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Abstract

Prompt compression is a promising approach to speeding up language model
inference without altering the generative model. Prior works compress prompts
into smaller sequences of learned tokens using an encoder that is trained as a Low-
Rank Adaptation (LoRA) of the inference language model. However, we show
that the encoder does not need to keep the original language model’s architecture
to achieve useful compression. We introduce the Attention-Only Compressor
(AOC), which learns a prompt compression encoder after removing the multi-layer
perceptron (MLP) layers in the Transformer blocks of a language model, resulting
in an encoder with roughly 67% less parameters compared to the original model.
Intriguingly we find that, across a range of compression ratios up to 480×, AOC
can better regenerate prompts and outperform a baseline compression encoder that
is a LoRA of the inference language model without removing MLP layers. These
results demonstrate that the architecture of prompt compression encoders does not
need to be identical to that of the original decoder language model, paving the way
for further research into architectures and approaches for prompt compression.

1 Introduction
Large language models (LLMs) display incredible usefulness across many natural language tasks,
and generally have increased utility with increasingly long and complex prompts [Agarwal et al.,
2024, Bertsch et al., 2024]. The downside of lengthier prompts is increased computational load and
response time, motivating research into compressing prompts into a smaller number of tokens, known
as prompt compression.

While some methods focus on compressing prompts by pruning information in the prompt/text
space [Li et al., 2023, Jiang et al., 2023a,b], one can also consider compressing prompts into a
lower dimensional latent space [Wingate et al., 2022, Mu et al., 2023, Chevalier et al., 2023]. The
In-context Autoencoder (ICAE) [Ge et al., 2024] exemplifies this approach by training a LLM encoder
to compress prompts into a shorter sequence of learned memory tokens and uses a learned [AE]
autoencoder token for decoding the original prompt. This latent representation retains the information
of the prompt and is used with the original frozen (meaning not further trained) LLM decoder to
reduce the number of tokens at inference time. 500xCompressor [Li et al., 2024] works similarly, but
compresses prompts into neural attention [Vaswani et al., 2017] key-value pairs instead of explicit
tokens, and uses a pretrained [BOS] token instead of a learned [AE] token. Notably, both ICAE and
500xCompresson use Low-Rank Adaptation (LoRA) [Hu et al., 2021] to train encoders from the

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



frozen decoder LLM used for inference, which requires more computational resources to perform
compression than may be necessary.

We demonstrate that using the entire decoder LLM as an encoder is unnecessary and introduce an
alternative in the Attention-Only Compressor (AOC). Instead of learning the encoder as a LoRA of
the decoder LLM, we first remove the multi-layer perceptron (MLP) layers before training the entire
encoder. By removing MLPs, AOC’s prompt compression encoder has roughly 67% less parameters
compared to previous methods’ encoders, while improving or maintaining similar compression ability.
These results emphasize that prompt compression encoders do not need identical architecture to
their decoders and that there exist compression models that with higher performance and lower
inference-time computational requirements compared to recent approaches using frozen-LLM-based
compressors.

Our contributions can be summarized as follows:

• We introduce the Attention-Only Compressor (AOC), a novel prompt compression encoder
that removes the MLP layers from a LLM, resulting in an encoder that performs comparably
to baseline compression encoders that are roughly three times larger.

• Preliminary experimental results on regeneration demonstrate that compression encoders do
not need architecture identical to their decoders, which motivates further research into more
efficient compressors.

• To further study compression encoders, we present examples of interpolating between the
embeddings of two compressed prompts, showcasing a novel classifier-free approach to
merging separate prompts and understanding the latent space of compressed prompts.

2 Methods
Model. Our proposed model consists of a learned prompt compression encoder E and a pretrained
LLM decoder D that is always frozen throughout training and inference. The encoder is architecturally
identical to the decoder as in 500xCompressor and ICAE, with the key exception that the MLP layers
have been replaced with the identity operation within each block of the Transformer [Vaswani et al.,
2017]:

hℓ = LNpre(hℓ−1) hℓ = LNpre(hℓ−1) (1)
hℓ = MHA(hℓ) + hℓ hℓ = MHA(hℓ) + hℓ (2)
hℓ = MLP(LNpost(hℓ)) + hℓ hℓ = LNpost(hℓ) + hℓ (3)

hℓ−1 denotes the input hidden state to the ℓth Transformer block, LNpre and LNpost are layer norms
[Jimmy Lei Ba and Hinton, 2016], and MHA denotes multi-headed attention [Vaswani et al., 2017].

Let the input for the encoder be represented by the concatenation of n prompt tokens Xn =
(x1, . . . , xn) with the encoder’s m learned memory tokens Ym = (y1, . . . , ym). Z = E([Xn,Ym])

is the latent representation from the encoder output. For 500xCompressor, Z = {KV(hYm

ℓ )∀ℓ}: the
encoder’s per-layer attention key-value pairs corresponding to Ym. The input to the decoder is Z
concatenated with a regeneration token [REGEN], which is used to regenerate X using the latent
information from E. For both 500xCompressor and AOC [REGEN] is the [BOS] token. Therefore,
the regeneration of Xn from the latent representation Z is given by

X̂n = D ([Z, [REGEN]]) = D ([E([Xn,Ym]), [BOS]]) (4)

The standard cross-entropy loss between the decoder logits and the input X is used to train the
encoder via backpropagation [LeCun et al., 1989]. For all experiments, we use Llama 3.2 1B Instruct
[Llama Team, 2024] as the pretrained LLM in bfloat16 [Wang and Kanwar, 2019] precision, AdamW
[Kingma and Ba, 2015] with a 300-step warmup to a learning rate 2 × 10−4 as the optimizer in
PyTorch [Paszke et al., 2019] conducting training using Transformers [Wolf et al., 2020] on a single
NVIDIA A6000 GPU. LoRAs are trained on the queries, keys, values, and output projections in the
multi-headed attention components for 500xCompressor and LoRA ablations on AOC.

LoRA Ablations. Due to the lower number of total parameters in the encoder for AOC, we perform
full training instead of LoRA to learn a strong prompt compressor. However, this causes the total
number of parameters in memory at both training and inference time to be slightly larger with AOC
compared to the baseline 500xCompressor which use a LoRA of the decoder LLM. This trade-off of
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increased memory for decreased compression time motivates ablations on learning the AOC encoder
using LoRA (LoRA-AOC) instead of training the entire encoder.

Compressed Prompt Interpolation. The latent information Z from compressing a prompt has not
been extensively studied beyond classifier-guided generation by Wingate et al. [2022]. As an initial
step toward better understanding the compressed forms of prompts, we conduct linear interpolations
between compressed prompts and qualitatively inspect the intermediary output. The interpolation
between Z0 and Z1 with a given weight w is given by:

Zinterp = Z0 + w(Z1 − Z0) (5)

Data. Experiments are performed using random samples from the arXiv dataset [arXiv.org submitters,
2024]. AOC is trained on 300,000 abstracts from the arXiv dataset first submitted before July 1,
2023 and validated on 3,000 abstracts first submitted after January 4, 2024. Final evaluations were
conducted on a held-out test set of 3,000 abstracts from after January 4, 2024. These dates were
chosen based on the Llama 3.2 training cutoff of December 2023, and are identical to the cutoffs
presented in [Li et al., 2024]. The amount of training data was determined while accounting for
limited computational resources.

Metrics. We evaluate AOC on text regeneration as performed using Equation 4. Following [Ge
et al., 2024], we report the Bilingual Evaluation Understudy (BLEU) [Papineni et al., 2002] and
Exact-Match (EM) scores. Notably, the EM metric defined by [Ge et al., 2024] is the proportion
of identical prefix length to total target length. Given a regenerated sequence of length n′, this
proportional EM metric is defined as:

EM(Xn, X̂n′) =
1

n

n∑
i=1

1Xi=X̂i
(Xi, X̂i) (6)

In contrast, the EM metric defined by [Li et al., 2024] is a binary metric equal to 1 when the
regeneration X̂n′ is identical to Xn and 0 otherwise, introducing a discrepancy in notation. We report
the EM metric as defined in Equation 6 since it is more informative. Additionally, we report the
Recall-Oriented Understudy for Gisting Evaluation Longest Common Subsequence (ROUGE-L) [Lin
and Och, 2004] F1 scores which evaluate overall sequence similarity, following [Li et al., 2024].

3 Results
Baseline Comparison. To demonstrate the benefits of AOC, we compare to 500xCompressor
with a variety of input prompt lengths n ∈ {96, 192, 288, 384, 480} and number of memory tokens
m ∈ {1, 4, 16}.

Table 1: Evaluation results for models trained with m = 16 memory tokens.
Prompt Length Model BLEU (↑) EM (↑) ROUGE-L F1 (↑)

n = 96
500xCompressor 0.981 0.740 0.990
LoRA-AOC 0.740 0.197 0.856
AOC 0.984 0.889 0.991

n = 192
500xCompressor 0.850 0.109 0.915
LoRA-AOC 0.284 0.065 0.510
AOC 0.868 0.454 0.924

n = 288
500xCompressor 0.685 0.130 0.816
LoRA-AOC 0.319 0.068 0.548
AOC 0.839 0.465 0.901

n = 384
500xCompressor 0.662 0.106 0.799
LoRA-AOC 0.255 0.068 0.478
AOC 0.801 0.386 0.880

n = 480
500xCompressor 0.588 0.082 0.746
LoRA-AOC 0.201 0.053 0.421
AOC 0.823 0.483 0.893
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As seen in Table 1 and Table 2, AOC outperforms 500xCompressor across all prompt lengths with 4
or 16 memory tokens despite having 67% less encoder parameters. Based on the results in Table 1
we find that AOC and 500xCompressor only perform similarly when restricted to a single memory
token. The large variance in EM between models can be attributed to differences in early parts of the
regeneration, as the EM metric is based on the proportion of identical prefix matching. Interestingly,
LoRA-AOC tends to perform worse than AOC and the baseline 500xCompressor across all metrics,
which suggests that the effectiveness of LoRA in Transformers relies in part on the frozen MLPs, in
line with prior work on freezing Transformer components Lu et al. [2022].

Table 2: Evaluation results for models trained with m = 4 memory tokens.
Prompt Length Model BLEU (↑) EM (↑) ROUGE-L F1 (↑)

n = 96
500xCompressor 0.669 0.073 0.815
LoRA-AOC 0.342 0.069 0.599
AOC 0.711 0.221 0.843

n = 192
500xCompressor 0.302 0.015 0.561
LoRA-AOC 0.136 0.021 0.399
AOC 0.374 0.064 0.615

n = 288
500xCompressor 0.218 0.035 0.484
LoRA-AOC 0.126 0.019 0.387
AOC 0.339 0.056 0.578

n = 384
500xCompressor 0.236 0.013 0.507
LoRA-AOC 0.117 0.015 0.378
AOC 0.300 0.040 0.558

n = 480
500xCompressor 0.241 0.027 0.508
LoRA-AOC 0.068 0.011 0.288
AOC 0.343 0.058 0.587

It can be seen in Table 3 that for m = 1, AOC performs on-par with 500xCompressor, although
both display poor regeneration abilities for some of the largest compression ratios in our experiments.
Upon inspection of the loss curves from training the m = 1 models in Table 3, we discover that they
are likely under-trained due to computational budget constraints. Based on these results, it appears
that increasing the amount of memory tokens m may allow for a smaller training data set.

Table 3: Evaluation results for models trained with m = 1 memory token.
Prompt Length Model BLEU (↑) EM (↑) ROUGE-L F1 (↑)

n = 96
500xCompressor 0.122 0.013 0.382
LoRA-AOC 0.092 0.022 0.355
AOC 0.129 0.037 0.369

n = 192
500xCompressor 0.102 0.015 0.352
LoRA-AOC 0.074 0.013 0.308
AOC 0.095 0.017 0.327

n = 288
500xCompressor 0.090 0.007 0.337
LoRA-AOC 0.061 0.009 0.278
AOC 0.089 0.016 0.317

n = 384
500xCompressor 0.089 0.009 0.337
LoRA-AOC 0.068 0.010 0.302
AOC 0.094 0.019 0.330

n = 480
500xCompressor 0.094 0.004 0.355
LoRA-AOC 0.056 0.008 0.273
AOC 0.097 0.015 0.341

4



Latent Space Inspection. In Table 4 we show the result of linearly interpolating between the
compressed information Z from the prompt p0 ="We present an awesome new idea." and the
prompt p1 ="Large planets may have many moons." for AOC, color-coding by similarity
to p0 or p1. As can be observed, the interpolation of the two latent representations results in a
regenerated mixture of prompts, such as when the interpolation weight w = 0.5 planet which is
more closely related to planets from p1 than idea from p0. For w = 0.53, many moons from
p1 appears in a regeneration that shares the same prefix as p0. Similarly, for interpolation weights
w = 0.55 and w = 0.6, amazing and wonderful, which are more closely related to awesome from
p0, appear in a regeneration almost identical to p1 with the same two-word prefix. We also note that
Table 4 shows both p0 and p1 were perfectly regenerated from their unaltered compressed states with
zero information loss.

Table 4: Regeneration of linearly interpolated latent information.
Interpolation Weight Regeneration

w = 0.00 We present an awesome new idea.
w = 0.40 We present an amazing new idea.
w = 0.50 We present an amazing new planet.
w = 0.53 We present an amazing many moons.
w = 0.55 Large planets have many amazing.
w = 0.60 Large planets have many wonderful.
w = 1.00 Large planets may have many moons.

4 Conclusion
We introduce AOC, a prompt compression encoder using only attention layers from a decoder LLM
that demonstrably achieves comparable or better compression to LoRA baselines with identical
architecture to the decoder LLM. Experiments show that the memory tokens learned with AOC can
encode similar amounts of information to baselines with 3× the amount of parameters. In future work,
we hope to further explore encoder architectures, as our results indicate that a prompt compression
encoder need not have the same architecture as the decoder LLM. Additionally, we seek to better
understand the latent space formed by compressed prompts and extend the use of compressed prompts
beyond the interpolation example presented in this work. While this work was performed with limited
computational resources, we aim to study more diverse and larger datasets, model architectures, and
compression ratios in the future.
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