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ABSTRACT

Federated Learning (FL) is widely employed to tackle distributed sensitive data.
Existing methods primarily focus on addressing in-federation data heterogeneity.
However, we observe that they can suffer from significant performance degrada-
tion when applied to unseen clients for out-of-federation (OOF) generalization.
The recent attempts to address generalization to unseen clients generally fail to
scale up to large-scale distributed settings due to high communication overhead
and convergence difficulty. And the communication efficient methods often yield
poor OOF robustness. To achieve OOF-resiliency in a scalable manner, we pro-
pose Topology-aware Federated Learning (TFL) that leverages client topology - a
graph representing client relationships - to effectively train robust models against
OOF data. We formulate a novel optimization problem for TFL, consisting of
two key modules: Client Topology Learning, which infers the client relation-
ships in a privacy-preserving manner, and Learning on Client Topology, which
leverages the learned topology to identify influential clients and harness this in-
formation into the FL optimization process to efficiently build robust models.
Empirical evaluation on a variety of real-world datasets verifies TFL’s superior
OOF robustness and communication efficiency. Our source code is available at
https://anonymous.4open.science/r/TFL-8390.

1 INTRODUCTION
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Figure 1: Federated learning of pre-
dictive model for patient mortality
prediction from distributed healthcare
datasets (Pollard et al., 2018). A
model that is highly accurate on in-
federation (IF) data can fail catas-
trophically when presented with out-
of-federation (OOF) data.

Modern industries, ranging from healthcare to finance, ac-
cumulate vast amounts of sensitive information, includ-
ing personal records and proprietary data, which are of-
ten distributed across different institutions and subject to
strict privacy regulations (CCPA, 2018). This fragmenta-
tion of data presents a significant challenge in centraliz-
ing it to develop powerful ML models. Federated Learning
(FL) has emerged as a promising solution to tackle this is-
sue, enabling multi-institutional collaboration by distribut-
ing model training to data owners and aggregating results
on a centralized server (McMahan et al., 2017). This data-
decentralized approach harnesses the collective intelligence
of all participating nodes to build a model that is potentially
more robust and generalizable. Existing robust FL meth-
ods (Li et al., 2020b; Deng et al., 2020) primarily focus
on learning a global model with good average or worst-
case performance, addressing in-federation (IF) data het-
erogeneity. However, these methods can fail catastrophically on out-of-federation (OOF) clients,
i.e., clients outside the collaborative federation. The OOF clients pose significant generalization
challenges, as FL models may encounter unseen distributions outside their training space (Pati et al.,
2022a). Our empirical study shows that existing methods suffer from significant performance degra-
dation when applied to unseen clients for OOF generalization (see an example in Figure 1).

There have been recent attempts to address the challenge of unseen clients through client aug-
mentation (Liu et al., 2021) and client alignment (Nguyen et al., 2022). However, as shown in
Figure 2, our empirical evaluation shows that the existing method suffers from a tradeoff between
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Figure 2: OOF accuracy vs. wall-
clock time on PACS dataset (Li et al.,
2017). We see a clear tradeoff be-
tween OOF robustness and scalability
(communication/computation).

OOF-resiliency and communication efficiency. Client
augmentation-based methods often necessitate extensive
client-server communication, which is not scalable for
large-scale settings (Zhou et al., 2023). Client alignment-
based methods align the latent representation to a reference
distribution. Though this strategy is scalable, it has been
observed with limited OOF robustness (Bai et al., 2023). A
question naturally arises: How to obtain good OOF robust-
ness in a scalable manner?

We aim to trigger OOF-resiliency while being communi-
cation efficient by leveraging client topology. Client topol-
ogy, a graph representing client relationships, allows for us-
ing graph mining techniques (Saxena & Iyengar, 2020; Lü
& Zhou, 2011; Nascimento & De Carvalho, 2011) to de-
rive insights into client data distributions. It can be used
to identify “influential” clients that are representative of the
training clients, containing distributions more likely to be encountered in OOF clients. For instance,
an influential client could be a regional hospital that aggregates a diverse range of patient data. This
hospital’s data encapsulates a rich repository of information, mirroring the variety and complexity
of data that could be seen in OOF scenarios. Leveraging these influential clients as priority con-
tributors in the training rounds can facilitate the model in learning from the most representative
data, thereby potentially enhancing its OOF robustness. On the other hand, by reducing unnecessary
communication with non-influential clients, communication costs can be significantly reduced.

With this client topology-based design rationale, we formulate a novel optimization problem for
OOF generalization, which simultaneously optimizes the robust models and the client topology.
To solve this optimization problem, we propose Topology-aware Federated Learning (TFL), which
consists of two key steps. 1) Client Topology Learning: Inferring the client topology with respect
to data privacy. 2) Learning on Client Topology: Leveraging the learned topology to build a robust
model. The first step learn a client topology by promoting a correlation with model similarity. In the
second step, a robust model is efficiently optimized by harnessing the client’s influential information
to regularize a distributed robust optimization process.

Our main contributions are as follows: Firstly, we introduce the Topology-aware Federated Learning
(TFL) framework, a principled approach designed to enhance FL’s out-of-federation (OOF) robust-
ness. TFL utilizes client relationships to develop robust models against OOF data. Secondly, we
design an iterative client topology leaning and learning on client topology approach to solve TFL.
Finally, we have curated two OOF benchmarks using real-world healthcare data, offering valuable
testbeds for subsequent research. Through extensive experiments on these and standard benchmarks,
we verify TFL’s superior OOF-resiliency and scalability.

2 PRELIMINARIES

Federated learning (Average-case formulation). The standard FL involves collaboratively training
a global model leveraging data distributed at K clients. Each client k (1 ≤ k ≤ K) has its own
data distribution Dk(x, y), where x ∈ X is the input and y ∈ Y is the label, and a dataset with nk

data points: D̂k = {(xn
k , y

n
k )}

nk

n=1. Local data distributions {Dk}Kk=1 could be the same or different
across the clients. FL aims to learn a global model θ by minimizing the following objective function:

min
θ∈Θ

F (θ), where F (θ) :=

K∑
k=1

pkfk(θ), (1)

where fk(θ) is the local objective function of client k. The local objective function is often defined
as the empirical risk over local data, i.e., fk(θ) = E(x,y)∼D̂k

[ℓ(θ;x, y)] = 1
nk

∑nk

n=1 ℓ(θ;x
n
k , y

n
k ).

The term pk (pk ≥ 0 and
∑

k pk = 1) specifies the relative importance of each client, with two
settings being pk = 1

N or pk = nk

N , where N =
∑

k nk is the total number of samples.

Distributionally robust federated learning (Worst-case formulation). While Equation 1 can
build a global model with good average performance on in-federation clients, it may not neces-
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Figure 3: Overview of Topology-aware Federated Learning (TFL). TFL contains two alternating
steps: client topology learning (CTL) and learning on client topology (LCT). CTL learn the client
topology that describes the relationships between local clients. We leverage model weights to con-
struct a graph by measuring model similarity. LCT leverage the learned client topology to achieve
better OOF robustness. We identify the influential client and then use the influential client as prior
knowledge to regularize a distributionally robust optimization framework. In this way, the opti-
mization process can balance the “worst-case” client and the “influential” client to avoid overly
pessimistic models with compromised OOF-resiliency.

sarily guarantee good performance in the presence of heterogeneous data. In the real world, data
could be statistically heterogeneous due to different data acquisition protocols or various local de-
mographics (Rieke et al., 2020). Thus, the local data distributions may deviate significantly from
the average distribution, implying that an “average” global model can fail catastrophically under
distributional drift. To tackle this issue, distributionally robust optimization (Staib & Jegelka, 2019)
has been adapted to FL, resulting in distributionally robust federated learning (Deng et al., 2020;
Reisizadeh et al., 2020). The formulation of this new problem is as follows:

min
θ∈Θ

max
λ∈∆K

F (θ,λ) :=

K∑
k=1

λkfk(θ), (2)

where λ is the global weight for each local loss function and ∆K denotes the K − 1 probability
simplex. Intuitively, Equation 2 minimizes the maximal risk over the combination of empirical local
distributions, and therefore the worst-case clients would be prioritized during training.

While this framework has the potential to address distribution shifts (Mohri et al., 2019; Deng et al.,
2020), directly implementing it for OOF resiliency may yield suboptimal models. This approach
heavily relies on worst-case clients, those with large empirical risks, to develop robust models.
However, these clients may not necessarily be the influential ones that are representative of clients.
In some cases, it is possible that this approach overly focuses on “outlier” clients, clients that are
significantly different from most of the training clients, leading to models with limited OOF robust-
ness. Therefore, we argue that, to build optimal OOF-resilient models, the optimization process
should focus on not only the worst-case but also the influential clients.

3 METHODOLOGY

In this section, we introduce our Topology-aware Federated Learning (TFL) framework. TFL aims
to leverage client topology to boost the model’s OOF robustness. We model client topology using
an undirected graph (Vanhaesebrouck et al., 2017). In the graph, nodes correspond to clients, and
edges reflect clients’ connectivity. Let G = (V,E,W ) denote the client topology, where V is the
node set with |V | = K, E ⊆ V × V is the edge set and W ∈ RK×K is the adjacency matrix. An
edge between two clients vk and vl is represented by ek,l and is associated with a weight wk,l.

Optimization problem. As the client topology is often not readily available, we propose to jointly
optimize the client topology and the robust model by solving the following problem:

min
θ∈Θ
w∈W

max
λ∈∆K

F (θ,λ,W ) :=

K∑
k=1

λkfk(θ)−
γ

2

∑
k ̸=l

wk,l sim(vk, vl),

s.t. D(λ ∥ p) ≤ τ, where p = ϕ(W ),

(3)
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where γ is a trade-off hyperparameter. ϕ denote graph measures, e.g, centrality measure (Saxena
& Iyengar, 2020). The function “sim” indicates any chosen similarity function, including but not
limited to cosine similarity, dot product, ℓ2, or ℓ1. In the objective function, the first term follows
the same spirit of Equation 2 to adopt a minimax robust optimization framework. The difference is
that it minimizes the risk over not only the worst-case but also the influential clients. The second
term learn a client topology by measuring the pair-wise client similarity.

Our formulation stands apart from existing work in two respects. Firstly, it employs client topology
to explicitly model the client relationships. Analyzing this topology facilitates the identification of
influential clients that are crucial for developing strong OOF generalization. Secondly, our formula-
tion enables seamless integration of client topology into the optimization process, guaranteeing that
the model assimilates insights from the most significant clients.

In Equation 3, simultaneously updating both the client topology W and model parameters θ is
infeasible as local clients do not have access to other clients’ data. Thus, we propose to solve
this problem using an alternating two-step approach: Client Topology Learning (updating W ) and
Learning on Client Topology (updating λ and θ) (see Figure 3). The following sections will provide
further details on these two steps.

3.1 CLIENT TOPOLOGY LEARNING

Our goal is to learn the client topology that accurately describes the characteristics of local data,
thereby capturing the underlying client relationships. Conventional approaches typically adopt
similarity-based (Chen et al., 2020a) or diffusion-based (Zhu et al., 2021; Mateos et al., 2019) meth-
ods to estimate the graph structure from data. However, most methods require centralizing training
data on a single machine, raising privacy concerns. Therefore, the key question is how to learn the
client topology while respecting data privacy.
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Figure 4: Model similarity under differ-
ent metrics. Client models are trained
using the same algorithm and hyperpa-
rameters. Clients 6 to 10 share simi-
lar data distributions. We observe that
clients with similar data distribution
tend to have more similar models.

We propose to utilize model weights to learn client topol-
ogy. Intuitively, when two clients have similar data distri-
butions, their corresponding models should be more sim-
ilar. It is possible to obtain data distribution relationships
with model similarity. While the feasibility of this idea
is supported by literature (Yu et al., 2022), we intend to
empirically verify whether it holds in our setting. We use
four types of similarity measures, including ℓ1-based, ℓ2-
based, dot product-based, and cosine similarity-based met-
rics. We conduct experiments on PACS where clients 6 to
10 share similar data distributions. Then, we measure the
similarity between client 10 and all other clients. For a
clear comparison, we normalized all scores into [0, 1]. The
results are shown in Figure 4. We observe that the simi-
larity scores of clients with the same data distributions are
much higher than other clients. And these distinguishable
similarity scores are consistent across all metrics.

In summary, utilizing model weights to learn client topology offers two merits. First, models can
be freely shared among clients, addressing privacy issues of client topology learning. Second, since
models are trained on local data, their similarity measures the similarity between local data distribu-
tions. We formulate client topology learning as follows:

min
w∈W

−
∑
k ̸=l

wk,l sim(θk, θl) + ∥W∥0 , (4)

where θ denotes the model of local clients. This objective ensures that similar clients have large edge
weights. Our formulation is aligned with the common network homophily assumption that edges
tend to connect similar nodes (Newman, 2018). To avoid learning a fully connected graph with
trial edges, we enforced graph sparsity by penalizing the l0-norm of the adjacency matrix ∥W∥0.
We implement the sparsity term using an implicit method, i.e., hard thresholding on W to construct
ϵ-graph (Zhu et al., 2021). Specifically, we mask out (i.e., set to zero) those elements in W smaller
than a non-negative threshold ϵ.
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3.2 LEARNING ON CLIENT TOPOLOGY

The learned client topology captures the relation among local clients. We aim to leverage such
relations to develop TFL for better OOF-resiliency. Recall that, to tackle distribution shift, distribu-
tionally robust federated learning (DRFL) assumes that the target distribution lies within an arbitrary
mixture of training distributions:

∑K
k=1 λkDk. DRFL builds OOF-resilient models by minimizing

the worst-case risk over an uncertainty set of possible target distribution Q := {
∑K

k=1 λkDk | λ ∈
∆K}. However, DRFL mainly emphasizes the worst-case distribution while ignoring the influential
ones that are representative of training clients, yielding overly pessimistic models with compromised
OOF resiliency (Hu et al., 2018; Frogner et al., 2021).

We leverage client topology to construct an uncertainty set which can better approximate the unseen
distribution. Our insight is to optimize the model for both the worst-case and influential distributions.
The key challenge is how to identify the influential distribution. Our idea is to use graph centrality
as the criterion to choose influential distributions. Graph centrality is widely used in social network
analysis (Newman, 2005) to identify the influential person by measuring how much information
propagates through each entity. We introduce client centrality to identify influential clients, which
can be calculated by graph measurements such as degree, closeness, and betweenness. Specifically,
we first calculate the centrality of each client in G as the topological prior p. Then we use p to
constraint the uncertainty set Q by solving the following minimax optimization problem:

min
θ∈Θ

max
λ∈∆K

F (θ,λ) :=

K∑
k=1

λkfk(θ), s.t. D(λ ∥ p) ≤ τ. (5)

The topological constraint enforces the optimization process to focus on not only the worst-case
but also influential clients. Here D is an arbitrary distributional distance measure (In this paper,
we choose ℓ2 distance). It is worth noting that both federated averaging (FedAvg (McMahan et al.,
2017)) (Equation 1) and DRFL (Equation 2) are special cases of TFL: When τ = 0 and the prior p
is a uniform distribution, Equation 5 minimizes the average risk over local clients, which is identical
to FedAvg; When τ → ∞, Equation 5 only prioritizes the worst-case clients, degrading to DRFL.

The above optimization problem is typically nonconvex, and methods such as SGD cannot guarantee
constraint satisfaction (Robey et al., 2021). To tackle this issue, we leverage the Lagrange multiplier
and KKT conditions (Boyd et al., 2004) to convert it into unconstrained optimization:

min
θ∈Θ

max
λ∈∆K

F (θ,λ,p) :=

K∑
k=1

λkfk(θ)− qD(λ ∥ p), (6)

where q is the dual variable. Then we solve the primal-dual problem by alternating between gradient
descent and ascent:

θt+1 = θt − ηtθ∇θF (θ,λ), λt+1 = P∆K
(λt + ηtλ∇λF (θ,λ)), (7)

where ηt is the step size. P∆K
(λ) projects λ onto the simplex ∆K for regularization.

Influential client. We identify the influential clients by calculating betweenness centrality. Be-
tweenness centrality measures how often a node is on the shortest path between two other nodes in
the graph G. It has been revealed that the high betweenness centrality nodes have more control over
the graph as more information will pass through them (Freeman, 1977). The betweenness centrality
of client k is given by the expression of ck =

∑
s̸=k ̸=t∈[K]

σst(k)
σst

, where σst is the total number of
shortest path from node s to node t ((s, t)-paths) and σst(k) is the number of (s, t)-paths that pass
through node k. Then we apply softmax to normalize client centrality ck to obtain client topological
prior pk = exp(ck)/

∑K
k=1 exp(ck).

Discussion. Handling high-dimensional models. Large models are getting more attention in
FL (Zhuang et al., 2023). Its high dimensionality might raise computational concerns when cal-
culating model similarity. For better computation efficiency, we can leverage only partial model
parameters, e.g., the last few layers. We empirically show that using partial parameters basically
does not affect the OOF performance. Client topology learning in large-scale settings. Client
topology learning requiris O(N2) computation complexity for N clients. This quadratic complexity
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is prohibitively expensive in cross-device FL, where thousands or millions of clients are involved.
We argue that computation costs can be significantly reduced via client clustering (Sattler et al.,
2020). By partitioning the clients into clusters, the total number of “clients” is reduced, allowing
for cluster-level client topology learning with reduced computation costs. We empirically show that
client clustering can significantly reduce computation costs (see results in Supplementary F).

4 EXPERIMENTS

4.1 DATASETS AND BASELINES

Datasets. Our method is evaluated on real-world datasets (①eICU, ②FeTS, ③TPT-48) and standard
benchmarks (④CIFAR-10/-100, ⑤PACS), spanning a wide range of tasks including classification,
regression, and segmentation. Evaluations encompass both out-of-federation (datasets ①-③, ⑤) and
in-federation (datasets ③-④) scenarios. Further dataset details are available in Supplementary B.
① eICU (eICU Collaborative Research Database) (Pollard et al., 2018) is a large-scale multi-center

critical care database. It contains high granularity critical care data for over 200, 000 patients
admitted to 208 hospitals across the United States. Each hospital is considered an individual
client. he generalization task could be deploying models trained on hospitals from the SOUTH
region to those in the WEST. The evaluation metric for patient mortality prediction is ROC-AUC.

② FeTS (Federated Tumor Segmentation Dataset) (Pati et al., 2022b) is a multi-institutional medi-
cal imaging dataset. It comprises clinically acquired multi-institutional MRI scans of glioma. A
subset of the original data was used, comprising 358 subjects from 21 distinct global institutions.
The associated task is to identify and delineate brain tumor boundaries. Each institution is a
client. The evaluation metric is Dice Similarity Coefficient (DSC ↑).

③ TPT-48 (Vose et al., 2014) contains the monthly average temperature for the 48 contiguous states
in the US from 2008 to 2019. The task is to predict the next six months’ temperature given the
first six months’ temperature. For TPT-48, we consider two generalization tasks: (1) E(24) →
W(24): Using the 24 eastern states as IF clients and the 24 western states as OOF clients; (2)
N(24) → S(24): Using the 24 northern states as IF clients and the 24 southern states as OOF
clients. The evaluation metric is Mean Squared Error (MSE ↓).

④ CIFAR-10/-100 (Krizhevsky & Hinton, 2009) are the most commonly used benchmarks in FL
literature. In these datasets, we use Dirichlet distribution (Hsu et al., 2019) to partition the dataset
into the heterogeneous setting with 25 and 50 clients.

⑤ PACS (Li et al., 2017) contains 9, 991 images from four domains: art painting, cartoon, photo,
and sketch. The task is seven-class classification. For PACS, we evenly split each domain into
5 subsets, yielding 20 subsets, and we treat each subset as a client. We followed the common
“leave-one-domain-out” experiment, where 3 domains are used (15 clients) for training and 1
domain (5 clients) for testing. Model performance is evaluated by classification accuracy.

Baselines. We compare with ① FedAvg (McMahan et al., 2017) and ② FedProx (Li et al., 2020b).
These two baselines are the most referenced methods. ③ DRFA (Deng et al., 2020) is the latest
work that adopts the federated distributionally robust optimization framework. ④ FedSR (Nguyen
et al., 2022) is the most recent work that tackles FL’s generalization to unseen clients. We did not
compare with FedDG (Liu et al., 2021) as it requires the sharing of data in the frequency space with
each other. This can be viewed as a form of data leakage (Bai et al., 2023; Nguyen et al., 2022). We
provide implementation details on model architecture and hyperparameters in Supplementary E.

4.2 EVALUATION ON OOF-RESILIENCY

Takeaway 1: Learning on client topology improves OOF robustness. We evaluate our method
on different datasets and summarize the results in Tables 1, 2, and 3. We make the following obser-
vation: our method improves the model’s OOF-resiliency on both standard and real-world datasets.
From Table 1, our method performs 2.25% better than the federated robust optimization method
(DRFA) and 2.63% better than the federated domain generalization method (FedSR). From Ta-
ble 2, our method performs 2.11% better than DRFA and 2.03% better than FedSR. Lastly, from
Table 3, our method performs 1.98% better than DRFA and 3.00% better than FedSR. Overall,
our method shows consistently superior OOF robustness than state-of-the-art across all the evalu-
ated datasets. We also visualize the segmentation results of FeTS in Figure 6. We observe that
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Figure 5: Visualization of client topology on the eICU dataset. Hospitals from MIDWEST, SOUTH,
and NORTHEAST collaboratively train a global model, which is subsequently evaluated on hospi-
tals in the WEST. We observe that the learned client topology becomes denser, revealing underlying
relationships that were previously unknown. Furthermore, the identified “influential” hospitals are
more from the MIDWEST and SOUTH rather than NORTHEAST. This observation is rational,
given the geographical proximity of these two regions to the target evaluation region, the WEST.

our method delivers a higher quality of segmentation, suggesting increased reliability for real-world
healthcare applications that have to contend with diverse local demographics.

Visualization of client topology. We also visualize the learned client topology of the eICU dataset
in Figure 5. We observe that the learned client topology helps to identify the “influential” client.
The figure shows that the important clients predominantly originate from the MIDWEST and
SOUTH, while none from the NORTHEAST are influential.

Table 1: Accuracy on the PACS dataset. We conduct experiments using a leave-one-domain-out
approach, meaning each domain serves as the evaluation domain in turn. Existing methods typically
consider each domain as an individual client (Liu et al., 2021; Nguyen et al., 2022). To simulate a
large-scale distributed setting, we further divide each domain into 5 subsets and treat each subset as a
separate client. The total number of clients is 20. The reported numbers are from three independent
runs. Our method outperformed others across all experimental settings.

Models Backbone PACS

A C P S Average

Centralized
Methods

DGER (Zhao et al., 2020) ResNet18 80.70 76.40 96.65 71.77 81.38
DIRT-GAN (Nguyen et al., 2021) ResNet18 82.56 76.37 95.65 79.89 83.62

Federated
Learning
Methods

FedAvg ResNet18 55.83±0.31 61.37±0.66 77.87±0.61 74.53±0.18 67.40
FedProx ResNet18 56.84±0.88 62.56±0.87 78.33±0.46 75.17±0.61 68.23
DRFA ResNet18 56.59±0.34 62.87±0.22 78.63±0.77 75.55±0.42 68.41
FedSR ResNet18 57.56±0.95 61.91±0.35 78.42±0.19 74.73±0.27 68.16

TFL (Ours) ResNet18 59.05±0.69 64.46±0.21 79.35±0.61 76.93±0.39 69.95

Table 2: Best ROC-AUCs and corresponding communication round on eICU dataset. This dataset
comprises EHRs collected from a diverse range of 72 hospitals across the United States. We trained
our model using data from 58 hospitals located in the MIDWEST, NORTHEAST, and SOUTH
regions. We evaluated the performance of the global model on an independent set of 14 hospitals
from the WEST region. The reported numbers are from three independent runs. Our approach
demonstrates remarkable improvements in OOF robustness with minimal communication costs.

Centralized Method Federated Learning Methods

ERM FedAvg FedProx DRFA FedSR TFL (Ours)

ROC-AUC # round ROC-AUC # round ROC-AUC # round ROC-AUC # round ROC-AUC # round

67.04±1.88 57.18±0.03 6 57.21 ±0.01 6 57.20±0.09 2 57.25±0.03 8 58.41±0.06 2

4.3 EVALUATION ON SCALABILITY

Takeaway 2: Learning client topology is communication efficient. Here, we investigate whether
TFL will significantly increase the communication overhead, thus compromising its scalability to
large-scale settings. We show the ROC AUC versus communication rounds of the eICU dataset
in Figure 7. Our method is found to deliver the highest ROC AUC score while requiring the

7



Under review as a conference paper at ICLR 2024

Table 3: DSC (↑) score on the FeTS. This dataset contains tumor images from 21 institutions world-
wide. We conduct training on 15 institutions and evaluate the model on the remaining 5. The
reported numbers are from three independent runs. Our method delivers the best OOF robustness.

Centralized Method Federated Learning Methods

ERM FedAvg FedProx DRFA FedSR TFL (Ours)

83.14±0.98 71.45±0.05 71.15±0.04 72.12±1.03 72.85±0.05 74.29±0.15

Patient ID: 00454 Patient ID: 00448 Patient ID: 00452

Figure 6: Qualitative results comparison on unseen patients of the FeTS dataset. We show both the
tumor segmentation and DSC (↑) score. Our approach yields consistently superior OOF robustness
under diverse local demographics.

0 2 4 6 8 10
Communicaiton Round

46

48

50

52

54

56

58

RO
C 

AU
C

ROC AUC vs. Communication Round on eICU

FedAvg
FedProx
DRFA
FedSR
TFL

Figure 7: Visualization of ROC
AUC vs. comm. round. Our
method yields the best result with
fewer communication rounds.

fewest communication rounds, thereby indicating its superior
communication efficiency. Interestingly, DRFA also achieves its
peak performance within the same number of communication
rounds as our method. This is primarily attributable to the fact
that both DRFA and our approach utilize a distributionally robust
optimization framework. By minimizing the worst-case combi-
nation of local client risks, the model is able to converge faster
toward the optimum. Additionally, we also show the wall clock
time versus OFF accuracy on the PACS dataset in Figure 2. Our
method demonstrates communication efficiency approximate to
FedAvg and FedSR, yet it delivers superior OOF accuracy.

4.4 EVALUATION ON IN-FEDERATION PERFORMANCE

Takeaway 3: Prioritizing influential clients also benefits in-
federation performance. We have shown that TFL can significantly boost the model’s OOF ro-
bustness. This naturally leads us to examine its IF performance. We are interested in understanding
if TFL can maintain or even improve its IF performance. To empirically evaluate this, we utilized
the TPT-48 and CIFAR-10/-100 datasets. TPT-48, which offers additional hold-out data from the IF
client, is naturally suitable for assessing IF performance. CIFAR-10 and -100 are widely recognized
benchmarks in FL. We show the results in Tables 4 and 5. We observe that our method does indeed
bolster the IF performance. For example, TFL outperforms DRFA by 2.2% on TPT-48 and 2.5%
on CIFAR-10. These findings underscore the value of focusing on influential clients when building
robust models with good IF and OOF performance.

Table 4: Results on TPT-48 dataset. We report results for
both IF and OOF evaluations. The reported numbers are the
mean of three independent runs. Our method improves both
the OOF and IF performance.

Method Centralized FedAvg FedProx DRFA TFL (Ours)

Out-of-federation Evaluation (MSE ↓)

E(24) → W(24) 0.3998 0.6264 0.6312 0.5451 0.4978
N(24) → S(24) 1.4489 2.0172 1.9729 1.8972 1.7432

In-federation Evaluation (MSE ↓)

E(24) → E(24) 0.1034 0.2278 0.2163 0.1554 0.1523
N(24) → N(24) 0.1329 0.1550 0.1523 0.1437 0.1405

Table 5: We report results on
CIFAR-10/-100. The reported num-
bers are the mean of three indepen-
dent runs. Our method yields the best
accuracy at various scales.

CIFAR-10 CIFAR-100

Non-IID Dir (0.1) Dir (0.1)

# of clients 25 50 25 50

FedAvg 68.07 64.48 37.90 37.33
FedProx 68.15 64.33 37.76 37.28
DRFA 70.51 63.19 38.04 37.54
TFL (Ours) 72.24 65.56 38.85 38.08
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4.5 ABLATION STUDY

Table 6: TFL’s OOF accuracy using full and partial
model parameters. We see that using partial model pa-
rameters basically does not affect the performance.

A C P S Average

Full 59.05±0.69 64.46±0.21 79.35±0.61 76.93±0.39 69.95

Partial 58.96±0.85 64.57±0.98 78.94±0.65 76.61±0.13 69.77

Effects of partial model approximation.
To handle high-dimensional models, we can
leverage partial model parameters to com-
pute the similarity scores for better compu-
tation efficiency. Here, we report the OOF
performance when using full and partial
model parameters. Experiments are con-
ducted on PACS and results are shown in Table 6.

Table 7: Ablation on effects of graph sparsity
and topology update frequency on PACS.

Graph Sparsity (ϵ), Accuracy ↑
ϵ = 0.45 ϵ = 0.4 ϵ = 0.38 ϵ = 0.35 ϵ = 0.3

58.61 59.07 57.83 58.11 57.73

Topology update frequency (f ), Accuracy ↑
f = 50 f = 30 f = 20 f = 10 f = 5

59.19 58.91 58.27 58.80 58.28

Effects of graph sparsity. To avoid learning a fully
connected graph with trivial edges, we add a sparsity
contain to the client topology step. In our implemen-
tation, we adopt the ϵ-graph to make sure Equation 4
is solvable. The threshold value ϵ controls the graph
sparsity. Here, we investigate how it will affect the
TFL. We report the results on PCAS in Table 7. We
observe that ϵ = 0.4 yields the best performance.

Effects of client topology update frequency. The
frequency at which the client topology is updated dur-
ing training affects the overall training time (f = 50
means updating the client topology every 50 rounds). A greater frequency of updates leads to longer
running times. We investigated the impact of client topology updating frequency on the performance
of the model on PACS. Our results in Table 7 indicate that model performance remains relatively
stable across various updating frequencies. We provide more ablation studies in Supplementary D.

5 RELATED WORK

Federated learning. FL (Li et al., 2020a; Kairouz et al., 2021) has emerged as a powerful tool to
protect data privacy in the distributed setting. Current FL methods mainly focus on addressing the
in-federation data heterogeneity (Li et al., 2020b; Sattler et al., 2019; Tan et al., 2022). For exam-
ple, FedProx (Li et al., 2020b), SCAFFOLD (Karimireddy et al., 2020), and FedAlign (Mendieta
et al., 2022) tackle this problem from the perspective of learning better generalizable local models.
However, limited work discusses the model’s out-of-federation (OOF) performance. Orthogonal to
existing work, we propose leveraging client relationships to improve the model’s OOF generalization
capability. FL generalization to unseen clients. There are recent attempts to address generalization
to unseen clients in FL. FedDG (Liu et al., 2021) is proposed to share the amplitude spectrum of im-
ages among local clients to augment the local data distributions. FedADG (Zhang et al., 2021) adopts
the federated adversarial training to measure and align the local client distributions to a reference
distribution. FedSR (Nguyen et al., 2022) proposes regularizing latent representation’s ℓ2 norm and
class conditional information to enhance the OOF performance. However, existing methods often
ignore scalability issues, yielding inferior performance in large-scale distributed setting (Bai et al.,
2023). We introduce an approach that employs client topology to achieve good OOD-resilency in
a scalable manner. Graph topology learning. The problem of graph topology learning has been
studied in data-centralized setting (Mateos et al., 2019; Dong et al., 2019; Stanković et al., 2020;
Li et al., 2018; Norcliffe-Brown et al., 2018). However, how to estimate the graph topology with a
privacy guarantee has been less investigated. We explore simple methods to infer the graph topology
using model weights. We provide a detailed discussion of related work in Supplementary C.

6 CONCLUSION

FL faces significant out-of-federation (OOF) generalization challenges that can severely impair
model performance. We propose to improve OOF robustness by leveraging client relationships,
leading to Topology-aware Federated Learning (TFL). TFL contains two key modules: i) Inferring
a topology that describes client relationships with model similarity and ii) Leveraging the learned
topology to build a robust model. Extensive experiments on real-world and benchmark datasets
show that TFL demonstrates superior OOF-resiliency with good communication efficiency.
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A SOURCE CODE

The source code for evaluation and visualization can be found in an anonymized repository. Please
visit: https://anonymous.4open.science/r/TFL-8390 to access this resource.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 EVALUATING OOF-RESILIENCY ON OFFICEHOME

We conduct additional experiments on OfficeHome (Venkateswara et al., 2017) dataset. It contains
15, 588 images from four domains: art, clipart, product, and real world. The task is a 65-class clas-
sification problem. Like PACS’s experimental setup, we evenly split each domain into 5 subsets,
yielding 20 subsets, and treat each subset as a client. We followed the common leave-one-domain-
out experiment, where 3 domains are used (15 clients) for training and 1 domain (5 clients) for
testing. We use ResNet50 (He et al., 2016) as our model and train the model for 100 communica-
tion rounds. Each local client optimized the model using stochastic gradient descent (SGD) with a
learning rate of 0.01, a momentum of 0.9, weight decay of 5e−4, and a batch size of 64. The model
is evaluated using classification accuracy.

Table 8: Accuracy on the OfficeHome dataset. We conduct experiments using a leave-one-domain-
out approach, meaning each domain serves as the evaluation domain in turn. Existing methods
typically consider each domain as an individual client (Liu et al., 2021; Nguyen et al., 2022). How-
ever, in order to simulate a large-scale distributed setting, we took a different approach by further
dividing each domain into 5 subsets and treating each subset as a separate client. This increased
the total number of clients to 20. Our method outperformed others across all experimental settings,
demonstrating superior results.

Models Backbone OfficeHome

A C P R Average

Centralized
Methods

Mixup (Xu et al., 2020) ResNet50 64.7 54.7 77.3 79.2 69.0
CORAL (Sun & Saenko, 2016) ResNet50 64.4 55.3 76.7 77.9 68.6

Federated
Learning
Methods

FedAvg ResNet50 24.10 23.16 40.19 43.47 32.73
FedProx ResNet50 23.16 23.47 41.08 42.66 32.59
DRFA ResNet50 25.29 23.98 41.23 42.35 33.21
FedSR ResNet50 23.51 22.93 39.30 41.48 31.81

TFL (Ours) ResNet50 26.37 24.47 43.96 44.74 34.89

B.2 DATA PRE-PROCESSING ON EICU

We follow (Huang et al., 2019) to predict patient mortality using drug features. These features
pertain to the medications administered to patients during the initial 48 hours of their ICU stay.
We’ve extracted pertinent patient and corresponding drug feature data from two primary sources: the
’medication.csv’ and ’patient.csv’ files. Our final dataset is a table with the dimension of 19000 ×
1411. Each row in this matrix symbolizes a unique patient, while each column corresponds to a
distinct medication.

B.3 MORE RESULTS ON EICU

We conduct more experiments on the eICU dataset to evaluate the gap between in-distribution (ID)
and out-of-distribution (OOF) and visualize the results in Figure 8. We observe that existing FL
methods are not robust against OOF data.
C DETAILED DISCUSSION OF RELATED WORK

Federated learning. Federated learning (Li et al., 2020a; Kairouz et al., 2021) has emerged as a
powerful tool to protect data privacy in the distributed setting. It allows multiple clients/devices
to collaborate in training a predictive model without sharing their local data. Despite the success,
current FL methods are vulnerable to heterogeneous data (non-IID data) (Li et al., 2020b; Sattler
et al., 2019), a common issue in real-world FL. Data heterogeneity posits significant challenges
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Figure 8: Additional results on eICU (ID vs. OOF performance). eICU’s 72 hospitals are dis-
tributed across the United States. Specifically, there are 14 hospitals in the WEST, 28 hospitals in
the MIDWEST, 26 hospitals in the SOUTH, and 4 hospitals in the NORTHEAST. We employ a
leave-one-region-out approach, designating one geographic region as the OOF region while the re-
maining as ID regions. We observe a considerable gap between ID and OOF performance, indicating
that current FL methods are not robust against OOF data.

Patient ID: 01025 Patient ID: 01023 Patient ID: 01020

Patient ID: 01015 Patient ID: 01013 Patient ID: 00446

Figure 9: Additional qualitative results comparison on unseen patients of the FeTS dataset. We
show both the tumor segmentation and DSC (↑) score. Our method demonstrates consistent superior
OOF-resiliency across a range of local demographics.

to FL, such as the severe convergence issue (Li et al., 2020b) and poor generalization ability to
new clients (Sattler et al., 2019). To improve the model’s robustness against data heterogeneity,
FedProx add a proximal term to restrict the local model updating, avoiding biased models toward
local data distribution. SCAFFOLD (Karimireddy et al., 2020) introduces a control variate to rectify
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the local update. FedAlign (Mendieta et al., 2022) improve the heterogeneous robustness by
training local models with better generalization ability. However, most FL methods focus on the
model’s in-distribution performance. Orthogonal to existing work, we propose leveraging client
relationships to improve the model’s OOF generalization capability.

FL generalization to unseen clients. A handful of works tackle generalization to unseen clients
in the FL setting. FedDG (Liu et al., 2021) is proposed to solve domain generalization in medi-
cal image classification. The key idea is to share the amplitude spectrum of images among local
clients to augment the local data distributions. FedADG (Zhang et al., 2021) adopts the federated
adversarial training to measure and align the local client distributions to a reference distribution.
FedGMA (Tenison et al., 2022) proposes gradient masking averaging to prioritize gradients aligned
with the overall domain direction across clients. FedSR (Nguyen et al., 2022) proposes regularizing
latent representation’s ℓ2 norm and class conditional information to enhance the OOF performance.
However, existing methods often ignore scalability issues, yielding inferior performance in large-
scale distributed setting (Bai et al., 2023). In this paper, we introduce an approach that employs
client topology to strike a good balance between OOF-resilency and scalability.

Graph topology learning. The problem of graph topology learning has been studied in different
fields. In graph signal processing (Mateos et al., 2019; Dong et al., 2019; Stanković et al., 2020), ex-
isting work explore various way to learn the graph structure from data with structural regularization
( e.g., sparsity, smoothness, and community preservation (Zhu et al., 2021)). In Graph Neural Net-
works (GNNs) (Wu et al., 2020; Welling & Kipf, 2016), researchers have explored scenarios where
the initial graph structure is unavailable, wherein a graph has to be estimated from objectives (Li
et al., 2018; Norcliffe-Brown et al., 2018) or words (Chen et al., 2019; 2020b). The existing graph
topology learning methods often require centralizing the data, making it inapplicable in federated
learning. However, how to estimate the graph topology with a privacy guarantee has been less in-
vestigated. In this paper, we explore simple methods to infer the graph topology using non-private
information, i.e., model weights.

D ADDITIONAL ABLATION STUDY

Table 9: Ablation study evaluating the efficacy of hy-
perparameter tuning, centrality., and similarity metric.

Effectiveness of q, ROC AUC ↑
q =1.0 q = 1e−1 q = 1e−2 q = 1e−3 q = 1e−4

57.91 58.31 57.43 56.96 57.29

Effectiveness of centrality, ROC AUC ↑
Betweenness Degree Closeness Eigenvector Current flow

58.28 57.69 57.86 57.57 57.83

Effectiveness of similarity measure, Accuracy ↑

ℓ1 ℓ2 dot produt cosin

OOF Accuracy 58.11 58.26 59.14 58.52

Hyperparameter q. We investigate the
impact of hyperparameter η on eICU. Our
findings demonstrate that setting q = 0.1
yields the best results. Centrality. We em-
ployed betweenness centrality to derive the
topological prior. However, it is worth not-
ing that other types of centrality, such as
degree (Freeman et al., 2002) and close-
ness (Bavelas, 1950), could also be utilized.
We conducted experiments on eICU to ver-
ify the impact of different centrality mea-
sures on TFL. Our findings indicate that be-
tweenness centrality produces the best re-
sult. Similarity metrics. We investigate how the model performs under different similarity metrics
on PACS. We found that the dot product-based metric produces the best results.

E IMPLEMENTATION DETAILS

Experiment settings and evaluation metrics. For the PACS dataset, we evenly split each domain
into 5 subsets, yielding 20 subsets, and we treat each subset as a client. We followed the common
“leave-one-domain-out” experiment, where 3 domains are used (15 clients) for training and 1 do-
main (5 clients) for testing. We evaluated the model’s performance using classification accuracy.
We use ResNet18 (He et al., 2016) as our model and train the model for 100 communication rounds.
Each local client optimized the model using stochastic gradient descent (SGD) with a learning rate
of 0.01, momentum of 0.9, weight decay of 5e−4, and a batch size of 8. For CIFAR-10/100, we
adopt the same model architecture as FedAvg (McMahan et al., 2017). The model has 2 convolution
layers with 32, 64 5×5 kernels, and 2 fully connected layers with 512 hidden units. we use Dirichlet
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Algorithm 1 Topology-aware Federated Learning

Input: K clients; learning rate ηθ and ηλ; communication round T ; initial model θ(0); initial
λ(0); topology update frequency f .
while not convergence do

for each communication round t = 1, · · ·T do
server samples m clients according to λ(t)

for each client i = 1, · · ·m in parallel do
θt+1
i = θti − ηθt

i
∇θt

i
F (θti)

client i send θt+1
i back to the server

end for
server computes θt+1 =

∑m
i=1 θ

t+1
i

if t%f == 0 then
Updating graph G via Equation 4

end if
calculating topological prior p from G
calculating ∇λ(t)F (θ(t+1),λ(t)) via Equation 6
λt+1 = P∆K

(λt + ηtλ∇λ(t)F (θ(t+1),λ(t)))
end for

end while

distribution (Hsu et al., 2019) to partition the dataset into the heterogeneous setting with 25 and 50
clients. For the eICU dataset, we treat each hospital as a client. We use a network of three fully
connected layers. This architecture is similar to (Huang et al., 2019; Sheikhalishahi et al., 2020).
We train our model for 30 communication rounds, using a batch size of 64 and a learning rate of
0.01, and report the performance on unseen hospitals. Within each communication round, clients
performs 5 epochs (E = 5) of local optimization using SGD. The evaluation metric employed was
the ROC-AUC, a common practice in eICU (Huang et al., 2019). For the FeTS dataset, we treat
each institution as a client. We adopt the widely used U-Net (Ronneberger et al., 2015) model. We
train our model for 20 communication rounds, using a learning rate of 0.01 and a batch size of 64.
We conduct training with 16 intuitions and report results on 5 unseen institutions. Each institution
performs 2 epochs of local optimization (E = 2) using SGD. The evaluation metric is Dice Similarity
Coefficient (DSC ↑). For TPT-48, we consider two generalization tasks: (1) E(24) → W(24): Using
the 24 eastern states as IF clients and the 24 western states as OOF clients; (2) N(24) → S(24):
Using the 24 northern states as IF clients and the 24 southern states as OOF clients. We use a model
similar to (Xu et al., 2022), which has 8 fully connected layers with 512 hidden units. We use SGD
optimizer with a fixed momentum of 0.9. The evaluation metric is Mean Squared Error (MSE ↓).
Algorithm 1 shows the overall algorithm of TFL. In implementation, we used dot product as the
metric to measure client similarity.

F DISCUSSION OF LIMITATIONS

In this section, we discuss the limitations of TFL and the potential solutions.

Concerns on privacy leakage. Client topology learning may raise concerns about (unintentional)
privacy leakage. However, we argue that any such leakage would be a general issue for FL methods
rather than a unique concern for our approach. In comparison to standard FL, our method does
not require additional information to construct the client topology, thus providing no worse privacy
guarantees than well-established methods like FedAvg (McMahan et al., 2017) and FedProx (Li
et al., 2020b). Nonetheless, FL may still be vulnerable to attacks that aim to extract sensitive infor-
mation (Bhowmick et al., 2018; Melis et al., 2019). In future work, we plan to explore methods for
mitigating (unintentional) privacy leakage.

Concerns on high-dimensional node embedding. As outlined in Section 3.1, we harness model
weights as node embeddings. Nevertheless, incorporating large-scale models, such as Transform-
ers (Vaswani et al., 2017; Dosovitskiy et al., 2021), may present a formidable obstacle, producing
an overwhelmingly high-dimensional node vector. This will significantly increase computational
demands for assessing node similarity. We argue that this can be addressed by dimension reduction.
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There are two possible ways: ① Utilizing model weights of certain layers as node embedding instead
of the whole model. ② Directly learning the low-dimensional node embedding. One simple idea is
to leverage Hypernetworks (Shamsian et al., 2021) to learn the node embedding with controllable
dimensions.

Table 10: Compassion of computation of wall-clock
time on eICU dataset. Our clustering approach signif-
icantly reduces computation costs by 69%, with only a
small decrease in OOF performance by 0.77%.

ROC-AUC Wall-clock time (s)

FedAvg 57.18 ± 0.03 120.15
TFL 58.41 ± 0.06 437.61
TFL w/ Clustering 57.96 ± 0.18 133.08

Concerns on high computation cost for
cross-device FL. Client topology learn-
ing requiris O(N2) computation complex-
ity for N clients. This quadratic complexity
is prohibitively expensive in cross-device
FL, where hundreds, thousands, or millions
of clients/devices may be involved. In this
case, we argue that the computation cost
can be significantly reduced by client clus-
tering (Sattler et al., 2020; Ghosh et al.,
2020). By partitioning the clients into clusters, the total number of “clients” is reduced, allow-
ing for cluster-level client topology learning to estimate the topology with reduced computation
costs. We conducted experiments on the eICU dataset to empirically validate the effectiveness of
our clustering-based method. The eICU dataset was selected for its large scale (72 clients) compared
to all other evaluated datasets. Specifically, during client topology learning, we use KMeans (Lloyd,
1982) to partition the training clients into several (e.g, 10) clusters and learn the client topology at
the cluster level. As shown in Table 10, our clustering approach significantly reduces computation
costs by 69%, with only a small decrease in OOF performance by 0.77%.
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