indeed based on the assumption that the class variable is discrete. Invariance
learning methods have primarily been applied to classification tasks where the class variable is
typically discrete, which aligns with our requirement. It is worth noting that previous methods often
assume that the domains are discrete, which may not be applicable in many applications where the
domains are continuous.
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3.1 THEORETICAL ANALYSIS OF CONTINUOUS INVARIANCE LEARNING

In this section, we assume t is a one-dimensional scalar to ease the notation for clarity. All results
still hold when t is a vector. We start by stating some assumptions on the capacity of the function
classes.
Assumption 2. H contains h∗, where h∗(z) := E[t|z = Φ(x)].

Assumption 3. G contains g∗, where g∗(z,y) := E[t|z = Φ(x),y)].

Then we have the following results:
Lemma 1. Suppose Assumption 2 and 3 hold, h∗ and g∗ minimize the following losses given a fixed Φ,
we have h∗(·) = argminh∈H E(x,t)(h(Φ(x))−t)2, and g∗(·) = argming∈G E(x,y,t)(g(Φ(x),y)−
t)2. where the proof is shown in Appendix G.

Theorem 2. Suppose Assumptions 2 and 3 hold. The constraint of equation 2 is satisfied if and only
E[t|Φ(x)] = E[t|Φ(x),y] holds for ∀y ∈ Y .

Proof in Appendix H. The advantage of CIL is discussed as follows:

The advantage of CIL in continuous domain tasks. Consider a 10-class classification task with an
infinite number of domains and each domain contains only one sample, i.e., n −→∞, and n/|T | = 1,
Proposition 1 shows that REx would fail to identify the invariant feature with constant probability.
Whereas, Theorem 2 shows that CIL can still effectively extract invariant features. Intuitively, existing
methods aim to align Et[y|Φ(x)] across different t values. However, in continuous environment
settings with limited samples per domain, the empirical estimations Êt[y|Φ(x)] become noisy. These
estimations deviate significantly from the true Et[y|Φ(x)], rendering existing methods ineffective in
identifying invariant features. In contrast, CIL proposes to align Ey[t|Φ(x)], which can be accurately
estimated as there are sufficient samples in each class.

We have shown that the definite advantage of CIL based on Proposition 1 and Theorem 2. In the
following part, we are going to show the finite sample property of our CIL for completeness. This
finite sample analysis is a standard analysis of mini-max formulation based on the results of Lei et al.
(2021). We consider the empirical counterpart of the soft regularization version (equation 2) for finite
sample performance, i.e.,

min
w,Φ,h

max
g

Q̂(w,Φ, g, h) := Êx,y,t

[
ℓ(w(Φ(x)),y) + λ

(
∥h(Φ(x))− t∥22 − ∥g(Φ(x),y)− t∥22

)]
.

where Ê is the empirical counterpart of expectation E. Suppose that we solve equation 2 with SGDA
(Algorithm 1) and obtain (ŵ, Φ̂, ĝ, ĥ), which is a (ϵ1, ϵ2) optimal solution of equation 2. Specifically,
we have

Q̂(ŵ, Φ̂, ĥ, ĝ) ≤ inf
w,Φ,g

Q(w,Φ, h, ĝ) + ϵ1, Q̂(ŵ, Φ̂, ĥ, ĝ) ≥ sup
g

Q(ŵ, Φ̂, ĥ, g)− ϵ2. (2)

In the following, we denote Q∗ (w,Φ, h) := supg Q(w,Φ, h, g). We can see that a small
Q∗ (w,Φ, h) indicates that the model (w,Φ, h) achieves a small prediction loss of Y as well as a
small invariance penalty.
Proposition 2. Suppose we solve equation 2 by SGDA as introduced in Algorithm 1 using a training
dataset of size n and obtain an (ϵ1, ϵ2) solution (ŵ, Φ̂, ĝ, ĥ). Under the assumptions specified in the
appendix, we then have with probability at least 1− δ that

Q∗ (ŵ,Φ̂, ĥ) ≤ (1 + η) inf
w,Φ,h

Q∗ (w,Φ, h) +
1 + η

η

(
ϵ1 + ϵ2 + Õ(1/n) log(1/δ)

)
,

where Õ absorbs logarithmic and constant variables which are specified in the Appendix I.

Empirical Verification. We apply our CIL method on CMNIST (Arjovsky et al., 2019) to validate
our theoretical results. We attach a continuous domain index for each sample in CMNIST. The 50,000
samples of CMNIST are simulated to distribute uniformly on the domain index t from 0.0 to 1000.0
(Refer to Appendix J for detailed description). As Figure 2 shows, CIL outperforms REx and IRMv1
significantly when REx and IRMv1 have many domains.
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Env. Type Method Linear Sine
Split Num ID OOD Split Num ID OOD

None ERM – 86.38 (0.19) 13.52 (0.26) – 87.25 (0.46) 16.05 (1.03)

Discrete

IRMv1 4 51.02 (0.86) 49.72 (0.86) 16 49.74 (0.62) 50.01 (0.34)
REx 8 82.05 (0.67) 49.31 (2.55) 4 81.93 (0.91) 54.97 (1.71)

GroupDRO 16 99.16 (0.46) 30.33 (0.30) 2 99.23 (0.04) 30.20 (0.30)
IIBNet 8 63.25 (19.01) 38.30 (16.63) 4 61.26 (16.81) 36.41 (15.87)

Continuous

IRMv1 – 49.57 (0.33) 48.70 (2.65) – 50.43 (1.23) 49.63 (15.06)
REx – 78.98 (0.32) 41.87 (0.48) – 79.97 (0.79) 42.24 (0.74)

Diversify – 50.03 (0.04) 50.11 (0.09) – 50.07 (0.06) 50.27 (0.21)
CIL (Ours) – 57.35 (6.89) 57.20 (6.89) – 69.80 (3.95) 59.50 (8.67)

Table 2: Accuracy on Continuous CMNIST for Linear and Sine ps(t). The standard deviation in
brackets is calculated with 5 independent runs. The Env. type “Discrete” means that we manually
create by equally splitting the raw continuous domains. The environment type “Continuous” indicates
using the original continuous domain index. “Split Num” stands for the number of domains we
manually create and we report the best performance among spilt {2, 4, 8, 16}. Detailed results in
Appendix L

4 EXPERIMENTS

To evaluate our proposed CIL method, we conduct extensive experiments on two synthetic datasets
and four real-world datasets, the synthetic logit dataset is presented in Appendix K. we compare CIL
with 1) Standard Empirical Risk Minimization (ERM), 2) IRMv1 proposed in Arjovsky et al. (2019),
3) REx in equation 1 proposed in Krueger et al. (2021), and 4) GroupDRO proposed in Sagawa et al.
(2019) that minimize the loss of worst group(domains) with increased regularization in training, 5)
Diversify proposed in Lu et al. (2022) and 6) IIBNet proposed in Li et al. (2022), adding invariant
information bottleneck (IIB) penalty in training. Note that while CIDA (Wang et al., 2020) and its
variants (Xu et al., 2022; 2023; Liu et al., 2023) also handle continuously indexed domains, they are
domain adaptation methods and therefore not included as baselines (see Appendix B for details).
For IRMv1, REx, GroupDRO, and IIBNet, we try them on the original continuous domains as well
as manually split the dataset with continuous domains into discrete ones (more details in separate
subsections below). All the experiments are repeated at least three times and we report the accuracy
with standard deviation on each dataset.

4.1 SYNTHETIC DATASETS

4.1.1 CONTINUOUS CMNIST

Setting. We construct a continuous variant of CMNIST following Arjovsky et al. (2019). The digit
is the invariant feature xv and the color is the spurious feature xs. Our goal is to predict the label
of the digit, y. We generate 1000 continuous domains. The correlation between xv and the label
y is pv = 75%, while the spurious correlation ps(t) changes among domains t, whose details are
included in the Appendix L. Similar to the previous dataset, we try two settings with ps(t) being a
linear and Sine function.

Results. Table 2 reports the training and testing accuracy of methods on CMNIST in two settings.
We also tried different domain splitting schemes for IRMv1, REx, GroupDRO, and IIBNet with the
complete results in the Appendix L. ERM performs very well in training but worst in testing, which
implies ERM tends to rely on spurious features. GroupDRO achieves the highest accuracy in training
but the lowest in testing except for ERM. Our proposed CIL outperforms all baselines on two settings
by at least 8% and 5%, respectively.

4.2 REAL-WORLD DATASETS

4.2.1 HOUSEPRICE

We also evaluate different methods on the real-world HousePrice dataset from Kaggle*. Each data
point contains 17 explanatory variables such as the built year, area of living room, overall condition

*https://www.kaggle.com/c/house-prices-advanced-regression-techniques
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Env. Type Method HousePrice Insurance Fraud Alipay Auto-scaling
ID OOD ID OOD ID OOD

None ERM 82.36 (1.42) 73.94 (5.04) 79.98 (1.17) 72.84 (1.44) 89.97 (1.35) 57.38 (0.64)

Discrete

IRMv1 84.29 (1.04) 73.46 (1.41) 75.22 (1.84) 67.28 (0.64) 88.31 (0.48) 66.49 (0.10)
REx 84.23 (0.63) 71.30 (1.17) 78.71 (2.09) 73.20 (1.65) 89.90 (1.08) 65.86 (0.40)

GroupDRO 85.25 (0.87) 74.76 (0.98) 86.32 (0.84) 71.14 (1.30) 91.99 (1.20) 59.65 (0.98)
IIBNet 52.99 (10.34) 47.48 (12.60) 73.73 (22.96) 69.17 (18.04) 61.88 (13.01) 52.97 (12.97)
InvRAT 83.33 (0.12) 74.41 (0.43) 82.06 (0.72) 73.35 (0.48) 89.84 (1.38) 57.54 (0.47)

Continuous

IRMv1 82.45 (1.27) 75.40 (0.99) 54.98 (3.74) 52.09 (2.05) 88.57 (2.29) 66.20 (0.06)
REx 83.59 (2.01) 68.82 (0.92) 78.12 (1.64) 72.90 (0.46) 89.94 (1.64) 63.95 (0.87)

Diversify 81.14 (0.61) 70.77 (0.74) 72.90 (7.39) 63.14 (5.70) 80.16 (0.24) 59.81 (0.09)
IIBNet 62.29 (4.40) 53.93 (3.70) 76.34 (5.20) 72.01 (6.99) 80.49 (8.30) 58.89 (5.53)
InvRAT 82.29 (0.76) 77.18 (0.41) 80.63 (1.04) 72.07 (0.74) 88.74 (1.54) 60.58 (3.22)

EIIL 82.62 (0.42) 76.85 (0.44) 80.60 (1.36) 72.44 (0.58) 91.34 (1.50) 53.14 (0.74)
HRM 84.67 (0.62) 77.40 (0.27) 81.93 (1.11) 73.52 (0.46) 89.84 (1.20) 55.44 (0.35)
ZIN 84.80 (0.60) 77.54 (0.30) 81.93 (0.73) 73.33 (0.43) 90.56 (0.91) 58.99 (0.87)

CIL (L1) 83.41 (0.75) 77.98 (1.02) 82.39 (1.40) 76.54 (1.03) 81.44 (1.77) 68.51 (1.33)
CIL (L2) 82.51 (1.96) 79.29 (0.77) 80.30 (2.06) 75.01 (1.18) 81.25 (1.65) 71.29 (0.04)

Table 3: Accuracy of each method on three real-world datasets with standard deviation in brackets.
Each method takes 5 runs independently. The details of the settings for HousePrice, Insurance Fraud,
and Alipay Auto-scaling can be found in Section 4.2.1, 4.2.2, and 4.2.3, respectively. CIL is our
method. L1 or L2 means we use the L1 or L2 loss. We adopt L2 loss by default in other tables.

rating, etc. The dataset is partitioned according to the built year, with the training dataset in the
period [1900, 1950] and the test dataset in the period (1950, 2000]. Our goal is to predict whether the
house price is higher than the average selling price in the same year. The built year is regarded as the
continuous domain index in CIL. We split the training dataset equally into 5 segments for IRMv1,
REx, GroupDRO, and IIBNet with a decade in each segment.

Results. The training and testing accuracy is shown in Table 3. GroupDRO performs the best across
all baselines both on training and testing, while IIBNet seems unable to learn valid invariant features
in this setting. REx achieves high training accuracy but the lowest testing accuracy except for IIBNet,
indicating that it learns spurious features. Our CIL outperforms the best baseline by over 5% on
testing accuracy, which implies the model trained by CIL relies more on invariant features. Notably,
CIL also enjoys a much smaller variance on this dataset.

4.2.2 INSURANCE FRAUD

This experiment conducts a binary classification task based on a vehicle insurance fraud detection
dataset on Kaggle*. After data preprocessing, each insurance claim contains 13 features including
demographics, claim details, policy information, etc. The customer’s age is taken as the continuous
domain index, where the training dataset contains customers with ages between (19, 49) and the
testing dataset contains customers with ages between (50, 64). We equally partition the training
dataset into discrete domains with 5 years in each domain for existing methods dependent on discrete
domains. Results in IRMv1 is inferior to ERM in terms of both training and testing performances.
REx only slightly improves the testing accuracy over ERM. Table 3 shows that CIL performs the best
across all methods, improving by about 2% compared to other methods.

4.2.3 ALIPAY AUTO-SCALING

Auto-scaling (Qian et al., 2022) is an effective tool in elastic cloud services that dynamically scale
computing resources (CPU, memory) to closely match the ever-changing computing demand. Auto-
scaling first tries to predict the CPU utilization based on the current internet traffic. When the
predicted CPU utilization exceeds a threshold, Auto-scaling would add CPU computing resources to
ensure a good quality of service (QoS) effectively and economically. In this task, we aim to predict
the relationship between CPU utilization and the current running parameters of the server in the
Alipay cloud. Each record includes 10 related features, such as the number of containers, and network
flow, etc. We construct a binary classification task to predict whether CPU utilization is above the
13% threshold or not, which is used in the cloud resource scheduling to stabilize the cloud system.

*https://www.kaggle.com/code/girishvutukuri/exercise-insurance-fraud
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Figure 3: An illustration Yearbook (Yao et al.,
2022). Images taken from Yao et al. (2022).

Method ID OOD

Fine-tuning 81.98 69.62
EWC (Kirkpatrick et al., 2017) 80.07 66.61

SI (Zenke et al., 2017) 78.70 65.18
A-GEM (Lopez-Paz & Ranzato, 2017) 81.04 67.07

ERM 79.50 63.09
GroupDRO-T (Sagawa et al., 2019) 77.06 60.96

mixup(Zhang et al., 2017a) 83.65 58.70
CORAL-T(Sun & Saenko, 2016) 77.53 68.53

IRM-T (Arjovsky et al., 2019) 80.46 59.34

SimCLR (Chen et al., 2020) 78.59 64.42
Swav (Caron et al., 2020) 78.38 60.15

SWA (Izmailov et al., 2018) 84.25 67.90

CIL (Ours) 82.89 71.22

Figure 4: The accuracy on the worst test OOD
domain of each method on Yearbook dataset on
Wild-time. The performance of baseline methods
is copied from Yao et al. (2022).

We take the minute of the day as the continuous domain index. The dataset contains 1440 domains
with 30 samples in each domain. We then split the continuous domains by consecutive 60 minutes
as the discrete domains for IRMv1, REx, GroupDRO, and IIBNet. The data taken between 10:00
and 15:00 are as the testing set because the workload variance in this time period is the largest and
it exhibits obviously unstable behavior. All the remaining data serves as the training set. Table 3
reports the performance of all methods. ERM performs the best in training but worst in testing,
implying that ERM suffers from the distributional shift. On the other hand, IRMv1 performs the best
across all existing methods, exceeding ERM by 9%. CIL outperforms ERM and IRMv1 by 13% and
5%, respectively, indicating its capability to recover a more invariant model achieving better OOD
generalization.

4.2.4 WILDTIME-YEARBOOK

We adopt the Yearbook dataset in Wildtime benchmark (Yao et al., 2022)*, which is a gender
classification task on images taken from American high school students as shown in Figure 3. The
Yearbook consists of 37K images with the time index as domains. The training set consists of data
collected from 1930-1970 and the testing set covers 1970-2013. We adopt the same dataset processing,
model architecture, and other settings with the WildTime. To keep consistent with Yao et al. (2022),
we adopt the same baseline methods with Yao et al. (2022) and directly copy the performance of
baseline methods from Yao et al. (2022).For the details of these baselines, we refer the reader to
the Appendix B of Yao et al. (2022). Table 4 shows that we achieve the best OOD performance of
71.22%, improving about 1.5% over the previous SOTA methods (marked with underline).

5 CONCLUSION AND DISCUSSION

We proposed Continuous Invariance Learning (CIL) that extends invariance learning from discrete
categorical indexed domains to natural continuous domain in this paper and theoretically demonstrated
that CIL is able to learn invariant features on continuous domains under suitable conditions. However,
learning invariance would be more challenging with larger DNNs due to IRM’s inherent sensitivity
to over-fitting (Lin et al., 2022a; Zhou et al., 2022). Recent works has shown the effectiveness
of so called spurious feature diversification (Lin et al., 2023a), which has shown very promising
performance even on modern large language models (Lin et al., 2023b). It would be an interesting
future direction to explore feature diversification on continuous domains.

*https://github.com/huaxiuyao/Wild-Time
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A LIMITATION AND SOCIAL IMPACT

Limitation Our framework uses min-max strategy which acquires the suboptimal solution in specific
scenarios, and takes enough discrete time points as continuous domains in experiments without true
continuous environments with infinity domain indices.

Social Impact We extend invariant learning into the continuous domains which is more natural to
real-world tasks. Specifically, it would be helpful to solve the OOD problems related to time domains,
e.g. it has been applied on Alipay Cloud to achieve the auto-scaling of server resources.

B RELATED WORK

Causality, invariance, and distribution shift. The invariance property is well known in causal
literature back to early 1940s (Haavelmo, 1944), showing the conditional of the target given its direct
causes are invariant under intervention on any node in the causal graph except for the target itself. In
2016, Invariant Causal Prediction (ICP) is first proposed in Peters et al. (2016) to utilize invariance
property to identify the direct causes of the target. Models relying on the target’s direct causes
are robust to interventions. From the perspective of causality, the distributional shift in the testing
distribution is due to the interventions on the causal graph (Arjovsky et al., 2019). So a model with
invariance property can hopefully generalize even in the existence of distributional shifts. Anchor
regression (Rothenhäusler et al., 2018) build the connection between distributional robustness with
causality, and demonstrates that a suitable penalty in anchor regression based on the causal structure
is equivalent to ensure a certain degree of robustness to distributional shift. Notably, Peters et al.
(2016); Rothenhäusler et al. (2018) both assume the inputs x are handcrafted meaningful features,
which limits their applications in machine learning and deep learning where the input can be raw
images.

Arjovsky et al. (2019) proposed the first invariance learning method, invariant risk minimization
(IRM), which extends ICP (Peters et al., 2016) to deep learning by incorporating feature learning.
Invariance learning has gained its popularity in recent years and inspired a line of excellent works,
where a variety of variants have been proposed. To name a few, Krueger et al. (2021); Xie et al.
(2020) penalize the variance of losses in domains; Ahuja et al. (2020) incorporates game theory into
invariance learning; Chang et al. (2020) estimates the violation of invariance by training multiple
independent networks; Jin et al. (2020) proposes an invariance penalty based on regret. Notably,
these works all require discretely indexed domains. Another line of works try to learn invariant
features when explicit domain indices are not provided (Creager et al., 2021). However, Lin et al.
(2022b) theoretically shows that it is generally impossible to learn invariance without environmental
information. Some recent works (Lin et al., 2022a; Zhou et al., 2022) show that invariance learning
methods are sensitive to overfitting caused by the overparameterization of deep neural networks.
These works are orthogonal to our study.

Distribution Shift with Continuous Domains. There are a few methods considering domain shifts
with continuous domain indexes. Bobu et al. (2018); Hoffman et al. (2014); Wulfmeier et al. (2018);
Bitarafan et al. (2016) consider the distribution shifts incrementally over time, while trying to perform
domain adaptation sequentially. Continuously indexed domain adaption (CIDA) (Wang et al., 2020)
is the first to adapt across (multiple) continuously indexed domains simultaneously. Note that these
works all assume that the input x of the samples in the testing domains are available, and are therefore
not applicable for the OOD generalization tasks considered in this paper. Zhang et al. (2017b) tries to
discover causal graph based on the continuous heterogeneity, but assumes that the features are given
(cannot be learned from raw input), making it not applicable in our setting either.

C INVARIANCE PROPERTY IN CAUSALITY.

Figure 5 shows an example (similar to Figure 1 of ICP (Peters et al., 2016)) of an causal system with
nodes (y, x1, x2, x3, x4). Suppose our task is to build a model based on a subset of {x1, x2, x3, x4}
to predict y, under the distributional shifts in different domains caused by interventions. In our
example, there are interventions on node x2 in domain 2, and interventions on nodes x3 and x4 in
domain 3. Notably, we do not allow interventions on target y itself (indicating that the noise ratio of
y should be constant among domains). The invariance property shows that the conditional probability
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of y given its parents remains the same on interventions on any nodes except for the y itself. In this
example, P (y|x2, x3) remains the same under all the three domains. However, one can check that
P (y|x1) and P (y|x4) changes in domain 2 and 3, respectively. Therefore it is safe to build the model
on (x2, x3) to predict y. In contrast, x1 and x4 are unreliable because the conditional distribution is
unstable under distributional shifts. In this example, xv is {x2, x3}, and xs is {x1, x4}.
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Figure 5: An illustration of the invariance property in causality (similar to Figure 1 in ICP (Peters
et al., 2016)). This figure shows a causal system with five nodes, y, x1, x2, x3, and x4. Our task
is to predict y based on the x′s. There are different interventions in different domains, leading to
distributional shifts. Intervention on a node can be simply interpreted as changing the node value.
The changes can propagate to the descendants of the intervened node. The invariance property shows
that P (y|x2, x3) remains the same in all three domains. In contrast, P (y|x1) and P (y|x4) changes
in domain 2 and 3 due to interventions, respectively. So it is safe to build model on x2 and x3 to
predict y, which is expected to be stable under novel testing distribution.

D DISCUSSIONS ON THE FIRST MOMENTS

To encourage conditional independence y ⊥ t|Φ(x), existing IRM variants try to align Et[y|Φ(x)]
(see Section 2.1) and our CIL proposes to align Ey[t|Φ(x)] (see Section 3).

D.1 DISCRETE DOMAIN CASE

For discrete domain problems, when there are a sufficient number of samples in each domain t
and class y, Ey[t|Φ(x)] and Et[y|Φ(x)] performs similarly (both reflecting the first moment of
y ⊥ t|Φ(x), although from different perspectives), and neither of them has a clear advantage over
the other. Consider the following example, which has gained popularity (Lin et al., 2022b): We have
a binary classification task, y ∈ {−1, 1}, containing 2 domains t = {1, 2}, one invariant feature xv

and one spurious feature xs. Furthermore, we have

xv =

{
1,with prob 0.5,

−1,with prob 0.5,
y =

{
xv, with prob 0.8,

−xv, with prob 0.2,
hold for both domains. (3)

And

In domain 1, xs = y, in domain 2, xs =

{
y,with prob 0.5,

−y,with prob 0.5,
(4)

In other words, the correlation between the invariant feature xv and the label y is always 0.8. The
correlation between xs and y is 1 in domain 1 and 0.5 in domain 2. By simple calculation, we have

Et=1[y|xs = 1] = 1, Et=2[y|xs = 1] = 0

Et=1[y|xs = −1] = −1, Et=2[y|xs = −1] = 0

Et=1[y|xv = 1] = 1, Et=2[y|xv = 1] = 1

Et=1[y|xv = −1] = −1, Et=2[y|xv = −1] = −1
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and

Ey=1[t|xs = 1] = 4/3, Ey=−1[t|xs = 1] = 2

Ey=1[t|xs = −1] = 2, Ey=−1[t|xs = −1] = 4/3

Ey=1[t|xv = 1] = 3/2, Ey=−1[t|xv = 1] = 3/2

Ey=1[t|xv = −1] = 3/2, Ey=−1[t|xv = −1] = 3/2.

So we can observe that Ey[t|xv] is the same for all y, and Et[y|xv] is the same for all t. Additionally,
Ey[t|xs] is different for y = −1 and y = 1, while Et[y|xs] is different for t = 1 and t = 2. In
other words, if we aim to select a feature x from x ∈ {xv,xs} to align either Ey[t|x] or Et[y|xs],
we would choose the invariant feature xv in both cases. So our CIL method and existing methods
performs similarly in this example with 2 domains.

D.2 CONTINUOUS DOMAIN CASE

Consider a 10-class classification task with an infinite number of domains and each domain contains
only one sample, i.e., n −→ ∞, and n/|T | = 1, Proposition 1 shows that REx would fail to
identify the invariant feature with constant probability. Whereas, Theorem 2 shows that CIL can still
effectively extract invariant features. Intuitively, existing methods aim to align Et[y|Φ(x)] across
different t values. However, in continuous environment settings with limited samples per domain, the
empirical estimations Êt[y|Φ(x)] become noisy. These estimations deviate significantly from the
true Et[y|Φ(x)], rendering existing methods ineffective in identifying invariant features. In contrast,
CIL proposes to align Ey[t|Φ(x)], which can be accurately estimated as there are sufficient sample
in each class.

E ALGORITHM

Algorithm 1 CIL: Continuous Invariance Learning

Input: Feature extractor Φ, label classifier ω, domain index regressor h and g; The training dataset
Dtr = {(xi,yi, ti)

n
i=1}.

Output: The learned Φ, classifier ω, the domain regressor h and g.
1: Initialize Φ, ω, h and g.
2: while Not Converge do
3: Sample a batch B from Dtr.
4: Obtain the loss for g on the batch B,

LB(Φ, g) = 1/|B|
∑

(x,y,t)∈B ∥g(Φ(x),y), t∥22.
5: Perform one step of gradient ascent on LB(Φ, g) w.r.t. g, i.e., g ←− g + η∇gLB(Φ, g)
6: Obtain the loss for (Φ, ω, h) on B, LB(ω,Φ, h) =

1/|B|
∑

x,y,t∈B
(
ℓ(ω(Φ(x)),y) + λ∥h(Φ(x)), t∥22

)
7: Perform one step of gradient descent on LB(ω,Φ, h) w.r.t. (ω,Φ, h), i.e.,

(ω,Φ, h)←− (ω,Φ, h) + η∇(ω,Φ,h)LB(ω,Φ, h)
8: end while
9: return (ω,Φ, h, g)

F PROOF OF PROPOSITION 1

Recall thatRt(w,Φ) := Et[ℓ(w(Φ(x)),y)] denotes the lose of (w,Φ) in domain t, where w is the
classifier Φ is the feature selector, and ℓ is the lose function. If there are many domains (i.e., T is
large) and each domain only contains limited sample (i.e., n/|T | is limited), then the empirical REx
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loss is as follows:
L̂(Φ(x)) =

∑
t∈T
R̂t(ω,Φ) + λ|T |Var(R̂t(ω,Φ))

=
∑
t∈T
Rt(ω,Φ) +

(∑
t∈T
Rt(ω,Φ)−

∑
t∈T
R̂t(ω,Φ)

)

+ λ|T |
(
−
(
Rt(ω,Φ)− R̂t(ω,Φ)

)
+
(
R(ω,Φ)− R̂(ω,Φ)

)
+
(
Rt(ω,Φ)−R(ω,Φ)

))2
=
∑
t∈T
Rt(ω,Φ) + λ

∑
t∈T

(
Rt(ω,Φ)−R(ω,Φ)

)2
︸ ︷︷ ︸

A0

+
∑
t∈T

(
Rt(ω,Φ)− R̂t(ω,Φ)

)
︸ ︷︷ ︸

A1

+
∑
t∈T

(
Rt(ω,Φ)− R̂t(ω,Φ)

)2
︸ ︷︷ ︸

A2

+
∑
t∈T

(
R(ω,Φ)− R̂(ω,Φ)

)2
︸ ︷︷ ︸

A3

−
∑
t∈T

2
(
Rt(ω,Φ)− R̂t(ω,Φ)

)(
R(ω,Φ)− R̂(ω,Φ)

)
︸ ︷︷ ︸

A4

−
∑
t∈T

2
(
Rt(ω,Φ)− R̂t(ω,Φ)

) (
Rt(ω,Φ)−R(ω,Φ)

)
︸ ︷︷ ︸

A5

+
∑
t∈T

2
(
R(ω,Φ)− R̂(ω,Φ)

) (
Rt(ω,Φ)−R(ω,Φ)

)
︸ ︷︷ ︸

A6

We then have

A0 =


σRχ(|T |), if Φ = Φs

0, if Φ = Φv

0, if Φ = Φnull

A1 =
∑
t∈T

ne∑
i=1

ϵi ∼ σ/
√
nN (0, 1)

A2 =
∑
t

(

ne∑
i=1

ϵi)
2 ∼ σ/

√
neχ(|T |)

A3 =
∑
t

(

n∑
i=1

ϵi)
2 ∼ σ/

√
nχ(|T |)

A4 =2

(∑
t∈T

(
Rt(ω,Φ)− R̂t(ω,Φ)

))(
R(ω,Φ)− R̂(ω,Φ)

)
=2

1

n

n∑
i=1

ϵi
1

n

n∑
i=1

ϵi ∼ 2
σ√
n
χ(1)

A5 ∼
√
σ2/
√
ne + σ2

Rχ(|T |)−
√
σ2/
√
ne + σ2

Rχ(|T |)

A6 =2
(
R(ω,Φ)− R̂(ω,Φ)

)∑
t∈T

(
Rt(ω,Φ)−R(ω,Φ)

)
= 2

(
R(ω,Φ)− R̂(ω,Φ)

)
× 0 = 0

By taking account ne = n/|T |, we have

E[L̂(Φ(x))|σs, σv, σnull, σR] =


∑

t∈T Rt(ω,Φs) + σR|T |+ σs√
n
(2 + |T |+ |T |2)∑

t∈T Rt(ω,Φv) +
σv√
n
(2 + |T |+ |T |2)∑

t∈T Rt(ω,Φnull) +
σnull√

n
(2 + |T |+ |T |2)
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Denote Q =
(∑

t∈T Rt(w,Φv)−
∑

t∈T Rt(w,Φs)
)
, assume δR|T | ≥ Q. we have

E[L̂(Φv(x))|σs, σv, σR] > E[L̂(Φs(x))|σs, σv, σR] if

(σv − σs) ≥
2σR
√
n

|T |
≥
√
n(σR|T |+ |Q|)
|T |2

≥
√
n(σR|T |+ |Q|)

(2 + |T |+ |T |2)
.

Since δs, δv are independently drawn from a hyper exponential distribution where the density function
P (x;λ) = λ exp(−λx), so P (δv − δs ≤ z) = 1− 1/2 exp(−λz). Then if

|T | ≥ σR
√
n

∆G−1(1/4)
,

REx is unable to identify the invariant feature with a probability of at least 1/4.

G PROOF FOR LEMMA 1

Proof.

argmin
h∈H

E(x,t)(h(Φ(x))− t)2

=argmin
h∈H

E(Φ(x),t)(h(Φ(x))− t)2

=argmin
h∈H

EΦ(x)Et∼P(t|Φ(x))(h(Φ(x))− t)2.

Because

Et∼P(t|Φ(x))(h(Φ(x))− t)2

=h(Φ(x))2 − 2h(Φ(x))⊤E[t|Φ(x)] + E[t2|Φ(x)],

we then know the minimum is achieved at h(Φ(x)) = E[t|Φ(x)] = h∗(Φ(x)) by solving this
quadratic problem. The minimum loss achieved by h∗(·) is

EΦ(x)

[
E[t2|Φ(x)]− (E[t|Φ(x)])2

]
= EΦ(x)[V[t|Φ(x)]],

We can prove the result for g∗(·) in a similar way, and the minimum loss achieved by g∗(·) is
EΦ(x),y[V[t|Φ(x),y]].

H PROOF FOR THEOREM 2

Proof. The penalty term of Eqn equation 2 is

min
h∈H

max
g∈G

Ex,y,t

[
(h(Φ(x))− t)22 − (g(Φ(x),y)− t)22

]
=EΦ(x)[V[t|Φ(x)]]− EΦ(x),y[V[t|Φ(x),y]]
=EΦ(x),y[E[t|Φ(x),y]2]− EΦ(x)[E[t|Φ(x)]2]
=EΦ(x),y[E[t|Φ(x),y]2]− EΦ(x)[(EyE[t|Φ(x),y])2]
≥0.

The last inequality is due to Jensen’s inequality and the convexity of the quadratic function. The
inequality is achieved only when E[t|Φ(x)] = E[t|Φ(x),y],∀y ∈ Y .

I PROOF FOR PROPOSITION 2

Denote θ = [w,Φ, h] and θ̂ = [ŵ, Φ̂, ĥ]. We further use q(θ, g; z) denote the loss of Eqn 2 on a
single sample z := [x,y, z]. We start by stating some common assumptions in theoretical analysis
as follows: Our goal is to analyze the performance of the approximate solution (ŵ, Φ̂, ĥ, ĝ) on the
training dataset with finite samples.
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Assumption 4 ((Li & Liu, 2021)). Let D̄tr be the dataset generated by replacing one data point in
the training dataset Dtr with another data point drawn independently from the training distribution.
We assume SGDA is ϵ-argument-stable if for any Dtr such that

∥θSGDA(D̄tr)− θSGDA(Dtr)∥ ≤ ϵ, ∥gSGDA(D̄tr)− gSGDA(Dtr)∥ ≤ ϵ (5)

Assumption 5. [(Li & Liu, 2021)] Denoting (w,Φ, h) as θ and Q(w,Φ, h, g) as Q(θ, g) for short,
Q(θ, g) is µ-strongly convex in θ, i.e.,

Q(θ1, g)−Q(θ2, g) ≥ ∇θQ(θ2, g)
⊤(θ1 − θ2) +

µ

2
∥θ1 − θ2∥22,

and µ-strongly concave in g, i.e.,

Q(θ1, g)−Q(θ2, g) ≤ ∇θQ(θ2, g)
⊤(θ1 − θ2)−

µ

2
∥θ1 − θ2∥22.

The convex-concave assumption for the minimax problem is popular in existing literature (Li & Liu,
2021; Lei et al., 2021; Farnia & Ozdaglar, 2021; Zhang et al., 2021), simply because non-convex-
non-concave minimax problems are extremely hard to analyze due to their non-unique saddle points.
When w and h (the classifier for y and regressor for t) are linear, it is easy to verify that Q is convex
in them. Furthermore, recent theoretical studies show that the overparameterized neural networks
(NN) behave like convex systems and training large NN is likely to converge to the global optimum
(Jacot et al., 2018; Mei et al., 2018).
Assumption 6 (Lipschitz continuity (Li & Liu, 2021)). Let L > 0. Assume that for any θ, g and z ,
we have

∥∇θq(θ, g; z)∥ ≤ L and ∥∇gq(θ, g; z)∥ < L.

Assumption 7 (Smoothness (Li & Liu, 2021)). Let β > 0. Assume that for any θ1, θ2, g1, g2 and z,
we have ∥∥∥∥(∇θf(θ1, g1; z)−∇θf(θ2, g2; z)

∇gf(θ1, g1; z)−∇gf(θ2, g2; z)

)∥∥∥∥ ≤ β

∥∥∥∥(θ1 − θ2
g1 − g2

)∥∥∥∥ .
We define the strong primal-dual empirical risk as follows:

∆s
SGDA(θ̂, ĝ) = sup

g
Q̂(θ̂, g)− inf

θ
Q̂(θ, ĝ)

We first restate Theorem 2 as follows:
Theorem 3. Assume we solve equation 2 by SGDA as introduced in Algorithm 1 and obtain (ϵ1, ϵ2)

solution (θ̂, ĥ). Further, suppose Assumption 5 holds and SGDA is ϵ-argument-stable as described in
Assumption 4, then for any δ > 0, fix η > 0, we have with probability at least 1− δ

Q∗ (θ̂) ≤(1 + η) inf
θ
Q∗ (θ) + C

1 + η

η

(
M

n
log

1

δ
+

(
β

µ
+ 1

)
Lϵ log2 n log

1

δ
+ ϵ1 + ϵ2

)
where µ is the strongly-convexity, L is the Lipschitz, ϵ is the stability, M is n is the sample size of the
training dataset, Õ absorbs logarithmic and constant variables which is specified in the appendix.

Proof. By the suboptimality assumption of θ̂ and ĝ, we have

∆s
SGDA(θ̂, ĝ) = sup

g
Q̂(θ̂, g)− inf

θ
Q̂(θ, ĝ)

≤Q̂(θ̂, ĝ) + ϵ2 − (Q̂(θ̂, ĝ)− ϵ1)

=ϵ1 + ϵ2

Denote θ∗ = argminθ Q
∗(θ) and ĝ∗ = argmaxg Q(θ̂, g). We can decompose

Q∗(θ̂)− inf
θ
Q∗(θ) = Q∗(θ̂)− Q̂∗(θ̂)︸ ︷︷ ︸

A1

+ Q̂∗(θ̂)− Q̂(θ∗, ĝ)︸ ︷︷ ︸
A2

+ Q̂(θ∗, ĝ)−Q(θ∗, ĝ)︸ ︷︷ ︸
A3

+Q(θ∗, ĝ)−Q∗(θ∗)︸ ︷︷ ︸
A4

We bound A1 −A4 respectively:
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• From Eqn (22) of Li & Liu (2021), we have

A1 ≤
2M log(3/δ)

3n
+ 50

√
2ϵeL

β + µ

µ
log2 nlog(3e/δ)+ (6)√√√√(4MQ(θ̂, ĝ∗) + 1/2(β/µ+ 1)2L2ϵ2 + 32n(β/µ+ 1)2L2ϵ2 log(3/δ)

)
log(3/δ)

n
(7)

• we have
A2 =sup Q̂(θ̂, g)− Q̂(θ∗, ĝ) (8)

≤ sup Q̂(θ̂, g)− inf
θ
Q̂(θ, ĝ) (9)

≤ϵ1 + ϵ2 (10)

• By Eqn (10) of Li & Liu (2021),

A3 = Q̂(θ∗, ĝ)−Q(θ∗, ĝ) ≤2M log(3/δ)

3n
+ 50

√
2eϵ log2 n log(3e/δ) (11)

+

√
(4MQ(θ∗, ĥ) + ϵ2/2 + 32nϵ2 log(3/δ)) log(3/δ)

n
(12)

• At last
Q(θ∗, ĝ)−Q∗(θ∗) = Q(θ∗, ĝ)− sup

g
Q(θ∗, g) ≤ 0. (13)

Putting these together with some rearrangement, we finally have

Q∗ (θ̂) ≤(1 + η) inf
θ
Q∗ (θ) + C

1 + η

η

(
M

n
log

1

δ
+

(
β

µ
+ 1

)
Lϵ log2 n log

1

δ
+ ϵ1 + ϵ2

)
,

where C is a constant. the description of the CIL method in the introduction section is hard to
understand.

J DETAIL DESCRIPTION ABOUT SETTING OF EMPIRICAL VERIFICATION

In this section, we show the spurious relationship ps(t) varies across the domains as shown in Figure
6.

Figure 6: Spurious Relation of Empirical Verification 3.1

K LOGIT DATASET EXPERIMENT

Setting. We generate the first synthetic dataset with the invariant feature xv ∈ R2, spurious feature
xs ∈ R20 and target y ∈ {0, 1}. The continuous domains t ∈ [0, 100]. The conditional distribution
of xs given y varies along t as follows:

y =

{
0, w.p. 0.5,
1, w.p. 0.5,

xv ∼
{
N (y, σ2), w.p. pv,
N (−y, σ2), w.p. 1− pv,

xs ∼
{
N (y, σ2), w.p. ps(t),
N (−y, σ2), w.p. 1− ps(t),
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Figure 7: Spurious correlation of logit dataset

Env. Type Split Num Method Linear ps Sine ps

None – ERM 25.33(2.01) 36.18(3.06)

Discrete

4 IRMv1 55.39(6.87) 69.91(2.40)
8 REx 46.46(7.50) 68.15(5.51)
2 GroupDRO 46.68(1.80) 60.95(2.23)

16 IIBNet 51.50(18.60) 49.68(21.87)

Continuous

– IRMv1 25.90(2.85) 41.28(3.66)
– REx 42.73(11.47) 63.33(5.05)
– Diversify 53.39(2.96) 53.30(1.93)
– CIL 60.95(6.59) 76.25(4.99)

Table 4: Comparison on the synthetic Logit data. The metrics including accuracy and standard
deviations in parenthesis are calculated on three independent runs. The environment type “Discrete”
indicates that we manually create by equally splitting the raw continuous domains. The environment
type “Continuous” indicates we use the original continuous domain index. “Split Num” stands for the
number of domains we manually create and we report the best performance among spilt {2, 4, 8, 16}.

where pv and ps(t) are the probabilities of the feature’s agreement with label y.

Notably, ps(t) varies among domains while pv stays invariant. The observed feature x is a con-
catenation of xv and xs, i.e., x := [xv,xs]. We generate 2000 samples as the training dataset
{(xi,yi, ti)}2000i=1 . Our goal is to learn a model f(x) to predict y that solely relies on xv . We set pv

to be 0.9 in all domains. ps(t) varies across the domains as in Figure 7 .

We can see that xs exhibits a high but unstable correlation with y. Since existing methods need
discrete domains, we equally divide the continuous domain into different numbers of discrete domains,
i.e, {2, 4, 8, 16}.
Results. Table 4 shows the test accuracy of each method. ERM performs the worst and the large gap
implies that ERM models heavily depend on spurious features. IRMv1 improves by 25% on average
compared to ERM. CIL outperforms ERM by over 30% on average. CIL also improves by 5-7% over
all existing methods based on discrete domains on the best manual discrete domain partition, which
indicates that CIL can learn invariant features more effectively. The trend of how the performance of
IRMv1 and REx changes with the split number is shown in Table 5

L ADDITIONAL EXPERIMENT RESULTS FOR 4.1.1

Details on continous CMNIST. The original CMNIST dataset consists of two domains with varying
spurious correlation values: 0.9 in one domain and 0.8 in the other. To simulate a continuous problem,
we randomly assign time indices 1-512 to samples in the first domain and indices 513-1024 to the
second domain. The spurious correlation only changes at time index 513, as shown in Figure 5 on
Page 16 of the Appendix file. In this case, each of the 1024 domains comprises approximately 50
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Env. Type Split Num Method Linear ps Sine ps

None – ERM 25.33(2.01) 36.18(3.06)

Discrete

2 IRMv1 53.11(1.92) 66.16(4.29)
4 55.39(6.87) 69.91(2.40)
5 39.35(11.70) 55.98(3.91)
8 47.90(2.44) 59.03(5.32)

16 30.66(4.45) 56.90(4.98)
50 27.32(0.97) 42.73(11.47)

100 25.90(2.85) 41.28(13.66)

2 REx 39.69(4.56) 59.76(1.22)
4 55.80(12.49) 64.05(11.29)
5 50.77(11.69) 65.15(5.77)
8 46.46(0.75) 68.15(5.51)

16 44.05(9.53) 67.78(6.60)
50 42.73(11.47) 61.18(2.78)

100 41.87(0.48) 63.33(5.05)

Continuous – CIL 60.95(6.59) 76.25(4.99)

Table 5: Comparison on the synthetic Logit data. The metric is accuracy and standard deviations in
parenthesis are calculated on three independent runs. Split Num stands for the number of domains we
manually create by equally splitting the raw continuous domains. We try settings where the spurious
correlation ps(t) changes by linear and Sine functions, respectively.

Env. Type Split Num Method Train Test

Discrete

2 IRMv1 49.74(0.62) 50.01(0.34)
4 51.02(0.86) 49.72(0.86)
8 51.45(3.53) 49.46(0.94)

16 51.31(2.28) 49.71(0.90)
100 50.21(1.96) 49.35(0.05)
500 49.56(0.74) 47.02(2.72)
1000 49.67(0.33) 48.70(2.65)

2 REx 83.09(0.40) 45.50(1.12)
4 82.75(0.33) 47.14(2.22)
8 82.05(0.67) 49.31(2.55)

16 82.32(0.45) 47.86(1.54)
100 80.54(0.78) 49.12(0.20)
500 79.21(0.45) 42.55(1.05)
1000 78.98(0.32) 41.87(0.48)

Table 6: Accuracy on the continuous CMNIST with ps(t) as a linear function with different split
number in (2, 4, 8, 16, 100, 500, 1000).

samples. Based on the results in Figure 2 in the main part of the manuscript, REx and IRMv1 display
testing accuracies close to random guessing in this scenario. Similar constructions are made for 4, 8,
..., 512 domains.

In this section, we provide the complete experiment results in Table 6 and Table 7 for IRMv1, REx,
GroupDRO, and IIBNet with other numbers of splits (“split num") on the continuous CMNIST
dataset. The settings are the same as in Section 4.1.1, where Table 2show the best results for each
method with one corresponding “split num".

Results. Table 6 and 7 report the training and testing accuracy of different domain splitting schemes
(2, 4, 8, 16) for both IRMv1 and REx on the continuous CMNIST dataset with two ps(t) settings.
Under linear ps(t), REx performs the best with split number 8 by improving around 4% over the
worst one. However, the results are fairly close under sine ps(t). On the other hand, IRMv1 with all
testing accuracy around 0.5 does not seem to be able to extract useful features for the task with either
linear ps(t) or sine ps(t).

M ADDITIONAL RESULTS FOR THE EXPERIMENTS 4.2

The result across different split number is shown in Table 8
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Env. Type Split Num Method Train Test

Discrete

2 IRMv1 49.47(0.21) 49.44(0.57)
4 49.77(0.78) 49.96(0.55)
8 49.60(0.65) 49.85(0.26)

16 49.74(0.62) 50.01(0.34)
100 49.62(0.58) 49.83(0.63)
500 50.28(0.87) 46.23(10.11)

1000 50.43(1.23) 49.63(15.06)

2 REx 82.95(0.47) 54.17(1.37)
4 81.93(0.91) 54.97(1.71)
8 81.59(0.89) 54.96(2.10)

16 81.60(0.69) 54.07(1.79)
100 80.94(0.78) 48.66(0.79)
500 81.48(0.67) 43.14(0.97)

1000 79.97(0.79) 42.24(0.74)

Table 7: Accuracy on the continuous CMNIST with ps(t) as a Sine function with different split
number in (2, 4, 8, 16, 100, 500, 1000).

Env. Type Split Num Method HousePrice Insurance Fraud

Discrete

2 IRMv1 72.68(0.36) 71.52(1.35)
5 73.46(1.41) 68.41(1.13)
10 72.97(1.88) 67.28(1.64)
25 74.42(2.10) 54.25(1.75)
50 75.40(0.99) 52.09(2.05)

2 REx 70.97(0.06) 74.43(1.32)
5 71.30(1.17) 74.42(0.87)
10 70.46(0.25) 73.20(1.65)
25 71.01(1.30) 72.96(0.24)
50 68.82(0.92) 72.90(0.46)

Continuous – CIL 60.95(6.59) 76.25(4.99)

Table 8: Comparison on the real world dataset: HousePrice and Insurance. The metric is accuracy
and standard deviations in parenthesis are calculated on three independent runs. Split Num stands for
the number of domains we manually create by equally splitting the raw continuous domains.

N ABLATION STUDY

In this section, we tried different penalty set up in equation 2 on the auto-scaling dataset to validate the
robustness of CIL. The approximating functions h(Φ(x)), g(Φ(x),y) are implemented by 2-Layer
MLPs. We evaluate the performance changes by increasing either the hidden dimension of the MLPs
(Table 9) or penalty weight λ (Table 10).

Hidden Dimension ID Accuracy OOD Accuracy
32 84.37(5.95) 64.24(5.47)

64 84.17(2.58) 70.40(1.18)

128 81.25(1.65) 71.29(0.04)
256 85.57(2.67) 68.12(2.25)

512 85.28(2.27) 68.77(1.60)

Table 9: ID and OOD accuracy on the auto-scaling dataset across different MLP setups for
h(Φ(x)), g(Φ(x),y) in equation 2. Standard deviation in brackets is calculated with 3 independent
runs. Other settings are kept the same as in Section O

Results. The ID and OOD accuracy of different MLP setup (hidden dimension) for
h(Φ(x)), g(Φ(x),y) under CIL on the auto-scaling dataset are shown in Table 9. CIL performs the
best when the hidden dimension is 64, and the performance is stable with even higher dimensions.
However, the testing accuracy drops to 64% when the dimension is reduced to 32, as the model is
probably too simple to be able to extract enough invariant features. But it is still better than ERM
shown in Table 3.
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Penalty Weight Train Test
100 86.91(1.31) 67.60(1.26)

1000 84.47(2.57) 70.01(1.54)

10000 84.17(2.58) 70.40(1.18)

100000 83.95(2.73) 70.42(1.16)
1000000 83.95(2.73) 70.35(1.24)

Table 10: ID and OOD accuracy on the auto-scaling dataset across different penalty weights λ in
equation 2. Standard deviation in brackets is calculated with 3 independent runs. Other settings are
kept the same as in Section O

Dataset LR OLR Steps Penalty Step Penalty Weight
Logit (linear) 0.001 0.001 1500 500 10000

Logit (sine) 0.001 0.001 1500 500 10000

CMNIST (linear) 0.001 0.001 1000 500 8000

CMNIST (sine) 0.001 0.001 1000 500 8000

HousePrice 0.001 0.01 1000 500 100000

Insurance 0.001 0.01 1500 500 10000

Auto-scaling 0.001 0.01 1000 500 10000

WildTime-YearBook 0.00001 0.001 1000 500 100

Table 11: The running setup for our CIL on each Dataset

Similarly, Table 10 reports the training and testing accuracy for different penalty weights λ. They
all outperform ERM and the discrete methods in Table 9. All accuracy is close to 70% when the
penalty weight is larger than or equal to 1000, which shows the model is robust to different penalty
weights. The performance improvement lowers to 67% when the penalty is reduced to 100, but it
still outperforms ERM by 10%. The above experiments prove the robustness of our CIL, which can
improve the model performance in any setup case.

O SETTINGS OF EXPERIMENTS

In this section, we provide the training and hyperparameter details for the experiments. All exper-
iments are done on a server base on Alibaba Group Enterprise Linux Server release 7.2 (Paladin)
system which has 2 GP100GL [Tesla P100 PCIe 16GB] GPU devices.

• LR: learning rate of the classification model Φ(x)), e.g. 1e-3.

• OLR: learning rate of the penalty model h(Φ(x)), g(Φ(x),y), e.g. 0.001

• Steps: total number of epochs for the training process, e.g. 1500

• Penalty Step: number of epochs when to introduce penalty, e.g. 500

• Penalty Weight: the invariance penalty weight, e.g. 1000

We show the parameter values used for each dataset in Table 11.

P EXPERIMENT ON HEART DISEASE

We evaluate our method on the real-world Heart Disease dataset from Kaggle*. This dataset contains
records related to the diagnosis of heart disease in patients. Each record consists of features including
patient demographics(e.g., age, gender), vital signs(e.g., resting electrocardiogram, resting heart
rate, maximum heart) , symptoms(e.g., chest pain), and potential risk factors associated with heart

*https://www.kaggle.com/datasets/amirmahdiabbootalebi/heart-disease
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conditions. Our target is to determine the presence or absence of heart disease in the patient. The
Cholesterol value is taken as the continuous domains index, where the training dataset contains
patients with Cholesterol value between (60.0, 220.0] and the testing dataset between (220.0, 421.0).
The training dataset is equally split into discrete domains with 10 in each domain for existing methods
dependent on discrete domains. Results in Table 12 show that all existing methods are inferior to
ERM in terms of in-distribution training performance. However, all methods except IIBNet achieve a
higher accuracy than ERM on OOD testing. Our CIL performs the best across all methods, improving
by about 2% compared to other methods.

Env. Type Method ID OOD

None ERM 88.77(1.25) 80.58(2.10)

Discrete GroupDRO 86.98(0.80) 81.88(0.46)
IIBNet 81.64(0.55) 77.67(1.21)

Continuous

IRMv1 87.24(2.07) 83.17(1.65)
REx 87.76(1.87) 82.85(0.92)

Diversify 87.24(1.21) 82.52(2.86)
EIIL 87.36(0.48) 82.13(1.25)
HRM 88.10(0.91) 81.92(1.72)
CIL 86.23(1.25) 84.79(0.92)

Table 12: Comparison on the HeartDisease datasets

Q ON THE CORRELATION OF Y

It is possible that the label is not independent of the domains. Taking the Heart Disease dataset as an
example, we can visualize the proportion of positive labels among subgroups of patients with different
Cholesterol values. The distribution of Y is shown as Figure 8. In this case, where the distribution
of Y changes with the domain, we have observed that our method consistently outperforms ERM
(Empirical Risk Minimization) and other competitive invariance learning methods. Additionally, we
have explored another approach that involves re-weighting the samples to balance the Y ratio within
each subgroup of the training data, where the subgroups are defined by Cholesterol intervals of 20.

For instance, let’s consider a subgroup with a positive Y ratio of 0.33. We reweight the samples from
this subgroup by a factor of 0.5/0.33. After the reweighting process, the Y ratio in each subgroup
becomes 0.5. We have found that combining this reweighting technique with our CIL method achieves
slightly better ID performance but slightly worse OOD performance. Notably, the OOD performance
of reweighted CIL is still consistently better than existing methods when we compare Table 13 with
Table 12.

Figure 8: How the Y ratio changes with the Cholesterol value
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Method ID OOD

ERM 88.77(1.25) 80.58(2.10)

CIL 86.23(1.25) 84.79(0.92)
CIL(re-weight) 86.91(0.79) 84.12(1.36)

Table 13: Comparison of re-weighted CIL with vanilla CIL

R ADDITIONAL EXPERIMENT ON CONTINUOUS CMNIST

The results in Table 2 in Section 4 shows a large variance Continuous CMNIST. We conjecture that
it is due to that fact that invariance learning methods are prone to over-fitting in densely connected
DNNs (Lin et al., 2022a; Zhou et al., 2022). To further improve and stabilize the performance of CIL
on Continuous CMNIST, we try to incorporate methods in (Rosenfeld et al., 2022; Kirichenko et al.,
2022).

We have conducted additional experiments on the Continuous CMNIST dataset. For feature extraction,
we utilized a fixed pretrained ResNet18 model on the CMNIST images. In other words, we used
the extracted features as inputs for our CIL. Our approach involved training only the linear layer on
top of the fixed pre-trained features. This technique has been widely adopted in existing literature,
where researchers have found that training just the last layer is sufficient because the pre-trained
model already captures enough invariant and spurious features (Rosenfeld et al., 2022; Kirichenko
et al., 2022). This method can significantly alleviate the overfitting issue. The results presented in
Table 14 demonstrate that our CIL significantly benefits from being trained based on the fixed feature
extracted by the pre-trained features, as they exhibit exceptional ID and OOD performance with low
variance. Notably, the baseline methods are all trained on the feature extracted by a fixed pre-trained
model and the other settings are the same with Section 4.1.1.

Env. Type Method Linear Sine
Split Num ID OOD Split Num ID OOD

None ERM – 84.84(0.01) 10.60(0.08) – 85.17(0.01) 10.58(0.18)

Discrete

IRMv1 8 75.68(0.77) 52.06(1.18) 2 76.20(0.15) 52.35(0.45)
REx 4 78.42(0.73) 39.30(4.00) 4 70.19(0.03) 62.22(0.20)

GroupDRO 2 84.73(0.01) 12.04(0.27) 16 85.00(0.01) 12.28(0.15)
IIBNet 16 74.93(0.16) 41.60(0.63) 8 61.30(1.69) 45.73(1.58)

Continuous

IRMv1 – 77.28(0.11) 46.95(0.48) – 77.37(0.67) 48.02(1.56)
REx – 78.07(0.40) 46.95(1.83) – 78.51(0.31) 46.11(1.69)

Diversify – 83.29(0.19) 30.92(1.10) – 77.03(0.46) 41.36(1.23)
CIL – 70.33(0.63) 62.15(1.37) – 72.47(0.43) 67.80(0.40)

Table 14: Accuracy on Continuous CMNIST for Linear and Sine ps(t). The standard deviation in
brackets is calculated with 5 independent runs. The Env. type “Discrete” means that we manually
create by equally splitting the raw continuous domains. The environment type “Continuous” indicates
using the original continuous domain index. “Split Num” stands for the number of domains we
manually create and we report the best performance among spilt {2, 4, 8, 16}.
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