
Relative Error Fair Clustering in the Weak-Strong Oracle Model

Vladimir Braverman 1 Prathamesh Dharangutte 2 Shaofeng H.-C. Jiang 3 Hoai-An Nguyen 4 Chen Wang 5 6

Yubo Zhang 3 Samson Zhou 6

Abstract

We study fair clustering problems in a setting
where distance information is obtained from two
sources: a strong oracle providing exact distances,
but at a high cost, and a weak oracle providing
potentially inaccurate distance estimates at a low
cost. The goal is to produce a near-optimal fair
clustering on n input points with a minimum
number of strong oracle queries. This models
the increasingly common trade-off between ac-
curate but expensive similarity measures (e.g.,
large-scale embeddings) and cheaper but inac-
curate alternatives. The study of fair cluster-
ing in the model is motivated by the important
quest of achieving fairness with the presence
of inaccurate information. We achieve the first
(1+ε)-coresets for fair k-median clustering using
poly

(
k
ε · log n

)
queries to the strong oracle. Fur-

thermore, our results imply coresets for the stan-
dard setting (without fairness constraints), and we
could in fact obtain (1 + ε)-coresets for (k, z)-
clustering for general z = O(1) with a similar
number of strong oracle queries. In contrast, pre-
vious results achieved a constant-factor (> 10)
approximation for the standard k-clustering prob-
lems, and no previous work considered the fair
k-median clustering problem.

The authors are listed in alphabetical order. 1Google Research
2Department of Computer Science, Rutgers University 3School
of Computer Science, Peking University 4Computer Science
Department, Carnegie Mellon University 5Department of
Computer Science, Rice University 6Department of Computer
Science & Engineering, Texas A&M University. Correspon-
dence to: Vladimir Braverman <vbraverman@google.com>,
Prathamesh Dharangutte <ptd39@rutgers.edu>,
Shaofeng Jiang <shaofeng.jiang@pku.edu.cn>, Hoai-
An Nguyen <hnnguyen@andrew.cmu.edu>, Chen Wang
<chen.wang.research@gmail.com>, Samson Zhou <sam-
sonzhou@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1 Introduction

Clustering is a cornerstone of unsupervised learning and
a fundamental technique for data science, often used to
identify latent structure in high-dimensional and large-scale
datasets, thus serving as an essential pre-processing step
in numerous downstream applications, facilitating dimen-
sionality reduction, feature learning, and data summariza-
tion. Informally, the objective of clustering is to partition
a dataset into k clusters such that intra-cluster similarity
is maximized while inter-cluster similarity is minimized.
Traditional clustering formulations, such as the k-median
and k-means problems, have been the focus of extensive
study since their inception in the 1950s (Steinhaus et al.,
1956; MacQueen, 1967). Formally, in the k-median clus-
tering problem, the input is a set X of n points in a space
with metric d, and the goal is to minimize the quantity
minC:|C|≤k

∑
x∈X minc∈C d(x, c).

Fair clustering. Observe that the set of centers C inher-
ently divides X into clusters by assigning each point x ∈ X
to its closest center c ∈ C. Due to this implicit partition-
ing rule, standard notions of clustering may produce bi-
ased results, leading to potentially discriminatory outcomes
that perpetuate social inequalities in downstream applica-
tions (Dwork et al., 2012; Chhabra et al., 2021). For in-
stance, clustering algorithms used for hiring or lending may
unintentionally discriminate against certain demographic
groups, e.g., race, gender, religion, or socioeconomic status.
Such biases are particularly concerning in high-stakes do-
mains like healthcare, education, and finance, where data
science algorithms are strongly influential in the decision-
making process. To address these challenges, there has
been a growing body of research focused on incorporat-
ing fairness constraints Ahmadian et al. (2020b;a); Song
et al. (2024); Chen et al. (2025), especially into clustering
algorithms to ensure equitable outcomes.

One such constraint is disparate impact, which requires all
“protected” subpopulations to receive similar representation
in the decision-making process. To that end, Chierichetti
et al. (2017b) introduced (α, β)-fair clustering, where each
point x ∈ X is associated with one or more subpopulation
(or group) j ∈ [ℓ], across ℓ total groups. Since the groups
could overlap, we let Λ be the maximum number of disjoint

1

Relative Error Fair Clustering

groups each x ∈ X could belong to. The fairness constraints
are specified by parameters 0 ≤ αj ≤ βj ≤ 1 for each
group j, so that the objective is to minimize the clustering
cost while ensuring that each cluster has at least an αj

fraction and at most a βj fraction of points from group j.
These constraints are designed to prevent subpopulations
from being under-represented or over-represented within
any cluster, thereby promoting fair and balanced cluster
assignments.

Weak-strong oracle model. Up to this point, all formula-
tions of clustering discussed assume that the ground-truth
similarity measure between each pair of points is given as
part of the input, either through implicitly through an under-
lying metric or explicitly through either oracle access or a
similarity matrix. Recent advancements in modern machine
learning have highlighted the importance of large-scale sim-
ilarity models, particularly in applications involving non-
metric data such as images, text, and videos. These models
use embedding functions (Van der Maaten & Hinton, 2008;
Mikolov et al., 2013; He et al., 2016; Devlin et al., 2019)
to provide a mechanism to generate real-valued distances
for non-metric data, so that each point x is transformed into
a vector f(x) such that the similarity between data points
x and y can be inferred from the distance d(f(x), f(y)) in
the embedding space. Thus, embedding models, such as
those derived from deep learning, have become crucial in
enabling downstream tasks such as clustering on non-metric
input data.

However, as these embedding models scale in complex-
ity and accuracy, the computational resources required to
perform pairwise similarity computations also increase sig-
nificantly. This has led to the widespread adoption of hy-
brid approaches that combine highly accurate but resource-
intensive similarity models with more efficient, albeit less
precise, secondary models (Kusner et al., 2015; John et al.,
2020; Silwal et al., 2023; Xu et al., 2024; Galhotra et al.,
2024) (see Appendix A for additional discussions). These
lightweight models, often referred to as “weak” similar-
ity models, rely on approximations or auxiliary informa-
tion, such as simple feature-based heuristics (e.g., location,
timestamps, or metadata) (John et al., 2020; Ringis et al.,
2021), compact neural networks, or historical similarity
data (Mitzenmacher & Vassilvitskii, 2022).

To that end, Bateni et al. (2024) introduced the weak-strong
oracle model, which considers a space X consisting of n =
|X | points, equipped with a metric d : X × X → R that
represents the output of an accurate but computationally
expensive similarity model. Although the metric d is not
directly available, it can be accessed through two types of
oracles: weak and strong, prescribed as follows.

Definition 1 (Weak-strong oracle model). Let (X ,d) be a
metric space where d is the measure of distance between

points. We assume that the metric d is not directly accessi-
ble to the algorithm. In the weak-strong oracle model, we
are given two oracles: the weak oracle WO and the strong
oracle SO. The properties of the oracles are prescribed as
follows.

• Weak oracle WO: given a pair of points (x, y) ∈ X ×
X , the query WO(x, y) returns the distance d(x, y)
exactly with probability 2/3. With probability 1/3,
WO(x, y) returns an arbitrary answer. The randomness
is drawn exactly once.

• Strong oracle SO on points: given a pair of points
(x, y) ∈ X ×X , if both SO(x) and SO(y) are queried,
then the value of d(x, y) is (deterministically) re-
vealed.

• Strong oracle SO on distances: given a pair of points
(x, y) ∈ X × X , the answer to the query SO(x, y)
(deterministically) reveals d(x, y).

In this model, the weak oracle distances represent a cost-
effective but less accurate approximation of the true dis-
tances, whereas the strong oracle provides significantly
more precise results at a higher computational cost. Con-
sequently, our objective is to obtain a high-quality solution
to clustering for the underlying metric (X ,d), while mini-
mizing the number of queries made to the expensive strong
oracle. Furthermore, we allow the corruptions introduced by
the weak oracle to be adversarial in nature, which captures
a broad class of “imprecise weak oracles”, where the weak
oracle may produce arbitrarily poor distance estimates with
some probability. Since the randomness is drawn exactly
once, we cannot hope to use repeated queries and majority
tricks. We also remark that the failure probability of 1

3 is
quite flexible, e.g., it can be an upper bound on the failure
probability across all oracle queries and simply needs to be
some constant < 1

2 .

Bateni et al. (2024) achieves constant-factor approximations
to (k, z)-clustering problems for z = O(1) in the weak-
strong oracle model with Õ(k) strong point oracle queries
and Õ(k2) strong distance oracle queries1. They also proved
that Ω(k) strong point oracle queries are necessary for any
bounded approximation, making their bounds tight up to
polylog n factors. On the other hand, the approximation
factor in their algorithm is some C > 10 for k-means and
even bigger constants for general (k, z). Due to the fact
that their algorithm is an adaptation of Meyerson sketch
(Meyerson, 2001b), any improvement below a certain con-
stant is unlikely. Furthermore, their algorithm does not have
any guarantees on fairness, which could lead to potentially
biased and harmful outcomes. Therefore, there is an open

1As standard, we use Õ(·) to hide polylog (n) terms.

2

Relative Error Fair Clustering

question for efficient clustering algorithms with fairness
constraints and (1 + ε)-approximation in the weak-strong
oracle model.

Due to hardness results for k-clustering (Guha & Khuller,
1999; Awasthi et al., 2015; Cohen-Addad & Karthik C. S.,
2019; Bhattacharya et al., 2021), we cannot hope for time
efficiency for (1 + ε)-approximate fair clustering. Nev-
ertheless, we could still aim for efficiency on the query
complexity of the strong oracle. To this end, a very helpful
notion is coresets. Roughly speaking, a (k, ε) coreset S of
a point set X is a weighted subset of points of the X such
that the fair k-clustering costs on S and X are bounded by
a (1 + ε) factor (see Definition 3 for the formal definition).
For our purpose, if we get a coreset of size s with a small
number of strong oracle queries, we could then perform
clustering as a post-processing step with at most s extra
strong point (or s2 distance) oracle queries. As such, we
could ask the following motivating question: Is it possible
to design fair (k, ε) coresets with query efficiency in the
weak-strong oracle model?

1.1 Our Contributions

We answer the motivating question in the affirmative by
designing the first (1 + ε) fair k-median algorithm with
poly(k log n/ε) strong point (and distance) oracle queries
and poly(k log n/ε) coreset size. Recall that we use Λ to
denote the maximum number of disjoint groups a data point
belongs to. The formal guarantees of the coreset algorithm
can be given as follows.

Theorem 1. There exists an algorithm in the weak-strong
oracle model that, given a dataset X such that each x ∈ X
belong to at most Λ disjoint groups, with high probability
computes a (k, ε) fair coreset of size Õ(Λ · k

2

ε2) for k-median
clustering using Õ(Λ · k) strong oracle point queries (or
edge queries), Õ(Λ · nk) weak oracle queries, and Õ(Λ ·
(nk + k2/ε2)) time.

In addition to the query efficiency on the strong oracle,
our algorithm in Theorem 1 also uses the clean uniform
sampling framework and enjoys a fast running time, making
it suitable for practical purposes. Although getting an actual
(1 + ε)-approximation clustering might take exponential
time, we could run some approximation algorithms, e.g.,
the algorithms in Chierichetti et al. (2017a); Backurs et al.
(2019), as the post-processing to obtain fair clustering. Prior
to Theorem 1, no fair k-median coreset with non-trivial
approximation guarantees or coreset size under the weak-
strong oracle model was known2.

Theorem 1 is stated in the most general form, where the

2For trivial solutions, we can always, e.g., return the entire
dataset as the coreset.

subpopulation groups could have overlaps. In the case of
Λ = 1, i.e., the subpopulations are themselves disjoint, the
construction of fair clustering coreset is essentially reduced
to assignment-preserving coreset that specifies the required
number of assignments for each cluster (see Section 2 for the
formal definition). The following theorem characterizes our
guarantees for the assignment-preserving (Λ = 1 fairness)
case.

Theorem 2. There exists an algorithm in the weak-strong
oracle model that, given a dataset X , with high proba-
bility computes a (k, ε)-coreset of size O(k

2·log4 n·logn/ε
ε2)

for assignment-preserving k-median clustering using
O(k log4 n) strong oracle point queries (or edge queries),
O(nk · log3 n) weak oracle queries, and Õ(nk + k2/ε2)
time.

Theorem 2 also implies (k, ε) coreset for standard k-median
clustering (without the fairness or assignment constraints).
Note that due to the lower bound in Bateni et al. (2024),
Ω(k) strong oracle queries are necessary to obtain such
coresets even for any bounded approximation and without
assignment constraints. As such, our algorithm is optimal
up to polylog(n) factors.

One would naturally wonder whether we could similarly
get (k, ε) coresets for other k-clustering problems, e.g., k-
means clustering. Our second result shows that such a goal
is possible, and if we do not care about fairness, we could
obtain (k, ε) coresets for (k, z) clustering with z = O(1).

Theorem 3. There exists an algorithm in the weak-strong
oracle model that, with high probability, computes a (k, ε)

coreset of size Õ(k
2

ε3) for (k, z)-clustering with any z =

Θ(1) using Õ(k
2

ε3) strong oracle point queries (or edge
queries), Õ(nk) weak oracle queries, and Õ(nk + k2/ε3))
time.

Note that the size and query bounds for (k, z) clustering
include 2O(z) dependency, although it could be hidden as
long as z = Θ(1). Compared to Theorem 1, the number of
strong oracle queries is slightly worse, but we are able to
deal with general (k, z) objectives. We leave the quest of
the optimal k dependency for (k, z) clustering coreset as an
open problem to pursue in the future.

Experiments. To validate the theoretical guarantee of our
algorithms, we conduct experiments on real-world datasets:
the “Adult” dataset (Becker & Kohavi, 1996) and the “De-
fault of Credit Card Clients” dataset (Yeh, 2009). The weak
oracle is designed to return very small distances if it runs
into an erroneous case. We compare our algorithm against
a baseline algorithm that uniformly at random samples and
re-weights points. The experiments show that the proposed
algorithm in Theorem 1 could significantly outperform the
uniform baseline. We defer the experiments to Section 5.

3

Relative Error Fair Clustering

1.2 Technical overview

Our coreset algorithms are adaptations of the ring sampling
approaches used extensively in the literature (e.g., (Chen,
2009; Braverman et al., 2022)). Roughly speaking, the ring
sampling approach first performs an O(1)-approximation
“weak” k-clustering algorithm with average cost R. Then,
for the points assigned to each center, the algorithm divides
the points according to rings with doubling distances, i.e.,
2iR to 2i+1R for the i-th ring. It has been shown in Chen
(2009) that sampling Õ(k/ε2) points from each ring leads
to a (ε, k)-coreset.

In the weak-strong oracle model, a significant challenge
for the ring sampling approach is that we do not know the
set of points in a ring. Since the weak oracle could give
arbitrarily adversarial answers, we cannot assign points to
rings based on the weak oracle. On the other hand, if we
query the strong oracle for all points, the query complexity
will be too high to afford.

The key idea to resolve the above dilemma is by heavy-
hitter sampling and recursive peeling. In particular, in each
iteration, we sample k poly(log(n)/ε) points, and we make
strong oracle queries on the sample points to know their
exact ring assignments. We then categorize the rings into the
heavy ones, i.e., the rings with k poly(log(n)/ε) sampled
points, and the light one, i.e., the rings with few samples.
The key observation here is that if a heavy ring lies on the
outside of (possibly multiple) light rings, then with high
probability, we could safely ignore the light rings since their
costs are negligible compared to the cost of the outer heavy
ring. Therefore, we could focus on building coresets only
for the heavy rings. Furthermore, after one iteration, we
could use a procedure in Bateni et al. (2024) to peel off the
points in the heavy ring we processed along with the light
rings inside. We could then recursively process all the points
with a low overhead of iterations.

The above gives the idea of the unconstrained (ε, k)-coreset.
To generalize the idea to assignment-preserving and fair
coresets, we need to adapt the ideas in existing work for
fair clustering (e.g., (Cohen-Addad & Li, 2019; Braverman
et al., 2022)) in a white-box manner. Algorithmically, we
introduce an additional sampling step from the points we
peel off in each iteration. If the peeled points form a ring,
we could use lemmas from Cohen-Addad & Li (2019) to
establish the desired results. However, the peeled points are
not necessarily rings in our algorithm; and in light of this,
we need to open the black-box and prove the assignment-
preserving properties still hold in our case, which is part of
our technical contributions.

To gradually build up the necessary technical tools and for
the ease to understand of the readers, we present the results
in a reverse order. We will first discuss the unconstrained

coreset algorithm in Section 3 for k-median, which includes
the key ideas used in the algorithms. We will then discuss
the fair coreset in Section 4.

2 Preliminaries

k-clustering and coresets. We define the distance be-
tween a point x ∈ X and a set of points S ⊆ X as
d(S, x) = mins∈S d(s, x), or the distance between x and
the closest point in S. We define the distance between two
sets S1, S2 ⊆ X as d(S1, S2) = mins2∈S d(S1, s2). Addi-
tionally, we say that the diameter of a set diam(S ⊆ X) =
maxs1,s2∈S d(s1, s2). We assume the distances are inte-
gers, and the aspect ratio ∆ = poly(n): both assumptions
are common in the literature.

Let X be a set of n points. Every point x ∈ X has an
associated positive integer weight w(x). Note that hav-
ing an unweighted set X is the same as all points be-
ing assigned unit weight. We define the total weight of
w(X) =

∑
x∈X w(x). We denote a clustering of set X by

center set C = {c1, . . . , ck} ⊆ X as a partition where each
x ∈ X is assigned to the closest c ∈ C.

Definition 2 ((k, z)-clustering, k-means, and k-median).
We denote the cost of the (k, z)-clustering of point x ∈ X
using center set C as costz(C, x) = dz(C, x)w(x). The
overall cost of the (k, z)-clustering is defined as

costz(C,X) =
∑
x∈X

costz(C, x).

For z = 1, the objective is the k-median clustering; for z =
2 problem, the objective is called the k-means clustering.

Throughout, we use C∗ to denote the optimal clustering
that minimizes the cost. We now define the notion of (k, ε)
coreset formally for clustering objectives.

Definition 3 ((k, ε)-coreset). Given a set of points X , a
weighted subset S ⊆ X is a (k, ε)-coreset for X for (k, z)-
clustering if we have

|costz(C, S)− costz(C,X)| ≤ ε · costz(C,X)

for all C ⊆ X satisfying |C| ≤ k.

Fair k-clustering. We formally introduce the notions of
fair clustering and assignment-preserving coresets that are
essential for fair coresets. To this end, we first define the
notion of assignment function and assignment constraints
in clustering.

Definition 4 (Assignment constraints in clustering). For any
fixed weighted set S ⊆ X and C ⊆ X , an assignment con-
straint is a function Γ : C → R≥0 such that

∑
c∈C Γ(c) =

w(S). An assignment function σ : S × C → R≥0 is said
to be consistent with Γ, denoted as σ ∼ Γ, if ∀c ∈ C,

4

Relative Error Fair Clustering

σ(S, c) :=
∑

x∈S σ(x, c) = Γ(c). For S1 ⊆ S and C1 ⊆ C,
the connection cost between S1 and C1 under σ is defined
as:

costσz (S1, C1) :=
∑
x∈S1

∑
c∈C1

σ(x, c) · dz(x, c).

The notion of fair (k, z)-clustering with group fairness is
defined using assignment constraints. Conceptually, fairness
here means that the assignment from each group to each
cluster satisfies a certain range of group disparity constraints.

Definition 5. In (α, β)-fair (k, z) clustering, the input
dataset X is partitioned into X1, · · · Xm groups. The groups
are not necessarily disjoint. We are further given m-
dimensional vectors α, β ∈ [0, 1]m. The goal is to find
an assignment function σ and a set of centers C ⊆ X such
that for every group Xi and center c ∈ C, there is

αi ≤
σ(Xi, c)

σ(X , c)
≤ βi.

Assignment-preserving clustering and fair k-clustering.
Next, we define (k, z)-clustering with assignment con-
straints, which, roughly speaking, specifies the “amount”
of assignment each center could get. We will see shortly
that their is a strong relationship between clustering with
assignment constraints and fair clustering.
Definition 6 ((k, z)-Clustering with assignment constraints).
Given a weighted dataset S ⊆ X , a center set C ⊆ X with
|C| ≤ k, and an assignment constraint Γ : C → R≥0, the
objective for (k, z)-Clustering with assignment constraint Γ
is defined as:

costz(S, C,Γ) := min
σ:S×C→R+,σ∼Γ

costzσ(S, C).

The next notion introduces the assignment-preserving (k, ε)
coresets. It is in the same spirit of (k, ε)-coreset as in Defi-
nition 3 but with assignment-preserving properties.
Definition 7 (Assignment-preserving coresets for
(k, z)-Clustering). LetX be a (potentially weighted) dataset.
A weighted subset S ⊆ X is an assignment-preserving
(k, ϵ)-coreset for (k, z)-clustering if w(X) = w(S), and
for every C ⊆ X with |C| ≤ k and assignment constraint
Γ : C → R≥0:

|costz(S, C,Γ)− costz(X , C,Γ)| ≤ ε · costz(X , C,Γ).

Note that the actual assignment function σ that attains
costz(X , C,Γ) and σ′ that attains costz(S, C,Γ) could be
different as they may have different input spaces to begin
with.

There is a strong relationship between assignment-
preserving coresets and fair coresets. In particular, we have
the following established result.

Proposition 1 ((Huang et al., 2019)). LetA be an algorithm
that constructs an assignment-preserving (k, ε) coreset for
(k, z)-clustering on X with size s. Furthermore, let ∆ be
the number of distinct groups each x ∈ X could belong to.
Then, the following algorithm

• Computes (k, ε) coreset for (k, z)-clustering for each
distinct group;

• Take the union of the coresets;

is an algorithm for (α, β)-fair (k, ε) coreset for (k, z)-
clustering.

Proposition 1 implies the following lemma for the fair core-
set in the weak-strong oracle model.

Lemma 2.1. For a given dataset X , let Λ be the number of
distinct groups each x ∈ X could belong to. An algorithm
that constructs an assignment-preserving (k, ε) coreset for
(k, z)-clustering with size s1, s2 strong oracle queries, s3
weak oracle queries, and time t implies an algorithm for
(k, ε) fair coreset for (k, z)-clustering with size O(Λ · s1),
O(Λ · s2) strong oracle queries, O(Λ · s3) weak oracle
queries, and time O(Λ · t)

Weak-strong oracle primitives. We now discuss some
primitive algorithms in the weak-strong oracle model. We
first give a one-way reduction from SO on distances to SO
on points.

Observation 1. Given a set of points (X , d) in a metric
space d and any fixed function f(X , d), if there exists an al-
gorithm that computes f(X , d) with q strong oracle queries
on points, then there exists an algorithm that computes
f(X , d) with O(q2) strong oracle queries on distances.

Note that the other way of reduction (points to distance)
does not necessarily hold as in Observation 1. Therefore,
up to a quadratic blow-up, our primary focus is the point
queries for the strong oracle SO3.

Next, we give some existing results from Bateni et al. (2024)
on which we build our algorithms. The first technical tool
from Bateni et al. (2024) is an algorithm to construct weak
coresets.

Proposition 2 ((Bateni et al., 2024), Theorem 8). There
exists an algorithm that given a set of points X such that
|X | = n, returns an O(1)-approximate solution to the opti-
mal (k, z)-clustering for z = O(1) on X together with the
assignment of each point using O(k · log2 n) strong oracle
queries and O(nk · log2 n) weak oracle queries.

3That being said, coreset algorithms actually enjoy the same
asymptotic query efficiency for strong point and distance oracles
due to algorithm design.

5

Relative Error Fair Clustering

Next, we give a distance estimator that is helpful for using
weak oracle queries to compute approximate distances.

Proposition 3 ((Bateni et al., 2024), Lemma 6). Let S be
a set of points such that |S| ≥ 10 log n, and suppose that
strong oracle queries have been made on all points s ∈ S.
Furthermore, let RS be the diameter of S. Then, there exists
an algorithm that given S, for any x ∈ X and s ∈ S, uses
Õ(1) weak oracle queries and returns a estimated distance
d̃(x, S) such that

d(x, s) ≤ d̃(x, S) ≤ d(x, s) + C0 ·RS ,

where C0 ≤ 5 is a universal constant.

Ring sampling primitives We use the idea of uniform
sampling from rings in the same manner of Chen (2009);
Braverman et al. (2022). In what follows, we introduce
the following definition for ring sampling to introduce our
algorithm.

Definition 8. Let ν(A,X) ≤ βνOPT denote the clustering
cost and let R = ν(A,X)

βn be the lower bound on average
radius of optimal clustering. Let Pi be the set of points
x ∈ X assigned to ci and let Pi,j = Pi∩ [B(ci, (2C0)

j
R)\

B(ci, (2C0)
j−1

R)] for j ≥ 1 and Pi,j = Pi ∩B(ci, R) for
j = 0. As a result, we have log(βn) rings around each
ci ∈ C and x ∈ X \ C is part of exactly one ring.

Note that compared to the standard ring sampling-based
algorithms like Chen (2009), our algorithm uses search with
C0 multiplication. This ensures whenever a point is placed
in the wrong ring, it could only end up in the next ring.

The aspect ratio and the number of rings. Since the
rings are defined by a multiplicative factor of C0 > 1, for
instances with an aspect ratio ∆, for each center ci of the
O(1)-approximation solution, there is at most O(logC0

(∆))
rings. It is common to assume the aspect ratio ∆ = poly(n);
for the clarity of presentation, we assume there are exactly
log n rings in this paper. Any change within the regime of
polynomial aspect ratio will only result in a constant factor
difference in the coreset size.

3 A (1 + ε)-Coreset for k-median Clustering

In this section, we give our algorithm that produces a (1+ε)-
coreset (without fairness constraints) for (k, z)-clustering
with Õ(k2/ε3) points and strong oracle SO queries. We
first remind the readers of the guarantees in our theorem.
For ease of presentation, we focus on the k-median case for
the analysis, and defer the full proof of (k, z)-clustering to
Appendix D. The theorem we aim to prove in this section is
as follows.

Theorem 4. There exists an algorithm in the weak-strong
oracle model that, with high probability, computes a (k, ε)

coreset of size Õ(k
2

ε3) for k-median clustering using Õ(k
2

ε3)

strong oracle point queries (or edge queries), Õ(nk) weak
oracle queries, and Õ(nk) time.

The algorithm. The main idea of our algorithm is based
on the heavy-hitter sampling and recursive peeling. Roughly
speaking, our algorithm first conducts uniform sampling for
the points assigned to a center in the O(1)-approximation.
The algorithm then makes strong oracle queries on these
points (or strong distance oracle queries between these
points and the center) to determine the rings for the sampled
point. Crucially, this allows us to identify the heavy-hitter
ring that accounts for a significant portion of the cost. As
such, it suffices to only construct coresets for these heavy-
hitter rings, and we indeed would have enough samples
from such rings. At this point, we would argue that there
is a collection of rings whose points are either added to the
coreset or their costs are insignificant enough so that they
could be ignored. We will then “peel” these points from
the point set and recurse on the remaining set. The detailed
description of the algorithm is as follows.

Algorithm 1. The construction algorithm for (1 + ε)
coreset

(1) Run the algorithm of Proposition 2 to get the weak
approximate clustering WC.

(2) Initialize all rings Pi,j as “not processed”.

(3) Initialize the strong coreset SC← ∅.

(4) For each center ci of WC:

(a) For each ring Pi,j , let Si,j be some samples from
the ring specified later.

(b) Initialize P̃i ← Pi as the remaining number of
points.

(c) For r = 1 : 10 log2 n iterations:

i. Sample sr = 100C0 · k log3 n
ε3 points uniformly at

random from P̃i, and let the sample set be Sr.
ii. Make strong oracle SO queries as follows:

• For point SO queries, query SO(x) for all points
x ∈ Sr.

• For distance SO queries, query SO(x, ci) for all
points x ∈ Sr.

iii. Ring assignment: For each point x ∈ Sr, add
x to Si,j , where j is the index of the ring to which
x belong.

iv. Find the ring j∗ with the largest index such that
|Si,j∗ | ≥ 80C0 · k log2 n

ε3 .
v. For each ring ℓ with index ℓ ≤ (j∗ + 1) and k
being “not processed”:

6

Relative Error Fair Clustering

• If |Si,ℓ| ≥ 30 · k log2 n
ε2 , run CORESET-UPDATE

(Algorithm 2) with inputs Si,ℓ and SC to obtain
an updated SC.

vi. Conduct the peeling step based as follows.
• If j∗ ̸= 0, run PEELING (Algorithm 3) with
{Si,j}j

∗

j=1 and P̃i.
• Otherwise (if j∗ = 0):
◦ If more than |Si,0|

2 points has distance at
most R/2C0 to ci, then run CONSERVATIVE-
PEELING (Algorithm 4) with Si,0 and P̃i.

◦ Otherwise, run PEELING (Algorithm 3) with
{Si,0} and P̃i.

vii. Mark rings as “processed” with the following
rule:
• If CONSERVATIVE-PEELING (Algorithm 4) is

executed (which implies j∗ = 0), mark points in
Pi,0 as “processed”.

• Otherwise, mark all the points in rings Pi,ℓ for
ℓ ≤ j∗ + 1 as “processed”.

Algorithm 2 (CORESET-UPDATE). An algorithm that
adds points to coreset.
Inputs: A sampled point set Si,ℓ; a set of existing
coreset SC
Output: An updated set of coreset SC

(1) Arbitrarily split the set of sampled points Si,ℓ to

• Sest
i,ℓ with 1/3 of the points in Si,ℓ;

• S
weight
i,ℓ with 2/3 of the points in Si,ℓ.

(2) Let m̃i,ℓ ←
3|P̃i|
sr
·
∣∣∣Sest

i,ℓ

∣∣∣ be the estimated number of
points in Pi,j .

(3) Re-weighting: add each point x ∈ Si,ℓ to the coreset
SC with weight m̃i,ℓ

|Si,ℓ| .

Algorithm 3 (PEELING). An algorithm that removes
points.
Inputs: Sampled sets {Si,j}j

∗+1
j=1 , where j∗ is obtained

from line 4(c)iv; the current set of surviving points P̃i

Output: An updated set of surviving points P̃i

(1) For each point x ∈ P̃i, run the algorithm of Propo-
sition 3 with the set Speel as an arbitrary subset of
10 log n points in the subset of ∪j

∗

j=1Si,j ∪ {ci}.

(2) Let T (r)
i be the set of points such that d̃(x, Speel) ≤

(2C0)
j∗+1 ·R.

(3) Remove all points in T
(r)
i from P̃i, i.e., P̃i ← P̃i \

T
(r)
i .

Algorithm 4 (CONSERVATIVE-PEELING). An algo-
rithm that removes points.
Inputs: Sampled sets {Si,0}; the current set of surviv-
ing points P̃i

Output: An updated set of surviving points P̃i

(1) For each point x ∈ P̃i, run the algorithm of Propo-
sition 3 with the set Speel as an arbitrary subset of
10 log n points in the subset of Si,0 ∪ {ci}.

(2) Let T (r)
i be the set of points such that d̃(x, Speel) ≤

R.

(3) Remove all points in T
(r)
i from P̃i, i.e., P̃i ← P̃i \

T
(r)
i .

The analysis. Due to space limits, we only prove the query
efficiency and coreset size, and defer the correctness proof
to Appendix B.

Lemma 3.1. Algorithm 1 uses at most k2 · log
5 n

ε3 SO point
(or distance) queries and at most O(nk log3 n) weak oracle
queries. The algorithm converges in Õ(nk + k2

ε3) time.

Proof. By Proposition 2, the number of strong oracle
queries required to get WC is O(k log2 n) strong point SO
queries or O(k log2 n) strong distance queries. In addition,
for each center for O(log2 n) iterations, the algorithm sam-
ples O(k log3 n/ε3) points and makes strong oracle queries
on all of then (or the queries between them and the center
ci). Since there are at most k centers in WC, the number of
strong oracle queries here is O(k2 log5 n/ε3).

For the number of weak oracle queries, the WC requires
O(nk log2 n) weak oracle queries. Furthermore, each point
makes at most O(log n) queries during one iteration of
line 4c in Algorithm 1. There are at most k centers, and each
center induces O(log2 n) iteration, which lead to a total of
O(nk log3 n) weak oracle queries. Finally, the time effi-
ciency scales with the total number of weak and strong ora-
cle queries, which leads to the desired lemma statement.

7

Relative Error Fair Clustering

4 Fair Coresets for (1 + ε)-Approximation
k-median Clustering

In this section, we show how to construct fair coresets that
preserve the k-means and k-median costs by (1 + ε) factor.
Limited by the space, we only show the algorithm as in
Algorithm 5. We defer the analysis to Appendix C.

Algorithm 5. The construction algorithm for (1 + ε)
coreset

(1) Run the algorithm of Proposition 2 to get the weak
approximate clustering WC.

(2) Initialize all rings Pi,j as “not processed”.

(3) Initialize the fair coreset FC← ∅.

(4) For each center ci of WC:

(a) For each ring Pi,j , let Si,j be some samples from
the ring specified later.

(b) Initialize P̃i ← Pi as the remaining number of
points.

(c) For r = 1 : 10 log2 n iterations:
i. Sample sr = 1000C0 · log2 n points uniformly at

random from P̃i, and let the sample set be Sr.
ii. Make strong oracle SO queries as follows.

• For point SO queries, query SO(x) for all points
x ∈ Sr.

• For distance SO queries, query SO(x, ci) for all
points x ∈ Sr.

iii. Ring assignment: For each point x ∈ Sr, add
x to Si,j , where j is the index of the ring to which
x belong.

iv. Find the ring j∗ with the smallest index such that
|Si,j∗ | ≥ 4

5 lognsr.
v. Conduct the sampling and peeling step as fol-

lows.
A. For each point x ∈ P̃i, run the algorithm of

Proposition 3 with the set Speel ← ∪j
∗

j=1Si,j ∪
{ci}.

B. Let T
(r)
i be the set of points such that

d̃(x, Speel) ≤ (2C0)
j∗ ·R.

C. Sampling: sample a set FC(T
(r)
i) of m =

Θ(kε−2 log2 n log(nε−1)) points from T
(r)
i

uniformly at random with replacement, and
weight each sampled points by

∣∣∣T (r)
i

∣∣∣/m.

D. Add the points in FC(T
(r)
i) with the weights

to the coreset FC.
E. Peeling: remove all points in T

(r)
i from P̃i, i.e.,

P̃i ← P̃i \ T (r)
i .

Note that in terms of the pseudo-codes, Algorithm 5 is
simpler than Algorithm 1 since we do not have to handle
the charging of rings explicitly with the labels of “being
processed”. We will handle the argument associated with
that part in the analysis.

Algorithm 5 samples uniformly at random from all the
peeled points to form coresets (not only the heavy rings).
Intuitively, sampling from the entire set of points is neces-
sary to obtain assignment-preserving coresets. The actual
analysis of the algorithm is considerably more involved.
The main roadblock here is that almost all existing algo-
rithms for assignment-preserving coresets only work with
rings (e.g., (Cohen-Addad & Li, 2019; Braverman et al.,
2022)), but in our case, we need to work with sets of points
that could span multiple rings. This requires us to open the
blackbox in (Cohen-Addad & Li, 2019) and re-prove the
guarantees for assignment preservation and approximation
using the properties of the heavy rings.

In Appendix D, we give a (1 + ε)-coreset for general (k, z)-
clustering (without fairness constraints). We remark that
the algorithmic approach of sampling and peeling from
heavy rings with smaller indices first (therefore not ignoring
“low-cost” regions similar to Algorithm 5) appears to be
applicable to general (k, z)-clustering as well. Furthermore,
we believe that this could lead to improvements in the depen-
dence on k in the coreset size as well as the number of weak
and strong oracle queries. This would require a white-box
adaptation of Chen (2009) to work with the non-ring set of
points as in line 4(c)vC, and we leave it as an interesting
future problem to explore.

5 Experiments

We implement and evaluate our algorithm on two real-world
datasets for fair k-median. We use “Adult” which has about
50, 000 instances and 8 features (Becker & Kohavi, 1996).
The second dataset is “Default of Credit Card Clients” with
about 30, 000 instances and 9 features (Yeh, 2009). For both
we make the sensitive attribute gender.

All experiments were run locally on a Macbook Air. The
code can be found here. In both datasets, we first turn each
instance into an equivalent numerical representation. Due to
computational limits, we first subsampled the dataset to size
roughly 2000 using Meyerson sampling (Meyerson, 2001a).
Meyerson sampling goes as follows. Start with empty set S.
Then go through the points in the dataset one by one. Add
the first point to S. Now for each successive point, add it to
S with probability proportional to how far away it is from
S. Here we define distance as the euclidean distance. If the
point is further away, the probability of it being added to S
is higher.

We use Meyerson sampling instead of uniform sampling

8

https://drive.google.com/drive/folders/1DLuPMpNe01JHB6pM1a-ZeCY478KNdpAC?usp=sharing

Relative Error Fair Clustering

5 6 7 8 9 10
Number of clusters (k)

0.1

0.2

0.3

0.4

0.5

0.6
Re

la
tiv

e
Co

st
Adult dataset

Fair Coreset
Uniform

(a) Adult dataset

5 6 7 8 9 10
Number of clusters (k)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
la

tiv
e

Co
st

Credit dataset

Fair Coreset
Uniform

(b) Credit dataset

Figure 1. Relative cost of fair k−median clustering on real world datasets for different values of k

to better preserve the underlying structure of the original
dataset. Uniform sampling may entirely miss smaller clus-
ters of points, but Meyerson sampling is more likely to
capture them.

After subsampling the original dataset using Meyerson sam-
pling to a smaller dataset, we ran our fair coreset algorithm
on this smaller dataset to create a coreset of size 100. We
also made a uniform coreset as a baseline which simply
uniformly selected 100 points.

Evaluation To evaluate the coresets, we use the fairtree
algorithm (Backurs et al., 2019), which we run on top of the
uniform and our coreset. We also run the fairtree algorithm
on the dataset and report the relative cost, i.e. cost reported
on dataset minus the cost reported on coreset scaled by the
cost on dataset. For all experiments we use the values of
balance parameters p = 1 and q = 10 (refer to Backurs et al.
(2019) for more details) and we report the cost averaged
over 10 independent runs. As can be seen in Figure 1, our
coreset consistently outperforms for all datasets across all
values of k. Moreover, this is achieved by using only about
200 SO queries which forms only 10% of the data. We note
that for larger datasets we expect the number of SO queries
to be a smaller percentage of the size of the dataset.

Acknowledgements

We thank anonymous ICML reviewers for the insightful
comments and suggestions. Samson Zhou was supported
in part by NSF CCF-2335411. Hoai-An Nguyen was sup-
ported in part by an NSF GRFP fellowship grant number
DGE2140739, NSF CAREER Award CCF-2330255, Office
of Naval Research award number N000142112647, and a Si-
mons Investigator Award. Prathamesh Dharangutte was sup-
ported in part by NSF IIS-2229876, DMS-2220271, DMS-
2311064, CCF-2208663, and CCF-2118953.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Ahmadian, S., Epasto, A., Kumar, R., and Mahdian, M.
Clustering without over-representation. In Proceedings
of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD, pp. 267–
275, 2019.

Ahmadian, S., Epasto, A., Knittel, M., Kumar, R., Mahdian,
M., Moseley, B., Pham, P., Vassilvitskii, S., and Wang,
Y. Fair hierarchical clustering. In Advances in Neural In-
formation Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS,
2020a.

Ahmadian, S., Epasto, A., Kumar, R., and Mahdian, M. Fair
correlation clustering. In The 23rd International Confer-
ence on Artificial Intelligence and Statistics, AISTATS,
pp. 4195–4205, 2020b.

Anegg, G., Angelidakis, H., Kurpisz, A., and Zenklusen,
R. A technique for obtaining true approximations for
k-center with covering constraints. Math. Program., 192
(1):3–27, 2022.

Angelidakis, H., Kurpisz, A., Sering, L., and Zenklusen, R.
Fair and fast k-center clustering for data summarization.
In International Conference on Machine Learning, ICML,
pp. 669–702, 2022.

Arthur, D. and Vassilvitskii, S. k-means++: the advantages
of careful seeding. In Bansal, N., Pruhs, K., and Stein,

9

Relative Error Fair Clustering

C. (eds.), Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pp.
1027–1035, 2007.

Awasthi, P., Charikar, M., Krishnaswamy, R., and Sinop,
A. K. The hardness of approximation of euclidean k-
means. In 31st International Symposium on Computa-
tional Geometry, SoCG, pp. 754–767, 2015.

Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A.,
and Wagner, T. Scalable fair clustering. In Chaudhuri,
K. and Salakhutdinov, R. (eds.), Proceedings of the 36th
International Conference on Machine Learning, ICML,
pp. 405–413, 2019.

Bandyapadhyay, S., Fomin, F. V., and Simonov, K. On
coresets for fair clustering in metric and euclidean spaces
and their applications. J. Comput. Syst. Sci., 142:103506,
2024.

Bateni, M., Dharangutte, P., Jayaram, R., and Wang, C.
Metric clustering and MST with strong and weak distance
oracles. In Agrawal, S. and Roth, A. (eds.), The Thirty
Seventh Annual Conference on Learning Theory, pp. 498–
550, 2024.

Becker, B. and Kohavi, R. Adult. UCI Machine Learning
Repository, 1996.

Bera, S. K., Chakrabarty, D., Flores, N., and Negahbani, M.
Fair algorithms for clustering. In Advances in Neural In-
formation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS,
pp. 4955–4966, 2019.

Bhattacharya, A., Goyal, D., and Jaiswal, R. Hardness of
approximation for euclidean k-median. In Approxima-
tion, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM, pp. 4:1–
4:23, 2021.

Braverman, V., Jiang, S. H., Krauthgamer, R., and Wu, X.
Coresets for clustering in excluded-minor graphs and be-
yond. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA, pp. 2679–2696. SIAM,
2021.

Braverman, V., Cohen-Addad, V., Jiang, S. H., Krauthgamer,
R., Schwiegelshohn, C., Toftrup, M. B., and Wu, X. The
power of uniform sampling for coresets. In 63rd IEEE
Annual Symposium on Foundations of Computer Science,
FOCS, pp. 462–473, 2022.

Braverman, V., Dharangutte, P., Shah, V., and Wang,
C. Learning-augmented maximum independent set.
In Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM, pp. 24:1–24:18, 2024.

Braverman, V., Ergun, J. C., Wang, C., and Zhou, S.
Learning-augmented hierarchical clustering. In Proceed-
ings of the 42nd International Conference on Machine
Learning, ICML, 2025.

C. S., K., Lee, E., Rabani, Y., Schwiegelshohn, C., and
Zhou, S. On approximability of ℓ22 min-sum clustering.
CoRR, abs/2412.03332, 2024.

Charikar, M., Guha, S., Tardos, É., and Shmoys, D. B. A
constant-factor approximation algorithm for the k-median
problem (extended abstract). In Proceedings of the Thirty-
First Annual ACM Symposium on Theory of Computing,
pp. 1–10, 1999.

Chen, K. On coresets for k-median and k-means clustering
in metric and euclidean spaces and their applications.
SIAM J. Comput., 39(3):923–947, 2009.

Chen, W., Xing, S., Zhou, S., and Crawford, V. G. Fair
submodular cover. In The Thirteenth International Con-
ference on Learning Representations, ICLR, 2025.

Chen, X., Ji, S., Wu, C., Xu, Y., and Yang, Y. An approxima-
tion algorithm for diversity-aware fair k-supplier problem.
Theor. Comput. Sci., 983:114305, 2024.

Chhabra, A., Masalkovaite, K., and Mohapatra, P. An
overview of fairness in clustering. IEEE Access, 9:
130698–130720, 2021.

Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvitskii,
S. Fair clustering through fairlets. In Guyon, I., von
Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R.,
Vishwanathan, S. V. N., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems,
pp. 5029–5037, 2017a.

Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvitskii,
S. Fair clustering through fairlets. In Advances in Neural
Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems, pp. 5029–
5037, 2017b.

Cohen-Addad, V. and Karthik C. S. Inapproximability of
clustering in lp metrics. In Zuckerman, D. (ed.), 60th
IEEE Annual Symposium on Foundations of Computer
Science, FOCS, pp. 519–539, 2019.

Cohen-Addad, V. and Li, J. On the fixed-parameter tractabil-
ity of capacitated clustering. In 46th International Col-
loquium on Automata, Languages, and Programming,
ICALP, pp. 41:1–41:14, 2019.

Cohen-Addad, V., Saulpic, D., and Schwiegelshohn, C. A
new coreset framework for clustering. In STOC ’21:
53rd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 169–182. ACM, 2021.

10

Relative Error Fair Clustering

Cohen-Addad, V., Jiang, S. H., Yang, Q., Zhang, Y., and
Zhou, S. Fair clustering in the sliding window model.
In The Thirteenth International Conference on Learning
Representations, ICLR, 2025.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT, pp. 4171–4186, 2019.

Dong, Y., Peng, P., and Vakilian, A. Learning-augmented
streaming algorithms for approximating MAX-CUT.
CoRR, abs/2412.09773, 2024.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel,
R. S. Fairness through awareness. In Innovations in
Theoretical Computer Science, pp. 214–226. ACM, 2012.

Ergun, J. C., Feng, Z., Silwal, S., Woodruff, D. P., and Zhou,
S. Learning-augmented k-means clustering. In The
Tenth International Conference on Learning Representa-
tions, ICLR, 2022.

Esmaeili, S. A., Brubach, B., Tsepenekas, L., and Dick-
erson, J. Probabilistic fair clustering. In Advances in
Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020,
NeurIPS, 2020.

Esmaeili, S. A., Brubach, B., Srinivasan, A., and Dickerson,
J. Fair clustering under a bounded cost. In Advances
in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems
2021, NeurIPS, pp. 14345–14357, 2021.

Feldman, D., Monemizadeh, M., and Sohler, C. A PTAS for
k-means clustering based on weak coresets. In Erickson,
J. (ed.), Proceedings of the 23rd ACM Symposium on
Computational Geometry, pp. 11–18, 2007.

Forgy, E. W. Cluster analysis of multivariate data: efficiency
versus interpretability of classifications. biometrics, 21:
768–769, 1965.

Fu, C., Nguyen, B. G., Seo, J. H., Zesch, R. S., and Zhou,
S. Learning-augmented search data structures. In The
Thirteenth International Conference on Learning Repre-
sentations, ICLR, 2025.

Gadekar, A., Gionis, A., and Thejaswi, S. Fair clustering for
data summarization: Improved approximation algorithms
and complexity insights. In Proceedings of the ACM
on Web Conference 2025, WWW, pp. 4458–4469. ACM,
2025.

Galhotra, S., Raychaudhury, R., and Sintos, S. k-clustering
with comparison and distance oracles. Proc. ACM Manag.
Data, 2(5):212:1–212:26, 2024.

Ghadiri, M., Samadi, S., and Vempala, S. S. Socially fair
k-means clustering. In FAccT ’21: 2021 ACM Conference
on Fairness, Accountability, and Transparency, pp. 438–
448, 2021.

Gonzalez, T. F. Clustering to minimize the maximum in-
tercluster distance. Theoretical computer science, 38:
293–306, 1985.

Grigorescu, E., Lin, Y., Silwal, S., Song, M., and Zhou,
S. Learning-augmented algorithms for online linear and
semidefinite programming. In Advances in Neural Infor-
mation Processing Systems 35: Annual Conference on
Neural Information Processing Systems, NeurIPS, 2022.

Guha, S. and Khuller, S. Greedy strikes back: Improved
facility location algorithms. J. Algorithms, 31(1):228–
248, 1999.

Guha, S., Meyerson, A., Mishra, N., Motwani, R., and
O’Callaghan, L. Clustering data streams: Theory and
practice. IEEE Transactions on Knowledge and Data
Engineering, 15(3):515–528, 2003.

Har-Peled, S. and Mazumdar, S. On coresets for k-means
and k-median clustering. In Proceedings of the thirty-
sixth annual ACM symposium on Theory of computing
(STOC 04), pp. 291–300, 2004.

Haussler, D. Decision theoretic generalizations of the PAC
model for neural net and other learning applications. Inf.
Comput., 100(1):78–150, 1992.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR, pp.
770–778, 2016.

Hsu, C., Indyk, P., Katabi, D., and Vakilian, A. Learning-
based frequency estimation algorithms. In 7th Interna-
tional Conference on Learning Representations, ICLR,
2019.

Huang, L. and Vishnoi, N. K. Coresets for clustering in eu-
clidean spaces: importance sampling is nearly optimal. In
Makarychev, K., Makarychev, Y., Tulsiani, M., Kamath,
G., and Chuzhoy, J. (eds.), Proceedings of the 52nd An-
nual ACM SIGACT Symposium on Theory of Computing,
STOC, pp. 1416–1429, 2020.

Huang, L., Jiang, S. H., and Vishnoi, N. K. Coresets for clus-
tering with fairness constraints. In Advances in Neural
Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems, NeurIPS, pp.
7587–7598, 2019.

11

Relative Error Fair Clustering

Huang, L., Li, J., and Wu, X. On optimal coreset construc-
tion for euclidean (k, z)-clustering. In Proceedings of the
56th Annual ACM Symposium on Theory of Computing,
STOC, pp. 1594–1604, 2024.

Indyk, P. Sublinear time algorithms for metric space prob-
lems. In Proceedings of the Thirty-First Annual ACM
Symposium on Theory of Computing, pp. 428–434, 1999.

Indyk, P., Vakilian, A., and Yuan, Y. Learning-based low-
rank approximations. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural In-
formation Processing Systems, NeurIPS, pp. 7400–7410,
2019.

Jia, X., Sheth, K., and Svensson, O. Fair colorful k-center
clustering. Math. Program., 192(1):339–360, 2022.

John, S., Gadde, A., and Adsumilli, B. Rate distortion
optimization over large scale video corpus with machine
learning. In IEEE International Conference on Image
Processing, ICIP, pp. 1286–1290, 2020.

Jones, M., Nguyen, H. L., and Nguyen, T. D. Fair k-centers
via maximum matching. In Proceedings of the 37th In-
ternational Conference on Machine Learning, ICML, pp.
4940–4949, 2020.

Jung, C., Kannan, S., and Lutz, N. Service in your neigh-
borhood: Fairness in center location. In 1st Symposium
on Foundations of Responsible Computing, FORC 2020,
pp. 5:1–5:15, 2020.

Kleindessner, M., Awasthi, P., and Morgenstern, J. Fair
k-center clustering for data summarization. In Proceed-
ings of the 36th International Conference on Machine
Learning, ICML, pp. 3448–3457, 2019a.

Kleindessner, M., Samadi, S., Awasthi, P., and Morgen-
stern, J. Guarantees for spectral clustering with fairness
constraints. In Proceedings of the 36th International
Conference on Machine Learning, ICML, pp. 3458–3467,
2019b.

Kumar, A., Sabharwal, Y., and Sen, S. A simple linear time
(1+ϵ́)-approximation algorithm for k-means clustering in
any dimensions. In 45th Symposium on Foundations of
Computer Science (FOCS), Proceedings, pp. 454–462,
2004.

Kusner, M. J., Sun, Y., Kolkin, N. I., and Weinberger, K. Q.
From word embeddings to document distances. In Pro-
ceedings of the 32nd International Conference on Ma-
chine Learning, ICML, pp. 957–966, 2015.

Larsen, K. G., Mitzenmacher, M., and Tsourakakis, C. E.
Clustering with a faulty oracle. In WWW ’20: The Web
Conference, pp. 2831–2834, 2020.

Lloyd, S. Least squares quantization in pcm. IEEE transac-
tions on information theory, 28(2):129–137, 1982.

MacQueen, J. Classification and analysis of multivariate
observations. In 5th Berkeley Symp. Math. Statist. Proba-
bility, pp. 281–297, 1967.

Mahabadi, S. and Vakilian, A. Individual fairness for k-
clustering. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML, pp. 6586–6596,
2020.

Makarychev, Y. and Vakilian, A. Approximation algorithms
for socially fair clustering. In Conference on Learning
Theory, COLT, pp. 3246–3264, 2021.

Mazumdar, A. and Saha, B. Clustering with noisy queries.
In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing
Systems, pp. 5788–5799, 2017.

Mettu, R. R. and Plaxton, C. G. Optimal time bounds for
approximate clustering, 2013.

Meyerson, A. Online facility location. In Proceedings 42nd
IEEE Symposium on Foundations of Computer Science,
pp. 426–431, 2001a.

Meyerson, A. Online facility location. In 42nd Annual
Symposium on Foundations of Computer Science, FOCS,
pp. 426–431, 2001b.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient
estimation of word representations in vector space. In 1st
International Conference on Learning Representations,
ICLR, Workshop Track Proceedings, 2013.

Mitzenmacher, M. and Vassilvitskii, S. Algorithms with
predictions. Commun. ACM, 65(7):33–35, 2022.

Negahbani, M. and Chakrabarty, D. Better algorithms for
individually fair k-clustering. In Advances in Neural In-
formation Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS,
pp. 13340–13351, 2021.

Peng, P. and Zhang, J. Towards a query-optimal and time-
efficient algorithm for clustering with a faulty oracle. In
Conference on Learning Theory, COLT, pp. 3662–3680,
2021.

Ringis, D., Pitié, F., and Kokaram, A. C. Near optimal
per-clip lagrangian multiplier prediction in HEVC. In
Picture Coding Symposium, PCS 2021, pp. 1–5, 2021.

Rösner, C. and Schmidt, M. Privacy preserving clustering
with constraints. In 45th International Colloquium on
Automata, Languages, and Programming, ICALP, pp.
96:1–96:14, 2018.

12

Relative Error Fair Clustering

Schmidt, M., Schwiegelshohn, C., and Sohler, C. Fair core-
sets and streaming algorithms for fair k-means. In Ap-
proximation and Online Algorithms - 17th International
Workshop, WAOA, pp. 232–251, 2019.

Silwal, S., Ahmadian, S., Nystrom, A., McCallum, A., Ra-
machandran, D., and Kazemi, S. M. Kwikbucks: Corre-
lation clustering with cheap-weak and expensive-strong
signals. In The Eleventh International Conference on
Learning Representations, ICLR, 2023.

Song, Z., Vakilian, A., Woodruff, D. P., and Zhou, S. On
socially fair low-rank approximation and column subset
selection. In Advances in Neural Information Processing
Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS, 2024.

Steinhaus, H. et al. Sur la division des corps matériels en
parties. Bull. Acad. Polon. Sci, 1(804):801, 1956.

Thejaswi, S., Ordozgoiti, B., and Gionis, A. Diversity-aware
k-median: Clustering with fair center representation. In
Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., and
Lozano, J. A. (eds.), Machine Learning and Knowledge
Discovery in Databases. Research Track - European Con-
ference, ECML PKDD, Proceedings, Part II, pp. 765–780,
2021.

Thejaswi, S., Gadekar, A., Ordozgoiti, B., and Osadnik, M.
Clustering with fair-center representation: Parameterized
approximation algorithms and heuristics. In KDD ’22:
The 28th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining2, pp. 1749–1759. ACM, 2022.

Thejaswi, S., Gadekar, A., Ordozgoiti, B., and Gionis, A.
Diversity-aware clustering: Computational complexity
and approximation algorithms. CoRR, abs/2401.05502,
2024.

Van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. Journal of machine learning research, 9(11), 2008.

Xu, H., Silwal, S., and Indyk, P. A bi-metric framework for
fast similarity search. CoRR, abs/2406.02891, 2024.

Yeh, I.-C. Default of Credit Card Clients. UCI Machine
Learning Repository, 2009.

Zhang, Z., Chen, X., Liu, L., Chen, J., Huang, J., and Feng,
Q. Parameterized approximation schemes for fair-range
clustering. In Advances in Neural Information Processing
Systems 38: Annual Conference on Neural Information
Processing Systems, NeurIPS, 2024.

13

Relative Error Fair Clustering

A Additional Related Work

We discuss additional related work in the literature, including results on fairness, k-clustering and coresets, and weak-strong
distance oracles.

Fairness. Chierichetti et al. (2017b) initiated the study of disparate impact in fair clustering, which intuitively seeks each
cluster to be balanced in representation across all protected subpopulations. Chierichetti et al. (2017b) initially considered
two classes of protected groups, though an active line of research generalized to larger numbers of groups (Rösner &
Schmidt, 2018), as well as different clustering objectives (Ahmadian et al., 2019; Bera et al., 2019; Kleindessner et al., 2019b;
Schmidt et al., 2019; Cohen-Addad & Li, 2019; Ahmadian et al., 2020a; Esmaeili et al., 2020; 2021; Braverman et al., 2022).
A related line of work required that each cluster contained a certain number of representatives from each subpopulation,
rather than a certain fraction (Anegg et al., 2022; Jia et al., 2022). More generally, there exist other proposed notions of
fairness, including but not limited to (1) social fairness, where the cost function is taken across subpopulations (Jones et al.,
2020; Ghadiri et al., 2021; Makarychev & Vakilian, 2021), (2) individual fairness, where seeks to balance the clustering
costs of each point in the dataset (Jung et al., 2020; Mahabadi & Vakilian, 2020; Negahbani & Chakrabarty, 2021), and (3)
representative fairness, where the number of centers from each class is limited (Kleindessner et al., 2019a; Angelidakis
et al., 2022). However, our work specifically considers (α, β)-fair clustering, i.e., disparate impact, these alternative notions
of fairness and others (Ahmadian et al., 2020b; Song et al., 2024; Chen et al., 2025) are not the primary focus of this study.

k-clustering and coresets. k-clustering is one of the most fundamental problems that has been extensively studied for
over six decades (see, e.g., (Forgy, 1965; Lloyd, 1982; Gonzalez, 1985; Charikar et al., 1999; Guha et al., 2003; Kumar
et al., 2004; Arthur & Vassilvitskii, 2007; Feldman et al., 2007; Mettu & Plaxton, 2013)). Covering the vast literature for
k-clustering is impossible for our paper, and we instead focus on the results directly related to ours. For k-median and
k-means, Charikar et al. (1999) gave the first O(1)-approximation in polynomial time, and Indyk (1999) gave the first
sublinear algorithms for O(1)-approximation k-median, which was later improved by Mettu & Plaxton (2013). There exist
certain PTAS algorithms ((1 + ε)-approximation) for k-clustering (Kumar et al., 2004; Feldman et al., 2007), although they
are exponentially dependent on k/ε. The concept of coresets for k-clustering was first introduced by the seminal work
of Har-Peled & Mazumdar (2004) for Rd. Later, the influential work by Chen (2009) obtained coresets of size (roughly)
O(k2 log2 n/ε2) for general metrics. The framework of ring sampling used by Chen (2009) is quite elegant, and it is the
stem of our (k, ε) coreset for general (k, z) clustering. Later results by Huang & Vishnoi (2020); Cohen-Addad et al. (2021);
Braverman et al. (2021; 2022); Huang et al. (2024) further improved the sizes of the coresets on the dependency of k, log n,
and ε, and the near-optimal coreset sizes have been proven for certain applications (e.g., in Huang et al. (2024)).

Coresets for fair clustering. Since the introduction of fair clustering by Chierichetti et al. (2017a), several works
have investigated the construction of coresets that respect fairness constraints. Schmidt et al. (2019) presented a coreset
construction for the fair k-means problem and extended it to the streaming model. More recently, Bandyapadhyay et al.
(2024) proposed coreset constructions for both fair k-means and k-median clustering using random sampling methods
in metric and Euclidean spaces. Their approach yields a constant-factor approximation for metric fair clustering and a
(1 + ε)-approximation in Euclidean space, with running time independent of the data dimension.

Further extensions have considered settings where each data point may belong to multiple, possibly overlapping, sensitive
groups. For example, a data point representing a person might be labeled with both race and gender, each treated as a
sensitive attribute. Huang et al. (2019) gave the first coreset construction for fair k-median clustering and also extended it to
handle multiple, non-disjoint sensitive attributes. Subsequent works have explored different formulations of fair clustering
under overlapping group structures, including Zhang et al. (2024); Gadekar et al. (2025); Thejaswi et al. (2022; 2021; 2024);
Chen et al. (2024).

Weak-strong oracle models. In modern ML applications, there have been increasingly common trade-offs between
information accuracy and price. For instance, John et al. (2020) studied the bitrate-quality optimization in video transcoding
by clustering the videos using meta-information and optimization on a subset of videos with actual clips. Motivated by
such applications, there has been a handful of work investigating learning problems with “weak-but-cheap” and “strong-but-
expensive” information sources. Apart from the model in Bateni et al. (2024) that studied metric clustering, Silwal et al.
(2023) studied correlation clustering with the presence of a noisy weak oracle, and Xu et al. (2024) investigated similarity
search with two types of oracles. Galhotra et al. (2024) proposed a model that is quite close to Bateni et al. (2024), albeit
their weak oracle is based on comparing pairs of distances. Finally, a handful of work also considered learning with only the

14

Relative Error Fair Clustering

“weak” imprecise oracle (Mazumdar & Saha, 2017; Larsen et al., 2020; Peng & Zhang, 2021), and this setting is closely
related to learning-augmented algorithms (see, e.g. Hsu et al. (2019); Indyk et al. (2019); Mitzenmacher & Vassilvitskii
(2022); Ergun et al. (2022); Grigorescu et al. (2022); Braverman et al. (2024); C. S. et al. (2024); Braverman et al. (2025);
Dong et al. (2024); Fu et al. (2025)).

B Deferred Proofs from Section 3

We now give the proof of correctness for Algorithm 1. Our plan is to show that for each iteration of line 4c, i). each iteration
of line 4(c)vi (and therefore line 4c) only affects the rings with the index at most j + 1, and the entire algorithm converges
in O(log2 n) iterations; ii). for any ring k with samples more than Ω(k log2 n/ε2), we could get fairly accurate weights for
the points to form a coreset; and iii). for any ring k with samples less than O(k log2 n/ε2), we can “charge” the cost to the
adjacent ring j of this iteration.

Step I: the convergence of the algorithm and the structural results. We start with the proof of i) which includes the
convergence of the algorithm and some structural results that are useful for later steps. We start with a lemma that states the
“local” properties of the peeling step.

Lemma B.1. Let j∗ be the index of the ring found by line 4(c)iv of Algorithm 1. Then, with probability at least 1−1/poly(n),
no points in Pi,ℓ for ℓ > j∗ + 1 is removed in the peeling step.

Proof. The lemma follows from the guarantees in Proposition 3 and the choice of the multiplicative C0 factor in the way we
partition the rings. Concretely, let us analyze any fixed index ℓ > j∗ + 1. Note that for the ball formed by points in Speel,
there are at least 80 · C0 · k log2 n

ε3 ≥ 10 log n sampled points. Furthermore, by the definition of rings outside j∗ + 1, we
have d(x, ci) > (2C0)

j∗+1 ·R. Therefore, for all points x ∈ Pi,ℓ, we have that

d̃(x, Speel) ≥ d(x, ci) > (2C0)
j∗+1 ·R

with probability at least 1− 1/ poly(n) by Proposition 3. Therefore, by the peeling rule of our algorithm, no such point x
could be removed.

Lemma B.1 ensures that the peeling process never affects the points outside the ring with index j∗ + 1. For the purpose of
our analysis, we will need to handle ring j = 0 with more care. Next, we show a lemma that characterizes the behavior of
the peeling for rings with j = 0.

Lemma B.2. With probability at least 1− 1/ poly(n), Algorithm 4 (the CONSERVATIVE-PEELING algorithm) could only
be executed once. Furthermore, after the execution of Algorithm 4, we have that

• all points x such that d(x, ci) ≤ R
2C0

are removed from P̃i.

• no points in Pi,1 is removed.

Proof. We let P close
i,0 be the set of points such that for x ∈ Sclose

i,0 , d(x, ci) ≤ R
2C0

, and let Sclose
i,0 be the sampled set from

P close
i,0 . Note that for Algorithm 4 to be executed, there must be

∣∣Sclose
i,0

∣∣ ≥ 1

2
· |Si,0| ≥ 40 · C0 ·

k log2 n

ε3
≥ 10 log n,

so that it is possible to find a set of 10 log n points. Therefore, when running the algorithm of Proposition 3, we have
RS ≤ R/2C0. Therefore, conditioning on the high probability of Proposition 3, every point x ∈ P close

i,0 , we have that

d̃(x, Speel) ≤ d(x, ci) + C0 ·RS ≤ R.

Therefore, all points in P close
i,0 is removed. Furthermore, for each point y ∈ Pi,1, we have that d̃(y, Speel) ≥ d(y, ci) ≥ R,

which means such points will not be peeled. Finally, since all points in P close
i,0 are peeled after one execution of Algorithm 4,

the condition of invoking Algorithm 4 will never be met, which means the algorithm is executed at most once.

15

Relative Error Fair Clustering

We further provide another lemma showing that we could remove all points within the radius of ring j∗. This lemma is
crucial for the fast convergence of the algorithm.

Lemma B.3. Let j∗ be the index of the ring found by line 4(c)iv of Algorithm 1. Then, with probability at least 1−1/poly(n),
all points in Pi,ℓ for ℓ ≤ j∗ are removed in the peeling step.

Proof. Similar to Lemma B.1, Lemma B.3 is an application of Proposition 3. For any ring with level ℓ ≤ j∗. Let q be the
smallest ring index such that the ring has not been marked as “processed”. For the ball formed by points in ∪j∗z=qPq, there

are at least 80 ·C0 · k log2 n
ε3 ≥ 10 log n sampled points, and radius of the sampled points is at most (2C0)

j∗ ·R. As such, by
Proposition 3, for any point s ∈ ∪j∗z=qPq , with probability at least 1− 1/ poly(n), we have that

d̃(x, Speel) ≤ d(x, s) + C0 · (2C0)
j∗ ·R =

(
(2C0)

j∗ + C0 · (2C0)
j∗
)
·R ≤ (2C0)

j∗+1 ·R.

Therefore, by the rules of the algorithm, all points in rings Pi,ℓ such that ℓ ≤ j∗ will be removed by the peeling step with
probability at least 1− 1/ poly(n).

There are several consequences of Lemmas B.1 to B.3: by Lemma B.1 and the algorithm design, each ring Pi,j is added to
coreset by exactly one iteration; furthermore, by Lemma B.2 and Lemma B.3, our algorithm could converge in O(log2 n)
iterations. We formalize this statement as the following lemma.

Lemma B.4. With probability at least 1− 1/ poly(n), the following statements for Algorithm 1 are true:

• Each ring Pi,j is marked as “processed” by exactly one iteration of line 4c.

• After O(log2 n) iterations of line 4c, all points in Pi is marked as “processed”.

Proof. We first observe that for a fixed iteration r, once the algorithm has identified j∗, there are two cases

(1) either j∗ has been marked “processed”, for which case we should have j∗ = j′ + 1, where j′ is the picked ring index of
the last iteration r − 1 by line 4(c)iv (i.e, j′ is the “j∗” of the last iteration);

(2) or j∗ has is marked “not processed”, which means j∗ > j′ + 1.

To elaborate the relationship between the cases and the value of j∗, note that conditioning on the success of Lemma B.2 and
Lemma B.3, no points in the rings Pi,ℓ for ℓ < j′ will survive in P̃i after round r − 1. Furthermore, by the design of the
algorithm, no rings with index ℓ > j′ + 1 will be marked as “processed” before round r.

We now prove the second bullet first since it will be the basis for a union-bound argument for the first bullet. We claim that
ring j∗ accounts for at least Ω(1/ log n) fraction of the points in P̃i, formalized as follows

Claim B.5. For any iteration r, let j∗ be the ring found by line 4(c)iv. Then, with probability at least 1− 1/ poly(n), we
have that ∣∣∣Pi,j∗ ∩ P̃i

∣∣∣ ≥ 1

50 log n
·
∣∣∣P̃i

∣∣∣ .
Proof. The claim is a simple application of Chernoff bound. Let Ix be the random variable for a point x to be sampled, and
the random variable Ij∗ :=

∑
x∈Pi,j∗∩P̃i

Ix is the number of total points we samples from ring j∗ for the current iteration.
Since we sample uniformly at random, we have that

E [Ij∗] =

∣∣∣Pi,j∗ ∩ P̃i

∣∣∣∣∣∣P̃i

∣∣∣ · 100C0 ·
k log3 n

ε3
.

16

Relative Error Fair Clustering

Therefore, if
∣∣∣Pi,j∗ ∩ P̃i

∣∣∣ < 1
50 logn ·

∣∣∣P̃i

∣∣∣, we will have E [Ij∗] ≤ 2C0 · k log2 n
ε3 . On the other hand, by the design of

line 4(c)iv, the ring j∗ should have at least 80C0 · k log2 n
ε3 points. By an application of Chernoff bound, we have that

Pr

(
Ij∗ ≥ 80C0 ·

k log2 n

ε3

∣∣∣∣ ∣∣∣Pi,j∗ ∩ P̃i

∣∣∣ < 1

50 log n
·
∣∣∣P̃i

∣∣∣)
≤ Pr

(
Ij∗ ≥ (1 + δ) · E [Ij∗]

∣∣∣∣ δ · E [Ij∗] ≥ 78 · C0 ·
k log2 n

ε3
, E [Ij∗] ≤ 2C0 ·

k log2 n

ε3

)
≤ 1/poly(n).

As such, conditioning on the above high-probability event, we have that for j∗ to have at least 80C0 · k log2 n
ε3 points, there

must be
∣∣∣Pi,j∗ ∩ P̃i

∣∣∣ ≥ 1
50 logn ·

∣∣∣P̃i

∣∣∣, which is as claimed. Claim B.5 □

Note that by a simple averaging argument, since there are at most log n rings for each center, by an averaging argument,
there exists at least one ring with at least 80C0 · k log2 n

ε3 samples. Hence, in both cases for j∗ = j′ + 1 and j∗ > j′ > 1, as
long as the algorithm does not invoke Algorithm 4, peeling step, at least all the points in Pi,j∗ ∩ P̃i are removed. As such,
we have that at step r, with probability at least 1− poly(n), there is∣∣∣P̃ (r+1)

i

∣∣∣ ≤ (
1− 1

50 log n

)
·
∣∣∣P̃ (r)

i

∣∣∣ ,
where notation P̃

(r)
i and P̃

(r+1)
i are used to denote the surviving points (P̃i) for rounds r and (r + 1). Furthermore, by

Lemma B.2, Algorithm 4 could be invoked for at most once. Therefore, after O(log2 n) rounds, and conditioning on the
high-probability events to happen over all the rounds (which happens with probability at least 1− 1/ poly(n) by a union
bound), all points are removed from P̃i and marked as “processed”.

We now turn to the proof of the first bullet. Note that in both cases of j∗ = j′ + 1 and j∗ > j′ + 1 for a fixed iteration r, the
rings that are marked as “processed” are [j′ + 2, j∗ + 1] (if j∗ = 0 and Algorithm 4 is executed, then only j∗ is marked as
“processed”). Therefore, by a union bound on the high probability events, with probability at least 1− 1/ poly(n), each ring
has a unique iteration that marked it as “processed”. Lemma B.4 □

Step II: handling the rings with many samples. We now handle the rings that are marked “processed” by Algorithm 2
(line 4(c)v). The analysis is similar to Chen (2009), except we now need to deal with an approximate number of points for
weighing the coreset points. First, we show that we can approximate the number of points within these rings with small
relative error.

Lemma B.6. Let S with sr = O(k log3 n/ε3) be the set of points sampled uniformly at random from P̃i and let Si,j =

Pi,j ∩S. For all j such that |Si,j | ≥ 30k log2 n/ε2, let Sest
i,j be any 1/3 fraction of points from Si,j , and m̃i,j =

3|P̃i|
sr
·
∣∣Sest

i,j

∣∣.
For all |Pi,j | ≥ 30 log n/ε2, with probability at least 1− 1

polyn we have m̃i,j ∈ [(1− ε)|Pi,j |, (1 + ε)|Pi,j |].

Proof. By the design of Algorithm 1, Algorithm 2 is only run on Si,j that have at least 30k log2 n/ε2 points in them. Since
we run SO queries on S, we know the exact set Pi,j ∩ S. For ℓ ∈ [|Pi,j |], let Xℓ be a random variable that has value 1 if
point ℓ of |Pi,j | was sampled and added to S and let X =

∑
ℓ Xℓ. We have

E
[
|Sest

i,ℓ |
]
=

E [X]

3
=

sr
3
· |Pi,j |
|P̃i|

.

By the definition of m̃i,j , we have E [m̃i,j] = |Pi,j |. Now, applying Chernoff bound we get

Pr (|m̃i,j − |Pi,j || ≥ ε · |Pi,j |) ≤ 2 exp

(
−ε2|Pi,j |

3

)
≤ 2 exp

(
−30 log n

3

)
≤ 1

poly n
.

Finally, a union bound over at most O(k polylog n) such Pi,j completes the proof.

17

Relative Error Fair Clustering

For coreset guarantees, we need to bound the difference in cost for points in ring and the coreset points due to arbitrary set
of centers. The proof is an extension of result from Chen (2009), which itself relies on the following result from Haussler
(1992).

Lemma B.7. Let M ≥ 0 and η be fixed constants, and let h(.) be a function defined on set V such that η ≤ h(p) ≤ η +M
for all p ∈ V . Let U {p1, · · · , ps} be a set of s samples drawn independently and uniformly form V , and let δ > 0 be a
parameter. If s ≥ (M2/2δ2) ln(2/λ), then

Pr

[∣∣∣∣h(V)

|V |
− h(U)

|U |

∣∣∣∣ ≥ δ

]
≤ λ,

where h(U) =
∑

u∈U h(u) and h(V) =
∑

v∈V h(v).

We now prove the approximation guarantee of the coreset points that are added by Algorithm 2.

Lemma B.8. For a ring Pi,ℓ that is marked “processed” by Algorithm 2, let C be any set of centers. Let Si,ℓ denote
the set of points in S ∩ Pi,ℓ that are uniformly sampled and S

weight
i,ℓ be any 2/3 points in Si,ℓ that are assigned weight

w = m̃i,ℓ/|Sweight
i,ℓ | and added to SC. Then, with probability at least 1− λ∣∣∣cost(C, Pi,ℓ)− cost(C, Sweight

i,ℓ)
∣∣∣ ≤ 2ε|Pi,ℓ|diam(Pi,ℓ)

Proof. For a point p ∈ Pi,ℓ, let h(p) = d(C, p). We have,

d(C, Pi,ℓ) ≤ h(p) = d(C, p) ≤ d(C, Pi,ℓ) + diam(Pi,ℓ).

Let η = d(C, Pi,ℓ), M = diam(Pi,ℓ) and δ = εM . For
∣∣∣Sweight

i,ℓ

∣∣∣ ≥ (M2/2δ2) ln 2/λ , from Lemma B.7 we have

Pr

∣∣∣∣∣∣
∑

p∈Pi,ℓ
d(C, p)

|Pi,ℓ|
−

∑
s∈S

weight
i,ℓ

d(C, s)∣∣∣Sweight
i,ℓ

∣∣∣
∣∣∣∣∣∣ ≥ ε · diam(Pi,ℓ)

 ≤ λ (1)

Using above equation and conditioning on the high probability event of Lemma B.6, we get

∣∣∣cost(C, Pi,ℓ)− cost(C, Sweight
i,ℓ)

∣∣∣ =
∣∣∣∣∣∣∣
∑

p∈Pi,ℓ

d(C, p)−
∑

s∈S
weight
i,ℓ

d(C, s)w(s)

∣∣∣∣∣∣∣
= |Pi,ℓ|

∣∣∣∣∣
∑

p∈Pi,ℓ
d(C, p)

|Pi,ℓ|
−

∑
s∈S

weight
i,ℓ

d(C, s)w(s)

|Pi,ℓ|

∣∣∣∣∣
≤ |Pi,ℓ|

∣∣∣∣∣∣
∑

p∈Pi,ℓ
d(C, p)

|Pi,ℓ|
−

(1− ε)
∑

s∈S
weight
i,ℓ

d(C, s)|Pi,ℓ|

|Pi,ℓ|
∣∣∣Sweight

i,ℓ

∣∣∣
∣∣∣∣∣∣

(From Lemma B.6 and w = m̃i,ℓ/|Sweight
i,ℓ |)

≤ |Pi,ℓ|

∣∣∣∣∣∣
∑

p∈Pi,ℓ
d(C, p)

|Pi,ℓ|
−

∑
s∈S

weight
i,ℓ

d(C, s)∣∣∣Sweight
i,ℓ

∣∣∣
∣∣∣∣∣∣+ ε|Pi,ℓ|

∑
s∈S

weight
i,ℓ

d(C, s)∣∣∣Sweight
i,ℓ

∣∣∣
≤ |Pi,ℓ|εdiam(Pi,ℓ) + ε|Pi,ℓ|diam(Pi,ℓ)

≤ 2ε|Pi,ℓ|diam(Pi,ℓ)

w.p. at least 1− λ. Second last inequality follows from, for s ∈ S
weight
i,ℓ , d(C, s) ≤ diam(Pi,ℓ).

18

Relative Error Fair Clustering

The above bounds the cost for rings that have sufficiently many points sampled in them (≥M2/2δ2 ln(2/λ)). We now show
that the number of points added by Algorithm 1 are enough for us to use the above lemma (for appropriately chosen λ), and
prove our main lemma for the rings with points added to the strong coreset SC.

Lemma B.9. Let Pheavy be the set of rings with points being added to SC. Furthermore, let

cost(C,Pheavy) :=
∑

Pi,j∈Pheavy

cost(C, Pi,j)

be the total cost with respect to any set of center C ⊆ X of size at most k, induced by the rings in Pheavy, and let

c̃ost(C,Pheavy) :=
∑

Pi,j∈Pheavy

cost(C, Sweight
i,j).

Then, with probability at least 1− 1/ poly(n), we have∣∣cost(C,Pheavy)− c̃ost(C,Pheavy)
∣∣ ≤ 2ε ·

∑
Pi,j∈Pheavy

|Pi,j | diam(Pi,j).

Proof. Fix some set of centers C of size at most k. Let λ = Λ/
(
nk(ck log βn)

)
for some constant c. From Lemma B.8 for

a particular i and ℓ, we have with probability at least 1− λ∣∣∣cost(C, Pi,ℓ)− cost(C, Sweight
i,ℓ)

∣∣∣ ≤ 2ε|Pi,ℓ|diam(Pi,ℓ)

This holds for the points added to SC by Algorithm 2 as the number of points added for each heavy ring is
∣∣∣Sweight

i,ℓ

∣∣∣ ≥
30 · k log2 n/ε2 ≥ (1/2ε2) ln 2/λ = (1/2ε2)

(
ln(cnkk log βn) + ln 1

Λ

)
Now, since we have k centers in the approximate solution and each center has at most O(log βn) rings, union bound over all
the rings gives us with probability at least 1− Λ/nk,

∣∣cost(C,Pheavy)− c̃ost(C,Pheavy)
∣∣ ≤ ∑

Pi,ℓ∈Pheavy

∣∣∣cost(C, Pi,ℓ)− cost(C, Sweight
i,ℓ)

∣∣∣
≤ 2ε ·

∑
Pi,ℓ∈Pheavy

|Pi,ℓ| diam(Pi,ℓ)

As there are at most nk choices of k centers C from point set X of size n, the proof concludes with a final union bound over
the choice of centers C and setting Λ = 1/nc′ .

Step III: handling the rings with few samples. We now turn to the analysis of the rings that are “neglected” by line 4(c)v
of Algorithm 1. We do not have any subroutine that handles the cost of the rings with samples less than 30 · k log2 n

ε2 . Our
plan for these rings is to show that the number of points there must be small, and as such, the contributions to the total cost
must be small. Therefore, we can charge the cost of these rings to the cost of the rings with enough samples.

To that end, we show the following lemma regarding the actual size between the rings with a few vs. many points.

Lemma B.10. Let ring Pi,ℓ be marked as “processed” in iteration r without any point x ∈ Pi,ℓ being added to the coreset
SC. Furthermore, let j∗ be the ring found by line 4(c)iv of iteration r. Then, with probability at least 1− 1/ poly(n), we
have

|Pi,j∗ | ≥
2C0

ε
· |Pi,ℓ| .

Proof. Let us say that ring Pi,j∗ has y1 points in P̃i. Therefore, we have that E [|Si,j∗ |] = y1 · srP̃i
. Therefore by a Chernoff

bound we have that |Si,j∗ | ≤ (1+ ε)y1 · srP̃i
with probability at least 1− 1/ poly(n). This gives us that with high probability

19

Relative Error Fair Clustering

y1 ≥
|Si,j∗ |
(1+ε) ·

P̃i

sr
. Similarly, let us say that ring Pi,j has y2 points in P̃i. Therefore, we have that E [|Si,j |] = y2 · sr

P̃i
.

Therefore by a Chernoff bound we have that y2 ≤ |Si,j |
(1−ε) ·

sr
P̃i

.

We now from the algorithm that |Si,j∗ | ≥ 80C0 · k log2 n
ε3 and |Si,j | ≤ 30 · k log2 n

ε2 . Therefore we have the result.

For each ring Pi,ℓ marked as “processed” without points being added to SC, we define j∗(ℓ) as be the index of ring Pi,j∗

that marked Pi,ℓ as “processed”.

We now define the following charging scheme for the quantity |Pi,ℓ| · diam(Pi,ℓ), which will distribute the cost to |Pi,ℓ| ·
diam(Pi,ℓ).

Algorithm 6. A charging scheme (a thought process for the analysis purpose only).

• For each ring Pi,ℓ such that ℓ is marked as “processed” in iteration r without any point x ∈ Pi,ℓ being added to the
coreset SC:

◦ If j∗(ℓ) ̸= 0, we write a charge of ε
2C0
· diam(Pi,ℓ) to all points in Pi,j∗(ℓ).

◦ Otherwise, if j∗(ℓ) = 0 (which implies ℓ = 1), we write a charge of ε
2C0
· diam(Pi,1) to all points in

Pi,0 \ P close
i,0 := {x ∈ Pi,0 | d(x, ci) ≥ R

2C0
}.

• If ring Pi,ℓ receives charges of at most γ on each point and ℓ is marked as “processed” without any point x ∈ Pi,ℓ

being added to the coreset SC, then transfer the charges by writing charges of ε
2C0
· γ to all points in Pi,j∗(ℓ).

• Continue recursively until all charges are written on points of rings Pi,ℓ such that points x ∈ Pi,ℓ are added to the
coreset SC.

Note that Algorithm 6 is a thought process: we cannot hope to actually perform the operations without making many
strong oracle queries. However, such a thought process as an analytical tool is valid. Also note that Algorithm 6 eventually
terminates since there has to be at least a ring j∗ (of the first iteration) that has points added to the coreset SC. We now give
two lemmas that characterize the guarantees of the charging scheme.

Lemma B.11. For any ring Pi,ℓ, conditioning on the high-probability event of Lemma B.10, the total number of charges
Algorithm 6 could distribute is at least |Pi,ℓ| · diam(Pi,ℓ).

Proof. The lemma is a direct consequence of Lemma B.10. For each ring Pi,ℓ, we claim that conditioning on the high-
probability event of Lemma B.10, there is

∣∣Pi,j∗(ℓ)

∣∣ ≥ C0

50ε · |Pi,ℓ|. The statement trivially holds if j∗(ℓ) ̸= 0. On the other
hand, if j∗(ℓ) = 0, by the rules in Algorithm 1 (which implies ℓ = 1), we argue that there are C0

50ε · |Pi,1|. In particular,
we could treat Pi,0 \ P close

i,0 (defined in Algorithm 6) as a separate ring, and apply Lemma B.10 to get the desired result.
Therefore, the total charge Pi,ℓ could write to is at least

ε

2C0
· diam(Pi,ℓ) ·

∣∣Pi,j∗(ℓ)

∣∣ ≥ diam(Pi,ℓ) · |Pi,ℓ| ,

as claimed.

Next, we bound the number of charges for any point in a ring that could possibly be received.

Lemma B.12. For any ring Pi,ℓ, conditioning on the high-probability event of Lemma B.10, for any point x ∈ Pi,ℓ, the
total number of charges written on x by Algorithm 6 is at most 2ε · diam(Pi,ℓ+1) for any ε < 1.

Proof. For simplicity let us assume for now that no recursive charging happens. Note that for each ring j∗, only rings with
indices q ∈ [0, j∗ + 1] could possibly write charges to it. Let charge(j∗ ← q) be the number of charges each point in ring
j∗ could receive from ring q. For ring j∗ + 1, we have that

charge(j∗ ← j∗ + 1) ≤ ε

2C0
· diam(Pi,j∗+1)

20

Relative Error Fair Clustering

by the rules of charging. Furthermore, for each ring q ∈ [o, j∗ − 1], we have that

charge(j∗ ← q) ≤ ε

2C0
· diam(Pi,q) ≤

ε

2C0
· diam(Pi,j∗+1) · (

1

2C0
)j

∗−q+1,

where the last inequality follows from the definition of the rings. As such, the total charges on ring j∗ could be bounded by

∑
q

charge(j∗ ← q) ≤
j∗+1∑
q=0

ε

2C0
· diam(Pi,q)

≤ ε

2C0
· diam(Pi,j∗+1) ·

j∗+1∑
q=0

·(1

2C0
)j

∗−q+1

≤ ε

C0
· diam(Pi,j∗+1), (

∑j∗+1
q=0 ·(

1
2C0

)j
∗−q+1 ≤ 2 for any j∗ ≥ 0)

which gives us the desired results for non-recursive charges.

We now handle recursive charges. By our charging scheme in Algorithm 6 and Lemma B.4, only adjacent rings transfer
charges. To elaborate, the only case that a ring could become j∗ of that iteration without having added points to SC is that it
was marked as “processed” by the j∗ of the last iteration (the j∗ = j′ + 1 case in the proof of Lemma B.4). Therefore, by
our analysis of the non-recursive sharing, the amount of charges ring ℓ could transfer to ring ℓ− 1 for one level of recursion
are at most

ε

2C0
· ε

C0
· diam(Pi,ℓ+1) ≤ ε2 · 1

2C2
0

· diam(Pi,ℓ) · 2C0 ≤ ε2 · diam(Pi,ℓ).

Hence, the total amount of charges that could be transferred to any such j∗ is at most

logn∑
ℓ=j∗+1

ε2·(j
∗−ℓ) · diam(Pi,j∗) ≤ ε · diam(Pi,j∗+1).

Therefore, the charge a layer j∗ could receive due to the transfer from other layers is at most ε · diam(Pi,j∗+1). Combining
this with the charging upper-bound of the non-recursive case gives us the desired statement.

We now use Lemma B.11 and Lemma B.12 to bound the total cost induced by the rings that are marked as “processed”
without points added to the coreset SC.

Lemma B.13. Let Pi,ℓ be a ring such without points added to SC, and Pi,j∗(ℓ) be the ring for Pi,ℓ to charge to in the
charging scheme of Algorithm 6. Then, we have that

|Pi,ℓ| · diam(Pi,ℓ) ≤ ε · C0 ·
∣∣Pi,j∗(ℓ)

∣∣ · diam(Pi,j∗(ℓ)).

Proof. By Lemma B.11, each of such ring Pi,ℓ could distribute all the costs as the charges. By Lemma B.12, any point in
such ring Pi,j∗(ℓ) receives at most 2ε·diam(Pi,j∗(ℓ)+1) charges. We now claim that diam(Pi,j∗(ℓ)+1) ≤ 2C2

0 ·diam(Pi,j∗(ℓ)).
For all rings except j∗(ℓ) = 0, the statement simply follows from the construction. If j∗(ℓ) = 0, by the rule of Algorithm 1,
the charges could only be written on Pi,0 \ P close

i,0 by the charging rule. Therefore, we have diam(Pi,j∗(ℓ)+1) ≤ 2C2
0 ·

diam(Pi,j∗(ℓ)), and a summation over the charges on the points gives the desired lemma statement.

We now use Lemma B.13 to bound the cost of the coreset. We first present the following lemma that uses the quantity
|Pi,j | · diam(Pi,j) to bridge the cost between the rings with points in SC and the rings without.

Lemma B.14. Let C be any set of centers. Then, for any ring Pi,j∗ and rings Pi,j such that j ≤ j∗+1 and |Pi,j | ≤ η · |Pi,j∗ |,
we have that

cost(C, Pi,j) ≤ η · cost(C, Pi,j∗) + 2C0 · |Pi,j | · diam(Pi,j).

21

Relative Error Fair Clustering

Proof. The lemma stems from the triangle inequality. Concretely, let x ∈ Pi,j be a point in the ring Pi,j , we could find a
corresponding a point y ∈ Pi,j∗ assigned to center c ∈ C such that

cost(C, x) ≤ d(c, x) (cost(C, x) is the optimal cost for x)
≤ d(c, y) + d(x, y) (triangle inequality)
≤ cost(C, y) + diam(Pi,j∗)

≤ cost(C, y) + 2C0 · diam(Pi,j). (by our construction of the rings and j ≤ j∗ + 1)

Therefore, we could “reuse” the least-cost point y ∈ Pi,j∗ for |Pi,j | ≤ η · |Pi,j∗ | time and argue that

cost(C, Pi,j) =
∑

x∈Pi,j

cost(C, x)

≤
∑

x∈Pi,j

cost(C, y) + 2C0 · diam(Pi,j)

≤ η · cost(C, Pi,j∗) + 2C0 · |Pi,j | · diam(Pi,j),

as desired.

Using Lemma B.13 and Lemma B.14, we are now ready to bound the total cost on rings that are marked “processed” without
any point being added to SC as follows.

Lemma B.15. Let P light be the set of rings that are marked “processed” without points being added to SC, and let Pheavy

be all other rings. For any set of centers C, we have that

cost(C,P light) :=
∑

Pi,j∈P light

cost(C, Pi,j) ≤ ε · 2C2
0 · log n ·

∑
Pi,j∈Pheavy

(cost(C, Pi,j) + |Pi,j | · diam(Pi,j)) .

Proof. The lemma is a natural corollary of Lemma B.13 and Lemma B.14. Fix any ring Pi,j∗ ∈ Pheavy, we let the rings
P light(j∗) be the set of rings with index ℓ such that j∗(ℓ) = j∗ (the notation was first defined before Algorithm 6). We apply
Lemma B.14 and Lemma B.13 to all rings in P light(j∗) and obtain that∑
Pi,j∈P light(j∗)

cost(C, Pi,j) ≤
∑

Pi,j∈P light(j∗)

ε

2C0
· cost(C, Pi,j∗) + 2C0 ·

∑
Pi,j∈P light(j∗)

|Pi,j | · diam(Pi,j) (by Lemma B.14)

≤
∑

Pi,j∈P light(j∗)

ε

2C0
· cost(C, Pi,j∗) + ε · 2C2

0 ·
∑

Pi,j∈P light(j∗)

|Pi,j∗ | · diam(Pi,j∗)

(by Lemma B.13)

≤ log n ·
(

ε

2C0
· cost(C, Pi,j∗) + ε · 2C2

0 · |Pi,j∗ | · diam(Pi,j∗)

)
(at most log n such rings)

≤ ε · 2C2
0 · log n · (cost(C, Pi,j∗) + |Pi,j∗ | · diam(Pi,j∗)) .

Finally, since each ring Pi,ℓ in P light has a unique j∗(ℓ), summing over all rings in P light gives the desired lemma
statement.

Wrapping up the proof of Theorem 4. We are now ready to finalize the proof of Theorem 4. The following claim is a
natural corollary of the β-approximation of the (α, β)-weak coreset.

Claim B.16. Let OPT be the optimal cost of clustering on P with k centers and let A be the set of centers from a
β-approximate solution. Then,

∑
i,j

|Pi,j | (2C0)
jR ≤ 3C0β · OPT &

∑
i,j

|Pi,j | diam(Pi,j) ≤ 6C0β · OPT

.

22

Relative Error Fair Clustering

Proof. Consider any point p ∈ Pi,j . For j = 0, (2C0)
jR = R and for j ≥ 1, (2C0)

jR ≤ 2C0d(A, p). Hence, for any j
we have (2C0)

jR ≤ 2C0d(A, p) +R. Now,

∑
i,j

|Pi,j |(2C0)
jR =

∑
i,j

∑
p∈Pi,j

(2C0)
jR ≤

∑
i,j

∑
p∈Pi,j

2C0d(A, p) +R

=
∑
p∈X

2C0d(A, p) +R

≤ 2C0βOPT + nR ≤ 3C0β · OPT

Since diam(Pi,j) ≤ 2(2C0)
jR, we have

∑
i,j |Pi,j | diam(Pi,j) ≤ 6C0β · OPT

Lemma B.17. For any set of centers C ⊆ X of size at most k, it holds that

|cost(C, X)− cost(C,SC)| ≤ ε · 15β · C3
0 · log n · cost(C, X)

with probability at least 1− 1/ poly(n).

Proof. Similar to the case in Lemma B.9 and Lemma B.15, we define P light as the rings being marked as “processed”
without points added to SC and Pheavy as the other rings. We thus have

cost(C, X) =
∑

P light
i,j ∈P light

cost(C, P light
i,j) +

∑
P heavy

i,j ∈P light

cost(C, P heavy
i,j).

Define c̃ost(C,P light) and c̃ost(C,Pheavy) as the cost induced by SC for C. Clearly, the total cost induced by the coreset SC is
cost(C,SC) = c̃ost(C,P light)+ c̃ost(C,Pheavy). Furthermore, by our construction, there is c̃ost(C,P light) = 0. Conditioning
on the high-probability events of Lemma B.9 and Lemma B.15, we have that∣∣cost(C,Pheavy)− c̃ost(C,Pheavy)

∣∣ ≤ 2 · ε ·
∑

Pi,j∈Pheavy

|Pi,j | diam(Pi,j)∣∣cost(C,P light)− c̃ost(C,P light)
∣∣ ≤ cost(C,P light)

≤ ε · 2C2
0 · log n ·

∑
Pi,j∈Pheavy

(cost(C, Pi,j) + |Pi,j | · diam(Pi,j)) .

As such, we could bound the difference of the cost as

|cost(C, X)− cost(C,SC)|
≤

∣∣cost(C,Pheavy)− c̃ost(C,Pheavy)
∣∣+ ∣∣cost(C,P light)− c̃ost(C,P light)

∣∣
≤ ε · 2C2

0 · log n ·
∑

Pi,j∈Pheavy

|Pi,j | · diam(Pi,j) + ε · 2C2
0 · log n ·

∑
Pi,j∈Pheavy

cost(C, Pi,j) (by Lemma B.15)

≤ ε · β · 12C3
0 log n · OPT + ε · 2C2

0 · log n ·
∑

Pi,j∈Pheavy

cost(C, Pi,j) (by Claim B.16)

≤ ε · β · 12C3
0 log n · cost(C, X) + ε · 2C2

0 · log n · cost(C, X)

≤ ε · 15β · C3
0 · log n · cost(C, X) (β ≥ 1)

which is as desired.

Finally, to get (1 + ε)-approximation, we let ε = ε′

15β·ε·C3
0 ·logn

= O(ε′

logn) by the constant choices of β and C0 (by Propo-

sitions 2 and 3). The size of the coreset and number of SO queries are therefore O(k2 log5 n/ε′3) = O(k2 log8 n/ε3) =
k polylog(n)/ε3, as desired by Theorem 4.

23

Relative Error Fair Clustering

C Deferred Proofs from Section 4

The analysis. Similar to the analysis of Algorithm 1, we need to show that i). Algorithm 5 converges with a small number
of strong oracle queries; ii). Algorithm 5 preserves the k-median cost by a (1 + ε) factor. In addition, we need to prove that
Algorithm 5 is indeed assignment-preserving.

We first establish the bounded number of strong oracle queries for Algorithm 5. The guarantee and the proof are as follows.

Lemma C.1. Algorithm 5 outputs a coreset of size O(k
2 log4 n logn/ε

ε2) using O(k log4 n) strong oracle SO (point or edge)
queries, O(nk log3 n) weak oracle WO queries, and converges in Õ(k2/ε2 + nk) time. Furthermore, with probability
at least 1− 1/poly(n), after 10 log2 n iteration of line 4c, all point of Pi is processed by exactly one of the iterations of
line 4(c)v.

Proof. For each iteration, the only points we make strong oracle SO queries on are the points in Sr, which is at most
O(log2 n). All other points in Pi make at most O(log n) times of weak oracle queries, and the number of points added to
FC during each iteration is Θ(kε−2 log2 n log(nε−1)).

We now prove the “furthermore” part using the high-probability events of Lemma B.3, Lemma B.4, and Claim B.5. Note
that although the choice of j∗ and the number of samples have changed, we still have

∣∣∣Pi,j∗ ∩ P̃i

∣∣∣ ≥ 800C0 · log n, which
means the guarantees in Claim B.5 continues to hold with a changed constant. Therefore, each point is only processed by
one iteration, and in each iteration, at least 1

50 logn fraction of the remaining points are processed by line 4(c)v. This implies
after 100 log2 n iterations, no point in Pi remains not processed by line 4(c)v.

Therefore, the size of the coreset FC follows from the number of O(kε−2 log2 n log(nε−1)) samples in each iteration and
the k log2 n iterations. The number of weak and strong oracle queries follows from the same argument, and the running
time scales linearly with the coreset size.

We now move to the analysis of the assignment-preserving (1 + ε) coreset. The main lemma for the assignment-preserving
approximation is as follows.

Lemma C.2. Let (X , d) be an input set of points in Rd, and let FC be the resulting assignment-preserving coreset as
prescribed by Algorithm 5. With high probability, for any set of centers C and any given assignment constraint Γ, there is

|cost(FC, C,Γ)− cost(X , C,Γ)| ≤ ε · cost(X , C,Γ).

To prove Lemma C.2, we first reduce the problem to an easier case that C,Γ is fixed, using a union bound similar to
Braverman et al. (2022). We also make diam(C) bounded by moving centers far from the ring center. Next we bound
the additive error for a single set of points T (r)

i and FC(T
(r)
i) (recall that T (r)

i is the set of peeled points and FC(T
(r)
i) is

weighted sampled set from T
(r)
i). We construct transformations between assignments of T (r)

i and FC(T
(r)
i) that suffers

small cost. These transformations imply optimal costs of T (r)
i and FC(T

(r)
i) are close.

For the clarity of presentation, in what follows, we use T and c∗ as short-hand notations for T (r)
i and ci when the context is

clear. Let L be the number of rings of c∗.

Step I: Union bound. Our first step is reducing Lemma C.2 to a much easier version, in which C and Γ are fixed and C does
not contain centers far from c∗. In particular, we move all centers outside B(c∗, Rfar) to c∗, where Rfar = 60diam(T)/ε.

Let the approximation ratio of WC be αWC. Define ε′ = ε
10C2

0αWC logn
. The proof of Lemma C.2 requires the additive error

to be less than ε
10 · cost(T,C,Γ) + ε′ · |T | · diam(T).

Lemma C.3. Suppose ALG(T) is an algorithm that outputs assignment-preserving coresets of T . If for every T ⊆ X , C̃ ⊂
B(c∗, 60diam(T)/ε) of size k and every assignment constraint Γ̃,

Pr

[∣∣∣cost(ALG(T), C̃, Γ̃)− cost(T, C̃, Γ̃)
∣∣∣ ≥ 10

11
ε′ · |T | · diam(T)

]
≤ δ

24

Relative Error Fair Clustering

for some δ ∈ (0, 1), then for every T ⊆ X , with probability at least 1−O(nk · (n+ kε−1)kδ), for every center set C ⊂ X
of size k and every assignment constraint Γ,

|cost(ALG(T), C,Γ)− cost(T, C,Γ)| ≤ ε

10
· cost(T, C,Γ) + ε′ · |T | · diam(T).

Proof. For every center set C and assignment constraint Γ, we move all centers outside B(c∗, Rfar) (denoted by Cfar) to
c∗ and define the center set and assignment constraint after movements as C̃ and Γ̃. For every assignment σ, the cost of σ
before movements is upper bounded by

costσ(T, C,Γ) = costσ(T, C̃, Γ̃) +
∑
x∈T

∑
c∈Cfar

σ(x, c)(d(x, c)− d(x, c∗))

≤ costσ(T, C̃, Γ̃) +
∑
x∈T

∑
c∈Cfar

σ(x, c)d(c, c∗)

= costσ(T, C̃, Γ̃) +
∑

c∈Cfar

Γ(c)d(c, c∗),

and lower bounded by

costσ(T, C,Γ) = costσ(T, C̃, Γ̃) +
∑
x∈T

∑
c∈Cfar

σ(x, c)(d(x, c)− d(x, c∗))

≥ costσ(T, C̃, Γ̃) +
∑
x∈T

∑
c∈Cfar

σ(x, c)(d(c, c∗)− 2d(x, c∗))

≥ costσ(T, C̃, Γ̃) +
∑
x∈T

∑
c∈Cfar

(1− ε/20)σ(x, c)d(c, c∗)

= costσ(T, C̃, Γ̃) + (1− ε/20)
∑

c∈Cfar

Γ(c)d(c, c∗).

In corollary, suppose σ∗ and σ̃∗ are optimal assignments of cost(T, C,Γ) and cost(T, C̃, Γ̃), then we have

cost(T, C̃, Γ̃) ≤ costσ
∗
(T, C̃, Γ̃) ≤ cost(T, C,Γ)− (1− ε/20)

∑
c∈Cfar

Γ(c)d(c, c∗)

cost(T, C,Γ) ≤ costσ̃
∗
(T, C,Γ) ≤ cost(T, C̃, Γ̃) +

∑
c∈Cfar

Γ(c)d(c, c∗).

Next we round all capacities in Γ̃ to {i/M : i ≥ 0}, where M = ⌈600k/ε⌉, to get a new assignment constraint Γ̃′ satisfying
Γ̃(C) = Γ̃′(C) and |Γ̃(c)− Γ̃′(c)| < 1/M for every c ∈ C.

Suppose the optimal assignment for Γ̃ is σ. There always exists an assignment σ′ of Γ̃′ such that for every c ∈ C̃,
|
∑

x∈T (σ(x, c)− σ′(x, c))| ≤ 1/M . Hence we have

|cost(T, C̃, Γ̃)− cost(T, C̃, Γ̃′)| ≤
∑
c∈C̃

∣∣∣∣∣∑
x∈T

σ(x, c)d(x, c)−
∑
x∈T

σ′(x, c)d(x, c)

∣∣∣∣∣
≤

∑
c∈C̃

diam(C̃)
M

≤ 60k · diam(T)

εM
≤ diam(T)/10.

Define
F := {(C,Γ) : C ⊂ B(c∗, Rfar), |C| = k,Γ(C) = |T |,∀c ∈ C,Γ(c) ∈ {i/M : i > 0}}.

25

Relative Error Fair Clustering

We have |F| ≤ ∆kd(|T |+M)k. Applying union bound for every (Γ̃′, C̃) ∈ F , we have

∀(Γ̃′, C̃) ∈ F , |cost(S, C̃, Γ̃′)− cost(T, C̃, Γ̃′)| ≤ ε

11C0 log n
· |T | · diam(T) (2)

holds with probability at least 1− |F|δ. Conditioning on (2), for every C and Γ, we have

|cost(S, C,Γ)− cost(T, C,Γ)|
≤ |(cost(S, C,Γ)− cost(S, C̃, Γ̃)) + (cost(T, C,Γ)− cost(T, C̃, Γ̃))|+ |cost(T, C̃, Γ̃)− cost(S, C̃, Γ̃)|

≤ ε

10

∑
c∈Cfar

Γ(c)d(c, c∗) + |cost(S, C̃, Γ̃′)− cost(S, C̃, Γ̃)|+ |cost(T, C̃, Γ̃′)− cost(T, C̃, Γ̃)|

+ |cost(T, C̃, Γ̃′)− cost(S, C̃, Γ̃′)|

≤ ε

10

∑
c∈Cfar

Γ(c)d(c, c∗) +
1

10
diam(T) +

10

11
ε′ · |T | · diam(T)

≤ ε

10
cost(T, C,Γ) + ε′ · |T | · diam(T).

Step II: Bounding |cost(FC(T), C,Γ)− cost(T, C,Γ)|. In order to prove cost(T, C,Γ) and cost(FC(T), C,Γ) are close,
we show that optimal assignments of T and FC(T) can transform to each other. Suppose σ∗, σ̃∗ are optimal assignments of
T and FC(T) respectively.

Fix any set of points T , centers C, and capacity constraint Γ. We will prove the case for diam(C) ≤ Rfar = 60diam(T)/ε
and apply the union bound by Lemma C.3 afterwards.

Starting with σ̃∗, our first target is to construct an assignment σ of T such that costσ(T, C,Γ) ≈ costσ̃
∗
(FC(T), C,Γ).

Lemma C.4. For any fixed choice of C, Γ, and T for some iteration r and i of line 4(c)v, we have that

cost(T, C,Γ) ≤ E [cost(FC(T), C,Γ)] .

The expectation is taken over only the randomness of the sampling in line 4(c)vC.

Proof. Let σ̃∗ be the optimal assignment of FC(T). Since σ̃∗ is a random assignment, we construct σ by setting σ(x, c) :=
E [σ̃∗(x, c)]. Then we have

E [cost(FC(T), C,Γ)] = E

[∑
c∈C

∑
x∈T

σ̃(x, c)

]
(by definition)

=
∑
c∈C

∑
x∈T

σ(x, c)

= costσ(T, C,Γ) (by definition)

≥ costσ
∗
(T, C,Γ), (optimality of σ∗)

as desired.

Lemma C.5. For any fixed choice of C, Γ, and T for some iteration r and i of line 4(c)v, with probability at least
1− n−10 ·O(n−k(n+ kε−1)−k), we have

cost(FC(T), C,Γ) ≤ cost(T, C,Γ) + ε′ · |T | · diam(T).

The probability is taken over only the randomness of the sampling in line 4(c)vC.

26

Relative Error Fair Clustering

Proof. Let σ∗ be the optimal assignment of T . We start with an assignment that assigns σ̃′(x, c) = σ∗(x, c) |T |
m fraction of

x to center c. This assignment satisfies ∀x ∈ FC(T),
∑

c∈C σ̃
′(x, c) = |T |

m . However,
∑

x∈T σ̃′(x, c) = Γ(c) may not hold
for every c ∈ C.

In order to transform σ̃′(x, c) into an assignment satisfying Γ, for every center such that
∑

x∈T σ̃′(x, c) > Γ(c), we need to
change some assignments of c to other centers x→ c′, suffering cost of at most d(x, c′)− d(x, c) ≤ d(c, c′) ≤ diam(C).

For every center c ∈ C, the difference between assigned weight and real capacity is |
∑

x∈FC(T) σ(x, c)
|T |
m − Γ(c)|. For

every T , we have

cost(FC(T), C,Γ) ≤
∑
c∈C

∑
x∈T

σ̃(x, c)

≤
∑
c∈C

∑
x∈T

σ̃′(x, c) + diam(C)
∑
c∈C

∣∣∣∣∣∣
∑

x∈FC(T)

σ(x, c)
|T |
m
− Γ(c)

∣∣∣∣∣∣
=

∑
c∈C

∑
x∈T

σ(x, c) + diam(C)
∑
c∈C

∣∣∣∣∣∣
∑

x∈FC(T)

σ(x, c)
|T |
m
− Γ(c)

∣∣∣∣∣∣
=

∑
c∈C

∑
x∈T

σ(x, c) + diam(C) max
s∈{−1,+1}C

∑
c∈C

sc

 ∑
x∈FC(T)

σ(x, c)
|T |
m
− Γ(c)

Fix s ∈ {−1,+1}C , let xi (1 ≤ i ≤ m) denotes the i-th point in T . Then x1, x2, . . . , xm are independent random variables
uniformly drawn from T . Define Yi =

∑
c∈C scσ(xi, c)

|T |
m . For every 1 ≤ i ≤ m, we have Yi ∈ [−|T |/m, |T |/m]. By

Hoeffding’s inequality,

Pr

[
m∑
i=1

∑
c∈C

scσ(xi, c)
|T |
m
−
∑
c∈C

scΓ(c) > ε′T

]
= Pr

[
m∑
i=1

Yi − E

[
m∑
i=1

Yi

]
> ε′T

]
≤ exp

(
−ε′2m/2

)
.

Applying union bound for every s ∈ {−1,+1}C , we have

Pr

 max
s∈{−1,+1}C

∑
c∈C

sc

 ∑
x∈FC(T)

σ(x, c)
|T |
m
− Γ(c)

 > ε′T/2

 ≤ 2k exp
(
−ε′2m/2

)
≤ n−10 ·O(n−k(n+ kε−1)−k).

In summary, cost(FC(T), C,Γ) ≤ cost(T, C,Γ) + ε′ · |T | · diam(T) holds with probability at least 1− n−10 ·O(n−k(n+
kε−1)−k).

We now move to bound the error induced by cost(FC(T), C,Γ)−E [cost(FC(T), C,Γ)] in the same manner of Cohen-Addad
& Li (2019); Cohen-Addad et al. (2025).

Lemma C.6. For any fixed choice of C, Γ, and T for some iteration r and i of line 4(c)v, with probability at least
1− n−10 ·O(n−k(n+ kε−1)−k), we have that

|cost(FC(T), C,Γ)− E [cost(FC(T), C,Γ)]| ≤ ε′ · |T | · diam(T).

The randomness is only over the sampling in line 4(c)vC.

Proof. Let t1, t2, . . . , tm be the m points sampled in FC(T). Define f(t1, t2, . . . , tm) = cost({t1, . . . , tm}, C,Γ). For
every t,∈ Xm and 1 ≤ i ≤ m, we have

sup
t′i∈X

|f(t1, . . . , ti, . . . , tm)− f(t1, . . . , t
′
i, . . . , tm)| ≤ |T |

m
diam(T).

27

Relative Error Fair Clustering

By McDiarmid’s inequality,

Pr[|f(t1, . . . , tm)− E [f(t1, . . . , tm)] | ≤ ε · |T | · diam(T)] ≤ exp(−ε′2m)

≤ n−10 ·O(n−k(n+ kε−1)−k).

Step III: Put everything together. We finalize the proof of Lemma C.2. To this end, we need to further establish a lower
bound for the cost of cost(T (r)

i , C,Γ(r)
i) for each iteration r as follows. In the following discussion, cost(X ,WC) and cost(X)

denotes the optimal cost of unconstrainted k-median problem. In particular cost(X) denotes minC⊆X ,|C|=k cost(X , C).
Lemma C.7. With probability at least 1− n−7,

cost (X ,WC) ≥ 1

8C2
0 log n

|WC|∑
i=1

10 logn∑
r=1

∣∣∣T (r)
i

∣∣∣ diam(T
(r)
i). (3)

Proof. Let P (r)
i,j be the remaining points at the beginning of the r-th iteration of line 4c. Let Nr =

∑
j

∣∣∣P (r)
i,j

∣∣∣. We fix some
r in the following discussion and omit the superscript (r) for convenience.

Let j∗ follows the definition in line 4(c)iv. Define γ = 4
5 lognsr. We have |Si,j∗ | ≥ γ by the definition of j∗. Define

si,j =
|Pi,j |
N sr be the expected size of Si,j .

Pick δ = 0.1. By Chernoff bound, we have

Pr

[
|Pi,j∗ | ≤

4

5(1 + δ) log n
N

]
= Pr [(1 + δ)si,j∗ ≤ γ]

≤ Pr [(1 + δ)si,j∗ ≤ |Si,j∗ |]

When si,j∗ ≥ γ
1+δ , we have

Pr [|Si,j∗ | ≥ (1 + δ)si,j∗] ≤ exp

(
− δ2

(δ + 2)(1− δ)
γ

)
(Chernoff bound)

≤ n−10 (γ = Ω(log n))

Otherwise, we have |Si,j∗ | > (γ/si,j∗)si,j∗ . Since γ/si,j∗ is sufficiently large, this case happens with negligible probability.
We show that with high probability, for every 1 ≤ j ≤ L satisfying si,j <

γ
1+δ , |Si,j∗ | ≤ γ holds.

Pr[|Si,j | ≥ γ] ≤ exp

(
− t2

t+ 2
si,j

)
(t = γ

si,j
− 1)

≤ exp

(
− tδ

(t+ 2)(1 + δ)
γ

)
(si,j < γ

1+δ)

≤ n−11. (γ = Ω(log n))

Take union bound for every j, we have Pr[si,j∗ ≥ γ
1+δ] ≥ 1− n−10.

In summary, with probability at least 1− 2n−10,

|Pi,j∗ | ≥
4

5(1 + δ) log n
N. (4)

For rings Pi,j inside Pi,j∗ , i.e. j < j∗, we have |Si,j | < γ. By symmetry, we can prove that with probability at least
1− n−9,

∀j < j∗, |Pi,j | ≤
4

5(1− δ) log n
N. (5)

28

Relative Error Fair Clustering

By the definition of T (r)
i := {x ∈ P (r) : d̃(x, Speel) ≤ (2C0)

j∗ ·R}, T (r)
i contains every point in Pi,j (j ≤ j∗) and some

points in Pi,j∗+1. Conditioning on (4) and (5), we have

cost
(
T

(r)
i , c∗

)
=

∑
x∈T

(r)
i

d(x, c∗) ≥ (2C0)
j∗−1

(
|Pi,j |+ |Pi,j+1 ∩ T

(r)
i |

)
≥

∣∣∣T (r)
i

∣∣∣ diam(T
(r)
i)

8C2
0 log n

. (6)

By union bound, (6) holds for every 1 ≤ i ≤ |WC|, 1 ≤ r ≤ 10 log n with probability at least 1− n−7. We conclude the
proof by showing (6) implies

cost(X ,WC) =

|WC|∑
i=1

10 logn∑
r=1

cost(T (r)
i , ci) ≥

1

8C2
0 log n

|WC|∑
i=1

10 logn∑
r=1

∣∣∣T (r)
i

∣∣∣ diam(T
(r)
i).

Proof of Lemma C.2. By Lemma C.4, C.5, C.6, for every i, j, T ⊆ Pi,j , and for every C ⊂ B(ci, 60diam(T)/ε),Γ,
Algorithm 5 outputs set FC(T) such that |cost(T, C,Γ) − cost(FC(T), C,Γ)| ≤ ε′ · |T | · diam(T) with probability
1 − n−10 · O(n−k(n + kε−1)−k). Then by applying union bound to the result of Lemma C.3, with probability at least
1− n−8, for every 1 ≤ i ≤ |WC|, 1 ≤ r ≤ 10 log n, Algorithm 5 outputs set FC(T

(r)
i) such that for every C,Γ,∣∣∣cost(FC(T

(r)
i), C,Γ)− cost(T (r)

i , C,Γ)
∣∣∣ ≤ ε

10
· cost(T (r)

i , C,Γ) + ε

10αWCC
2
0 log n

· |T (r)
i | · diam(T

(r)
i). (7)

Let σ∗ be the optimal assignment of cost(X , C,Γ). Define Γ
(r)
i (c) =

∑
x∈T

(r)
i

σ(x, c). Summing up for every i, r,
conditioning on (3) and (7), we have

cost(FC, C,Γ)− cost(X , C,Γ) ≤
∑
i

∑
r

(cost(FC(T
(r)
i), C,Γ(r)

i)− cost(T (r)
i , C,Γ(r)

i))

≤
|WC|∑
i=1

10 log2 n∑
r=1

ε

10
cost(T (r)

i , C,Γ(r)
i) +

ε

10αWCC
2
0 log n

· |T | · diam(T)

≤ ε

10
cost(X , C,Γ) + 4ε

5αWC
· cost(X ,WC)

≤ ε

10
cost(X , C,Γ) + 4ε

5
· cost(X)

≤ ε · cost(X , C,Γ).

By applying the same argument to the optimal assignment σ̃∗ of cost(FC, C,Γ), we can prove cost(X , C,Γ) −
cost(FC, C,Γ) ≤ ε · cost(X , C,Γ) holds with probability at least 1− n−7, which concludes the proof.

D A (1 + ε)-Coreset for general (k, z) Clustering

In this section, we generalize our analysis of k-median algorithm in Section 3 to (k, z)-clustering for z = O(1) (including
k-means). We first remind readers of the stated guarantees as follows.

Theorem 3. There exists an algorithm in the weak-strong oracle model that, with high probability, computes a (k, ε) coreset
of size Õ(k

2

ε3) for (k, z)-clustering with any z = Θ(1) using Õ(k
2

ε3) strong oracle point queries (or edge queries), Õ(nk)

weak oracle queries, and Õ(nk + k2/ε3)) time.

The algorithm is essentially the same as Algorithm 1, and the analysis follows from the same idea of heavy-hitter sampling +
peeling combined with the algorithm in Chen (2009). However, we need to change the analysis in the same manner of Chen
(2009), and we need a separate charging argument for the “skipped” rings in the (k, z)-clustering setting.

29

Relative Error Fair Clustering

Lemma D.1. The coreset produced by Algorithm 1 is a (1 +O(ε))-coreset for (k, z)-clustering with size O(k2 log6 n/ε3)
for any constant z with high probability.

Since we use the same algorithm (Algorithm 1), we only use O(k2 log6 n/ε3) strong oracle SO queries, which leads to a
(1 + ε)-coreset for (k, z)-clustering with k2 polylog (n)/ε3 SO queries. We will rescale ε by polylog (n) factors in the end
and argue that the size and number of strong oracle queries are at most k2 polylog (n)/ε3 for any constant z.

Additional notation and generalized triangle inequality. We give some self-contained notation used in the analysis for
the (k, z) and the generalized triangle inequality. For the distance between two points x and y, we use dz(x, y) to denote
the z-th power of the distance. For any center c in a clustering C, the cost of point x assigned to center c could therefore be
expressed as costz(c, x) = dz(c, x). Similarly, we could use

costz(c, P) =
∑
x∈P

C(x)=c

dz(c, x)

for the cost of a center on a set of points P . Correspondingly, we could denote the total cost

costz(C, P) :=
∑
c∈C

costz(c, P).

The following lemma characterizes the generalized triangle inequality.

Proposition 4. Let (u, v, w) be points from a metric space as a subset of [∆]d. Then, for any z ≥ 1, we have

dz(u, v) ≤ 2z · (dz(u,w) + dz(w, v)) .

The lemma could be straightforwardly proved by taking the z-th power of the triangle inequality and using Jensen’s
inequality. We omit the proof for the sake of conciseness.

The approximation analysis. Similar to the analysis of the k-median case, the proof for the approximation guarantees is
divided into the guarantees for the rings with samples added to SC and the rings without. For the purpose of conciseness,
we omit the proof of many lemmas that directly follow in the exactly same way as in Section 3.

Step I: the convergence of the algorithm and the structural results. We argue that all the results in this step follow in the
same way as in Section 3. In what follows, we list the lemmas and provide brief justifications for why they continue to hold
for general (k, z)-clustering objectives.

Lemma B.1. Let j∗ be the index of the ring found by line 4(c)iv of Algorithm 1. Then, with probability at least 1−1/poly(n),
no points in Pi,ℓ for ℓ > j∗ + 1 is removed in the peeling step.

Lemma B.2. With probability at least 1− 1/ poly(n), Algorithm 4 (the CONSERVATIVE-PEELING algorithm) could only
be executed once. Furthermore, after the execution of Algorithm 4, we have that

• all points x such that d(x, ci) ≤ R
2C0

are removed from P̃i.

• no points in Pi,1 is removed.

Lemma B.3. Let j∗ be the index of the ring found by line 4(c)iv of Algorithm 1. Then, with probability at least 1−1/poly(n),
all points in Pi,ℓ for ℓ ≤ j∗ are removed in the peeling step.

The proofs of Lemmas B.1 to B.3 are based on the high-probability success of the distance estimation algorithm of
Proposition 3. Therefore, switching to the (k, z)-clustering objective does not affect the proof.

Since Lemmas B.1 to B.3 continue to hold, the convergence of the algorithm is similarly true.

Lemma B.4. With probability at least 1− 1/ poly(n), the following statements for Algorithm 1 are true:

• Each ring Pi,j is marked as “processed” by exactly one iteration of line 4c.

• After O(log2 n) iterations of line 4c, all points in Pi is marked as “processed”.

30

Relative Error Fair Clustering

Conditioning on the high-probability events of Lemmas B.1 to B.3, the proof of Lemma B.4 only uses the concentration of
sampled points, which is independent of the change of the objectives.

Step II: handling the rings with many samples. Similar to the case of k-median, we now handle the rings that are marked
“processed” by Algorithm 2 (line 4(c)v). The analysis similarly follows from (Chen, 2009). In the first step, we directly use
the lemma that establishes the estimation of the number of points in the ring.

Lemma B.6. Let S with sr = O(k log3 n/ε3) be the set of points sampled uniformly at random from P̃i and let Si,j =

Pi,j ∩S. For all j such that |Si,j | ≥ 30k log2 n/ε2, let Sest
i,j be any 1/3 fraction of points from Si,j , and m̃i,j =

3|P̃i|
sr
·
∣∣Sest

i,j

∣∣.
For all |Pi,j | ≥ 30 log n/ε2, with probability at least 1− 1

polyn we have m̃i,j ∈ [(1− ε)|Pi,j |, (1 + ε)|Pi,j |].

We now prove the approximation guarantee of the coreset points that are added by Algorithm 2.

Lemma D.2. For a ring Pi,ℓ that is marked “processed” by Algorithm 2, let C be any set of centers. Let Si,ℓ denote
the set of points in S ∩ Pi,ℓ that are uniformly sampled and S

weight
i,ℓ be any 2/3 points in Si,ℓ that are assigned weight

w = m̃i,ℓ/|Sweight
i,ℓ | and added to SC. Then, with probability at least 1− λ∣∣∣cost(C,Pi,ℓ)− cost(C, Sweight

i,ℓ)
∣∣∣ ≤ 2z+1ε · |Pi,ℓ| · [dz(C, Pi,ℓ) + (diam(Pi,ℓ))

z]

Proof. We follow the same proof strategy as Lemma B.8. For p ∈ Pi,ℓ, let h(p) = dz(C, p). We have,

0 ≤ h(p) = dz(C, p) ≤ [d(C, Pi,ℓ) + diam(Pi,ℓ)]
z ≤ 2z [dz(C, Pi,ℓ) + (diam(Pi,ℓ))

z] .

Let η = 0, M = 2z [dz(C, Pi,ℓ) + (diam(Pi,ℓ))
z] and δ = εM . For

∣∣∣Sweight
i,ℓ

∣∣∣ ≥ (M2/2δ2) ln 2/λ , from Lemma B.7 we
have

Pr

∣∣∣∣∣∣
∑

p∈Pi,ℓ
dz(C, p)

|Pi,ℓ|
−

∑
s∈S

weight
i,ℓ

dz(C, s)∣∣∣Sweight
i,ℓ

∣∣∣
∣∣∣∣∣∣ ≥ ε · 2z [dz(C, Pi,ℓ) + (diam(Pi,ℓ))

z]

 ≤ λ (8)

Using the above equation and conditioning on the high probability event of Lemma B.6, we get

∣∣∣costz(C, Pi,ℓ)− costz(C, Sweight
i,ℓ)

∣∣∣ =
∣∣∣∣∣∣∣
∑

p∈Pi,ℓ

dz(C, p)−
∑

s∈S
weight
i,ℓ

dz(C, s)w(s)

∣∣∣∣∣∣∣
= |Pi,ℓ|

∣∣∣∣∣
∑

p∈Pi,ℓ
dz(C, p)

|Pi,ℓ|
−

∑
s∈S

weight
i,ℓ

dz(C, s)w(s)

|Pi,ℓ|

∣∣∣∣∣
≤ |Pi,ℓ|

∣∣∣∣∣∣
∑

p∈Pi,ℓ
dz(C, p)

|Pi,ℓ|
−

(1− ε)
∑

s∈S
weight
i,ℓ

dz(C, s)|Pi,ℓ|

|Pi,ℓ|
∣∣∣Sweight

i,ℓ

∣∣∣
∣∣∣∣∣∣

(From Lemma B.6 and w = m̃i,ℓ/|Sweight
i,ℓ |)

≤ |Pi,ℓ|

∣∣∣∣∣∣
∑

p∈Pi,ℓ
dz(C, p)

|Pi,ℓ|
−

∑
s∈S

weight
i,ℓ

dz(C, s)∣∣∣Sweight
i,ℓ

∣∣∣
∣∣∣∣∣∣+ ε|Pi,ℓ|

∑
s∈S

weight
i,ℓ

dz(C, s)∣∣∣Sweight
i,ℓ

∣∣∣
≤ |Pi,ℓ|ε · 2z [dz(C, Pi,ℓ) + (diam(Pi,ℓ))

z] + ε|Pi,ℓ| · 2z [dz(C, Pi,ℓ) + (diam(Pi,ℓ))
z]

≤ 2z+1ε · |Pi,ℓ| · [dz(C, Pi,ℓ) + (diam(Pi,ℓ))
z]

w.p. at least 1− λ. Second last inequality follows from, for s ∈ S
weight
i,ℓ , dz(C, s) ≤ 2z [dz(C, Pi,ℓ) + (diam(Pi,ℓ))

z].

We now bound the costs for the rings with points added to the strong coreset SC in the same way as in Lemma B.9.

31

Relative Error Fair Clustering

Lemma D.3. Let Pheavy be the set of rings with points being added to SC. Furthermore, let

costz(C,Pheavy) :=
∑

Pi,j∈Pheavy

costz(C, Pi,j)

be the total cost with respect to any set of center C ⊆ X of size at most k, induced by the rings in Pheavy, and let

c̃ost
z
(C,Pheavy) :=

∑
Pi,j∈Pheavy

costz(C, Sweight
i,j).

Then, with probability at least 1− 1/ poly n, we have∣∣∣costz(C,Pheavy)− c̃ost
z
(C,Pheavy)

∣∣∣ ≤ 2z+1ε ·
∑

Pi,j∈Pheavy

|Pi,j | · [dz(C, Pi,ℓ) + (diam(Pi,ℓ))
z] .

Proof. Fix some set of centers C of size at most k. Let λ = Λ/
(
nk(ck log βn)

)
for some constant c. From Lemma D.2 for

a particular i and ℓ, we have with probability at least 1− λ

∣∣∣costz(C, Pi,ℓ)− costz(C, Sweight
i,ℓ)

∣∣∣ ≤ 2z+1ε · |Pi,ℓ| · [dz(C, Pi,ℓ) + (diam(Pi,ℓ))
z]

This holds for the points added to SC by Algorithm 2 as the number of points added for each heavy ring is
∣∣∣Sweight

i,ℓ

∣∣∣ ≥
30 · k log2 n/ε2 ≥ (1/2ε2) ln 2/λ = (1/2ε2)

(
ln(cnkk log βn) + ln 1

Λ

)
Now, since we have k centers in the approximate solution and each center has at most O(log βn) rings, union bound over all
the rings gives us with probability at least 1− Λ/nk,

∣∣∣costz(C,Pheavy)− c̃ost
z
(C,Pheavy)

∣∣∣ ≤ ∑
Pi,ℓ∈Pheavy

∣∣∣costz(C, Pi,ℓ)− costz(C, Sweight
i,ℓ)

∣∣∣
≤ 2z+1ε ·

∑
Pi,ℓ∈Pheavy

|Pi,ℓ| · [dz(C, Pi,ℓ) + (diam(Pi,ℓ))
z]

As there are at most nk choices of k centers C from point set X of size n, the proof concludes with a final union bound over
the choice of centers C and setting Λ = 1/nc′ .

Step III: handling the rings with few samples. We now analyze the rings that are marked “processed” without any points
added to SC in Algorithm 1. We need to define a new charging scheme that works with diamz(Pi,ℓ) and bound the loss by
generalized triangle inequality. We first note that the size relationship between the ring Pi,ℓ and the ring Pi,j∗ that marks
Pi,ℓ as “processed” continues to hold.

Lemma B.10. Let ring Pi,ℓ be marked as “processed” in iteration r without any point x ∈ Pi,ℓ being added to the coreset
SC. Furthermore, let j∗ be the ring found by line 4(c)iv of iteration r. Then, with probability at least 1− 1/ poly(n), we
have

|Pi,j∗ | ≥
2C0

ε
· |Pi,ℓ| .

The proof of the lemma only requires the heavy-hitter sampling argument which is independent of the objectives. We now
define a generalized charging scheme similar to that of Algorithm 6, albeit working with diam2(Pi,ℓ). For each ring Pi,ℓ

marked as “processed” without points being added to SC, we define j∗(ℓ) as be the index of ring Pi,j∗ that marked Pi,ℓ as
“processed”.

32

Relative Error Fair Clustering

Algorithm 7. A charging scheme (a thought process for the analysis purpose only).

• For each ring Pi,ℓ such that ℓ is marked as “processed” in iteration r without any point x ∈ Pi,ℓ being added to the
coreset SC:

◦ If j∗(ℓ) ̸= 0, we write a charge of ε
2C0
· diamz(Pi,ℓ) to all points in Pi,j∗(ℓ).

◦ Otherwise, if j∗(ℓ) = 0 (which implies ℓ = 1), we write a charge of ε
2C0
· diamz(Pi,1) to all points in

{x ∈ Pi,0 | d(x, ci) ≥ R
2C0
}.

• If ring Pi,ℓ receives charges of at most γ on each point and ℓ is marked as “processed” without any point x ∈ Pi,ℓ

being added to the coreset SC, then transfer the charges by writing charges of ε
2C0
· γ to all points in Pi,j∗(ℓ).

• Continue recursively until all charges are written on points of rings Pi,ℓ such that points x ∈ Pi,ℓ are added to the
coreset SC.

We now give two lemmas that characterize the guarantees of the charging scheme in the same way as the k-median case.
Lemma D.4. For any ring Pi,ℓ, conditioning on the high-probability event of Lemma B.10, the total number of charges
Algorithm 6 could distribute is at least |Pi,ℓ| · diamz(Pi,ℓ).

Proof. The lemma follows from the proof of Lemma D.4 with the change of the z-th power. For each ring Pi,ℓ, we claim
that conditioning on the high-probability event of Lemma B.10, there is

∣∣Pi,j∗(ℓ)

∣∣ ≥ C0

50ε · |Pi,ℓ|. The statement trivially
holds if j∗(ℓ) ̸= 0. On the other hand, if j∗(ℓ) = 0, by the rules in Algorithm 1 (which implies ℓ = 1), we argue that there
are C0

50ε · |Pi,1|. In particular, we could treat Pi,0 \ P close
i,0 (defined in Algorithm 7) as a separate ring, and apply Lemma B.10

to get the desired result. Therefore, the total charge Pi,ℓ could write to is at least

ε

2C0
· diamz(Pi,ℓ) ·

∣∣Pi,j∗(ℓ)

∣∣ ≥ diamz(Pi,ℓ) · |Pi,ℓ| ,

as claimed.

Next, we again bound the number of charges for any point in a ring that could be received.
Lemma D.5. For any ring Pi,ℓ, conditioning on the high-probability event of Lemma B.10, for any point x ∈ Pi,ℓ, the total
number of charges written on x by Algorithm 6 is at most ε · (2C0)

z · diamz(Pi,ℓ+1) for any ε < 1.

Proof. We refer the reader to Lemma B.12 for the full proof, and we only give a concise version here that skips some of the
intermediate reasoning steps. Assuming no recursive charging happens, the total charge for Pi,j∗ could receive is at most

∑
q

charge(j∗ ← q) ≤
j∗+1∑
q=0

ε

2C0
· diamz(Pi,q)

≤ ε

2C0
· diamz(Pi,j∗+1) ·

j∗+1∑
q=0

·(1

2C0
)j

∗−q+1

≤ ε

C0
· diamz(Pi,j∗+1). (

∑j∗+1
q=0 ·(

1
2C0

)j
∗−q+1 ≤ 2 for any j∗ ≥ 0)

On the other hand, if recursive charging happens, with the same argument as in Lemma B.12, we have that

ε

2C0
· ε

C0
· diamz(Pi,ℓ+1) ≤ ε2 · 1

2C2
0

· (2C0)
z · diam(Pi,ℓ) ≤ (2C0)

z · ε2 · diam(Pi,ℓ).

Hence, the total amount of charges that could be transferred to any such j∗ is at most

logn∑
ℓ=j∗+1

(2C0)
z · ε2·(j

∗−ℓ) · diam(Pi,j∗) ≤ ε(2C0)
z · ·diam(Pi,j∗+1),

which is as desired.

33

Relative Error Fair Clustering

We could now bound the total cost contribution from the rings that are marked as “processed” without points added to the
coreset SC as follows.
Lemma D.6. Let Pi,ℓ be a ring such without points added to SC, and Pi,j∗(ℓ) be the ring for Pi,ℓ to charge to in the
charging scheme of Algorithm 6. Then, we have that

|Pi,ℓ| · diamz(Pi,ℓ) ≤ ε · (2C0)
2z ·

∣∣Pi,j∗(ℓ)

∣∣ · diamz(Pi,j∗(ℓ)).

Proof. The proof is similar to the proof of Lemma D.6. By Lemma D.5, any point in ring Pi,j∗(ℓ) receives at most
ε · (2C0)

z · diam(Pi,j∗(ℓ)+1) charges. We now claim that diam(Pi,j∗(ℓ)+1) ≤ (2C0)
z · diam(Pi,j∗(ℓ)). For all rings except

j∗(ℓ) = 0, the statement simply follows directly from the construction. If j∗(ℓ) = 0, by the rule of Algorithm 1, the charges
could only be written on Pi,0 \ P close

i,0 by the charging rule. Therefore, we have diam(Pi,j∗(ℓ)+1) ≤ (2C0)
z · diam(Pi,j∗(ℓ)).

Furthermore, we could show that the number of points receiving charges in ring Pi,j∗(ℓ) is at least the number of points in
Pi,ℓ. Therefore, we have that

|Pi,ℓ| · diamz(Pi,ℓ) ≤ ε · (2C0)
z ·

∣∣Pi,j∗(ℓ)

∣∣ · diamz(Pi,j∗(ℓ)+1) ≤ ε · (2C0)
2z ·

∣∣Pi,j∗(ℓ)

∣∣ · diamz(Pi,j∗(ℓ)),

as desired by the lemma statement.

The next lemma is an analog of Lemma B.14 that bounds the costs between (C, Pi,j) and (C, Pi,⋆) such that Pi,⋆ marked
Pi,j as “processed”.
Lemma D.7. Let C be any set of centers. Then, for any ring Pi,j∗ and rings Pi,j such that j ≤ j∗+1 and |Pi,j | ≤ η · |Pi,j∗ |,
we have that

costz(C, Pi,j) ≤ 2z · η · costz(C, Pi,j∗) + (2C0)
2z · |Pi,j | · diamz(Pi,j).

Proof. We use generalized triangle inequality (Proposition 4) to prove the lemma. Let x ∈ Pi,j be a point in the ring Pi,j ,
we could find a corresponding a point y ∈ Pi,j∗ assigned to center c ∈ C such that

costz(C, x) ≤ dz(c, x) (costz(C, x) is the optimal cost for x)
≤ 2z · (dz(c, y) + dz(x, y)) (by Proposition 4)
≤ 2z · costz(C, y) + 2z · diamz(Pi,j∗)

≤ 2z · costz(C, y) + 2z · (2C0)
z · diamz(Pi,j). (by our construction of the rings and j ≤ j∗ + 1)

Iterating the argument with the least-cost point y ∈ Pi,j∗ for |Pi,j | ≤ η · |Pi,j∗ | time gives us

costz(C, Pi,j) =
∑

x∈Pi,j

costz(C, x)

≤ 2z ·
∑

x∈Pi,j

costz(C, y) + 2z · (2C0)
z · diam(Pi,j)

≤ 2z · η · costz(C, Pi,j∗) + (2C0)
2z · |Pi,j | · diamz(Pi,j),

as desired.

We can now bound the total cost induced by the “light” rings in the same way of Lemma B.15.
Lemma D.8. Let P light be the set of rings that are marked “processed” without points being added to SC, and let Pheavy be
all other rings. For any set of centers C, we have that

costz(C,P light) :=
∑

Pi,j∈P light

costz(C, Pi,j) ≤ ε · (2C0)
2z · log n ·

∑
Pi,j∈Pheavy

(costz(C, Pi,j) + |Pi,j | · diamz(Pi,j)) .

Proof. Similar to the proof of Lemma B.15, we fix any ring Pi,j∗ ∈ Pheavy, we let the rings P light(j∗) be the set of rings
with index ℓ such that j∗(ℓ) = j∗, and apply Lemma D.7 and Lemma D.6 to all rings in P light(j∗) and obtain that∑

Pi,j∈P light(j∗)

costz(C, Pi,j) ≤
∑

Pi,j∈P light(j∗)

ε · 2z · costz(C, Pi,j∗) + (2C0)
2z ·

∑
Pi,j∈P light(j∗)

|Pi,j | · diamz(Pi,j)

(by Lemma D.7)

34

Relative Error Fair Clustering

≤
∑

Pi,j∈P light(j∗)

ε · 2z · costz(C, Pi,j∗) + ε · (2C0)
4z ·

∑
Pi,j∈P light(j∗)

|Pi,j∗ | · diam(Pi,j∗)

(by Lemma B.13)

≤ log n ·
(
ε · 2z · costz(C, Pi,j∗) + ε · (2C0)

4z · |Pi,j∗ | · diam(Pi,j∗)
)

(at most log n such rings)

≤ ε · (2C0)
4z · log n · (cost(C, Pi,j∗) + |Pi,j∗ | · diam(Pi,j∗)) .

Once again, since each ring Pi,ℓ in P light has a unique j∗(ℓ), summing over all rings in P light gives the desired lemma
statement.

Wrapping up the proof of Theorem 3. We now finalize the proof of Lemma D.1. For (α, β)-approximation for
(k, z)-clustering, the approximation lower bound for opt is as follows.

Claim D.9. Let OPTz be the optimal cost of clustering on P with k centers for (k, z) clustering and let A be the centers
from a β-approximation solution. Then,

∑
i,j |Pi,j | ((2C0)

jR)z ≤ (2C0)
2z+1β · OPTz and

∑
i,j |Pi,j | diamz(Pi,j) ≤

(2C0)
3z+1β · OPTz .

Proof. Consider any point p ∈ Pi,j . For j = 0, (2C0)
jR = R and for j ≥ 1, (2C0)

jR ≤ 2C0d(A, p). Hence, for any j
we have

(
(2C0)

jR
)z ≤ (2C0d(A, p) +R)

z ≤ 2z ((2C0)
zdz(A, p) +Rz). Now,

∑
i,j

|Pi,j |
(
(2C0)

jR
)z

=
∑
i,j

∑
p∈Pi,j

(
(2C0)

jR
)z ≤∑

i,j

∑
p∈Pi,j

2z ((2C0)
zdz(A, p) +Rz)

= 2z
∑
p∈X

((2C0)
zdz(A, p) +Rz)

≤ 2z ((2C0)
zβ · OPTz + nRz) ≤ (2C0)

2z+1β · OPTz

Since diam(Pi,j) ≤ 2(2C0)
jR, we have

∑
i,j |Pi,j | (diam(Pi,j))

z ≤ (2C0)
3z+1β · OPTz

The following lemma directly establishes the desired guarantees as in Theorem 3.

Lemma D.10. For any set of centers C ⊆ X of size at most k, it holds that

|costz(C, X)− costz(C,SC)| ≤ ε · 30β · (2C0)
4z · log n · costz(C, X)

with probability at least 1− 1/ poly(n).

Proof. We define P light as the rings being marked as “processed” without points added to SC and Pheavy as the rings with
points added to SC. We have

costz(C, X) =
∑

P light
i,j ∈P light

costz(C, P light
i,j) +

∑
P heavy

i,j ∈P light

costz(C, P heavy
i,j).

Define c̃ost(C,P light) and c̃ost(C,Pheavy) as the cost induced by SC for C, and it follows that cost(C,SC) = c̃ost(C,P light)+
c̃ost(C,Pheavy). Furthermore, by our construction, there is c̃ost(C,P light) = 0. Conditioning on the high-probability events
of Lemma D.3 and Lemma D.8, we have that∣∣cost(C,Pheavy)− c̃ost(C,Pheavy)

∣∣ ≤ ε · 2z+1 ·
∑

Pi,j∈Pheavy

|Pi,j | · (dz(C, Pi,ℓ) + diamz(Pi,ℓ))∣∣cost(C,P light)− c̃ost(C,P light)
∣∣ ≤ costz(C,P light)

≤ ε · (2C0)
2z · log n ·

∑
Pi,j∈Pheavy

(costz(C, Pi,j) + |Pi,j | · diamz(Pi,j)) .

35

Relative Error Fair Clustering

As such, we could bound the difference of the cost as

|costz(C, X)− costz(C,SC)|
≤

∣∣cost(C,Pheavy)− c̃ost(C,Pheavy)
∣∣+ ∣∣cost(C,P light)− c̃ost(C,P light)

∣∣
≤ ε · (2C0)

2z · log n ·
∑

Pi,j∈Pheavy

|Pi,j | · (dz(C, Pi,ℓ) + diamz(Pi,ℓ)) + ε · (2C0)
2z · log n ·

∑
Pi,j∈Pheavy

cost(C, Pi,j)

(by Lemma D.8)

≤ ε · (2C0)
5z+1 · log n · costz(C, X) + ε · (2C0)

5z+1 · log n · β · OPTz (by Claim D.9)

≤ 2ε · (2C0)
5z+1 · log n · β · costz(C, X),

which is as desired.

Finally, we could rescale ε using ε = ε′

2·(2C0)5z+1·logn·β = O(ε′

logn) by the constant choices of β, C0, and z. The size of the

coreset and number of SO queries are therefore O(k2 log5 n/ε′3) = O(k2 log8 n/ε3) = k polylog(n)/ε3, as desired by
Theorem 3.

36

