
Under review as a conference paper at ICLR 2023

MOTIF-BASED GRAPH REPRESENTATION LEARNING
WITH APPLICATION TO CHEMICAL MOLECULES

Anonymous authors
Paper under double-blind review

ABSTRACT

This work considers the task of representation learning on the attributed rela-1

tional graph (ARG). Both the nodes and edges in an ARG are associated with2

attributes/features allowing ARGs to encode rich structural information widely3

observed in real applications. Existing graph neural networks offer limited abil-4

ity to capture complex interactions within local structural contexts, which hin-5

ders them from taking advantage of the expression power of ARGs. We pro-6

pose Motif Convolution Module (MCM), a new motif-based graph representation7

learning technique to better utilize local structural information. The ability to8

handle continuous edge and node features is one of MCM’s advantages over ex-9

isting motif-based models. MCM builds a motif vocabulary in an unsupervised10

way and deploys a novel motif convolution operation to extract the local struc-11

tural context of individual nodes, which is then used to learn higher-level node12

representations via multilayer perceptron and/or message passing in graph neural13

networks. When compared with other graph learning approaches to classifying14

synthetic graphs, our approach is substantially better in capturing structural con-15

text. We also demonstrate the performance and explainability advantages of our16

approach by applying it to several molecular benchmarks.17

1 INTRODUCTION18

The amount of graph data has grown explosively across disciplines (e.g., chemistry, social science,19

transportation, etc.), calling for robust learning techniques for modeling knowledge embedded in20

graphs and performing inference on new graphs. To shed new light on the mechanisms underlying21

observations, the learning techniques need to be interpretable so that we can link structural pat-22

terns to properties of interest. Many types of complex graphs (e.g., chemical molecules, biological23

molecules, signal transduction networks, multi-agent systems, social networks, knowledge graphs,24

etc.) can be naturally represented as attributed relational graphs (ARGs) Barrow & Popplestone25

(1971); Tsai & Fu (1979). The ARG representation extends ordinary graph representations by asso-26

ciating attributes (or features) with nodes and edges to characterize the corresponding entities and27

relationships, respectively. This makes ARGs substantially more expressive, which makes them28

appealing to many real-world applications, however, the nuance of ARGs comes with added com-29

plexities in training and analysis. We denote an ARG as G =< {v}, {euv}, {av}, {ru,v} >, where30

{v} is the node set, {eu,v} is the relation set with eu,v indicating the relation between nodes u and31

v, and av and ru,v are the attribute vectors of node v and relationship eu,v , respectively.32

Recently, graph neural networks (GNNs) Baskin et al. (1997); Sperduti & Starita (1997); Gori et al.33

(2005); Scarselli et al. (2005), which operate on the graph domain, have been combined with deep34

learning (DL) LeCun et al. (2015) to take advantage of big graph data. Many GNN variants have35

been proposed for a variety of applications (e.g., visual scene understanding, learning dynamics of36

physical systems, predicting properties of molecules, predicting traffic, etc.) Bruna et al. (2014);37

Henaff et al. (2015); Duvenaud et al. (2015); Defferrard et al. (2016); Li et al. (2016); Monti et al.38

(2017); Chang et al. (2017); Gilmer et al. (2017a); Chang et al. (2018); Velickovic et al. (2018);39

Xu et al. (2018a). In this study, we focus on the application of graph representation learning to40

efficiently and accurately estimate the properties of chemical molecules, which is in high demand to41

accelerate the discovery and design of new molecules/materials. In addition, there is an abundance42

of publicly available data in this domain, for example, the QM9 dataset Ramakrishnan et al. (2014).43

In the QM9 dataset, each chemical molecule is represented as an ARG with nodes and relations44
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representing atoms and bonds, respectively. Each node has one attribute storing the atom ID and the45

3D coordinates, and each relation has attributes indicating bond type (single/double/triple/aromatic)46

and length.47

Accurate quantum chemical calculation (e.g., typically using density functional theory (DFT)) needs48

to consider complex interactions among atoms and requires a prohibitively large amount of compu-49

tational resources, preventing the efficient exploration of vast chemical space. There have been50

increasing efforts to overcome this bottleneck using GNN variants to approximate DFT simulation,51

such as, enn-s2s Gilmer et al. (2017b), SchNet Schütt et al. (2017), MGCN Lu et al. (2019), DimeNet52

Klicpera et al. (2020b), DimeNet++ Klicpera et al. (2020a), and MXMNet Zhang et al. (2020).53

GNNs aim to learn embeddings (or representations) of nodes and relations to capture complex in-54

teractions within graphs, which can be used in downstream tasks, such as graph property prediction,55

graph classification, and so on. The message passing mechanism is widely used by GNNs to ap-56

proximate complex interactions. A GNN layer updates the embedding of a node v by transforming57

messages aggregated from its neighbors:58

a(l+1)
v = f1(a

(l)
v ,

∑
u∈Nv

f2(a
(l)
u , r(l)uv)) (1)

where l indicates the l-th GNN layer (l = 0 corresponds to the input),Nv is the neighbor set of node59

v, a(l)v is the embedding of node v, r(l)uv is the embedding of relation euv , f1 is the node embedding60

update function, and f2 is the interaction function passing messages from neighbors. The functions61

f1 and f2 can be based on neural networks. Relation embedding update can also be implemented62

using neural networks to integrate the l-th layer embedding of a relation with the l- or (l + 1)-th63

layer embeddings of the nodes connected to the relation.64

In the context of predicting molecular properties, innovations in GNN variants mainly focus on65

improving message-passing to better utilize structural information. For example, SchNet Schütt66

et al. (2017) considers the lengths of relationships (i.e., bonds between atoms) using a band of67

radial basis functions when calculating message-passing. MGCN Lu et al. (2019) stacks GNN68

layers to hierarchically consider quantum interaction at the levels of individual atoms, atom pairs,69

atom triads, and so on. When calculating the message passing to a target node from one of its70

neighbors, DimeNet Klicpera et al. (2020b) proposes directional embedding to capture interactions71

between neighboring bond pairs and is invariant in rotation and translation. DimeNet++ Klicpera72

et al. (2020a) improves the efficiency of DimeNet by adjusting the number of embedding layers and73

the embedding sizes via down-/up-projection layers. MXMNet Zhang et al. (2020) analyzes the74

complexity of the directional embedding proposed in DimeNet and decomposes molecule property75

calculations into local and non-local interactions, which can be modeled by local and global graph76

layers, respectively. The expensive directional embedding is only used in the local graph layer. In77

addition, MXMNet proposes efficient message passing methods to approximate interaction up to78

two-hop neighbors in the global layer and interactions up to two-hop angles in the local graph layer.79

Existing GNNs typically start with node attributes, which do not efficiently capture structural in-80

formation. In addition, each message passing calculation considers limited local context of the81

destination node. Most of the early studies on GNNs treated relations as independent in each itera-82

tion of message calculation. DimeNet/DimeNet++ and MXMNet consider the interaction between83

a 1-hop relation and its neighboring 2-hop relations. Although MGCN can potentially add higher84

layers to directly consider larger local contexts, its interaction space will increase exponentially85

with respect to the layer number. Moreover, it may not be straightforward to choose the number86

of levels because nodes have different local context sizes. We hypothesize that the local context87

space can be well characterized by a set of motifs, each of which may correspond to a certain type88

of local structure/substructure. For example, a motif may represent a chemical functional group.89

The motif set can be learned from data and be used to extract node features that explicitly encode90

the local context of the corresponding node, and hence improve the performance of a GNN. We,91

therefore, propose a motif-based graph representation learning approach with the following major92

components: (a) unsupervised pre-training of motifs; (b) motif convolution for isomorphic invariant93

and local-structure-aware embedding; (c) highly explainable motif-based node embeddings; and (d)94

a GPU-enabled motif convolution implementation to overcome the high computational complexity.95

We demonstrate our approach by its application to both synthetic and chemical datasets.96
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Figure 1: Motif Convolution Module. (A) The convolution operation calculates the structural similarity score
between every of the N motifs and the subgraph centering at each node in the input graph (see Sections 2.2
and 2.3) to produce a N -dimension context-aware representation for the corresponding node, which is further
transformed by a multilayer perceptron (MLP) network to produce a MCM-embedding for the input node. For
example, although two input nodes u and v represent the same element (e.g., atom), their MCM-embeddings
a
(0)
u and a

(0)
v are different as u and v are in different local context. An expanded illustration of MCM is shown

in Figure A.6 in Appendix. The output of MCM can be fed into GNNs. (B) The motif vocabulary is built via
clustering on subgraphs sampled from input graphs (Section 2.1).

2 MOTIF-BASED GRAPH REPRESENTATION LEARNING97

The key of our motif-based representation learning technique is a motif convolution module (MCM)98

(Figure 1A), which contains a motif convolution layer (MCL) connected to an optional multilayer99

perceptron (MLP) network. The motifs in an MCL are spatial patterns and can be constructed100

by clustering subgraphs extracted from training graphs (Figure 1B). These motifs describe various101

substructures representing different local spatial contexts. The convolution step applies all motifs102

on every node in an input graph to produce a local-context-aware node representation, which is103

invariant to transformations (rotation and translation in 3D). The MLP component can further embed104

the above node representation by exploring interactions between motifs. The node embeddings105

produced by MCM encode local structural context, which can empower downstream computations106

to learn richer semantic information. Below we explain in more details about motif vocabulary107

construction, motif convolution, and using MCM with GNNs.108

2.1 MOTIF VOCABULARY CONSTRUCTION109

Ideally, the motif vocabulary should be learned in an end-to-end fashion; however, this would incur110

an extremely high computational complexity. Therefore, we turned to a straightforward method for111

building a motif vocabulary that represents recurrent spatial patterns in training ARGs. First, we112

sampled a large number of subgraphs (e.g., k-hop neighborhoods) from the dataset. Each subgraph113

records its own center node. To make the extracted subgraphs cover local contexts as much as pos-114

sible, we reduced the probability of sampling a subgraph by 50% if the center node of the subgraph115

already appears in a sampled subgraph. This allows unvisited local contexts to be sampled with116

greater probability. Highly similar subgraphs (up to 3D rotation+translation transformations) can be117

represented by one motif. To achieve this, the sampled subgraphs are grouped into a user-specified118

number of clusters using a hierarchical clustering technique using average linkage Johnson (1967),119

implemented in the Orange3 library Demšar et al. (2013). A representative subgraph is selected from120

each cluster as a motif. If the size of the whole subgraph set is too big for the hierarchical clustering121

algorithm, we can randomly partition the whole subgraph set into many smaller subsets, and apply122

the above procedure to extract representative subgraphs from each subset. The above procedure is123

then applied to the representative subgraphs extracted from all subsets to obtain the final motifs.124

Pair-wise similarity calculations are required to perform hierarchical clustering between subgraphs125

(each of which are ARGs).126

2.2 ARG SIMILARITY MEASUREMENT127

We need to measure the similarity between two ARGs when building the motif vocabulary (Section128

2.1) and performing motif convolutions (Section 2.3). Such a similarity measurement should be129
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invariant to the permutation of nodes, which requires node-to-node matching between two graphs.130

In addition, the similarity measurement should not be sensitive to graph sizes. Otherwise, a larger131

graph could have a higher chance to be more similar to a motif than a smaller graph. Assuming we132

have the node-to-node matching, which is represented by a matching matrix M, between two ARGs133

G1 and G2. Each element Mui ∈ {0, 1} indicates whether node u in G1 matches with node i in G2.134

Inspired by Gold & Rangarajan (1996); Menke & Yang (2020), we define the normalized similarity135

between G1 and G2 defined as:136

S(G1, G2) = (

n1∑
u=1

n2∑
i=1

n1∑
v=1

n2∑
j=1

MuiMvjs1(e
(1)
uv , e

(2)
ij )

2
√
l1 × l2

+ α

∑n1

u=1

∑n2

i=1 Muis2(u, i)√
n1 × n2

)× 1

1 + α

(2)

where n1 and n2 are the numbers of nodes in G1 and G2, respectively. l1 and l2 are the numbers137

of edges in G1 and G2, respectively, s1(e
(1)
uv , e

(2)
ij ) is the relation compatibility function measur-138

ing the similarity between e
(1)
uv ∈ G1 and e

(2)
ij ∈ G2, s2(u, i) is the node compatibility function139

measuring the similarity between node u ∈ G1 and node i ∈ G2. α is the trade-off parameter140

to balance the contributions from edge similarities and node similarities. Theorem 2.1 shows that141

S(G1, G2) is independent of graph sizes. A matching matrix M is required to compute S(G1, G2).142

Finding an optimal matching between two ARGs is an NP problem and has been widely studied.143

We leave the details of problem definition and the efficient algorithm for finding a sub-optimal M in144

Appendix A.3. We have developed a GPU-accelerated matching method with sublinear complexity145

(see discussions in Appendix A.3.5).146

Theorem 2.1 If the compatibility functions s1(e
(1)
uv , e

(2)
ij ) and s2(u, i) are well-defined and nor-147

malized compatibility metrics, S(G1, G2) achieves maximum of 1 if and only if G1 and G2 are148

isomorphic. [proof in Appendix A.2]149

2.3 MOTIF CONVOLUTION150

The motif convolution layer (MCL) computes the similarity (see Section 2.2) between every motif151

and the subgraph centered at each node in an input graph. A motif representation of each input152

node is obtained by concatenating the similarity scores between the subgraph of the node and all153

motifs. This representation can be fed into a trainable multi-layer perceptron (MLP) with non-linear154

activation functions (e.g., ReLU) to produce a further embedding that encodes interactions among155

motif features. We denote this operation as:156

a(0)u = MCM(u ∈ G; {Mi}Ni=0)) (3)

where G is an input ARG, u is a node in G, {Mi}Ni=0 represents the motif vocabulary of size N ,157

and a
(0)
u is the MCM-embedding of u. Figure A.6 in Appendix shows an expanded illustration of158

the MCM computation flow.159

2.4 COUPLING MOTIF CONVOLUTION WITH GNNS160

The MCM can serve as a preceding module for any GNN to form MCM+GNN. The output of the161

MCM is still an ARG, which can be fed into any GNN that accepts an ARG as input. A readout162

function of an MCM+GNN model is needed to obtain the final representation of an input G:163

hG = READOUT({a(L)
u |u ∈ G}) (4)

where L is the number of GNN layers. The READOUT function should be invariant to permutation,164

and thus average, sum, and max pooling functions are widely used. The final representation hG can165

then be fed into a trainable component (e.g., a fully connected layer or a linear regressor) to generate166

the desired predictions.167
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Figure 2: Five templates used to generate the synthetic datasets. Template 2 and 5 are designed to
make the classification task more challenging, in which only two edges take different attributes.

Table 1: Graph classification results using synthetic data.
Dataset size GAT GCN GIN MCL-LR

500 0.691± 0.020 0.745± 0.033 0.640± 0.035 0.996 ± 0.008
10000 0.734± 0.028 0.853± 0.016 0.749± 0.010 0.997 ± 0.001

3 EXPERIMENTS168

We applied MCM to both synthetic and real data to thoroughly evaluate its potential in classify-169

ing graphs, predicting graph properties, and learning semantically explainable representations. All170

experiments use 1-hop neighborhoods in building motifs.171

3.1 CLASSIFICATION ON THE SYNTHETIC DATASET172

This experiment shows the advantage of motif convolution in capturing local structural context over173

GNNs. We designed 5 ARG templates (Figure 2), and one synthetic dataset of 5 classes, which share174

similar node attributes but have different structures. This template can only be well distinguished175

by their overall structures. For example, templates 2 and 5 are very similar to each other except for176

two edges have different attributes. Sample ARGs were produced from these 5 ARG templates by177

randomly adding nodes to templates and adding Gaussian noises ofN (0, 0.1) to node attributes. The178

number of added nodes in each sample ARG was sampled from a binomial distribution B(4, 0.1).179

Each sample ARG is labeled by the ID of its ARG template. The task is to predict the template ID of180

any given synthetic ARG. We synthesized two datasets of sizes 500 and 10,000, respectively. Each181

template contributed to 20% of each dataset.182

We only used the MCL of the MCM as it was already sufficient. The readout of the MCL is fed to a183

logistic regressor (LR) to output the classification result. Standardization was applied to the readout184

by removing the mean and scaling to unit variance. We named this model MCL-LR. Two readout185

functions (average pooling and max pooling) were tried, and max pooling always outperformed186

average pooling. A motif vocabulary of size 5 was constructed. We tried using more than 5 motifs,187

and found no significant advantage. We compared MCL-LR with several baseline models built from188

GNN variants with edge weight normalization implemented by Wang et al. (2019), including GCN189

Kipf & Welling (2017), GIN Xu et al. (2018b) and GAT Veličković et al. (2018) (detailed model190

configurations in Appendix A.5.2).191

We ran each model 20 times on both datasets. In each run, each dataset was randomly split into192

8:1:1 for training, validation and test. The average prediction accuracy, as well as the standard193

deviation, are reported in Table 1. The MCL-LR models significantly outperform other models by194

an average of 20%. In addition, MCL-LR requires substantially smaller training data as it is able195

to achieve near-perfect results on the 500 datasets. We observed that the learned motifs were quite196

similar to the underlying templates (Appendix Figure A.7) and contains necessary local structures197

for discriminant purpose, which explain the superior performance of MCL-LR. The performance198

by categories (Appendix Table A.6) suggests that MCL-LR is able to discriminate highly similar199

templates, as in the case of templates 2 and 5 in the appendix table. In addition, we observed that200

training of GNNs on the larger dataset took more time and computational resources than MCL-LR.201

202
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Table 2: Compare test ROC-AUC (mean ± std) on molecular property prediction benchmarks. The
best result for each dataset is in bold.

Dataset bace bbbp clintox sider tox21 toxcast hiv
GCN 0.811 ± 0.030 0.881 ± 0.036 0.615 ± 0.102 0.615 ± 0.025 0.784 ± 0.017 0.633 ± 0.007 0.754 ± 0.067
GIN 0.797 ± 0.049 0.873 ± 0.036 0.530 ± 0.065 0.616 ± 0.025 0.783 ± 0.024 0.634 ± 0.009 0.762 ± 0.058

MICRO-Graph 0.819 ± 0.004 0.870 ± 0.008 0.540 ± 0.024 0.617 ± 0.018 0.774 ± 0.006 0.635 ± 0.006 0.780 ± 0.026
MGSSL (DFS) 0.797 ± 0.008 0.705 ± 0.011 0.797 ± 0.022 0.605 ± 0.007 0.764 ± 0.004 0.638 ± 0.030 0.795 ± 0.011
MGSSL (BFS) 0.791 ± 0.009 0.697 ± 0.001 0.807 ± 0.021 0.618 ± 0.008 0.765 ± 0.003 0.641 ± 0.070 0.788 ± 0.012
MCM + GCN 0.806 ± 0.026 0.917 ± 0.031 0.612 ± 0.145 0.624 ± 0.024 0.794 ± 0.015 0.650 ± 0.012 0.792 ± 0.046
MCM + GIN 0.820 ± 0.055 0.900 ± 0.031 0.655 ± 0.139 0.627 ± 0.028 0.802 ± 0.015 0.651 ± 0.010 0.800 ± 0.043

Figure 3: The training and testing curves on molecular benchmarks suggest MCM+GIN converge
faster and more stably than GIN.

3.2 CLASSIFICATION ON MOLECULAR BENCHMARKS203

We conducted an experiment using several small and medium sized molecular benchmark datasets in204

MoleculeNet Wu et al. (2018). We compared our model with MICRO-Graph Subramonian (2021)205

and MGSSL Zhang et al. (2021) with different generation orders (BFS and DFS), which are also206

pre-training frameworks for GNNs with a motif-aware fashion. The results demonstrate that MCM207

can be integrated with GNNs in a broad way. An MCM+GNN model uses the MCM component208

to preprocess input graphs. We used the open-source package RDKit Landrum (2013) to parse209

the SMILES formula of molecules and performed scaffold-split Hu et al. (2019); Ramsundar et al.210

(2019) to get the train-validation-test split as 8:1:1. Following the suggestions in MGSSL Zhang211

et al. (2021), both baseline models (GIN and GCN) have 5-layer with hidden dimension of 300.212

Mean pooling is used as the readout function after convolutional layers. Both MCM+GCN and213

MCM+GIN use a motif vocabulary of size 100. Smaller baseline models (3 conv layers and 64214

hidden dim in GCN/GIN) are used in MCM-GCN/GIN on all datasets. For each dataset, we carried215

out 5 independent runs and reported means and standard deviations. Table 2 shows that GNNs inte-216

grated with MCM consistently perform better than the base models. Figure 3 compares the training217

and test curves of MCM+GIN and GIN, and shows that MCM significantly speeds up and stabilizes218

training, suggesting MCM+GIN is fundamentally more expressive than GIN. We believe this is be-219

cause MCM encodes local structural information that is not sufficiently captured with traditional220

message passing in GNNs. The details of training settings and data preprocessing are provided in221

Appendix A.5.3.222

3.3 MOLECULE PROPERTY PREDICTION ON QM9223

The QM9 dataset Ramakrishnan et al. (2014) is a widely used benchmark for evaluating models224

that predict quantum molecular properties. It consists of about 130k organic molecules with up to 9225

heavy atoms (C, O, N and F). The mean absolute error (MAE) of target properties is the commonly226

used evaluation metric. We adopted the data-splitting setting used in Klicpera et al. (2020b;a); Zhang227

et al. (2020). More specifically, following Faber et al. (2017), we removed about 3k molecules that228

failed the geometric consistency check or were hard to converge. We applied random splitting to the229

dataset, which takes 110,000 molecules for training, 10,000 for validation, and the rest for test. We230

only used the atomization energy for U0, U , H and G, by subtracting the atomic reference energies231

as in Klicpera et al. (2020b). For property ∆ϵ, we followed the DFT calculation and calculate it by232

simply taking ϵLUMO − ϵHOMO.233

We designed the MCM to be MCL + 2-layer MLP (MLP: input→ 128→ ReLU→ 128→ output).234

The motif vocabulary size is represented as a hyper-parameter, where we tried 100 and 600 in the ex-235
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Table 3: Comparison of MAEs of targets on QM9 dataset for different tasks.

Task SchNet DimeNet DimeNet++
MXMNet

dg = 5Å

MXMNet

dg = 10Å

MCM+MXMNet

dg = 5Å

MCM+MXMNet

dg = 10Å

µ (D) 0.033 0.0286 0.0297 0.0382 0.0255 0.0375 0.0251
α(a3

0) 0.235 0.0469 0.0435 0.0482 0.0465 0.0477 0.0456
ϵHOMO (meV) 41 27.8 24.6 23.0 22.8 21.9 22.6
ϵLUMO (meV) 34 19.7 19.5 19.5 18.9 18.5 18.6
∆ϵ (meV) 63 34.8 32.6 31.2 30.6 32.1 31.9〈
R2

〉
(a2

0) 0.073 0.331 0.331 0.506 0.088 0.489 0.124
ZPVE (meV) 1.7 1.29 1.21 1.16 1.19 1.14 1.18
U0 (meV) 14 8.02 6.32 6.10 6.59 5.97 6.49
U (meV) 19 7.89 6.28 6.09 6.64 6.02 6.51
H (meV) 14 8.11 6.53 6.21 6.67 6.01 6.50
G (meV) 14 8.98 7.56 7.30 7.81 7.13 7.54
cυ( cal

molK
) 0.033 0.0249 0.0230 0.0228 0.0233 0.0230 0.0234

periments. We formed our model MCM+MXMNet by connecting the above MCM to an MXMNet.236

Two options (5Å and 10Å) were tested for the distance cut-off hyper-parameter dg of MXMNet. A237

separate model was trained for each target property and used grid search on learning rate, batch size,238

motif number, and cut-off distance dg . Edges in molecules are defined by connecting atoms that239

lie within the cut-off distance dg . Following Klicpera et al. (2020b), we did not include auxiliary240

features like electronegativity of atoms. Detailed training settings are provided in Appendix A.5.4,241

and the discussion of motif vocabulary construction and efficiency is in Appendix A.5.5.242

We compared our model MCM+MXMNet with several other state-of-the-art models including243

SchNet Schütt et al. (2017), DimeNet Klicpera et al. (2020b), DimeNet++ Klicpera et al. (2020a) and244

MXMNet Zhang et al. (2020). For other models, we use the results reported in their original works.245

All experiments were run on one NVIDIA Tesla V100 GPU (32 GB). Table 3 summarizes the com-246

parison results, and shows that our model MCM+MXMNet outperforms others on eight molecule247

property prediction tasks. For two MXMNet settings, a larger cut-off distance (i.e., dg = 10Å)248

can lead to better results for some tasks, but not all of them. This is because larger dg leads to a249

larger receptive field and thus helps to capture longer range interactions. However, higher dg might250

cause redundancy or oversmoothing in message passing and will also increase computation cost. We251

observed a similar phenomenon for MCM+MXMNet. We also observed that under the same dg set-252

ting, MCM+MXMNet tends to perform better than MXMNet. We believe that this is because MCM253

helps to produce more informative node representations that better encode local chemical context.254

3.4 EXPLAINABILITY OF MOTIF CONVOLUTION255

The embeddings that MCM learns are highly explainable and encode domain semantics. We visu-256

alize the representations of carbons produced by a MCM with 600 motifs in the QM9 experiment.257

The visualization is done using the T-distributed Stochastic Neighbor Embedding (t-SNE) algo-258

rithm Van der Maaten & Hinton (2008). We randomly sampled 15,000 molecules from the QM9259

dataset, and then randomly selected 2 carbons from each chosen molecule. Figure 4 shows the t-260

SNE visualization of these 30,000 atoms’ representations learned by MCM. To better understand our261

representation, we manually labelled 300 carbons randomly sampled from the above 30,000 carbons262

according to their 1-hop local structures. We observe that carbons in the same local context tend to263

cluster together and are separated from those in different local structures.264

More interestingly, we observe that node representations learned by MCM encode meaningful chem-265

ical properties. For example, the carbons (red in Figure 4A) in the Trifluoromethyl (-CF3) groups266

are tightly clustered together, actually stacked into one point. It is known that the more fluorines267

are connected to a carbon, the shorter the bonds from this carbon Peters (1963), which makes the268

Trifluoromethyl groups very different from other substructures. Moreover, Methylene (-CH2-) is269

the most common ‘bridge’ in organic chemistry, connecting all kinds of functional groups (R, R’).270

Hence, the carbons (pink in Figure 4A) in the Methylene groups are scattered apart because of their271

diverse contexts. The carbons in the alcohol functional groups (-CH2OH, green in Figure 4A) are272

clustered into two separate sub-groups. This is because they are connected to two very different273

chemical structures (Figure 4B): cyclic functional groups and linear functional groups.274
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Figure 4: Node embeddings learned by MCM. (A): The t-SNE visualization of carbon representations learned
by MCM. There are 30,000 carbons randomly sampled from the QM9 dataset. Among them, 300 are randomly
chosen and are colored based on types of functional groups that carbons belong to, for example, alcohol(-OH)
in green, three fluorines (F3) in red, and so on. Both R and R’ are the abbreviations for groups in the rest of a
molecule. The details of the 9 local structure groups are listed in Table A.7 in Appendix. The green group are
separated into two sub-groups (α and β). (B): The carbons, whose representations visualized in the Left, are
marked by red *. The carbons in the green group share the same 1-hop local structures shown at the top. The
two green sub-groups have distinct characteristics in their at-large local structures. In the α cluster, the marked
carbons are connected to cyclic functional groups. In the β cluster, the marked carbons are connected to linear
functional groups.

3.5 EFFICIENCY OF GPU ACCELERATED MOTIF CONVOLUTION275

The highest workload in MCM comes from matching motifs with subgraphs, which can be sped up276

tremendously using parallel computing in GPUs. We developed a CUDA-enabled graph matching277

kernel (Appendix A.3.4) for matching multiple Motif-ARG pairs concurrently, which offer an essen-278

tial boost to this work. We tested the efficiency of our graph matching kernel under various settings.279

All experiments were run on NVIDIA GeForce RTX 2080 11GB GPUs. We created 4 test datasets280

with graph sizes of 10, 15, 20, and 25, respectively. Each set contains 500 molecules sampled from281

the QM9 dataset. We ran our CUDA-enabled graph matching kernel using up to 8 GPUs to com-282

pute pair-wise matching within each dataset. In total, there are 124,750 pairs. The execution times283

(including loading data from hard disks) of different settings are compared in Figure 5. In general,284

as expected, it took longer to match larger ARGs. More GPUs help to accelerate the computation.285

When using # GPUs ≤ 4, doubling GPU devices approximately reduced the execution time by half,286

which indicates that our kernel achieved a balanced workload in parallel. Using more than 5 GPUs287

only offered marginal speed improvements because GPUs spent significant amounts of time waiting288

for data to be loaded.289

4 RELATED WORKS290

Early graph embedding methods Perozzi et al. (2014); Tang et al. (2015); Grover & Leskovec (2016)291

preserve local neighborhoods of nodes by using biased random-walk based objectives. Some other292

works, such as Sun et al. (2019); Velickovic et al. (2019); Peng et al. (2020), train node encoders293

by maximizing the mutual information between local and global representations. These methods294

encourage the preservation of vertex proximity (i.e., nearby nodes to have similar embeddings)295

and were originally designed and evaluated for node- and edge-level predictions. However, such296

methods do not work well for predicting graph-level properties (e.g., molecular properties) since297

they over-emphasize vertex proximity at the expense of global structural information. For instance,298

random-walk based methods Perozzi et al. (2014); Tang et al. (2015); Grover & Leskovec (2016)299

consider limited substructures (e.g. subtrees) as graph representatives. There are several other efforts300

Henderson et al. (2012); Narayanan et al. (2016); Ribeiro et al. (2017) for capturing the structural301

identity of nodes. However, the applications of such approaches are limited because of their rigid302

notions of structural equivalence.303

8



Under review as a conference paper at ICLR 2023

Figure 5: Test speed of pair-wise matching on GPUs. Each dataset contains 500 molecular graphs.

Recently, self-supervised approaches were proposed for pre-training GNNs Hu et al. (2019; 2020);304

You et al. (2020b); Rong et al. (2020); Sun et al. (2020); Qiu et al. (2020); Hafidi et al. (2020);305

Hassani & Khasahmadi (2020); You et al. (2020a); Xu et al. (2021); Subramonian (2021); Zhao306

et al. (2021). Self-supervised tasks at node-, edge- and graph-levels were carefully designed to307

learn general structural and semantic representations that can be fine-tuned for downstream tasks.308

These approaches broadly fall into two categories. The first one trains models to predict randomly309

masked out node attributes Hu et al. (2019) or subgraphs Hu et al. (2020). The second one adopts310

contrastive learning to maximize representation consistency under perturbations You et al. (2020a);311

Subramonian (2021); Hassani & Khasahmadi (2020); Zhao et al. (2021). However, these approaches312

cannot capture the rich information in subgraphs or graph motifs. A few works have been reported to313

leverage motif-level information. For example, early works like Narayanan et al. (2016); Henderson314

et al. (2012) encode local structures as binary properties, which do not reflect deformations of local315

structures that can happen naturally. Domain knowledge is used to extract motifs and treat them316

as identifiers Rong et al. (2020). MICRO-Graph Subramonian (2021) is a motif-driven contrastive317

learning approach for pretraining GNNs in a self-supervised manner. MGSSL Zhang et al. (2021)318

incorporates motif generation into self-supervised pre-learning for GNNs. There is much room for319

improvements to take advantages of local structural information and produce highly explainable320

node representations. The challenge in motif-based approaches mainly comes from the difficulty321

in efficiently measuring similarities between input graphs and the automatic construction of a high322

quality motif vocabulary.323

Our work is related to graph kernel methods that utilize local structures to enhance graph represen-324

tation. Detailed discussions are presented in Appendix A.4.325

5 CONCLUSIONS326

This work presents MCM, a novel motif-based representation learning technique that can better uti-327

lize local structural information to learn highly explainable representations of ARG data. To our328

best knowledge, this is the first motif-based learning framework targeting graphs that contain both329

node attributes and edge attributes. MCM first takes motif discovery from a dataset and applies mo-330

tif convolution to extract initial context-aware representations for the nodes in input ARGs, which331

are then embedded in higher level representations using neural network learning. To leverage the332

power of existing GNNs and target particular applications (e.g., graph classification or regression333

applications), MCM can be connected as a preceding component to any GNN. One key computa-334

tional step in MCM is matching ARGs, which is NP-hard in theory and has sub-optimal solutions.335

To make it possible to apply MCM to large-scale graph datasets, we modified a graduated assign-336

ment algorithm for matching ARGs and implemented a CUDA-enabled version. We show that our337

approach achieves better results than the state-of-the-art models in a graph classification task and a338

challenging large-scale quantum chemical property prediction task. Moreover, experimental results339

highlight the ability of MCM to learn context-aware explainable representations. Motif convolution340

offers a new avenue for developing new motif-based graph representation learning techniques. Cur-341

rently, the motifs in a MCM are fixed once constructed. In our future work, we will develop motifs342

that are co-trainable with the rest of a model.343
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A APPENDIX540

A.1 MOTIF CONVOLUTION MODULE541

Here we provide more details of MCM introduced in main text Section 2.3. Figure A.6 illustrates542

an expanded view of MCM. The convolution operation calculates the structural similarity score be-543

tween every motif in the motif set {Mi}Ni=0 and the subgraph centering at each node in the input544

graph. For each node in the input ARG, the similarities between all motifs and the local structure545

of the node are concatenated to produce a N -dimension context-aware representation, which en-546

codes the local structural features represented by motifs. The motif feature representation can be547

further transformed by a trainable multilayer perceptron (MLP) network to produce the final MCM-548

embedding for the input node. If a user choose to omit the MLP component, the motif feature rep-549

resentation will be the MCM-embedding for the input node. Motifs are obtained via a pre-training550

process described in Section 2.1. The MLP should be trained with the downstream task.551

Figure A.6: Motif Convolution Module. The convolution operation computes graph matching be-
tween each motif and the local structure centering at each node in the input ARG.

A.2 PROOF OF THEOREM 2.1552

Theorem 2.1 If the compatibility functions s1(e
(1)
uv , e

(2)
ij ) and s2(u, i) are well-defined and nor-553

malized compatibility metrics, S(G1, G2) achieves maximum of 1 if and only if G1 and G2 are554

isomorphic. [proof in Appendix A.2]555

First let’s give a formal definition of well-defined and normalized compatibility metric s(x1, x2) ∈556

[0, 1] in the theorem, where x1 or x2 are vectors of the same dimension. It takes maximal value of 1557

if and only if x1 = x2. One example could be s(x1, x2) = exp(− ||x1−x2||2
2 ).558

Necessity. The first proof is that if G1 and G2 are isomorphic, S(G1, G2) achieves maximum of 1.559

Obviously G1 and G2 have the same number of nodes and edges given the isomorphism condition560

(n1 = n2 and l1 = l2) . Without loss of generality we could assume the node ordering in two561

graphs are the same and the matching matrix M is the identical matrix I. Otherwise we could find562

a permutation matrix P to reorder nodes such that PM = I. Then let’s look at the two parts in563

computing S(G1, G2) from eq. (2)564

α

∑n1

u=1

∑n2

i=1 Muis2(u, i)√
n1 × n2

=
α

n1

n1∑
i=1

s2(i, i) = α (A.5)

n1∑
u=1

n2∑
i=1

n1∑
v=1

n2∑
j=1

MuiMvjs1(e
(1)
uv , e

(2)
ij )

2
√
l1 × l2

=

n1∑
i=1

n1∑
j=1

s1(e
(1)
ij , e

(2)
ij )

l1
= 1 (A.6)

The last equation holds because the number of edges is l1 and s1(e
(1)
ij , e

(1)
ij ) takes 1 if edge eij exists,565

otherwise 0.566

Thus S(G1, G2) =
1+α
1+α = 1 and we finish this proof.567
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Sufficiency. Another proof is that suppose S(G1, G2) = 1, then G1 and G2 are isomorphic. We568

will prove by contradiction.569

First let’s prove that S(G1, G2) < 1 if n1 ̸= n2 or l1 ̸= l2. (We assume n1 ≥ n2 without loss of570

generality.)571

Since M is the hard matching matrix, there is at most one nonzero element (taking value 1) per row572

and per column, defining an injective function ϕM such that ϕM(i) = u if Mui = 1. Thus we have573

α

∑n1

u=1

∑n2

i=1 Muis2(u, i)√
n1 × n2

= α

∑n2

i=1 s2(ϕM(i), i)√
n1 × n2

≤ α
n2√

n1 × n2
≤ α. (A.7)

and574

n1∑
u=1

n2∑
i=1

n1∑
v=1

n2∑
j=1

MuiMvjs1(e
(1)
uv , e

(2)
ij )

2
√
l1 × l2

=

∑n2

i=1

∑n2

j=1 s1(e
(1)
ϕM(i)ϕM(j), e

(2)
ij )

2
√
l1 × l2

≤ 2min(l1, l2)

2
√
l1 × l2

≤ 1.

(A.8)
where the first inequality holds because s1(e

(1)
ϕM(i)ϕM(j), e

(2)
ij ) takes maximum of 1 given edge575

e
(1)
ϕM(i)ϕM(j) in G1 is identical to edge e

(2)
ij in G2 and takes 0 if either edge not exists, thus there576

are at most 2min(l1, l2) nonzero terms in the summation.577

Strict inequality in the last line of eq. (A.7) holds if n1 ̸= n2 and strict inequality in the last line578

of eq. (A.8) holds if l1 ̸= l2. Thus S(G1, G2) <
1+α
1+α = 1 if either n1 ̸= n2 or l1 ̸= l2. Thus we579

complete the first proof.580

Next let’s prove G1 and G2 are isomorphic by contradiction. Note that we already have n1 = n2581

and l1 = l2. Without loss of generality let’s assume the matching matrix M is the identical matrix582

I, otherwise we could introduce a permutation matrix to reorder nodes. Then the injective function583

ϕM(i) = i becomes identical mapping.584

If G1 and G2 are not isomorphic, at least one of the following cases must hold:585

Case1. (i-th node in G1 is not identical to i-th node in G2) ∃i ∈ [1, 2, ..., n2], such that s2(i, i) < 1.586

Thus eq. (A.7) takes strict inequality.587

Case2. (Edge e
(1)
ij in G1 is not identical to edge e

(2)
ij in G2, or either edge not exists.) ∃i, j, such588

that s1(e
(1)
ij , e

(2)
ij ) < 1. Thus eq. (A.8) takes strict inequality.589

For either case, we obtain the strict inequality and thus S(G1, G2) < 1+α
1+α = 1, which leads to590

contradiction.591

A.3 GPU-ENABLED ARG MATCHING.592

A.3.1 ARG MATCHING USED IN MCM593

The convolution operation calculates the structural similarity score between the motif Mi from Mo-594

tif Conv Layer and u’s local substructure from the input ARG. Before taking convolution, we should595

find the optimal matching assignment between Mi and u’s local subgraph. Graph matching prob-596

lem is NP-hard that has been well-studied for couples of years. In the following section we briefly597

introduce the problem definition and efficient approximated solutions that proposed by (Gold & Ran-598

garajan, 1996; Menke & Yang, 2020). To make the computation of graph matching more efficient599

in practice and meets the need of high frequent calculation in MCM, we proposed a CUDA-enabled600

the methods to accelerate ARG matching, which could achieve 10,000x speed up than running on601

CPUs.602

A.3.2 ARG MATCHING603

It should be noted that finding the optimal matching between two ARGs is NP-hard and can be for-604

mulated as a Quadratic Assignment Problem (QAP) (Lawler, 1963). Basically, the optimal matching605

can be found by solving the following optimization problem:606
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max
M ∈ Rn1×n2

1

2

n1∑
u=1

n2∑
i=1

n1∑
v=1

n2∑
j=1

s1(e
(1)
uv , e

(2)
ij )MuiMvj + α

n1∑
u=1

n2∑
i=1

s2(u, i)Mui,

s.t. ∀u
n2∑
i=1

Mui ≤ 1,∀i
n1∑
u=1

Mui ≤ 1,∀u, i Mui ∈ {0, 1}
(A.9)

where s1(euv, eij), s2(u, i), and α are the same to the ones in eq. (2) in the main body. A graduated607

assignment based algorithm was proposed in Gold & Rangarajan (1996) for finding a sub-optimal608

matching solutions between two ARGs. A simplified verion of this algorithm was proposed in609

Menke & Yang (2020) that runs much faster with little compromise in accuracy. Nevertheless,610

the matching matrix solved by Menke & Yang (2020) does not always fulfill the constraints in eq.611

(A.9) in the main body, and may produce ambiguous matching results. We develop a greedy iterative612

method that converts the soft matching matrix M into a hard matching matrix (i.e., containing binary613

values). Our method finds the maximum in M, set it to 1, and set all other elements in the same row614

and column to 0. This step is applied to the rest of M until the sum of every row/column in M is at615

most 1.616

The above graph matching algorithm still incurs a substantial computational cost when applied to617

large-scale graph datasets (e.g., the QM9 dataset). We therefore implemented a version accelerated618

by GPU computing, which makes it possible for us to apply MCM to large-scale datasets. The619

efficiency of our GPU-enabled ARG matching algorithm has been discussed in Section 3.5.620

A.3.3 SIMPLIFIED GRADUATED ASSIGNMENT ALGORITHM FOR ARG MATCHING.621

The graduated assignment algorithm Gold & Rangarajan (1996) find sub-optimal graph matching622

solutions by iteratively solving the first-order Taylor expansion of QAP (eq. A.9). A simplified grad-623

uated assignment algorithm was later proposed by Menke & Yang (2020) (pseudo codes included in624

Algorithm A.1). It first finds the soft assignment matrix that relaxes the constraint Mai ∈ {0, 1} to625

lie in the continuous range [0, 1], then convert it into hard assignment in a greedy way. Algorithm626

A.1 shows the iteration steps to obtain the approximated assignment matrix. Given the initialization627

of M0, the objective function E(M) in Equation A.9 can be approximated via a Taylor expansion at628

M0, thus the original optimization problem is equivalent to the assignment problem that maximizes629 ∑n1

a=1

∑n2

i=1 QaiMai, where Qai = ∂E(M)
∂Mai

∣∣∣∣
M=M0

is the partial derivative. The optimal M at the630

current step will substitute back as the new initialization and repeat the Taylor approximation period631

until convergence.632

One efficient way to solve assignment with a constraint (row or column summed up to 1) is by633

taking softmax with control parameter β > 0 along with the constrained rows/columns, so that634

M = softmax(βQ). Increasing β will push the elements in M to be either 0 or 1 and result in a hard635

matching when β −→ ∞. However, the assignment problem in ARG matching has two constraints636

(both row and column summed up to 1). To achieve them, the solver can first take the element-wise637

exponential operation such that Mai = exp(βQai), and then alternatively normalize the rows and638

columns until converges to a doubly stochastic matrix (i.e., a soft assignment between two input639

ARGs) Sinkhorn (1964). We initialize β with β0, and increases it at a rate βr at each iteration640

until beta reaches a threshold βf . In the end, the soft assignment result M is converted into a hard641

assignment by a greedy procedure explained in Appendix A.3.2.642

A.3.4 GPU ACCELERATED ARG MATCHING643

To handle pair-wise matching, we parallelize the process across GPUs to accelerate matching. We644

implement Line 5 - 16 in Algorithm A.1 with a custom CUDA kernel to process the matching of645

multiple molecule pairs concurrently. Specifically, each cooperative thread array (CTA) of GPU is646

assigned to compute the matching between two molecules. In Algorithm A.1, the computation of647

partial derivative and exponential are element-wise operations. Therefore, we use the each thread648

within the CTA to compute one element in the assignment matrix and all threads work cooperatively649

to normalize the assignment matrix, which takes advantage of different levels of parallelism on650

GPU. We also implement CUDA kernels for computing node- and edge(relation)- similarity and the651
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Algorithm A.1 Simplified Graduated Assignment for ARG Matching.
1: Input: G1, G2, β0, βr, βf

2: Output: Hard assignment matrix M∗

3: β = β0 ▷ Initialize β.
4: Mui = s1(u, i),∀u ∈ G1,∀i ∈ G2 ▷ Initialize M.
5: while β ≤ βf do
6: ∀u ∈ G1,∀i ∈ G2

7: Qui =
1
2

∑n1

v=1

∑n2

j=1 s2(euv, eij)Mvj + αs1(u, i) ▷ Taking the partial derivative.
8: Mui = exp (βQui) ▷ Element-wise exponential operation.
9:

10: ∀u ∈ G1,∀i ∈ G2

11: M′
ui =

Mui∑n2
j=1 Muj

▷ Normalize by row.

12: Mui =
M′

ui∑n1
v=1 M′

vi

▷ Normalize by col.
13:
14: β = β ∗ (1 + βr) ▷ Increase β.
15: return M∗ ←− greedy hard assignment(M)

greedy hard-assignment calculation procedure, so the whole matching algorithm is offloaded onto652

GPU.653

This implementation scales up to a 10 GPU distribution by a workload partition algorithm, which654

also alleviates the memory pressure of GPU. The algorithm follows the principals that no commu-655

nication between two partition is needed and the matching of every partition consists of the whole656

matching result. In this algorithm, we fetch a batch of molecule first, and assign this batch with other657

non-overlapped batches in dataset without repeat as different partitions. We perform the matching658

between molecules from two batches respectively in each partition. If there is no unrepeated non-659

overlapped batches in the dataset, we perform the matching for every molecule in the batch.660

A.3.5 COMPLEXITY ANALYSIS661

In this section, we analyze the computational complexity of the proposed graph matching method662

from two aspects: (1) the simplified graduated assignment in Algorithm A.1, (2) the GPU accelerated663

matching algorithm in Section A.3.4.664

The graduated assignment approach for matching ARGs has a low order of computational complex-665

ity O(l1l2), where l1 and l2 are the numbers of edges in the graphs. The theoretical computational666

analysis is discussed in Gold & Rangarajan (1996); Menke & Yang (2020). Note this complex-667

ity depends on both the graph size and the sparsity of graphs, that is, the graduated assignment668

approach becomes more efficient for pairs of sparser graphs. Another worst case analysis of com-669

plexity is O(n2
1n

2
2), where n1 and n2 represent the numbers of nodes in the graphs. Since l1 < n2

1670

and l2 < n2
2, the complexity O(l1l2) << O(n2

1n
2
2) hold for almost all cases. If two input graphs671

are both fully connected, the graduated assignment achieves its worst case of complexity, O(n2
1n

2
2).672

In real scenarios, the graph is usually sparse (l1 ∝ n1 and l2 ∝ n2) and the complexity becomes673

O(n1n2).674

In addition, we take advantage of the massive parallelism of GPU to address the challenge of com-675

plexity. The worst-case complexity of graph matching in Algorithm A.1 is O(n2
1n

2
2). In parallel676

machines like GPU, we use parallel step complexity to asymptotically describe the number of oper-677

ations performed by threads. In step s of tree reduction, threads perform n2
1n

2
2

s2 independent opera-678

tions. Therefore, the parallel step complexity is O(log(n1) + log(n2)) Harris (2007). Likewise, the679

matching of all pairs of graphs have similar parallelism strategy. In particular, N graphs requires680
N(N−1)

2 matching operations, so the parallel step complexity isO(log(N)). The overall parallel step681

complexity for matching N graphs is O(log(N)log(n)), where n is the average number of nodes682

in graphs. Therefore, the CUDA-enhanced matching time is sublinear to the number of graphs and683

graph sizes, which aligns with the results shown in Figure 5.684

18



Under review as a conference paper at ICLR 2023

A.4 COMPARSION WITH KERNEL METHODS685

The proposed motif convolution module is relevant to some graph kernel approaches. Graph kernel686

methods are also widely used to solve graph classification problems, however, they offer limited687

expressiveness in handling graphs with continuous attributes. Most graph kernel approaches Sher-688

vashidze et al. (2009; 2011); Johansson & Dubhashi (2015); Cosmo et al. (2021); Feng et al. (2022)689

can only deal with discrete node attributes and binary connections between nodes. Many of them690

need to perform isomorphism tests, for example, by using the WL-test Weisfeiler & Leman (1968)691

and its variants. Although those using information propagation kernels, like random walk kernels692

Gärtner et al. (2003); Feng et al. (2022), are able to handle continuous node attributes, they do693

not support edges with continuous attributes. Therefore, most kernel approaches are not able to694

work on graph learning tasks with 3D geometry, where the graph is equipped with both continuous695

node- and continuous edge- attributes. One application example is the molecular graphs in quantum696

chemistry (e.g., the QM9 experiment in this study), where the target property highly relates to the697

3D geometrical structures of molecules.698

A.5 IMPLEMENTATION DETAILS699

A.5.1 SETTINGS OF ARG MATCHING700

We used the following settings for the ARG matching Algorithm A.1: α = 0.7, β0 = 1, βf = 30,701

βr = 0.075. The node-wise and edge-wise similarity measurements, s1(au, ai) and s2(euv, eij),702

are task-specific.703

In the synthetic data experiment, we defined

s1(au, ai) = exp(−||au − ai||22)

s1(ruv, rij) = exp(−3.14 · ||ruv − rij ||22)

In experiments on molecular datasets, similarity measurements should consider atom types and edge
types (i.e., bond types). Let 1ui be the indicator for atom types agreement: it takes 1 if atom u and
atom i are of the same type, and takes 0 otherwise. Similarly, 1(uv,ij) denotes the indicator for edge
types agreement. On datasets bace, bbbp, clintox, sider, tox21, ogb-molhiv and ogb-molpcba, we
defined

s1(au, ai) = 1ui

s1(ruv, rij) = 1(uv,ij)

On QM9 dataset where geometric information, i.e., 3D coordinates for atoms is equipped, we added
bond lengths as edge attributes and the compatibility measurement was designed as

s1(au, ai) = 1ui

s1(ruv, rij) = 1(uv,ij) · exp(−2||ruv − rij ||22)

A.5.2 TRAINING SETTINGS USED IN THE SYNTHETIC DATA EXPERIMENT704

The following configurations were applied to all GNN variants. Each baseline model contains two705

GNN convolutional layers followed by a readout function and then a 3-layer MLP to produce predic-706

tions. We used a batch size of 32 for the small dataset (500) and 512 for the large one (10,000). We707

used the Cross-Entropy loss to train all models and used Adam optimizer with default initial weights708

implemented in PyTorch. To prevent overfitting we used early stopping on the validation loss. We709

conducted grid search on learning rate, batch size and hidden dimension in GNNs. The hyperpa-710

rameters were tuned as the following: (1) learning rate ∈ {0.1, 0.01, 0.001}; (2) hidden dimension711

∈ {32, 64}; (3) readout function ∈ {max, average}; (4) edge weight normalization ∈ {True,False}.712

A.5.3 EXPERIMENTAL SETTINGS ON MOLECULAR BENCHMARKS713

The following configurations were applied to all training tasks on the seven molecular benchmarks.714

We used batch size of 32 and maximal training epoch of 100. We used Adam optimizer with learn-715

ing rate of 0.001. All experiments are conducted on one Tesla V100 GPU. Before training, we716

performed data cleaning to remove certain molecules that failed to pass the sanitizing process in717
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the RDKit or contained abnormal valence of a certain atom as suggested in Chen et al. (2021); Lim718

& Lee (2021). The detailed dataset statistics are summarized in Table A.4. For two motif-level719

pretraining frameworks, MICRO-Graph Subramonian (2021) and MGSSL Zhang et al. (2021), they720

were pretrained on 250k unlabeled molecules sampled from the ZINC15 Sterling & Irwin (2015)721

database and finetuned on each downstream task. MGSSL did the same experiments so we tried722

reproduction based on their available code and optimal model settings. MICRO-Graph did not take723

experiments on the datasets we worked on, so we followed the pretraining and fintuning suggestions724

in MGSSL in reproduction. We were not able to reproduce the same results of MGSSL reported in725

Zhang et al. (2021). Hence, we copy MGSSL’s reported results instead of our reproductions.

Table A.4: Dataset statistics.
Dataset # Graphs # Graphs after cleaning # Tasks

bace 1513 1513 1
bbbp 2039 1953 1

clintox 1478 1469 2
sider 1427 1295 27
tox21 7831 7774 12

toxcast 8578 7245 617
hiv 41127 41125 1

726

A.5.4 TRAINING SETTINGS OF MCM+MXMNET ON QM9727

To make a fair comparison, we used the same training settings (e.g., training and evaluation data728

splitting, learning rate initialization/decay/warm-up, exponential moving average of model param-729

eters, etc.) employed in MXMNet Zhang et al. (2020). We also kept the same MXMNet con-730

figurations (basis functions and hidden layers) as reported in its original paper. The weights of731

MCM+MXMNet are initialized using the default method in Pytorch. The Adam optimizer was used732

with the maximal training epoch as 900 for all experiments. The initial learning rate was set to733

1e − 3 or 1e − 4. A linear learning rate warm-up over 1 epoch was used. The learning rate is then734

decayed exponentially with a ratio of 0.1 every 600 epochs. To evaluate on valid/test data, the model735

parameters are the exponential moving average of parameters from historical models with a decay736

rate 0.999. Early stopping based on the validation loss was used to prevent overfitting. The motif737

vocabulary size in MCM was set to 100 or 600. The MCM only adds a small amount of parameters738

(see Table A.5).739

Table A.5: Model parameters in DimeNet, MXMNet and MXMNet+MCM.
Model # Params

DimeNet 2,100,064
MXMNet 3,674,758

MXMNet+MCM, vocab size=100 3,703,302
MXMNet+MCM, vocab size=600 3,767,302

A.5.5 EFFICIENCY OF EXECUTING MCM ON QM9740

Building motif vocabulary from subgraphs is the most time consuming part in MCM, especially741

for large-scale datasets. Hierarchical clustering on a gigantic size of subgraphs is prohibitively742

expensive. For example, from the QM9 dataset, we obtained 0.5 million 1-hop subgraphs. Many of743

them turn out to be highly similar to each other up to a 3D transformation (rotation + translation).744

To give an example, the carbonyl functional group (C=O) is quite common in organic compounds.745

However, the length of the C=O bond in carbonyl may change depending on its local context Walsh746

(1947). To remove “redundancy”, we applied a hierarchical clustering technique using average747

linkage Johnson (1967), implemented in the Orange3 library Demšar et al. (2013), to group highly A748

motif is the most representative subgraph in a cluster, which has the highest total similarity to the rest749

of subgraphs in the cluster. For large datasets like QM9, there is a huge amount of subgraphs, which750

makes the clustering analysis prohibitively expensive for us. To make the computation feasible751

for QM9, we randomly sampled 40 sets of subgraphs. For each subset, we took clustering and752
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chose 1,000 most representative subgraphs. Most “redundant” subgraphs were thus removed and753

we obtained a merged subgraph set of size 44,000. We repeated the procedure: divided them into754

4 subsets, took clustering to get 3,000 subgraphs for each subset and finally got a merged set of755

size 12,000. Another round of single linkage clustering analysis was applied to the pooled set to756

find the final 100 or 600 representative subgraphs as the motif vocabulary. We applied the same757

clustering technique to the 12,000 representative subgraphs into 100 or 600 clusters, and chose one758

representative subgraph from each cluster as a motif.759

To cluster subgraphs using hierarchical clustering, we needed to run a large number of pair-wise760

matching, which took 4.4 hour for each subset on 8 RTX 2080 GPUs. Without considering the761

geometric information like dataset ogb-molhiv, the graph matching part takes around 1.5 times faster.762

After constructing the motif vocabulary of size 100, then it takes around 13 hours to generate the763

motif matching scores for the whole QM9. Importantly though, the matching step can be parallelized764

in a very efficient manner, resulting in significantly lowered computation time. Additionally, the765

motif vocabulary construction and scoring process only needs to be performed once per dataset.766

Once constructed, the motif vocabulary can be reused without additional computational expenses.767

A.6 ADDITIONAL RESULTS768

Figure 2 in the main body illustrate the 5 ARG templated used to generate the synthetic dataset. We769

observed that MCL was able to learn motifs (Figure A.7) highly resembling the templates (Figure770

2) used to generate the synthetic datasets.771

Figure A.7: The motif vocabulary constructed in the synthetic data experiments. The learned motifs
resemble the templates (see Figure 2) used to generate the synthetic noisy graphs.

Figure A.8 shows the 3D visualization of several motifs that represent diverse functional groups,772

including Fluorophenyl, Trifluoromethyl, Nitrile, Aldehyde, Ester and Methyl. The visualizations773

confirm that the learned motifs are semantically meaningful and make our approach more inter-774

pretable.775

Table A.6 shows that MCL-LR is especially better than GAT, GCN, and GIN in classifying graphs776

generated from two similar Templates 2 and 5.777

Table A.6: Prediction accuracy for each class on the synthetic dataset.
Class 1 Class 2 Class 3 Class 4 Class 5

GAT 0.710± 0.030 0.495± 0.112 0.950± 0.050 1.000± 0.000 0.515± 0.096
GCN 0.920± 0.014 0.766± 0.037 0.857± 0.047 0.897± 0.024 0.686± 0.055
GIN 0.886± 0.037 0.296± 0.348 0.955± 0.017 0.940± 0.037 0.668± 0.354

MCL-LR 0.996± 0.002 0.996± 0.004 0.994± 0.004 0.998± 0.003 0.999± 0.001

Table A.7 shows the nine local structure categories of the carbons visualized in Figure 4.778
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Figure A.8: 3D visualization of motifs and the functional groups they represent.

Table A.7: The first column lists the structural abbreviations corresponding to the legends in Figure
4. The second column list the corresponding chemical groups. The first column shows the structure
formula.

Abbr Name Structural Formula

RPhF Fluorophenyl

RCF3 Trifluoromethyl

RCH2OH Alcohol

RCHO Aldehyde

RCOOR’ Ester

RCOR’ Ketone

RCN Nitrile

RCH2R’ Methylene

RCH3 Methyl
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