Under review as a conference paper at ICLR 2025

MM-R?3: ON (IN-)CONSISTENCY OF MULTI-MODAL
LARGE LANGUAGE MODELS (MLLMS)

Anonymous authors
Paper under double-blind review

Simg
Sim, Rephrase Accuracy
Style. Masking

ion: Please answer the question with a very-short answer. Simgy
Simgp Rephrase Accuracy
Masking

R1) Why do horses wear green fabric around Style

Simgy \ Accuracy g g their ankles? Simgy A~ Accuracy
Masking Style s MF R2) What is the function of the green fabric Masking - N T Style
\ B | around a horse's lower legs? \//
/) 3
Consistency =1 s Accuracy R3) What is the reason for using green |Consistency Accuracy
Rephrasing Vv Rephrasing material around the hooves of horses? Rephrasing Rephrasing
A

Lo DN
co";‘s:e"cy ] )\\,,/4/1 ) Simnsic Question: What mnd of object is in the masked region? Consistency

vie e — Masking Style
Consistency g Sim,,
im, sit
Maskin Consit
9 Rephrase Sl

— BLIP2 — MoELLaVa Gemini
— mPLUG-Owl — Qwen-VL-Chat —— GPT-4V

LlaVa15M — BLIP-3 — GPT-4o

Figure 1: (Left) Overall results of MLLMs on the MM-R3 Benchmark. (Mid) Consider answering
the three semantically identical questions for the top image and a given visual abductive reasoning
question for the bottom images from the proposed MM-R? Benchmark. Humans are accurate and
consistent in these tasks while MLLMs are much less so. (Right) Results with the proposed adapter.
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ABSTRACT

With the advent of Large Language Models (LLMs) and Multimodal (Visio-
lingual) LLMs, a flurry of research has emerged, analyzing the performance of
such models across a diverse array of tasks. While most studies focus on evalu-
ating the capabilities of state-of-the-art (SoTA) MLLM models through task ac-
curacy (e.g., Visual Question Answering, grounding) across various datasets, our
work explores the related but complementary aspect of consistency — the abil-
ity of an MLLM model to produce semantically similar or identical responses to
semantically similar queries. We note that consistency is a fundamental prereq-
uisite (necessary but not sufficient condition) for robustness and trust in MLLM:s.
Humans, in particular, are known to be highly consistent (even if not always accu-
rate) in their responses, and consistency is inherently expected from Al systems.
Armed with this perspective, we propose the MM-R> benchmark, which analyses
the performance in terms of consistency and accuracy in SOTA MLLMs with three
tasks: Question Rephrasing, Image Restyling, and Context Reasoning. Our anal-
ysis reveals that consistency does not always align with accuracy, indicating that
models with higher accuracy are not necessarily more consistent, and vice versa.
Furthermore, we propose a simple yet effective mitigation strategy in the form
of an adapter module trained to minimize inconsistency across prompts. With
our proposed strategy, we are able to achieve absolute improvements of 5.7% and
12.5%, on average on widely used MLLMs such as BLIP-2 and LLaVa 1.5M in
terms of consistency over their existing counterparts.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) (Liu et al.,|2023a; |Li et al.l [2023b; |OpenAll 2023
Xue et al.} 2024), following and often built on top of purely lingual LLM (Brown et al., [2020; |Tou-
vron et al.,[2023)), have recently emerged as incredible tools for a broad range of visual understand-
ing tasks, spanning captioning (Lin et al.| [2014; [Sharma et al.| [2018}; [Chen et al.| 2015)), language
grounding (Yu et al., 2016} | Kazemzadeh et al., [2014} [Liu et al.| [2019), visual question answering
(VQA) (Antol et al.l 2015)), and many others. As the number of such models and their capabilities
explode, the research community is progressively focusing on benchmarking their capabilities by de-
veloping new benchmarks and testing harnesses. Notable examples include MM-Bench (Liu et al.,
2023c)), SEED-Bench (Li et al., 2023a), MM-Vet (Yu et al.l [2023)), and others that define numerous
tasks that capture a broad range of capabilities of such models (e.g., instance counting (Fu et al.,
2023)), spatial relation understanding (Yu et al., 2023), abductive (Hessel et al., |2022) and deduc-
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tive (Park et al, [2020) reasoning, meme comprehension (Li et al., [2023a), efc). These benchmarks
continue to shed light on the abilities and limitations of MLLMs by analyzing their accuracy.

However, despite significant progress in the analyses of MLLM models, consistency, the ability to
produce identical or semantically equivalent outputs with the same semantic content inputs, remains
broadly overlooked. This is a fundamental requirement for MLLMs to be reliably deployable for
most tasks. Anecdotally, LLMs and, by extension, MLLMs are sensitive to their prompts which led
to the widespread practice of prompt engineering. This is problematic as the models’ outputs may
vary with the phrasing of a query rather than its actual intent, which undermines their reliability.
Consider the example illustrated in Figure [I] (Mid) top: Most humans would realize that while the
three questions (i.e R1, R2, and R3) are superficially different, the semantic meaning is the same.
Hence even when the correct answer may not perhaps be apparent (i.e., “to be visible”), the same
(consistent) answer should be produced. In contrast, asking models like BLIP-2 (Li et al., [2023b)

2 <

to answer these questions results in varied responses “to protect them from splinters”,“to protect the
horse’s legs”,“to make the hooves more visible” for the three questions considered. Similarly, it is
obvious to humans that the object being masked in Figure [T] (Mid) bottom is the same irrespective
of the type of the mask, and that the object in question is a “bench” However, Qwen-VL-Chat’s

responses vary, indicating “a bench”,“a yellow object”, “a green wooden slat sign” for different
masks, highlighting the inconsistency in visual modifications.

It may be tempting to equate accuracy and consistency, but the relationship is more intricate. While
it is true that for objective visual tasks (e.g., what color is an object), high accuracy will result in
high(er) consistency, current MLLM models are far from this high accuracy regime. Further, for
more subjective visual tasks (e.g., abductive reasoning), high accuracy which tends to be measured
as being similar to one of the sets of answers, may not lead to high consistency. In general, one can
think of consistency as a necessary but not sufficient property of an Al system and one should seek
to maximize both consistency and accuracy.

In this work, we first present a comprehensive analysis of SOTA MLLM models in terms of their con-
sistency. We do so by developing MM-R? benchmark atop of the VQA task, where we produce both
lingual rephrasings of the original questions (by leveraging GPT-3.5) and visual rephrasings of the
image (through stylization) and measure both accuracy and consistency of the produced responses.
We find that SoTA MLLMs while often quite competitive in accuracy can differ substantially in their
consistency of responses. For example, mPLUG-OwI2 (Ye et al., 2024) is much more susceptible
to inconsistency when image inputs are perturbed while MoE-LLaVa (Lin et al.| 2024)) is more con-
sistent in the change of the visual domain than the lingual domain. In addition, we also define an
abductive task of predicting the contents of the masked region, where we find models like BLIP-2
and LLaVa 1.5M (Liu et al.;,|2023a;|2024) are lower in accuracy but have higher consistency. Overall
results for MLLMs are illustrated in Figure[T] (Left). We believe these findings both benchmark the
capabilities of existing models and outline future directions and developments in more consistent
MLLM models and pre-training objectives (e.g., see efforts in language LLMs (Aggarwal et al.,
2023} |Chen et al., [2024} Jang & Lukasiewicz, 2023)).

Toward the latter goal, we propose a simple adapter module based strategy that effectively improves
consistency. The adapter is flexible and can be added to any existing MLLM. It sits between the
MLLM embedding layer and the frozen LLM decoder. The goal of the adapter is to modify the
LLM’s embeddings such that they are invariant to surface form variations in the language prompt
/ question or the image. We test the proposed adapter in widely used MLLMs such as BLIP-2 and
LLaVa 1.5M models. The experiments show that it is able to improve performance on all three tasks
in our proposed benchmark (shown in Figure 1| (Right)).

Our contributions are summarized as follows.

» We propose a new consistency benchmark, MM-R?, that enables evaluation of MLLM’s ability
to produce consistent responses to a range of inputs which are identical semantically, but differ
in surface form. MM-R? includes three tasks, covering visual and lingual domains.

* We conduct detailed analyses of SOTA MLLMs in accuracy and consistency on this benchmark,
taking the first step towards consistency in MLLMs, which is a fundamental requirement for
MLLMs to be reliably deployable for most task.

* We propose a simple but effective adapter-based strategy that can be added to any MLLM with
lightweight training. Experiments on BLIP-2 and LLaVa 1.5M models show that adding the
adapter significantly improves performance on our benchmark regarding consistency metrics.
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2 RELATED WORK

Multimodal Large Language Models (MLLMs). The study and development of MLLMs (Liu
et al., 2024; [2023a; [Li et al., [2023b; [Bai et al., |2023b; [OpenAll 2023 |Lin et al.,|2024; (Chen et al.
2023 [Wang et al., 2023 Sun et al., 2024; Xue et al., 2024) has recently seen a surge in popularity.
Motivated by the impressive achievement made by recent LLMs (Brown et al., [2020; |Chowdhery
et al., 2023} [OpenAlL 2023}, [Touvron et al., 2023 |Chung et al., 2024)), researchers have ventured
into augmenting these models with visual capabilities to tackle multimodal tasks more effectively.
A pioneering effort in this realm was the Flamingo model (Alayrac et al) [2022), which integrated
the CLIP image encoder with traditional LLMs. This initiative paved the way for the development
of MLLMs aimed at enhancing multimodal integration. For example, models like LLaVa 1.5M (Liu
et al., 2023a; |2024), BLIP-2 (Li et al.l 2023b), MiniGPT-4 (Zhu et al.| [2024; |Chen et al., 2023),
Qwen-VL (Bai et al.| [2023b)), mPlug-OwlI2 (Ye et al., [2024), MoE-LLaVa (Lin et al., 2024), and
BLIP-3 (Xue et al.,|2024)), many of which leverage open-source resources to improve their ability to
learn from both visual and linguistic inputs. Meanwhile, proprietary models like GPT-4V (OpenAl,
2023), Gemini (Team et al., [2023)), and GPT-40 (OpenAl, [2024) have demonstrated state-of-the-
art performance, pushing the boundaries of research in this field. However, as MLLMs become
increasingly powerful, ensuring their reliability across both visual and linguistic domains poses a
significant challenge. In this work, we aim to establish a new benchmark for evaluating the consis-
tency of MLLMs, addressing this critical aspect of their development.

Vision-Language Benchmarks. Traditional Vision-Language (VL) benchmarks have predomi-
nantly centered on assessing performance in singular tasks, such as VQA (Antol et al., 2015} |Goyal
et al., [2017), OK-VQA (Marino et al., [2019), MSCOCO (Lin et al.l 2014), and Visual Common-
sense Reasoning (VCR) (Zellers et al.,[2019). While these benchmarks are valuable, they fall short
in fully gauging the comprehensive multimodal perception and reasoning capabilities of MLLMs.
In response to this gap, a new wave of VL benchmarks has been developed (Fu et al., |2023; |[Liu
et al.l 2023c} [Yu et al 2023} [Li et al., 2023a} [Zhang et al.| 2024)), tailored to the complex demands
of MLLMs. These benchmarks encompass a range of intricate multimodal tasks that necessitate a
seamless integration of vision and language skills. For instance, MME (Fu et al.l |2023) measures
perceptual and cognitive skills across a total of 14 sub-tasks, offering a comprehensive measure
of an MLLM'’s abilities. MME-RealWorld |Zhang et al.| (2024) is the largest manually annotated
benchmark to date, focusing on real-world applications with high-resolution images. It contains 43
sub-class tasks across 5 real-world scenarios which are extremely challenging even for humans. De-
spite the advancements these benchmarks represent, their primary focus remains on benchmarking
various skills to measure MLLMs’ performance in terms of accuracy. MAD-Bench (Qian et al.,
2024), on the other hand, explores MLLM robustness by examining how models reconcile discrep-
ancies between textual prompts and images. Our work takes a different stance by prioritizing the
consistency of MLLMs. In contrast to prior works, we propose a novel consistency benchmark that
evaluates not just accuracy, but also the consistency of models across visual and linguistic domains.

Consistency in Language. Evaluating consistency in LLMs has emerged as a crucial area of in-
quiry, with semantic consistency being the most widely used focus in consistency analyses. This
concept posits that a model should deliver consistent outcomes in semantically equivalent scenar-
ios (Elazar et al.| 2021). Notably, it has been observed that pre-trained language models may yield
divergent predictions for masked language tasks when singular objects in queries are replaced with
their plural counterparts (Ravichander et al., 2020) or queries are paraphrased (Elazar et al.,|2021),
indicating variability in response to semantically similar inputs. Building on these findings, a re-
cent study (Jang & Lukasiewicz, 2023 comprehensively investigated LLM consistency, exploring
dimensions such as logical coherence and semantic integrity, with the properties of negation, sym-
metry, and transitive consistency. Besides consistency evaluation, improving the robustness of the
LLM has also emerged as a research challenge. [Liu et al.| (2023b)) proposes low-parameter fine-
tuning methods that show a better out-of-distribution performance for generation and classification
tasks. Newman et al.|(2022) proposes a P-Adapter that captures the factual information from the in-
put prompts and improves the prediction consistency. Inspired by these pioneering efforts to assess
LLM consistency, our approach seeks to extend this evaluation to multimodal contexts. We employ
three distinct tasks, question rephrasing, image restyling, and context reasoning, to analyze the con-
sistency of responses generated by MLLMs. This methodology not only assesses lingual semantic
consistency but measures the visual comprehension consistency. Furthermore, we build an adapter
to mitigate inconsistency that results from semantically equivalent lingual and visual prompts.



Under review as a conference paper at ICLR 2025

Table 1: Statistics of MM-R?® Benchmark. We list the number of examples in each task as well as
the source dataset from which we collect the examples. Test and Train splits are completely disjoint.

| Task | #Examples | Source

= | Question Rephrasing 16, 894 InfographicsVQA (Mathew et al.}[2022), OKVQA (Marino et al.}|2019)
2 Image Restyling 27,226 Google Landmarks v2 (Weyand et al.}[2020).Indoor Scene (Quattoni & Torralba) 2009)
= Context Reasoning 30,003 MSCOCO (Lin et al.,2014)
_ | Question Rephrasing 3,516 InfographicsVQA (Mathew et al.l[2022), OKVQA (Marino et al.}|2019)
3 Image Restyling 5,328 Google Landmarks v2 l ,Indoor Scene l 2009)
e ! =

Context Reasoning 4,500 MSCOCO (Lin et al.,[2014)

3 MM-R? BENCHMARK

3.1 OVERVIEW OF MM-R? BENCHMARK

We introduce a new benchmark designed to assess the semantic consistency of MLLMs across both
visual and linguistic domains. To achieve this, we have crafted three specific tasks: question rephras-
ing, image restyling, and context reasoning. These tasks are designed to probe the models’ ability to
maintain consistency in their responses. Comprehensive statistics of our benchmark are presented
in Table [I]. The questions and images utilized in this benchmark are derived from existing datasets,
which have been adapted to our tasks, ensuring a thorough evaluation of MLLM consistency.

3.2 TASKS AND DATA COLLECTION

In this section, we describe the tasks in MM-R? Benchmark and present two examples on each task.

Question Rephrasing. The goal of the ques-
tion rephrasing task is to assess the ability
of MLLMs to provide consistent responses
to variously rephrased questions. For this

do not utilize or have no future plans to utilize social media

* = Original: What is the sum of all organisations who do not plan
=== to use social media while screening employees?

- Rephrased 1: How many organizations do not currently use or
have no intention of using social media for employee screening?
Rephrased 2: Can you provide the total number of
organizations that do not plan to incorporate social media into
= their employee screening process?

Rephrased 3: What is the combined count of organizations that

task, we employ GPT-3.5 to generate alter- - _ _
. . . M when screening potential employees?
nate versions of given questions. The ques- Original: How old do you have to be in Canada to do this?
tions and images are sourced from the In- : pariipat n tis actty in Canada? =
fographicsVQA (Mathew et al} [2022) and {00ms n Canadar 0 T e fesely slowed
OKVQA (Marino et all 2019) datasets. To Smaage i partdar actiyr T © be n Ganadato
make the rephrasing meaningful, we take the questions containing more than 10 words to do the
rephrasing. Using the prompt “I have a question: (Question) Please give me three different types of
rephrased questions to which the answer would be (Answer).”, we obtain three distinct rephrasings
for each question. These rephrased questions, along with the corresponding images, are then pre-
sented to MLLMs to evaluate their consistency with respect to linguistic surface form perturbations.
In total, we select 760 images and derive 3, 516 rephrased questions.

Image Restyling. Humans possess remarkable
ability to recognize places and objects in im-
ages despite changes in style. We posit that
MLLMs should demonstrate a similar level of
adaptability. To this end, we have devised a task
that assesses MLLM consistency in the face of ;
varied image styles. To generate variations of Original Candy Mosaic Udnie Grayscale
styles, we leverage the style transfer model of Johnson et al.|(2016) along with Instance Normaliza-
tion (Ulyanov et al.,|2016). Our dataset comprises both outdoor scenes from the Google Landmarks
Dataset v2 (Weyand et all, [2020) and indoor scenes from the Indoor Scene Dataset
2009). The images undergo transformations to exhibit four distinct styles: Candy, Mo-
saic, Udnie, and Grayscale. The MLLM:s are then tasked with describing the depicted places in two
sentences by using the prompt “Please describe the place in the image in two sentences.”, based
on these stylistically altered images. This approach allows us to evaluate MLLMs consistency with
respect to the visual domain variations. Specifically, their ability to describe the scene in a semanti-
cally similar manner irrespective of induced image style. We collected 600 outdoor and 732 indoor
scenes, resulting in a total of 5, 328 styled images.
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Context Reasoning. When looking at an im-
age, humans possess an intuitive ability to in-
fer occluded elements, coming from contex-
tual cues and commonsense reasoning about
the space. This capability allows us to imag-
ine what lies behind an obstruction, regard-
less of the nature of the masking element. We “Original Masking 1

argue that MLLMs should exhibit a comparable level of perceptual inference. To evaluate this, we
introduce an image masking task where objects within images are randomly masked. We select
images from the MSCOCO dataset (Lin et al.,|2014), ensuring that the size of the masked object rel-
ative to the entire image falls within a range of 0.1 to 0.25. This criterion guarantees that the masked
objects are neither too small to be indiscernible nor too large to dominate the image. The masking
is applied using three distinct types: lines, shapes, and colors. Specifically, we use [1, 3,5, 7] lines,
rectangle and ellipse shapes, and choose from a palette of red, blue, green, yellow, white, and black
colors for masking. Then, we present the masked images to MLLMs alongside the query: “What
kind of object is in the masked region?” This setup enables us to measure the MLLMs’ consistency
in reasoning and handling masking variations, thereby testing their inference capabilities. In the
end, 1, 500 images were selected, resulting in a total of 4, 500 uniquely masked images.

Semantic equivalence to original data. We conduct human evaluations to quantify the quality of
rephrased questions and restyled images. We do so using forced choice experiment on 100 randomly
sampled question-rephrasing pairs, and 100 stylized images. We find 92% language rephrasing and
86% image restyling have semantic equivalence for humans; validating the quality of our dataset.

3.3 EVALUATION METHOD

The responses expected from MLLMs in our tasks are inherently open-ended, reflecting the diverse
capabilities of these models. However, the design of our questions is meticulously aligned with
the ground truth in the original dataset annotations. This alignment enables us to leverage the an-
notations effectively during evaluation. To systematically assess the performance of MLLMs, we
introduce four distinct evaluation methods, each capturing different aspects of model performance.

Accuracy (Acc). The evaluation of accuracy is conducted through a straightforward method: we
assess the responses from MLLMs based on an exact match criterion with the ground truth anno-
tations. Specifically, if the ground truth annotation is encompassed within the MLLM’s response,
we consider the response correct. The accuracy score is then calculated as the average of correct
responses across the benchmark dataset, providing a measure of the MLLMs’ performance.

Similarity with GT (SgT). Given the limitations of the exact match criterion, which may in-
accurately categorize semantically similar responses as incorrect, we introduce a similarity metric
designed to evaluate the nuanced semantic parallels between MLLMs’ responses and the ground
truth annotations. For instance, terms like person share semantic similarity with man and woman,
yet would be deemed incorrect under a strict accuracy metric. To address this, our approach utilizes
semantic similarity metric (Reimers & Gurevychl 2019), which leverages LLM encodings to assess
the similarity between responses and target answers. This metric calculates the similarity score of an
MLLM response and its corresponding annotation, with the overall performance represented by the
average of these scores across the dataset. This metric provides a more subtle assessment of model,
rewarding semantic accuracy over mere lexical matching.

Consistency Accuracy (Con). This metric is designed to quantify the proportion of responses that
manifest a specified degree of semantic consistency. To achieve this, we leverage semantic similar-
ity metrics, Sentence-Similarity of Reimers & Gurevych|(2019), to compute the pairwise similarity
scores between responses, utilizing a threshold of 0.7 to delineate semantic consistency. The thresh-
old is based on the observation of Semantic Textual Similarity benchmark (Cer et all 2017). A
response is deemed consistent if its similarity score with a paired response surpasses this threshold.
The metric’s final value is obtained by averaging the proportion of consistent responses across the
entire dataset, providing an aggregate measure of semantic consistency within the MLLMs’ outputs.

Consistency Similarity (Sc). Similar to the Consistency Accuracy metric, we measure the con-
sistency similarity by calculating pairwise similarity scores between responses. Instead of setting a
threshold, we derive the final metric by computing the average of these similarity scores across the
entire dataset. This allows us to more continuously asses the coherence of responses.
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Table 2: Overall results of MLLMs on the Question Rephrasing Task. The numbers in red indicate
the difference between Sampling and All results. The best-performing model in each metric is in
bold and the second-best model is underlined.

| | Sampling | All

| Models | Acc | Sgr | Con | Sc | Acc | SaT | Con | Sc
- BLIP-2 30.29 56.25 100.00 100.00 25.13 (-5.16) 52.91 (-3.34) 48.15 (-51.85) 63.90 (-36.10)
§ mPLUG-OwI2 40.10 70.12 58.58 73.26 30.44 (-9.67) 61.10 (-9.03) 36.71 (-21.86) 55.63 (-17.63)
3 LLaVa 1.5M 40.02 70.91 100.00 100.00 31.01 (-9.01) 62.85 (-8.06) 48.47 (-51.53) 63.99 (-36.01)
E MoE-LLaVa 34.47 65.94 81.83 87.48 28.85 (-5.62) 57.97 (-7.97) 45.32 (-36.51) 61.16 (-26.32)
2. | Qwen-VL-Chat 52.05 82.08 93.25 95.20 36.31 (-15.73) 70.21 (-11.87) 55.34 (-37.91) 69.70 (-25.51)
© BLIP-3 32.70 55.44 80.00 80.00 30.94 (-1.76) 60.98 (5.54) 47.70 (-32.3) 63.99 (-16.01)
5 Gemini 47.50 71.98 86.75 90.48 39.35 (-8.15) 66.22 (-5.76) 58.26 (-28.49) 70.66 (-19.82)
%’ GPT-4V 53.26 | 64.75 76.09 81.58 50.22 (-3.04) 67.27 (2.52) 55.26 (-20.83) | 69.18 (-12.41)
@) GPT-40 57.06 76.53 85.42 89.06 46.99 (-10.07) 69.04 (-7.49) 60.87 (-24.55) 72.01 (-17.05)

4 EVALUATION RESULTS

4.1 MODELS

All experiments are conducted on NVIDIA A40 GPUs. We evaluate a total of six widely used,
open-sourced MLLMs, including BLIP-2 (Li et al., 2023b), mPLUG-OwI2 (Ye et al.||2024), LLaVa
1.5M (Liu et al., 2024} 2023al), MoE-LLaVa (Lin et al., |2024), Qwen-VL-Chat (Bai et al., [2023Db)),
and BLIP-3 (Xue et al.,|2024) on our consistency benchmark. Additionally, the proprietary models,
Gemini (Team et al., 2023)), GPT-4V (OpenAll 2023)), and GPT-40 (OpenAll |2024), are included to
enrich our comparative analysis. Details of these models are provided in the Appendix

4.2 MAIN RESULTS

The main results for different tasks are shown in Tables and For each task, we present results
under Sampling and All Data. Sampling denotes querying the MLLM model multiple times with
the identical input image and question to observe natural variation in responses without changing
the conditions. This allows us to measure how much difference comes from the stochasticity of the
model versus the rephrasing of the condition. For each example, we query the MLLM model four
times and average across the whole dataset. All represents the mean performance across the dataset.
Additional analysis in terms of consistency for correct vs. incorrect answers is given in Appx
These settings allow us to examine the relationship between model consistency and accuracy.

Our key findings present intriguing insights. Notably, we observe a divergence between accuracy
and consistency across the three tasks. While accuracy performance remains relatively similar and
competitive among the different models, there is a marked disparity in their consistency perfor-
mances. Moreover, we note significant variability in consistency across models, in contrast to the
more stable accuracy performance. Furthermore, the variations in consistency are significantly more
substantial in the image restyling and context reasoning tasks, suggesting that changes within the
visual domain have a greater influence on consistency than linguistic modifications.

4.3 DETAILED ANALYSIS

4.3.1 ANALYSIS ON EACH TASK

* Question Rephrasing: We provide quantitative results in Table 2| In the question rephrasing
task, GPT-4V achieves the highest accuracy among the nine evaluated models, with Qwen-VL-
Chat outperforming the rest of the open-source models. BLIP-2 and LLaVa 1.5M, set with a
temperature of 0, achieve perfect consistency in sampling at 100%. However, their performance
significantly drops when faced with rephrased questions, indicating a lower consistency in adapt-
ing to question variations compared to other models. It implies that BLIP-2 and LLaVa 1.5M
might be sensitive to the input prompts. Another interesting observation is that, although Qwen-
VL-Chat ranks lower in accuracy compared to GPT-4V, it is better in consistency metrics.

A qualitative example is illustrated in Figure[5] Although the Qwen-VL model does not answer
correctly, it consistently generates answers “columbia”. In contrast, LLaVa 1.5M and BLIP-2
show variability in their responses, highlighting lower consistency and sensitivity to prompting.
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Table 3: Overall results of MLLMs on the Image Restyling Task. We show the results on the
entire dataset and Sampling variations with the difference highlighted in red/green color. The best-
performing model in each metric is in bold and the second-best model is underlined.

| | Sampling | All

‘ Models ‘ Acc ‘ SaT ‘ Con ‘ Sc ‘ Acc ‘ ScT ‘ Con ‘ Sc
— | BLIP-2 16.82 16.40 100.00 | 100.00 | 13.01 (-3.81) 17.02 (0.62) 38.36 (-61.64) | 62.83 (-37.17)
f_:ﬁ mPLUG-OwI2 15.71 14.12 53.47 69.73 8.95 (-6.76) 15.25(1.13) 26.29 (-27.18) | 59.21 (-10.52)
2 | LLaVal.5M 15.24 15.07 100.00 100.00 | 10.47 (-4.77) 15.49 (0.42) 50.08 (-49.92) | 68.46 (-31.54)
:’L_’ MoE-LLaVa 15.99 15.48 95.75 86.36 12.93 (-3.06) 16.60 (1.12) 70.27 (-25.48) | 74.79 (-11.57)
2 | Qwen-VL-Chat | 13.81 15.42 77.28 82.53 8.28 (-5.54) 15.73 (0.31) 23.10 (-54.18) | 53.29 (-29.24)
O | BLIP-3 17.12 15.08 100.00 | 100.00 | 11.92(-5.20) 17.31 (2.23) 51.39 (-48.61) | 68.20 (-31.80)
- | Gemini 14.47 16.55 75.85 75.88 13.68 (-0.79) 16.15 (-0.4) 53.37 (-22.48) 68.95 (-6.93)
% GPT-4V 25.94 15.34 97.71 85.07 9.72 (-16.22) 15.90 (0.56) 52.55 (-45.16) | 66.25 (-18.81)
O | GPT-4o 16.03 17.65 96.65 84.20 16.31 (0.28) 16.83 (-0.82) | 79.60 (-17.05) 77.07 (-7.13)

* Image Restyling: The results are shown in Table [3] In the image restyling task, GPT-4o stands
out across three metrics and MoE-LLaVa leads among open-sourced models. Although BLIP-2
outperforms other models in accuracy, its consistency is exceptionally poor.

Figure 5| presents a comparative example of responses from various MLLMs. The BLIP-2 model
typically produces brief yet accurate answers. Conversely, BLIP-3 model offers more detailed
descriptions, enhancing the comprehensiveness of the place’s understanding. Although these de-
tailed descriptions result in a lower similarity score with ground truth (lower performance on
Sar), they demonstrate a higher consistency across different responses.

+ Context Reasoning: Table ] presents the performance of various MLLMs in the image masking
task. Among the evaluated MLLMs, the BLIP-2 and LLaVa 1.5M models achieve a better per-
formance in consistency metrics. On the other hand, the Qwen-VL-Chat and BLIP-3 model show
the weakest performance across the MLLMs, with a notable drop in consistency metrics, which
possibly means a lesser capability for abductive reasoning compared to its counterparts.

Figure[5|shows an example of the Context Reasoning task. Gemini and GPT-40 generate a seman-
tically similar response as ground truth and provide detailed rationales in their responses, high-
lighting the strength of abductive reasoning. An interesting observation is the models’ tendency
to predict line-shaped masks as bats, which suggests a potential model bias.

4.3.2 ANALYSIS ACROSS TASKS.

Across three tasks, the Qwen-VL-Chat model performs better in the Question Rephrasing tasks but
falls short in the Image Restyling and Context Reasoning tasks among the open-sourced models.
This disparity may come from its use of the state-of-the-art LLM, Qwen (Bai et al., [2023a)), which
likely provides Qwen-VL-Chat with superior initial language representations. On the other hand,
BLIP-2 achieve the best performance in the Context Reasoning. This is possibly due to its unique
image-text learning during the pre-training phase, which could facilitate a better contextual under-
standing of images. We believe the matching between image and language indeed helps the models
learn the context in the image. Meanwhile, LLaVa 1.5M and MoE-LLaVa exhibit balanced perfor-
mances across all tasks, achieving a good trade-off between accuracy and consistency. Among the
closed-source models, GPT-40 outperforms Gemini and GPT-4V in all three tasks on accuracy and
consistency. However, a notable observation is that current top-performing MLLMs still drop sig-
nificantly in terms of consistency when facing changes in visual and linguistic domains. The gaps
suggest that further effort is needed to enhance the performance of MLLMs in terms of consistency.

4.3.3 ANALYSIS ON DIFFERENT RESOLUTIONS IN IMAGE RESTYLING TASK

In the Image Restyling task, we notice that different resolutions of original images might yield dif-
ferent levels of detail when styling the images. In the Image Restyling task figure, the Golden Gate
has a higher resolution, so it shows more details after restyling. Conversely, the bottom row—the
church—has a lower resolution and shows fewer details. To analyze the effect of detail levels for
MLLMs, we resize the images before performing the style transfer. We resize the images to low
(224 x 224), mid (640 x 640), and high (1024 x 1024) resolutions. The results are shown in Fig-
ure [2] Compared with the original Image Styling task results (Table [3)), the low-resolution results
drop significantly, especially in the Con and S metrics, indicating that the level of detail affects
consistency the most. On the other hand, the mid and high-resolution results show consistent im-
provements, indicating that the consistency of models increases with increase in resolution.
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Table 4: Overall results of model performances on the Context Reasoning Task, with red/green
numbers showing differences between Sampling and All results. The top model for each metric is
highlighted in bold and the second-tier model is underlined.

| | Sampling | All
‘ Models ‘ Acc ‘ SaT ‘ Con ‘ Sc ‘ Acc ‘ SaT ‘ Con ‘ Sc
= BLIP-2 28.20 39.10 100.00 100.00 | 2791 (-029) | 38.97 (-0.13) | 82.44 (-17.56) | 88.80 (-11.20)
§ mPLUG-OwI2 24.43 35.21 33.36 53.25 24.47 (0.03) 35.34 (0.12) 27.64 (-5.71) 47.97 (-5.29)
3 LLaVa 1.5M 28.34 | 42.54 100.00 100.00 28.67 (0.32) 42.52 (-0.03) | 68.04 (-31.96) | 77.02 (-22.98)
m‘-: MoE-LLaVa 26.13 3891 75.49 81.08 25.16 (-0.98) | 38.47 (-0.45) | 39.40 (-36.09) | 56.86 (-24.22)
2 | Qwen-VL-Chat | 20.03 32.30 75.72 83.19 20.11 (0.08) 3220 (-0.10) | 30.69 (-45.03) | 48.95 (-34.24)
S] BLIP-3 28.00 36.50 100.00 100.00 | 27.96 (-0.04) | 36.48 (-0.02) | 40.02 (-50.98) | 54.88 (-45.12)
5 Gemini 55.60 57.32 68.08 78.99 55.31 (-029) | 56.35 (-0.97) | 45.22 (-22.86) | 62.66 (-16.33)
% GPT-4V 33.72 20.97 37.21 58.19 32.53 (-1.19) 21.25 (0.28) 34.37 (-2.84) 57.05 (-1.14)
@) GPT-40 52.10 31.82 59.71 70.50 51.73 (-037) | 31.67 (-0.15) | 49.49 (-10.22) 66.82 (-3.68)
18Perfurmance on Image Restyling 19Performance on Image Restyling ASUPerforman:e on Image Restyling AQUPerformance on Image Restyling
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Figure 2: Stylization with different resolutions on the Image Restyling Task.

Table 5: Impact of Model Size. Different MLLM model sizes on MM-R? benchmark. The *
denotes that we ignore generated responses that have an empty output.

| Question Rephrasing | Image Restyling | Context Reasoning

Models ‘ Acc ‘ ScT ‘ Con ‘ Sc ‘ Acc ‘ SaT ‘ Con ‘ Sc ‘ Acc ‘ SaeT ‘ Con ‘ Scon

BLIP-2 (opt2.7B) 19.0* 47.3* 39.1* 54.3* 11.6* 555" 485" 58.0% 27.8 39.0 76.2 86.2
BLIP-2 (flant5xx1) 25.1 529 48.2 63.9 13.0 17.0 38.4 62.8 279 39.0 82.4 88.8
LLaVa 1.5M (7B) 31.0 62.9 485 64.0 10.5 15.5 50.1 68.5 28.7 425 68.0 71.0
LLaVa 1.5M (13B) 33.0 63.7 49.5 64.5 10.6 16.1 67.4 755 34.9 45.0 64.6 74.5

4.3.4 ANALYSIS ON MODEL SIZE

Previous studies show that the number of parameters in MLLMs affects performance in downstream
tasks. For example, BLIP-2, the model achieves greater performance when the number of parameters
is larger in VQA, Image Captioning, and Image-Text Retrieval |Li et al.| (2023b). A similar trend is
found in the LLaVA 1.5M model Liu et al.| (2024). As a result, we are curious how consistency is
impacted with different sizes of models. We evaluate the BLIP-2 and LLaVA 1.5M models with
small and large numbers of parameters. As shown in Table[3] large models outperform small models
on Acc and Sgr in all three tasks. However, consistency metrics (Con and S¢) do not show a
similar trend. In the Question Rephrasing and the Image Restyling task, the large model performs
better, while the trend is not the same in the Context Reasoning task. Hence, we observe that unlike
accuracy, consistency does not always improve with increase in model size.

4.3.5 ANALYSIS ON DIFFERENT ENTROPY PARAMETERS

The temperature parameter in MLLMs controls the level of randomness in the model’s output.
Lower temperature yields more deterministic outputs, and higher temperature shows more diver-
sity outputs. Hence, we analyze how temperature affects the consistency output in three tasks. We
show the results on 3 different temperatures in Figure[3] We set the temperatures to 0.2, 0.7, and 1 on
all open-sourced models. We notice that mPLUG-OwI2 and MoE-LLaVa model performances drop
significantly when the temperature increases while Qwen-VL-Chat show more consistent results.

40, Performance on Rephrase Task Performance on Rephrase Task . Performance on Style Task Performance on Style Task Performance on Masking Task Performance on Masking Task

280 30 29

Accuracy (ACC)

Consistency Accuracy (Con)

0.7 07 07 0.7 0.7 0.7
Temoerature Temoerature Temoerature Temoerature Temoerature Temoerature

Figure 3: Impact of Entropy. Different entropy parameters on all three tasks for models tested.
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Figure 4: (Left) Model Overview. The adapter is added between the Vision-Language Encoding and
Generation models. The encoding and decoding parts are frozen during the training of the adapter.
(Right) Vision-Language Encoding details of BLIP-2 and LLaVa 1.5M.

Table 6: Improvement Results on Three Tasks. The consistency metrics on three tasks on both
BLIP-2 and LLaVa 1.5M models significantly improved after adding the adapter.

| | Question Rephrasing | Image Restyling | Context Reasoning

| Models | Acc | Sgr | Con | Sc | Ace | Sgr | Con | Sc | Acc | SgT | Con | Sc
- BLIP-2 25.1 52.9 48.2 63.9 13.0 17.0 38.4 62.8 279 39.0 82.4 88.8
o LLaVa 1.5SM 26.9 59.2 325 53.8 9.6 14.9 19.0 56.9 20.1 28.9 259 423
é« BLIP-2 27.6 64.7 61.8 73.7 36.7 25.6 49.0 64.1 54.6 52.4 90.1 94.7
2 LLaVa 1.5M 314 65.9 43.2 62.3 18.1 28.1 32.6 52.6 58.6 73.8 62.0 75.5

5 CONSISTENCY IMPROVEMENT

The analyses on the MM-R? benchmark in Section 4| show that consistency drops significantly with
semantically equivalent prompts. To overcome this issue, we propose a simple strategy based on an
adapter module that can be plugged into any MLLM with lightweight training (see Figure[d] (green)).
The goal of the adapter is to help MLLMs overcome the variability of visual and language prompts
by making them invariant to surface form variability in data and ensuring a single consistent output.

5.1 APPROACH

The design of the adapter is inspired by [Newman et al.|(2022). The adapter model takes the embed-
dings of the input prompts and outputs a new sequence of continuous embeddings that are used as
input to the LLM decoder for generation. Specifically, the adapter takes the outputs of the Vision-
Language encoder, passes them through a Bi-LSTM module and a max-pooling procedure to obtain
the global embeddings from the input tokens. Then, an MLP is added afterward to project the max-
pooling output to the size of the prefix that will be added in front of the original embeddings. In this
way, the adapter not only captures the semantic embeddings from the prompts but also retains all of
the original embeddings for the LLM decoder. During fine-tuning, we update only the parameters
of the adapter while freezing the vision-language encoder and the language decoder. As shown in
Figure[] the yellow parts are frozen, and the green one represents the training component.

5.2 EXPERIMENTS

Training Data. We leverage the same data generation pipeline as the MM-R? benchmark to generate
training data samples. Note that these training samples are completely disjoint with the samples in
MM-R? benchmark which we evaluate on. In total, there are 16, 894 rephrased question-image pairs
for the Question Rephrasing Task, 27, 226 styled images for the Image Restyling Task, and 30, 003
masked images for the Context Reasoning Task for training.

Implementation Details. We select BLIP-2 and LLaVa 1.5M for consistency improvement experi-
ments since they are widely used in recent works, have low consistency compared to other models
across lingual changes and allow us to show efficacy of our approach on different types of MLLMs
families (i.e ones that use only CLIP vs Qformer based architectures). For both BLIP-2 and LLaVa
1.5M experiments, the Bi-LSTM includes 2 recurrent layers with the hidden size is set to 4096 and
dropout rate 0. We follow the same setting as in Newman et al.| (2022) to set the prefix size to 3. The
model is optimized by CrossEntropyLoss. The initial linear rate is set to 1le—5. A linear decay learn-
ing rate schedule is also used. We conduct all experiments on a Nvidia A40 GPU with batch size
2 on both models. The adapter is added on the top of BLIP-2 bl1ip2-t5 pretrain-flant5xx1
and LLaVa 1.5M 11lava-v1.5-7b models.

Results. The performance with and without our adapter, on all three tasks, is illustrated in Table@
In question rephrasing the accuracy of the model with the adapter is marginally better (improvement
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Question Rephrasing Task
Q) Who is the manufacturer of the black Prompt: Please answer the question with a very-short answer. + <R1/R2/R3>
coat the skiier in the foreground is wearing? R1) What brand is the black coat worn by the skier in the front of the photo?
A) north face R2) Which company produces the black jacket seen on the skier in the foreground?
R3) Can you identify the manufacturer of the black coat on the person skiing in the
5 first row of the picture?

LLaVa 1.5M BLIP-2 Qwen-VL LLaVa 1.5M (Improved) BLIP-2 (Improved)
A1) Columbia A1) Arc'teryx A1) columbia A1) north face A1) nike
A2) North face A2) Arc'teryx  A2) columbia A2) north face A2) nike
A3) No A3) gore-tex  A3) columbia A3) north face A3) nike
Acc: 33.3 Acc: 0 Acc: 0 Acc: 100 Acc: 0
Ser: 50.2 Ser: 24.9 Scr: 26.6 Ser: 100 Ser: 66.1
Con: 0 Con: 33.3 Con: 100 Con: 100 Con: 100
Sc:21.4 Sc: 45.2 Sc: 100 Sc: 100 Sc: 100

Image Restyling Task

Prompt: Please describe the place

N " " $1) a painting of a children's playroom Acc: 0
in the image in two sentences. BLIP-2 $82) a drawing of a children's playroom Ser: 1.0
- $§3) a children's playroom with toys and stuffed animals Con: 66.7
$4) a black and white photo of a children's playroom Sc: 74.5
S1) The image depicts a vibrant and colorful children's playroom filled with
various toys and furniture. The room is filled with a variety of toys including
cars, balls, and dolls, and furniture such as tables and chairs. The walls are
adorned with colorful patterns and there is a window with blinds. The room is
well-organized and inviting, perfect for children to play and learn in. Acc: 0
S$2) The image is a colorful drawing of a classroom. It has a lot of toys and Sgr: 12.8
BLIP-3 furniture in it. Con: 100
$3) The image depicts a classroom with a variety of toys and furniture. The s.: 80.5
room is filled with children's toys, including a slide, cars, and balls. The walls
are painted blue and white, and there is a chalkboard on one side. The room is
well-lit, with sunlight streaming in through the windows.
S4) The image is a black and white photo of a classroom. The room is filled
with toys and furniture, including a table with chairs, a slide, and shelves.
(e, % $1) kindergarden Acc: 100
H\ll\ \ J (X BLIP-2  S2) kindergarden Ser: 100
3 NN (Improved) $3) kindergarden Con: 100
$3) Udnie $4) Grayscale $4) kindergarden Sc: 100

Context Reasoning Task

Prompt: What kind of object Acc: 0

is in the masked region? M1) The masked region contains a baseball player swinging a bat. Ser: 7.3

GT: person M2) The masked region in the image contains a baseball bat. Con: 100
M3) The masked region contains a baseball bat. Sc: 90.8
BLIP-3 Acc: 0
M1) The masked region is a baseball bat. Set: 5.0
M2) The masked region is obscuring a baseball bat. Con: 100
M3) The masked region is obscuring a baseball player's face. Sc: 84.8
Gemini Acc: 0
M1) The masked region contains a baseball catcher. Ser: 12.3
M2) The masked region contains a baseball player. Con: 100
M3) The masked region contains a baseball player sliding into home plate. Sc:84.5

M1) The masked region likely contains the catcher, who is part of the action in this baseball ....
M2) The masked region in the image is obscuring a part of a baseball player, specifically the LER0
catcher positioned behind the batter as the pitch is being delivered. The scene'is ... Ser: 10.0
M3) The masked region in the image is covering a portion of the baseball photo, ... it is reasonable Con: 100
to infer that it is likely to be part of the baseball scene — possibly including parts of the home plate ~ Sc: 91.5
area, the catcher, or other elements typical of a baseball game setting.

Figure 5: Qualitative Results. Metrics shown are computed for specific qualitative examples shown
in the figure. See Appendix for more.

of +2.5 for BLIP-2 and +4.5 for LLaVa 1.5M), however, the consistency shows a very significant
margin of improvement (+13.6 and +10.8 respectively). This is consistent with our earlier obser-
vation that accuracy and consistency are not necessarily aligned. The original MLLMs are already
well trained for VQA tasks and so large accuracy boost is not expected. However, they are lacking
in consistency (see Section [)), hence the large improvement on those metrics. For image restyling
and context reasoning we do see a large improvement on both the accuracy and consistency. This is
largely because original MLLMs are not trained on data of this form. Hence, the introduced adapter
can both fine-tune performance on the new data and improve consistency on them at the same time.

6 CONCLUSION

In this paper, we explore and analyze consistency of MLLM models and its relationship to accuracy.
We do so by introducing the MM-R? Benchmark, comprising three tasks — Question Rephrasing,
Image Restyling, and Context Reasoning — to conduct a comprehensive analysis of SOTA MLLMs
in terms of both accuracy and consistency. Our analysis reveals that higher accuracy does not nec-
essarily equate to greater consistency in models, and vice versa. In addition, we observe significant
variations in the consistency of SoTA models, while their accuracy levels tend to be more stable
across models. These findings suggest that future MLLM development and objectives might bene-
fit from a dual focus, emphasizing the optimization of consistency and the improvement of overall
accuracy. Furthermore, we propose an effective adapter to improve consistency performance. The
experiments on BLIP-2 and LLaVa 1.5M models illustrate the improved performance on three tasks.

10
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A APPENDIX
In the appendix, we present additional details and results to complement the main paper.

A.1 DETAILS OF MLLMS

BLIP-2 (Li et al.) 2023b): The BLIP-2 model addresses the modality gap through a novel
lightweight Querying Transformer, the Q-former, leveraging a two-stage pre-training approach. De-
spite its lack of multimodal instruction tuning, BLIP-2 retains the LLM’s capacity for following
instructions. For our evaluations, we employed the BLIP-2 FlanT5XXL in our evaluations.

mPLUG-OwI2 (Ye et al} 2024): mPLUG-OwI2 utilizes a modularized network design tailored
for handling multi-modal inputs. It contains a modality-adaptive module to align different modal-
ities into a shared semantic space for relational learning. The model’s architecture, including the
visual encoder, visual abstractor, and language decoder, are all updated during training. We use
mplug-owl2-1lama2-7b for inference and our performance analysis.

LLaVa 1.5M (Liu et al., [2024;2023a): LLaVa is an end-to-end model combining LLaMA/ Vicuna
on GPT-generated multimodal instruction-following data. It provides general-purpose visual and
language understandings, boasting chat capabilities that parallel the multimodal proficiency of GPT-
4. We conducted our experiments using the 11ava-v1.5-7b version.

MoE-LLaVa (Lin et al.,[2024): The MoE-LLaVa model incorporates a Mixture of Experts (MoE)
architecture with learnable routers, comprising multiple sparse paths that uniquely activate only the
top-k experts during deployment while keeping the remaining experts inactive. This design allows
MoE-LLaVa to achieve performance comparable to other high-end MLLMs with the provided sparse
path. We use MoE-LLaVA-Phi2-2.7B-4e-384 version for evaluation.

Qwen-VL-Chat (Bai et al., 2023b): Qwen-VL-Chat builds upon the foundation of Qwen-VL, with
training that encompasses not just traditional image descriptions and question-answering tasks, but
also extends to grounding and text-reading capabilities through the alignment of image-caption-box
tuples. The version tested and analized in our experiments is Qwen-VL—-Chat.

BLIP-3 (Xue et al., 2024): BLIP-3 (xGen-MM) consists of a Vision Transformer, a vision to-
ken sampler to downsample the image embeddings, and a pre-trained Large Language Model.
BLIP-3 enables higher-resolution images as inputs by using patch-wise encoding. The patch-
wise encoding preserves the resolution of the original images by encoding the split image patches
separately. Then a perceiver resampler is used to downsample the visual tokens before send-
ing them to the LLM. This design allows BLIP-3 to reduce the sequence length of vision tokens
while keeping the higher-resolution images as inputs. We evaluate the Consistency Benchmark on
xgen-mm-phi3-mini-instruct-r-vl version.

Gemini Team et al.|(2023): Gemini is developed by Google. It is a multimodal model using a
Transformer to process various inputs, such as text, images, audio, and video. Unlike models using
separate modules to encode different types of data, Gemini uses a shared Transformer. This enables
the model to leverage shared reasoning capabilities. We use gemini—1.5-f1lash for evaluation.

GPT-4V (OpenAl, 2023): GPT-4V extends the capabilities of Generative Pre-trained Transformers
by integrating visual understanding, enabling it to process and generate content based on both textual
and visual inputs. The development represents a significant advancement in Al, making it a versatile
tool for a wide range of applications that require the understanding of both text and imagery. We
evaluate the Consistency Benchmark on gpt-4-vision-preview version.

GPT-40 (OpenAll|2024): GPT-40 (“0” for “omni”) is the most advanced model released by OpenAl.
It accepts multimodal inputs, e.g. texts and images. We leverage gpt—4o0 version to evaluate the
Consistency Benchmark.

A.2  SIMILARITY METRICS DETAILS
For evaluating Similarity with Ground Truth (Sg7), Consistency Accuracy (Con), and Consistency

Similarity (S¢), we leverage semantic similarity metrics, Sentence-Similarity Reimers & Gurevych
(2019). This metric utilizes large language model encodings to compare the semantic content of
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predicted and target texts. Specifically, Sentence-Similarity achieves this by transforming input
texts into embeddings via a pre-trained Transformer model, capturing their semantic differences.
The similarity between these embeddings, and thus the texts, is calculated using cosine similarity,
providing a measure of their semantic closeness.

A.3 POST-PROCESSING OF ANSWERS

In the Context Reasoning task, we notice that MLLMs often repeat phrases from the question, such
as “the masked region is...” which raises the consistency scores due to these repetitive terms when
calculating answer similarity. However, our primary interest lies in identifying the objects behind
the masks. To address this, we conduct post-processing on the responses before metric calculation.
This involves filtering out common words like there, is, of, in, the, etc., and phrases frequently
repeated from the question, such as masked region and image. This adjustment allows for a more
fair comparison by focusing on the substance of the responses rather than their structural similarities.

A.4 DATA GENERATIONS AND TASKS PIPELINE

We provide a comprehensive pipeline that details both the data collection process and the methods
of prompting MLLMs for each task, shown in Figure@

Prompt: Please answer the question with a
very-short answer. <Q1/Q2/Q3>.

Q1: What is the name of the round, white o
\ vegetable commonly used in cooking? R \/ A1: onion
Q: What is the name of the purple Q2: Can you name a commonly used . ani
vegetable on the pizza? Rl vegetable that is often sautéed or grilled? | MLLM | —— A2: onion
A: Onion. / Q3: Do you know the name of the vegetable
N - with layers and a strong, distinct flavor that A3: onion
| have a question: <Q> Please give me three makes people cry when they chop it?

different types of rephrased questions to
which the answer would be <A>.

(@) Question Rephrasing

Neural- A1: classroom
—

Style J

P 3 ( A2: kindergarden
—>‘ MLLM }—‘
L y A3: classroom

Prompt: Please describe the place in A4: kindergarden

the image in two sentences.

(b) Image Restyling
Prompt: What kind of object
is in the masked region?

A: birds

A1: birds
MLLM A2: birds
A3: birds

A: birds

Lines: [1, 3, 5, 7]
Colors: [red, blue, green, yellow, white, black]
Mask types: [rectangle, ellipse]

(c) Context Reasoning

Figure 6: The pipeline for the data collection process and prompting MLLM:s for each task.
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A.5 TFAILURE CASES

Failure Cases means we only focus on the answers that are not fully correct under different changes.

Table 7: Failure results of different models.
Question Rephrasing Task \ Image Restyling Task \ Context Reasoning Task

| Models | Sgr | Con | Sc | Sgr | Con | Sc | Sgr | Con | Sc
- | BLIP-2 4644 | 4175 | 5933 | 1687 | 37.15 | 6201 | 2868 | 7778 | 86.41
S | mPLUG-OW2 | 5458 | 27.96 | 4925 | 1523 | 2546 | 5890 | 31.05 | 2329 | 44.81
2 | LLava1.5M 56.26 | 39.83 | 57.99 | 1543 | 4872 | 67.86 | 3328 | 62.34 | 73.14
% | MoE-LLaVa 5235 | 3867 | S56.18 | 1661 | 69.00 | 7444 | 33.06 | 3338 | 5301
8 | Qwen-VL-Chat | 62.17 | 44.15 | 6213 | 1573 | 2248 | 5291 | 2823 | 26.17 | 45.70
S | BLIP3 5556 | 4123 | 5949 | 1729 | 5064 | 67.85 | 3122 | 3450 | 50.61
5 Gemini 58.22 47.47 63.32 16.13 51.89 68.52 45.24 28.63 51.14
% GPT-4V 52.43 34.46 54.67 15.90 51.43 65.83 17.22 29.44 54.64
@) GPT-40 59.85 47.01 62.76 16.78 78.34 76.67 25.01 41.72 64.27

A.6 DETAILS OF DIFFERENT RESOLUTIONS IN IMAGE RESTYLING TASK

The numbers in Table[8] correspond to Figure 2]
Table 8: Stylization with different resolutions on the Image Restyling Task.

| 224 224 | 640 x 640 | 1024 x 1024
Models ‘ Acc ‘ SaT ‘ Con ‘ Sc ‘ Acc ‘ SaT ‘ Con ‘ Sc ‘ Acc ‘ SaT ‘ Con ‘ Scon
BLIP-2 10.6 16.9 223 53.4 15.0 17.0 424 65.2 15.8 17.2 48.2 67.9
mPLUG-OwI2 6.4 15.6 12.9 51.3 9.8 155 27.8 60.2 10.1 15.3 28.1 60.3
LLaVa 1.5M 8.4 15.8 313 59.5 12.6 15.3 55.5 71.1 133 15.3 60.6 73.3
MoE-LLaVa 10.3 16.8 41.6 65.1 14.2 16.7 69.7 74.8 14.7 16.8 75.4 76.5
Qwen-VL-Chat 5.8 15.6 9.1 40.9 9.5 15.8 20.3 52.4 104 15.9 25.3 55.6
BLIP-3 9.0 16.9 25.0 55.7 13.5 17.5 53.3 69.0 14.2 17.8 61.9 72.0

A.7 DETAILS OF DIFFERENT ENTROPY PARAMETERS

We show the actual numbers in Figure [3]in Table 0]

Table 9: Different entropy parameters on three tasks.

Question Rephrasing Task

| 0.2 | 0.7 | 1
Models | Acc | Sgr | Con | Sc | Acc | Sgr | Con | Sc | Acc | SeT | Con | Scon
BLIP-2 25.1 52.9 48.2 63.9 25.1 529 48.2 63.9 25.1 52.9 48.2 63.9
mPLUG-OwI2 332 63.8 48.6 63.7 30.4 61.1 36.7 55.6 27.7 58.1 30.7 51.3
LLaVa 1.5M 31.2 62.6 46.0 62.4 26.9 59.2 325 53.8 10.3 19.3 343 62.3
MoE-LLaVa 28.8 58.0 453 61.2 26.3 56.9 34.8 54.7 24.2 54.5 26.4 494
Qwen-VL-Chat 36.7 70.6 56.4 70.4 36.3 70.2 55.3 69.7 36.3 70.2 553 69.7
BLIP-3 30.9 61.0 47.7 64.0 30.9 61.0 47.7 64.0 30.9 61.0 47.7 64.0

Image Restyling Task

‘ 0.2 ‘ 0.7 ‘ 1
Models ‘ Acc ‘ SaT ‘ Con ‘ Sc ‘ Acc ‘ SceT ‘ Con ‘ Sc ‘ Acc ‘ SaTr ‘ Con ‘ Scon
BLIP-2 13.0 17.0 384 62.8 13.0 17.0 384 62.8 13.0 17.0 384 62.8
mPLUG-OwI2 9.6 15.4 46.1 66.6 9.0 15.2 26.3 59.2 8.4 14.9 13.5 53.8
LLaVa 1.5M 10.3 15.5 444 66.0 9.6 14.9 19.0 56.9 10.5 15.5 50.1 68.5
MoE-LLaVa 12.9 16.6 70.3 74.8 11.9 16.2 48.0 67.5 11.7 15.7 28.2 62.0
Qwen-VL-Chat 8.4 15.8 24.4 54.1 8.3 15.7 23.1 53.3 83 15.7 23.1 533
BLIP-3 11.9 17.3 51.4 68.2 11.9 17.3 514 68.2 11.9 17.3 51.4 68.2

Context Reasoning Task

| 0.2 | 0.7 | 1
Models ‘ Acc ‘ SaT ‘ Con ‘ Sc ‘ Acc ‘ SaeT ‘ Con ‘ Sc ‘ Acc ‘ SaT ‘ Con ‘ Scon
BLIP-2 27.9 39.0 825 88.8 27.9 39.0 82.5 88.8 27.9 39.0 82.4 88.8
mPLUG-OwI2 27.4 41.0 55.4 67.0 24.5 35.3 27.6 48.0 22.1 30.1 10.5 37.2
LLaVa 1.5SM 28.2 42.0 62.4 72.4 20.1 289 259 42.3 22.9 37.8 15.4 41.6
MoE-LLaVa 25.2 38.5 394 56.9 24.4 34.7 22.0 45.1 23.8 31.6 10.0 38.7
Qwen-VL-Chat 20.4 322 329 50.6 20.1 322 30.7 49.0 20.1 322 30.7 49.0
BLIP-3 28.0 36.5 40.0 54.9 28.0 36.5 40.0 54.9 28.0 36.5 40.0 54.9
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A.8 MORE ANALYSIS

We provide a deeper analysis of the Image Restyling and Context Reasoning tasks. In the Image
Restyling task, we assess performance across 4 styles: Candy, Mosaic, Udnie, and Grayscale. Ac-
cording to Table [T0] all MLLMs achieve their best results with the Grayscale transformation,
which is expected as this style minimally changes the original image. Conversely, the Mosaic style
proves challenging for all models, likely due to its significant modification of object appearances,
leading to potential confusion for the MLLMs.

In the context reasoning task, we assess performance based on masking colors, lines, and shapes.
Table [T1] displays the results for various masking colors, with Black outperforming other colors.
This could be attributed to the frequent use of black as a bounding box or mask in existing datasets,
making MLLMs more adept at handling black masks. Table[T2]examines the effect of different num-
bers of masking lines, where masks with three lines perform the best, in contrast to those with only
one line. This difference may arise from the area covered by the masks or the additional cues multi-
ple lines provide about the underlying objects, aiding MLLMs in making predictions. According to
Table[I3] open-source MLLMs show a preference for E111ipse masks over Rectangles, potentially
due to the smaller coverage area of ellipses, similar to the influence of the number of lines.

From these observations, it appears that mask color has a minimal impact on performance. Instead,
the area covered by the mask plays a more crucial role, suggesting that the inferencing capability of
MLLMs could be further improved by addressing their sensitivity to the extent of occlusion.

A.9 ADDITIONAL QUALITATIVE RESULTS

A.9.1 QUESTION REPHRASING

We show some qualitative results of the question rephrasing task in Figure [/l The closed-source
models outperform other models in terms of both accuracy and consistency. While the accuracy of
the evaluated MLLMs may not meet high standards, the similarity between the generated responses
and the ground truth maintains a satisfactory level (Sgr), suggesting that the responses are seman-
tically aligned with the ground truth. Regarding consistency, the majority of MLLMs demonstrate
the capability to generate semantically similar answers to rephrased questions. In the models (e.g.
LLaVa 1.5M (Improved) and BLIP2 (Improved)), the consistency improves significantly, showing
the effectiveness of the proposed adapter.

A.9.2 IMAGE RESTYLING

The qualitative results of the image restyling task are depicted in Figure [§|and Figure[9] In this task,
the BLIP-2 model outperforms other MLLMs, particularly in terms of consistency. Although LLaVa
1.5M and MoE-LLaVa may not always provide responses that align perfectly with the ground truth,
their answers remain semantically consistent across various styles. This consistency is evident in
their strong performance on metrics such as Consistency and S¢.

A.9.3 CONTEXT REASONING

Figure |10] and Figure [11| shows additional examples from the context reasoning task, where most
MLLMs generally yield similar responses as the ground truth. However, it is observed that mod-
els like Owen-VL, MoE-LLaVa, and BLIP-3 are more influenced by the presence of masks, often
incorporating the mask’s color or shape into their answers. Another noteworthy trend is GPT-4V’s
tendency to respond with "I cannot provide...” when the masks obscure a significant portion of the
objects, indicating a threshold of visual information required for it to generate confident responses.
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Table 10: Results across different styles in the Image Restyling Task.

‘ ‘ Candy | Mosaic
| Models | Acc | Sgr | Con | Sc | Acc | Sgr | Con | Sc
BLIP-2 13.59 16.73 40.99 63.80 10.51 16.24 48.35 6791
mPLUG-OwI2 8.33 15.79 24.17 58.40 4.28 14.81 29.65 60.86
LLaVa 1.5M 10.21 15.76 52.55 69.04 7.51 15.53 55.78 70.79
MoE-LLaVa 13.59 17.21 69.74 74.45 9.08 17.00 74.70 76.47
i Qwen-VL-Chat 7.51 15.88 20.27 51.69 3.45 15.00 29.35 57.96
BLIP-3 12.84 17.66 56.31 70.15 7.81 17.60 58.41 71.48
Gemini 14.11 16.58 51.88 68.63 10.21 16.50 59.01 70.75
GPT-4V 11.11 16.91 57.64 67.58 7.64 15.70 59.03 69.05
GPT-40 15.84 17.55 81.23 77.61 12.69 17.15 86.56 79.31
BLIP-2 - 16.59 39.90 63.04 - 16.11 46.55 66.98
mPLUG-OwI2 - 15.76 23.50 58.09 - 14.78 28.73 60.55
8 LLaVa 1.5M - 15.71 51.27 68.48 - 15.48 54.05 70.11
5 MoE-LLaVa - 17.23 68.74 74.03 - 16.97 73.51 76.13
o Qwen-VL-Chat - 1591 19.59 51.28 - 15.00 28.80 57.61
= BLIP-3 - 17.69 55.52 69.81 - 17.57 58.62 71.30
& Gemini - 16.58 50.16 68.20 - 16.43 57.17 70.25
GPT-4V - 16.96 56.43 67.18 - 15.68 57.86 68.57
GPT-40 17.51 79.52 77.05 - 17.02 85.63 78.93
| | Udnie | Grayscale
‘ Models ‘ Acc ‘ ScT ‘ Con ‘ Sc ‘ Acc ‘ ScT ‘ Con ‘ Sc
BLIP-2 10.96 16.78 36.94 62.32 16.97 18.32 40.69 63.71
mPLUG-OwI2 7.96 14.99 29.43 60.53 15.24 15.41 21.92 57.31
LLaVa 1.5M 9.01 15.36 46.17 67.11 15.17 15.32 51.20 69.87
MoE-LLaVa 12.31 16.24 68.99 74.43 16.74 15.95 70.42 74.31
i Qwen-VL-Chat 7.43 15.45 22.37 54.13 14.71 16.57 20.95 50.74
BLIP-3 10.29 16.50 47.52 67.19 16.74 17.47 52.63 68.06
Gemini 13.21 15.98 55.56 69.66 17.19 15.54 50.83 68.70
GPT-4V 6.25 15.59 47.22 66.38 13.89 15.38 52.08 66.11
GPT-40 16.59 16.53 77.40 76.09 20.12 16.09 79.80 77.22
- BLIP-2 - 16.64 35.77 61.53 - 18.15 39.42 62.84
% mPLUG-OwI2 - 14.97 28.65 60.22 - 15.40 20.89 56.96
] LLaVa 1.5M - 15.29 44.60 66.43 - 15.24 49.84 69.31
g MoE-LLaVa - 16.27 67.61 74.06 - 15.99 69.47 74.06
= | Qwen-VL-Chat | - 1543 | 21.66 | 53.79 ; 1658 | 2043 | 5035
= BLIP-3 - 16.49 46.47 66.86 - 17.43 51.95 67.75
Gemini - 15.95 53.70 69.19 - 15.57 49.68 68.36
GPT-4V - 15.58 4571 66.06 - 15.36 50.71 65.59
GPT-40 - 16.50 75.64 75.57 - 16.10 78.78 76.94
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Table 11: Results across different masking color in the Context Reasoning Task.

Blue Red
| Models | Acc | Sgr | Con | Sc | Acc | Sgr | Con | Sc
BLIP-2 26.67 38.27 82.70 89.50 27.88 39.09 79.89 87.71
mPLUG-OwI2 23.51 34.62 26.07 46.06 23.06 35.26 27.88 48.38
LLaVa 1.5M 26.31 41.51 69.18 77.44 27.88 4222 65.82 75.70
MoE-LLaVa 20.34 35.60 37.27 56.10 23.06 37.16 35.79 54.81
i Qwen-VL-Chat 19.85 31.78 33.50 50.14 17.69 29.97 28.95 47.80
BLIP-3 23.75 35.44 39.71 54.30 28.02 37.93 40.08 54.84
Gemini 54.95 56.52 44 .81 62.90 51.54 54.42 43.89 61.95
GPT-4V 3222 20.39 30.56 56.53 28.83 18.83 33.74 56.90
GPT-40 50.06 31.26 48.11 66.51 52.41 31.80 47.05 66.06
BLIP-2 - 27.56 78.04 87.26 - 29.21 74.79 85.05
mPLUG-OwI2 - 30.55 21.21 42.66 - 30.95 24.12 45.59
8 LLaVa 1.5M - 32.49 64.05 73.73 - 33.10 59.93 71.72
é MoE-LLaVa - 30.65 31.63 52.76 - 32.01 30.04 51.16
o Qwen-VL-Chat - 27.21 28.76 46.66 - 26.11 24.17 44.60
= BLIP-3 - 30.47 35.61 50.71 - 32.45 34.56 50.19
& Gemini - 45.78 28.33 51.84 - 44.08 30.48 52.99
GPT-4V - 17.09 26.11 54.20 - 13.54 28.26 54.14
GPT-40 - 25.15 41.40 64.35 - 24.66 39.52 63.38
| | Green | Yellow
| Models | Acc | Sgr | Con | Sc | Acc | Sgr | Con | Sc
BLIP-2 27.76 39.54 85.44 90.36 28.23 38.64 83.60 89.46
mPLUG-OwI2 23.13 34.06 24.90 45.90 25.00 35.72 28.23 48.94
LLaVa 1.5M 28.30 42.14 67.48 76.50 26.88 41.57 70.03 78.57
MoE-LLaVa 22.99 36.26 39.46 56.35 19.89 34.29 39.65 57.32
i Qwen-VL-Chat 18.78 31.92 30.20 48.70 18.68 30.69 32.12 50.19
BLIP-3 23.67 36.12 41.90 55.92 24.19 34.22 38.58 54.32
Gemini 57.96 57.28 4571 62.09 52.76 55.19 45.76 63.16
GPT-4V 30.49 21.32 37.20 57.86 33.11 21.01 38.41 59.81
GPT-40 50.88 31.49 51.70 67.16 51.21 31.64 50.54 67.32
BLIP-2 - 29.78 81.63 88.30 - 27.43 78.70 87.08
mPLUG-OwI2 - 3247 61.49 72.54 - 31.96 64.85 75.02
8 LLaVa 1.5M - 30.20 20.66 42.89 - 30.49 23.30 45.24
& | MoE-LLaVa - 31.10 | 33.84 | 52.82 - 2841 | 33.83 | 53.69
o Qwen-VL-Chat - 28.28 26.69 45.92 - 26.51 26.93 46.65
= BLIP-3 - 30.16 36.70 51.96 - 28.39 32.72 50.30
& Gemini - 44.87 25.27 47.69 - 43.47 30.10 52.20
GPT-4V - 16.64 33.09 55.59 - 18.47 35.82 58.54
GPT-40 - 24.65 44.06 64.39 - 24.43 43.00 64.77
| | White | Black
‘ Models ‘ Acc ‘ SaTr ‘ Con ‘ Sc ‘ Acc ‘ SceT ‘ Con ‘ Sc
BLIP-2 27.40 38.14 81.92 88.02 29.59 40.14 81.11 87.64
mPLUG-OwI2 24.68 34.62 30.13 49.65 27.48 37.71 28.93 49.13
LLaVa 1.5SM 27.98 42.03 68.01 76.96 34.74 45.64 67.64 76.87
MoE-LLaVa 30.42 41.84 41.61 58.18 34.87 46.00 42.93 58.54
2 Qwen-VL-Chat 21.66 33.11 31.85 49.50 24.04 35.80 27.34 47.30
BLIP-3 31.13 37.06 41.46 56.17 37.38 38.22 38.57 53.86
Gemini 57.10 56.54 44.62 62.31 57.09 57.53 46.23 63.04
GPT-4V 30.20 21.81 37.58 57.89 35.95 22.86 31.37 55.80
GPT-40 53.66 32.04 50.22 67.35 52.44 31.84 49.54 66.58
BLIP-2 - 28.85 77.26 85.57 - 29.33 76.30 85.14
mPLUG-OwI2 - 30.26 25.60 46.48 - 33.81 25.18 46.32
4 LLaVa 1.5SM - 32.58 62.14 73.10 - 37.15 61.33 72.64
5 MoE-LLaVa - 36.67 35.17 53.95 - 40.16 36.20 53.80
P Qwen-VL-Chat - 29.05 27.30 46.17 - 32.33 23.10 44.20
2 BLIP-3 - 32.44 35.86 51.84 - 33.58 31.55 48.78
o Gemini - 46.09 28.35 50.30 - 46.44 28.63 50.75
GPT-4V - 18.44 32.58 55.81 - 18.44 25.78 53.19
GPT-40 - 26.26 40.13 64.92 - 24.94 42.16 63.82
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Table 12: Results across different numbers of lines in the Context Reasoning Task.

| | 1 | 3
| Models | Acc | Sgr | Con | Sc | Acec | Sgr | Con | Sc
BLIP-2 23.71 36.08 78.44 86.34 32.10 41.27 82.75 88.91
mPLUG-OwI2 19.50 31.66 25.09 45.49 29.43 38.16 30.17 48.93
LLaVa 1.5M 23.88 38.60 61.86 72.55 33.76 46.20 69.83 78.16
MoE-LLaVa 17.27 32.56 32.99 53.31 30.54 42.35 42.99 58.78
i Qwen-VL-Chat 13.06 25.69 26.37 45.45 28.78 37.72 33.95 50.83
BLIP-3 15.81 30.66 34.19 50.24 37.82 4147 43.82 58.42
Gemini 55.98 56.17 42.73 61.62 54.24 56.60 47.51 63.40
GPT-4V 35.25 20.33 32.38 55.62 33.33 21.63 34.17 58.25
GPT-40 46.65 29.32 48.88 66.38 56.83 33.65 4991 66.88
BLIP-2 - 26.47 73.36 83.62 - 30.24 77.53 86.15
mPLUG-OwI2 - 27.70 20.96 42.48 - 33.19 25.05 45.25
8 LLaVa 1.5M - 29.90 55.95 68.54 - 36.36 63.39 73.96
é MoE-LLaVa - 27.70 27.32 49.79 - 36.17 36.06 54.40
o Qwen-VL-Chat - 22.18 22.15 42.44 - 32.94 28.18 46.68
= BLIP-3 - 26.06 29.45 46.74 - 35.58 37.83 53.51
& Gemini - 45.94 25.78 50.20 - 44.38 29.12 50.80
GPT-4V - 15.74 27.67 5291 - 18.82 30.70 56.64
GPT-40 - 22.48 40.88 63.66 - 26.96 40.42 64.06
| | 5 | 7
| Models | Acc | Sgr | Con | Sc | Acc | Sgr | Con | Sc
BLIP-2 29.90 40.23 84.28 89.98 26.29 38.51 84.45 90.05
mPLUG-OwI2 26.02 36.44 26.92 48.63 23.32 35.34 28.56 48.92
LLaVa 1.5M 30.08 43.75 70.82 78.99 27.34 41.81 69.96 78.56
MoE-LLaVa 28.09 40.00 39.93 57.33 25.24 39.32 42.01 58.20
i Qwen-VL-Chat 19.87 33.27 32.25 50.75 19.30 32.57 30.48 48.98
BLIP-3 31.53 37.85 40.38 54.29 27.51 36.35 42.01 56.80
Gemini 58.42 57.86 46.11 63.49 52.23 54.45 44.53 61.93
GPT-4V 31.19 21.95 35.32 57.87 27.52 20.22 36.82 58.01
GPT-40 54.56 33.07 49.32 67.00 49.34 30.81 49.87 67.03
BLIP-2 - 30.10 79.95 87.98 - 28.21 80.52 88.05
mPLUG-OwI2 - 32.55 23.18 45.74 - 31.04 24.13 45.87
4 LLaVa 1.5M - 34.23 65.65 75.23 - 33.06 64.82 75.15
S MoE-LLaVa - 34.53 34.01 53.50 - 34.27 36.55 54.58
o Qwen-VL-Chat - 29.47 28.03 47.85 - 28.91 26.67 46.08
= BLIP-3 - 32.71 34.37 49.77 - 31.24 36.89 52.85
& Gemini - 47.07 30.64 52.25 - 43.07 29.02 51.01
GPT-4V - 17.66 30.16 55.79 - 16.08 32.11 55.54
GPT-40 - 26.55 43.16 64.69 - 24.40 42.44 64.70

Table 13: Results across different masking shapes in the Context Reasoning Task.

| | Rectangle | Ellipse
| Models | Acc | Sgr | Con | Sc | Acc | Sgr | Con | Sc
BLIP-2 26.51 38.32 82.66 88.98 29.22 39.58 82.24 88.63
mPLUG-OwI2 22.34 34.12 27.39 48.01 26.47 36.47 27.89 47.93
LLaVa 1.5M 26.42 41.49 67.84 77.24 30.78 4348 68.23 76.80
MoE-LLaVa 20.28 35.60 39.59 56.91 29.74 41.17 39.22 56.81
i Qwen-VL-Chat 16.33 29.24 27.89 47.01 23.66 34.99 33.32 50.77
BLIP-3 24.13 35.57 40.83 55.29 31.55 37.34 39.27 54.48
Gemini 54.39 56.20 45.06 62.34 55.98 56.30 45.27 62.8
GPT-4V 33.19 21.16 34.48 57.16 30.43 20.83 34.89 57.69
GPT-40 47.71 30.18 50.46 67.07 55.52 33.07 48.58 66.58
BLIP-2 - 27.96 78.13 86.64 - 29.36 77.45 86.19
mPLUG-OwI2 - 29.94 23.06 45.00 - 32.10 23.50 44.63
4 LLaVa 1.5M - 32.47 62.37 73.58 - 34.05 62.31 72.71
5 MoE-LLaVa - 30.28 33.86 53.35 - 35.71 32.93 52.68
o Qwen-VL-Chat - 26.04 24.26 44.36 - 30.36 28.02 47.01
= BLIP-3 - 30.24 35.64 51.27 - 32.16 33.42 49.99
& Gemini - 45.49 28.64 51.24 - 44.72 28.54 50.87
GPT-4V - 16.56 29.37 54.58 - 17.53 30.95 55.82
GPT-40 - 23.60 42.97 64.80 - 26.39 40.48 63.75
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Q) What is the material used to make

the vessels in this picture?
A) copper

Prompt: Please answer the question with a very-short answer. + <R1/R2/R3>

R1) What material was utilized to create the vessels shown in the picture?
R2) What substance was used in the production of the vessels featured in the picture?
R3) Can you identify the material from which the vessels in the picture were made?

LLaVa 1.5M BLIP-2 Qwen-VL LLaVa 1.5M (Improved) BLIP-2 (Improved)
A1) copper A1) stainless steel A1) copper A1) copper A1) stainless steel
A2) copper A2) copper A2) copper  A2) copper A2) stainless steel
A3) yes A3) stainless steel  A3) copper  A3) copper A3) stainless steel

Acc: 66.6 Acc: 33.3 Acc: 100 Acc: 100 Acc: 0
Sgr: 70.4 Ser: 67.2 Scr: 100 Scr: 100 Ser: 50.9
Con: 33.3 Con: 33.3 Con: 100 Con: 100 Con: 100
Sc: 67.2 Sc: 67.2 Sc: 100 Sc: 100 Sc: 100
moellava BLIP-3 GPT-4V
A1) copper A1) metal A1) copper A1) copper A1) copper A1) copper
A2) copper A2) copper A2) copper A2) copper A2) copper A2) copper
A3) yes A3) yes A3) yes A3) copper A3) copper A3) copper
Acc: 66.6 Acc: 33.3 Acc: 66.6 Acc: 100 Acc: 100 Acc: 100
Ser1: 70.4 Scr: 51.6 Ser: 70.4 Ser: 100 Ser: 100 Ser: 100
Con: 33.3 Con: 0 Con: 33.3 Con: 100 Con: 100 Con: 100
Sc: 67.2 Sc:28.3 Sc: 67.2 Sc: 100 Sc: 100 Sc: 100

Prompt: Please answer the question with a very-short answer. + <R1/R2/R3>

R1) What is the designated name for the location where these benches are found?
R2) In which specific park can these benches be found?
R3) What is the official name of the park where these benches reside?

Q) What is the name of the park these

benches reside in?

A) central park

Figure 7: Qualitative Results for the Question Rephrasing Task.

LLaVa 1.5M

A1) park

A2) park

A3) unknown
Acc: 0
Ser: 59.0
Con: 33.3
Sc: 50.3

Qwen-VL
A1) park
A2) unanswerable
A3) unanswerable
Acc: 0
Scr: 33.9
Con: 33.3
Sc: 47.5

A1) park

A2) Stanley Park

A3) | don't know
Acc: 0
Ser: 53.2
Con: 33.3
Sc: 31.4

BLIP-2

A1) park
A2) sydney harbour foreshore park  A2) Central park
A3) East River Promenade Park

Acc: 0
Ser: 56.0
Con: 0
Sc: 47.0

BLIP-3
A1) park
A2) Central park
A3) Central park

Acc: 66.6
Se1:91.8
Con: 100
Sc: 83.6

A1) Waterfront Park
A2) Stanley Park
A3) Stanley Park

Acc: 0

Ser: 66.7

Con: 33.3

Sc: 77.4
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A1) park

Acc: 66.6
Set:91.8
Con: 100
Sc: 83.6

GPT-4V
A1) park

A2) | don't know where these benches can be found.
A3) | don't know the name of the park.

Acc: 0
Scrt: 56.4
Con: 0
Sc:45.4
LLaVa 1.5M (Improved)
A1) park
A2) park
A3) park
Acc: 0
Set: 75.4
Con: 100
Sc: 100

A3) Central park

moellava
A1) park
A2) Central park
A3) Stanley park
Acc: 33.3
Ser: 82.0
Con: 100
Sc: 73.6

BLIP-2 (Improved)
A1) park
A2) park
A3) park
Acc: 0
Ser: 75.4
Con: 100
Sc: 100
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Prompt: Please describe

the place in the image in BLIP-2 o LLaVa 1.5M (Improved) BLIP-2 (Improved)

fwo sentences. §1) the !ns!de of a bus . . . Acc: 100 S1) bus Acc: 50  S1) inside bus Acc: 100
$2) the inside of a bus with stained glass windows Ser: 81.7  S2) inside of a bus Scr: 88.3  S2) inside bus Set: 100

GT: inside bus $3) the interior of a bus Con: 50 S3) bus Con: 100  S3) inside bus Con: 100
$4) the inside of a bus Sc: 82.2 84) inside of a bus Sc:85.1  S4) inside bus Sc: 100
LLaVa 1.5M
$1) A bus with a yellow and red interior is shown in the image. Acc: 0
82) The image features a bus with a colorful and artistic design on the seats. Scr: 60.3
83) A bus with a row of seats and a window. Con: 66.7
84) The image shows the interior of a bus with a row of seats and a window. Sc: 73.7

$1) The image shows a bus with a colorful interior, featuring various seats and a mirror on the wall.

82) The image shows a colorful glass mosaic depicting a stained-glass train car with a colorful design, likely showcasing ggf 25 6
the train seats and windows. A

. B i q 9 q a 7 A Con: 16.7
83) The image is a drawing of a passenger bus with various seating arrangements, including benches and chairs. X
S$4) The image shows a bus with empty seats and a blank space in the center of the front area. Sc: 57.5
moellava
81) The image shows the inside of a bus, with a row of seats and a window. The seats are colorful and arranged in rows.
$2) The image shows the interior of a bus, with a colorful and artistic design. The seats are arranged in rows, and the Acc: 25
overall atmosphere is vibrant and visually appealing. Scr: 622
8§3) The image shov_vs the int_erior of a bus with a row of seats, some of which are empty. The seats are covered with a Con: 100
blue and orange striped fabric. .
S$4) The image shows the interior of a bus, with rows of seats and a window. The bus is empty, and the seats are Sc: 86.3
arranged in a neat and orderly fashion.
Qwen-VL
S1) Abus with a yellow and blue interior and red seats. Acc: 0
$2) A stained glass window showing a car with seats for five people. Ser: 53.1
§3) The inside of a bus with blue and grey seats. Con: 16.7
$4) An empty bus with many seats and windows. Sc: 51.9
BLIP-3
$1) The image is a painting of the inside of a bus. The seats are red and blue and there are two speakers on the ceiling.
$2) The image depicts the interior of a bus, with rows of seats and windows. The seats are arranged in a grid-like Acc: 25
pattern and the windows are rectangular, allowing light to filter into the bus. Scr: 61.2
83) The interior of a bus with rows of seats. Con: 50
84) The image is a black and white photo of the inside of a bus. The bus is empty and has rows of seats on both sides Sc: 68.9
of a central aisle.
Gemini
81) This is the inside of a school bus, likely a smaller one than what is typically used for school children. The seats are patterned
and lined up in rows, with some seats appearing empty and others having personal belongings on them. Acc: 50
$2) The image shows the interior of a bus, with the seats on either side of the aisle visible. The seats are patterned with orange Ser: 573
and blue lines, and the windows are covered with a stained glass effect. Con: 667
83) The image shows the inside of a bus with rows of seats facing each other. The seats are covered in a colorful patterned fabric. Se: %2 4‘

S$4) The image shows the inside of a bus with rows of seats facing each other. There are windows on either side of the bus and the
ceiling is white with a vent in the middle.

GPT-4V

$1)The image depicts the interior of a brightly colored bus, featuring a unique design with patterned seats and warm colors. Large

windows line the sides, allowing natural light to fill the space, creating an inviting atmosphere.

$2) The image features an abstract representation of the interior of a bus, characterized by vibrant, colorful patterns on the seats. Acc: 0
Large windows line the sides, allowing light to wash over the intricately drawn design, creating a whimsical atmosphere. Ser: 55.0
$3) The image depicts the interior of a bus or van, featuring several rows of seats arranged in a linear fashion. The seating is Con: 100
designed with patterned upholstery and there are large windows visible along the sides, allowing for natural light to enter the space. S¢: 84.4
S4) The image depicts the interior of a bus or shuttle, characterized by a clean and organized seating arrangement. The seats are
upholstered in a patterned fabric, and there are multiple windows along the sides allowing for light to enter the space.

S4) Grayscale

$1) The image depicts the interior of a small bus or shuttle, showcasing rows of colorful, patterned seats. Large windows on
the sides provide natural light, creating a bright and vibrant atmosphere.

$2) The image depicts the interior of a bus or train with rows of colorful, patterned seats. The windows on the sides lend a Acc: 25
bright and airy feel to the transportation environment.

Ser: 53.1
$§3) The image shows the interior of a small passenger bus or shuttle with multiple seats arranged in rows. The seats are Cz:-r 83.3
upholstered with a patterned fabric featuring blue and orange designs, and windows line the sides of the vehicle. Se %8 2‘
c: 78.

$4) The image shows the inside of a bus with rows of seats facing each other. There are windows on either side of the bus and
the ceiling is white with a vent in the middle.

Figure 8: Qualitative Results for the Image Restyling Task.
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Prompt: Please describe
the place in the image in
two sentences.

GT: office

S3) Udnie

S4) Grayscale

BLIP-2 LLaVa 1.5M (Improved) BLIP-2 (Improved)
$1) a painting of an office with a desk and a chair Acc: 100 $1) living room Acc: 0 $1) office

$2) an office with a large window Ser:54.9  S2) living room Ser: 49.3  S2) office

$83) an office with a large window Con: 16.7  $3) living room Con: 100  S3) office

$§4) this is a black and white photo of an office Sc: 58.7 $4) living room Sc: 100 $4) office

LLaVa 1.5M

$1) The image features a living room with a red desk, a chair, and a potted plant.
82) The image features a living room with a couch, a desk, and a window.

8§3) The image features a large office space with a desk, chair, and a potted plant.
S$4) The image shows a large office space with a desk, chair, and computer setup.

$1) The image features a vibrant hotel room with a red bed, a wooden chest, a couch, and a wall with a painting, giving it
a colorful, unique atmosphere.

$2) The image features a room with a large window, a couch, and a chair. There is also a computer in the room.

83) The image features a well-decorated room with a large desk and a large window, reflecting a beautiful view outside.
S$4) The image features a spacious office room with large windows, a desk, a chair, a television, and a potted plant.

moellava

81) The image shows a room with a desk, a chair, a computer, and a window. There are also potted plants and a vase in the room.
$2) The image is a colorful, artistic representation of a room with a desk, a chair, a computer, and a potted plant. The room has a
window and is decorated with stained glass.

§3) The image depicts a clean and organized office space with a desk, chair, and computer. The office is well-lit with natural light
from two windows, and there are potted plants on the desk, adding a touch of greenery to the room.

S$4) The image is a black and white photo of a clean and organized office space. The office features a desk with a chair, a
computer, and a potted plant.

Qwen-VL

§1) A red table sitting in a room with two large windows.

$2) Aroom with a bed, a computer, and two potted plants.

$3) Aroom with a bed, two chairs, a desk and two computer monitors.

S4) A black and white image of a corner office with a desk and chair.

BLIP-3

$81) A painting of an office with a desk and a chair.

$2) Aroom with a desk and a chair.

$3) A painting of an office with a desk and a chair.

$4) A black and white photo of an office with a desk, chair, and a computer.

Gemini

$1) The image shows a well-lit office with two desks, both with computers on them. The office appears to be in a high-rise building
with a large window offering a view of a city skyline.

$2) This is an office space with two desks, computers, and a large window that overlooks a body of water. The room is decorated
with a plant, and the image is stylized with a stained-glass effect.

83) The image shows a well-lit office space with a large desk, two chairs, and two computers. The office is modern and has a large
window overlooking a cityscape.

$4) This is a spacious office with large windows overlooking a cityscape. It has a large desk, two computer monitors, a comfy chair,
and a potted plant.

GPT-4V
$1) The image depicts an interior space with a modern, cozy ambiance, featuring a red sofa and a cushioned armchair that invite

relaxation. Large windows let in ample natural light, illuminating the room and a variety of indoor plants that add a touch of greenery

to the warm-toned decor.

$2) The image appears to be an artistic, abstract representation of a bedroom with a bed in the center, a large window providing a
view of the outside, and possibly a nightstand or desk with a laptop. The image is stylized with distinct, bold lines and a vibrant
color palette that distorts the usual perspective, giving it a dream-like or surreal quality.

8§3) The image features an interior space with a modern design, including large glass windows that provide a view of the exterior
environment. The room is furnished with a desk on which there is a computer, a plant, and various other items, suggesting a
workspace or office setting.

S4) The image shows a well-furnished office with a modern aesthetic, featuring a large desk, comfortable chair, and multiple
computer monitors, indicative of a technology-focused workspace. Large windows provide a view of the exterior, suggesting the
office is located in a high-rise building, and the presence of plants adds a touch of nature to the room.

$1) The image appears to be an office space with large windows, featuring two desks equipped with computers and an
ergonomic chair. There are potted plants adding a touch of greenery, contributing to a vibrant and professional atmosphere.
$2) The image depicts a vibrant and artistic rendition of an office space, complete with desks, computers, and large windows
that let in ample natural light. The stained-glass effect adds a colorful and abstract element to the scene, enhancing the overall
ambiance.

$§3) The image depicts a modern office space with large windows that provide a view of the outdoors. The office is furnished
with a desk, computer, chair, and houseplants, creating a professional yet comfortable environment.

$$4) This is a spacious office with large windows overlooking a cityscape. It has a large desk, two computer monitors, a comfy
chair, and a potted plant.

Figure 9: Qualitative Results for the Image Restyling Task.
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Acc: 100
Ser: 100
Con: 100
Sc: 100

Acc: 50
Sot: 43.6
Con: 83.3
Sc: 77.0

Acc: 25
Ser: 32.9
Con: 50
Sc: 70.7

Acc: 50
Ser: 43.2
Con: 100
Sc: 81.6

Acc: 25
Sort: 34.9
Con: 16.7
Sc: 47.4

Acc: 75
Sot: 48.9
Con: 33.3
Sc:73.4

Acc: 100
Set: 50.1
Con: 100
Sc: 80.2

Acc: 50
Ser: 35
Con: 50
Sc: 70.7

Acc: 100
Ser: 47.3
Con: 66.7
Sc: 70.7
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Prompt: What kind of object
is in the masked region?

GT: orange

BLIP-2 LLaVa 1.5M (Improved) Acc: 100 BLIP-2 (Improved)

Acc: 100
A1) oranges Sor: 81.9 A1) orange Sar: 100 A1) orange
A2) oranges Con: 100 A2) orange Con: 100 A2) orange
A3) oranges Sc: 100 A3) orange Sc: 100 A3) orange
LLaVa 1.5M

A1) There is an orange in the masked region.
A2) There is a square object in the masked region.
A3) There is a green square in the masked region.

A1) In the masked region, there is an orange.
A2) The masked region is a square.
A3) The masked region contains green leaves or branches.

moellava

A1) There is an orange in the masked region of the image.

A2) The masked region features an orange tree with oranges on it.

A3) There is a green object in the masked region, which is a green box.

Qwen-VL

A1) The masked region contains an orange fruit hanging from a tree.
A2) The object in the masked region is an orange.

A3) The object in the masked region is a green square.

BLIP-3

A1) The masked region contains an orange.

A2) The masked region is a white rectangular shape with horizontal lines.
A3) The masked region is a green rectangle with horizontal lines.

Gemini

A1) The masked region contains an orange.

A2) The masked region contains a fruit. It is likely a citrus fruit, given the context of the image.
A3) The masked region contains a fruit. It is likely an orange or a tangerine.

GPT-4V

A1) | can't identify the object in the masked region of the image. However, the visible parts
suggest that the surroundings include plants and possibly some fruit.

A2) I'm unable to see the masked region, so | can't determine what object it might contain. If
you can describe the image or provide more context, | may be able to help!

A3) | can't see the masked region in the image you provided, so I'm unable to determine what
kind of object is there. If you can describe the object or provide more context, | can help you
with information related to it!

A1) The masked region in the image obscures part of a fruit, specifically an orange, growing on
a tree. The surrounding branches and leaves, along with the color and texture of the visible
parts, suggest that the object is an orange.

A2) The masked region appears to be obscuring parts of a tree or plant. Given the context of
the surrounding branches and leaves, it is likely that the object in the masked region could be
fruit or flowers growing on the tree. The background outside the masked area reveals what
seems to be some orange-colored fruit, suggesting they could be oranges. Therefore, the
object in the masked region is likely a fruit, specifically an orange.

A3) The masked region of the image is likely containing a fruit, most probably an orange or a
similar citrus fruit, as suggested by the context of the surrounding branches and leaves. The
surrounding foliage and the small visible parts of an orange fruit further hint towards this.

Figure 10: Qualitative Results for the Context Reasoning Task.
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Acc: 100
Scr: 100
Con: 100
Sc: 100

Acc: 33.3
Scr: 42.5
Con: 0
Sc: 47.4

Acc: 33.3
Scr: 36.4
Con: 0
Sc: 30.2

Acc: 66.7
Ser: 53.7
Con: 0
Sc:40.3

Acc: 66.7
Ser: 50.0
Con: 0
Sc: 50.1

Acc: 33.3
Ser: 25.7
Con: 33.3
Sc: 65.2

Acc: 66.7
Ser: 51.9
Con: 66.7
Sc: 77.0

Acc: 0
Ser: 21.3
Con: 33.3
Sc: 58.1

Acc: 100
Ser: 471
Con: 100
Sc:91.5
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Prompt: What kind of object
is in the masked region?

GT: toilet

BLIP-2 Acc: 0 LLaVa 1.5M (Improved)ACC: 100 BLIP-2 (Improved)

Al)a sink Sor: 48.6 A1) toilet Sar: 100 A1) toilet
2;’ g s!"t Con: 100 2_3,) '°!:e‘ Con: 100 :? ‘0!:5'

) a sinl Sc: 100 ) toilet Sc: 100 ) toilet
LLaVa 1.5M

A1) The masked region in the image contains a toilet paper dispenser.
A2) The masked region in the image contains a sink.
A3) There is a sink in the masked region.

A1) The masked region in the image contains a picture of a toilet.
A2) In the masked region, there is a sink faucet.
A3) In the masked region of the image, there is a sink.

moellava

A1) The masked region contains a white sink.
A2) The masked region contains a toilet.

A3) The masked region contains a toilet.

Qwen-VL

A1) The masked region contains a radiator.

A2) The masked region contains a toilet, which is located next to the sink in the bathroom.
A3) The masked region is a white sink, which is a part of a bathroom.

BLIP-3

A1) The masked region appears to be a toilet.
A2) The masked region obscures a toilet.

A3) The masked region is over a sink.

Gemini

A1) The masked region contains a toilet bowl.
A2) The masked region contains a toilet bowl.
A3) The masked region contains a toilet brush.

GPT-4V

A1)The masked region seems to be obscuring part of a sink or basin area. It's likely a portion
of the bathroom fixtures, possibly where you would find taps or plumbing connections.
However, without more specifics, it's hard to determine exact details.

A2) The masked region likely contains an object found in a restroom setting, possibly
concerning sanitary fixtures. Based on the surrounding objects visible in the image, it could be
a toilet or another type of sink or basin.

A3) The masked region likely contains a washbasin or sink, as suggested by the shape and
position of the visible parts of the object in the image.

A1) The masked region seems to be concealing an object that is directly next to a sink and
appears to be part of a restroom setup. Given the context and typical restroom arrangements,
it's possible that the masked object is another fixture typically found in such settings, such as a
paper towel dispenser, a hand dryer, a trash bin, or part of a urinal. The exact nature of the
object cannot be determined solely based on the surrounding context.

A2) The masked region is likely covering a toilet bowl. The objects in the surrounding area
include a urinal to the left and a sink in the center, often found together in a restroom
environment with a toilet being a common nearby fixture.

A3) The masked region appears to be covering part of a toilet bowl in a bathroom.

Figure 11: Qualitative Results for the Context Reasoning Task.
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Acc: 100
Scr: 100
Con: 100
Sc: 100

Acc: 33.3
Set: 41.3
Con: 0
Sc: 53.7

Acc: 33.3
Scr: 48.8
Con: 33.3
Sc: 471

Acc: 66.7
Ser: 51.0
Con: 33.3
Sc: 78.3

Acc: 33.3
Scr: 35.1
Con: 33.3
Sc: 59.4

Acc: 66.7
Scr: 43.9
Con: 66.7
Sc: 76.5

Acc: 100
Sct: 62.3
Con: 100
Sc: 86.4

Acc: 33.3
Ser: 27.6
Con: 100
Sc: 75.7

Acc: 66.7
Sct: 41.0
Con: 100
Sc: 85.6
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