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Abstract

This paper proposes a new representation of artificial neural networks to efficiently1

track their temporal dynamics as sequences of operator-discretized events. Our2

approach takes advantage of diagrammatic notions in category theory and opera-3

tor algebra, which are known mathematical frameworks to abstract and discretize4

high-dimensional quantum systems, and adjusts the state space for classical signal5

activation in neural systems. The states for nonstationary neural signals are pre-6

pared at presynaptic systems with ingress creation operators, and are transformed7

via synaptic weights to attenuated superpositions. The outcomes at postsynaptic8

systems are observed as the effects with egress annihilation operators (each adjoint9

to the corresponding creation operator) for efficient coarse-grained detection. The10

follow-on signals are generated at neurons via individual activation functions for11

amplitude and timing. The proposed representation attributes the different gen-12

erations of neural networks, such as analog neural networks (ANNs) and spiking13

neural networks (SNNs), to the different choices of operators and signal encoding.14

As a result, temporally-coded SNNs can be emulated at competitive accuracy and15

throughput by exploiting proven models and toolchains for ANNs.16

1 Introduction17

Modern neural networks are expected to solve demanding AI problems with datastreams in ex-18

tremely high dimensions. Under widely-available computing infrastructure, the situation is becom-19

ing even more challenging, when the neural dynamics for data processing is inherently temporal20

and online as in the biological systems [1–4]. An appropriate neural network representation for21

natively handling sequences of timestamped events should significantly improve computational ef-22

ficiencies. When event sequences are processed with artificial neural networks, known techniques23

typically compute layer-wise outputs synchronously at every discretized time step to align their data24

and computing wavefront, as seen in recent investigations on SNNs [5–7] or time series forecast-25

ing [8–11]. Though algorithms may sometimes be given in event-driven manners, their execution in26

SW has to resort to fine-grained synchronous discretization [12–15] or closed-form approximations27

of temporal dynamics that require exact temporal ordering of the events [14, 16]. As a result, accu-28

racies competitive to ANNs have only been obtained at an expense of throughput and scalability.29

In temporally executing neural networks in commercial systems, the period Tc of the global clock is30

typically chosen small enough compared with the characteristic time of the neural dynamics t0:31

Tc ≪ t0, (1)
to precisely track the temporal dynamics, for example, the membrane potential changes to determine32

the next firing timing of SNNs. This is a sharp contrast to how the biological brain operates with33

low-frequency brain waves [17] closer to our behavioral time scale:34

Tc ≫ t0. (2)
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Energy and functional efficiencies can be significantly improved if a new representation can avoid35

synchronously computing the temporal dynamics at every small time step by better decoupling dif-36

ferent time scales, It is tempting for those with some physics background to apply techniques being37

developed for quantum systems since they are naturally asynchronous events in extremely high di-38

mensions. Indeed, operator algebra has been applied to Hopfield networks [18] as well as other39

classical systems [19–21]. However, since operators are used for stationary neuron states out of40

spins and charges rather than those for nonstationary neural signals traveling over axon-synapse-41

dendrite networks, its full potential has not been extracted for modern temporal workloads.42

Here in this paper, we propose a new representation of neural networks that can efficiently compute43

their dynamics as coarse-grained sequences of operator-discretized events. Our approach takes ad-44

vantage of existing mathematical frameworks that have been originally developed to abstract and45

discretize high-dimensional quantum systems. These techniques are, with necessary modifications,46

applied to neural networks that are also high dimensional, but inherently are classical. Different47

generations of neural networks, such as ANNs and SNNs, are attributed to different choices of op-48

erators and signal encoding. Our formulation can efficiently emulate temporally-coded SNNs with49

fully exploiting existing assets, such as models and toolchains for ANNs. It should be noted that the50

scope of this paper is on classical neural networks, though the proposed representation may bring us51

a new perspective on AI and quantum computing (QC) [22],52

2 Logical representation53

Let us start with the logical aspects. Figure 1 presents diagrammatic representations for quantum54

and neural networks. In short, once the state spaces are respectively defined, they look surprisingly55

similar, in particular when we regard qubits as nonstationary and flying [23] as well.56

2.1 Logical abstraction and state space57

The operation of neural networks is to be abstracted by exploiting diagrammatic notions of categor-58

ical theories [24–26]. These techniques have been applied both to quantum and classical systems59

and their processes without much referring to actual physics inside [27]. Here, we will consider pure60

states only (i.e., wave function vectors rather than density matrices) for quantum, since our purpose61

is to explicitly compare quantum and classical networks.62

A known categorical diagram for a quantum network is examplified in Fig. 1 (a). It consists of three63

major blocks: the states, the processes/transformations, and the effect, for preparation, operation,64

and observation of quantum systems, respectively. Without operation, the inner product of the state65

|ρ⟩ represented by a tensor product of each qubit |ρi⟩ state prepared at quantum system SQ
i66

|ρ⟩ = |ρ1⟩ ⊗ ....⊗ |ρn⟩ . (3)

and the effect ⟨α| represented by a tensor product of each effect ⟨αi| at quantum system RQ
i67

⟨α| = ⟨α1| ⊗ ....⊗ ⟨αn| , (4)

can compute the conditional probability P (α|ρ) as68

| ⟨α|ρ⟩ |2 =

n∏
i=1

| ⟨αi|ρi⟩ |2 =

n∏
i=1

P (αi|ρi) = P (α|ρ). (5)

In general, the probabilities cannot be factorized this way other than for the slices, providing a rich69

set of non-classical computing power, such as with entanglement, to quantum networks.70

The corresponding diagram for a classical neural network is proposed in Fig.1 (b). The states for71

neural signals are prepared at presynaptic systems. They are transformed into weighted sums via72

synaptic networks. The outcomes are observed at postsynaptic systems as the effects to generate the73

follow-on states and signals. As is the quantum case, we assume that the transformations in axon-74

synapse-dendrite networks are linear. We define, in analogy to the qubit, the cubit, which stands for75

the abbreviation of classical universal bit, for neural signals. Though the definition is informational,76

rather than physical, we inherit Dirac notation but with double bras and kets, indicating that the77
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Figure 1: Diagramatic comparison of quantum and neural networks: (a) Quantum network con-
sisting of states, processes/transformations, and effects; (b) Corresponding diagram for a neural
network; (c) Operator representation for creation, scattering, and annihilation of quantum wave
packets; (d) Operator representation for creation, weighted sum, and annihilation of neural signals.
Note that weight matrix wij in (d) corresponds to scattering matrix sij in (c).

states consist of macroscopic ensembles of qubits 1. Multiple types of logical cubits are defined:78

Normalized full cubit ||c⟩⟩ := c̄ ||0⟩⟩+ c ||1⟩⟩ , |c̄|2 + |c|2 = 1 ∈ U(1) or SO(2)
Normalized half cubit ||c⟩⟩ := c ||1⟩⟩ , 0 ≤ |c|2 ≤ 1 ∈ U(1) ∩ R
Unnormalized full cubit ||c⟩⟩ := c̄ ||0⟩⟩+ c ||1⟩⟩ ∈ R2 or C
Unnormalized half cubit. ||c⟩⟩ := c ||1⟩⟩ ∈ R

(6)
The information encoded to cubits is assumed to be real for simplicity but can be complex for79

complex-valued neural networks [28].80

A set of cubits ||ρ⟩⟩ can compactly be represented by Cartesian product (or coproduct in category81

theory terminology) of each cubit ||ρi⟩⟩ at axon SC
i as82

||ρ⟩⟩ = ||ρ1⟩⟩ ⊕ ....⊕ ||ρn⟩⟩ . (7)

They are to be detected by effect ⟨⟨α|| consisting of ⟨⟨αi|| via dendrite RC
i as:83

⟨⟨α|| = ⟨⟨α1|| ⊕ ....⊕ ⟨⟨αn|| . (8)

Based on an argument for the linear systems in [29], the norm p for cubits is expected to be either184

or 2, Euclidean norm (p = 2), which is also found in wireless communication and signal processing85

literature [30] (e.g., ||1⟩⟩ and ||0⟩⟩ for I and Q), makes sense to represent wave-like dynamics [31–86

34] in complex-valued state spaces, while Manhatten norm (p = 1) is for ordinary real-valued state87

spaces typically assumed for classical probabilistic computing [29]. Under the linear weighted sum88

transformations in Cartesian-product state spaces, the log encoding [35] can consistently relate the89

summation of the inner product for each cubit to the mutiplication of the corresponding probabilities90

for the product event via bias thresholds Pi’s and Ptotal =
∏n

i=1 Pi as91

| ⟨⟨α||ρ⟩⟩ |p =

n∑
i=1

| ⟨⟨αi||ρi⟩⟩ |p ∼
n∑

i=1

log
P (αi|ρi)

Pi
= log

n∏
i=1

P (αi|ρi)
Pi

= log
P (α|ρ)
Ptotal

. (9)

2.2 Operators as neural computing primitives92

Operator algebra is a well-established technique to systematically compute quantum physics prob-93

lems in high-dimensional tensor-product spaces (or Fock for indistinguishable particles). Interac-94

1Further investigation on the relation between qubits and cubits from a physics point of view is desired.
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tions between states are represented by scattering matrices (S-matrices) [36] as exemplified in Fig.95

1 (c), Here, we develop an operator formalism in Cartesian-product state spaces for neural networks96

in Fig. 1 (d).97

A neural signal at SC
i is selectively activated in the entire state space spanned as,98

||0⟩⟩ = ||01⟩⟩ ⊕ ...⊕ ||0n⟩⟩ and ||1i⟩⟩ = ||01⟩⟩ ⊕ ...⊕ ||1i⟩⟩ ⊕ ...⊕ ||0n⟩⟩ . (10)

States for concurrently activating multiple neural signals can be given, by specifically noting the99

activated systems i and j as100

||1ij⟩⟩ = ||01⟩⟩ ⊕ ...⊕ ||1i⟩⟩ ⊕ ...⊕ ||1j⟩⟩ ⊕ ...⊕ ||0n⟩⟩ . (11)

Thus, ||1i⟩⟩ can mean a single cubit state for SC
i only or a multiple cubit state in which only SC

i is101

fully activated, depending on the context.102

The mutually-adjoint creation and annihilation operators on these states, a and a† are defined as103

||1i⟩⟩ = a†i ||0⟩⟩ and ||0⟩⟩ = ai ||1i⟩⟩ . (12)

Multiple signals can be activated in different systems, for example, by104

||1ij⟩⟩ = a†ia
†
j ||0⟩⟩ . (13)

Depending on whether i = j is allowed in each Tc or not, they are superficially treated like Bosons105

for rate-coded SNNs (rSNNs) or like Fermions for temporally-coded SNNs (tSNNs).106

The transformation Tij from sender system Sj to receiver system Ri is described as:107

Tij = wija
†
iaj . (14)

Noted that wij works as the scattering matrix. Cartesian product state space, rather than tensor-108

product, can incorporate the weighted sum naturally as the superposition of incoming neural signals109

from different sources. Higher-order interactions are possible, for example as,110

Tij = wij ǎ
†
i âiǎ

†
j âj . (15)

However, in that case our original assumption of linear synaptic networks is not valid anymore.111

The logical neuron model in the operator representation is defined as effects for detecting incoming112

fragment of signal energies from presynaptic neurons to generate states for the follow-on neural113

signals. The signal detection process corresponds to the projective measurement in QC, leading114

to more advanced detection strategies than simple threshold detection strategies. When the fully115

activated state ||ρj⟩⟩ = a†j ||0⟩⟩ is detected by the effect ⟨⟨αi|| = ⟨⟨0|| ai via Tij ,116

| ⟨⟨αi|| Tij ||ρj⟩⟩ |p = | ⟨⟨0| |bi (wijb
†
iaj) a

†
j | |0⟩⟩ |

p = |wij |p = logP (αi|ρj). (16)

Nonlinear binary operations such as AND/OR are possible using appropriate activation functions117

with different thresholds, as those in perceptrons [37].118

3 Physical representation119

The proposed physical representation of neural networks is outlined in Fig. 2. It introduces explicit120

temporal dependences for operators and neural signals The operators for ingress and egress paths121

create and annihilate nonstationary neural signals over elastic physical media, i.e., axons (SC
i ’s) and122

dendrites (RC
i ’s).123

3.1 Operators for eigenmodes124

First, the physical representation of the creation and annihilation operators for stationary neural sig-125

nals a†i and ai are constructed in accordance with the quantum creation and annihilation operators a†i126

and ai in the one-dimensional transmission line (TL) model in circuit QED [38]. Circuit QED is one127

of the established baseline theories in QC, which bridges classical circuit dynamics and quantum.128

The Hamiltonian Hij for a TL creating consisting of N identical capacitors of the capacitance C0129
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Figure 2: Physical representation of operator-discretized neural networks with explicit local time t
dependency with respect to global time T . The creation and annihilation operators for ingress and
egress paths represent nonstationary neural signal dynamics across axon-synapse-dendrite networks.
LC TL models are used for axons and dendrites instead of RC cable models. The neuron model
consists of different activation functions for signal amplitude and timing,

(each containing the charge Qn) and N identical inductors of the inductance L0 (each containing130

the flux Φn − Φn−1), is given by131

Hi =
∑
n

[
1

2C0
Q2

n +
1

2L0
(Φn − Φn−1)

2

]
=
∑
m

ℏωma†i (km, ωm)ai(km, ωm), (17)

where m is the eigen mode index for a given boundary condition. The lossless LC-based model can132

better transmit energy and information than the dissipative RC-based biological cable model [39]133

We define a†i (k, ω) and ai(k, ω) as the classical counterpart of a†i (k, ω) and ai(k, ω). The following134

simple linear dispersion for a constant velocity v are assumed in the range of interest:135

v =
∂ωm

∂km
=

ωm

km
= const. ∀m. (18)

Consequently, a†i (k.ω) = a†i (ω), ai(k, ω) = ai(ω). Note that v for neural signals is much slower136

than v for electrical signals in ordinary TL’s [31, 32]. Though our focus is on artificial neural net-137

works, biological implications of the present approach will be further discussed in Appendix.138

3.2 Operators for nonstationary neural signals139

Second, the operators basis is changed from (k,w) to (x, t). For ingress signals140

â†i (x, t) =
∑
m

a†i (km, ωm)A∗(km, ωm)e−i(kmx−ωmt),

âi(x, t) =
∑
m

ai(km, ωm)A(km, ωm)ei(kmx−ωmt).
(19)

For egress signals141

ǎ†i (x, t) =
∑
m

a†i (km, ωm)A∗(km, ωm)ei(kmx−ωmt),

ǎi(x, t) =
∑
m

ai(km, ωm)A(km, ωm)e−i(kmx−ωmt).
(20)
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They represent creation and annihilation of neural signals centered at x = 0, and t = 0, and sent142

or received at neuron i. To be more specific, for example, a neural signal moving out of neuron i143

created at the start of the TL of a length l is given as144

â†i (t) ||0⟩⟩ = â†i (0, t) ||0⟩⟩ . (21)

It annihilates at the end of the TL after the geometrically-defined delay d = l/v < Tc as145

âi(t− d)â†i (t) ||0⟩⟩ = âi(l, t− d)â†i (0, t) ||0⟩⟩ . (22)

3.3 Incorporating physical interaction at synapses146

When multiple neurons are interconnected via synaptic networks, physical interactions with explicit147

temporal dependences should be incorporated in addition to the free dynamics described above. We148

consider here primarily Tij one-body potential scattering via an elastic scattering center as149

Tij = wij ǎ
†
i (t− Ti + ddendij )âj(t− tj − daxonij ), (23)

where daxonij and ddendij are the delays in axon and dendrite between neurons i ande j, respectively.150

3.4 Neuron model with activation functions for amplitude and timing151

The proposed representation of neural networks allows for more advanced detection strategies than152

threshold detection, for example, in LIF neurons usually found in the literature [39] s. This is153

somewhat inspired by the advancement in detection strategies in communication or storage channels154

[40]. Let us first consider a simple case when a half-cubit neural signal of the peak amplitude xj155

from a presynaptic neuron j is generated at t = tj by applying a creation operator as156

||ρj(t)⟩⟩ = xj â
†
j(t− tj) ||0⟩⟩ , (24)

and observed by a postsynaptic neuron i at Ti directly without a synapse.157

⟨⟨αi(t)|| = ⟨⟨0|| ǎi(t− Ti), (25)

In general, the state preparation ||ρj(t)⟩⟩ at tj and the observation ⟨⟨αi(t)|| at Ti are not temporally158

alighed, so by using ingress-egress correlation function f(∆tij) := ⟨⟨0|| ǎi(t−∆t)â†j(t) ||0⟩⟩,159

⟨⟨αi(t)||ρj(t)⟩⟩ = ⟨⟨0|| ǎi(t− Ti)xj â
†
j(t− tj) ||0⟩⟩ = xjf(tj + dij − Ti) (26)

for tj + dij − Ti ≥ 0, where dij = daxonij + ddendij . We should note that for ∆t1 = ∆t2 +∆t3160

f(∆t1) = f(∆t2)f(∆t3), f(0) = 1. (27)

With interactions at synapses, the state preparation and observation between neurons pair i and j161

provides162

⟨⟨αi(t)|| Tij ||ρj(t)⟩⟩ = ⟨⟨0|| ǎi(t− Ti)Tijxj â
†
j(t− tj) ||0⟩⟩ = wijxjf(tj + dij − Ti). (28)

Thus, the aggregated signal detected at neuron i is163 ∑
j

⟨⟨αi(t)|| Tij ||ρj(t)⟩⟩ =
∑
j

⟨⟨0|| ǎi(t− Ti)Tijxj â
†
j(t− tj) ||0⟩⟩ =

∑
j

wijxjf(tj + dij − Ti).

(29)
This inner-product-based detection in neural systems corresponds to the projection measurement164

in quantum systems and is the key to enable efficient coarse-grained detection without tracking165

the membrane potential at fine-grained time steps. For a given waveform defined by creation and166

annihilation operators, f(∆tij) can extract temporally-coded information. Alternatively, the right167

operator pair can be defined to meet a given f(∆tij). The latter approach is to be taken when168

applying the present idea to efficient emulation of temporally-coded SNNs.169

By using appropriate activation functions σ1 and σ2 for the amplitute and the event firing time,170

resepctively, the detected signal can be converted to the follow-on signal in neuron i as171

xi = σ1(
∑
j

wijxjf(tj + dij − Ti)), ti = Ti + σ2(
∑
j

wijxjf(tj + dij − Ti)). (30)

Various nonlienarities can be incorporated via σ1 and σ2 if necessary.172
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3.5 Learning algorithms with operators173

The weight update ∆wij for unsupervised algorithms, such as Hebbian and STDP for SNNs, is174

asynchronously (i.e., without explicit dependency on Ti) related to ingress-ingress correlartion g as175

∆wij ∼⟨⟨0|| âi(t− ti)â
†
j(t− tj − dij) ||0⟩⟩

= ⟨⟨0|| âi(t− ti)ǎ
†
i (t− Ti)ǎi(t− Ti)â

†
j(t− tj − dij) ||0⟩⟩

= g(ti − Ti)g(Ti − tj − dij) = g(ti − tj − dij).

(31)

Even and odd functions are chosen for Hebbian and STDP, respectively.176

The proposed representation can support various supervised learning algorithms and toolchains,177

when temporal dynamics is synchronously regulated by a coarse-grain global clock in n cycles as178

T
(n)
i = nTc ∀i. (32)

Fine-grained temporal correlations, such as coincidence, can be passed on to the operator correla-179

tions by defining a new global variable X
(n)
i = x

(n)
i f(t

(n)
i ). Then180

x
(n+1)
i = σ1(

∑
j

wijX
(n)
j ), t

(n+1)
i = T

(n+1)
i + σ2(

∑
j

wijX
(n)
j ). (33)

The backward calculation can be performed by using the following relation:181

∂X
(n+1)
i

∂X
(n)
j

=
∂X

(n+1)
i

∂x
(n+1)
i

∂x
(n+1)
i

∂X
(n)
j

+
∂X

(n+1)
i

∂t
(n+1)
i

∂t
(n+1)
i

∂X
(n)
j

= (f(t
(n+1)
i σ′

1 + x
(n+1)
i f ′σ′

2)wij (34)

Let us go through how this works further with a specific example in the next section.182

4 Application to temporally-coded SNN183

The relation between ANNs and rate-coded SNNs (rSNNs) has been known [41]. Here, we first184

theoretically prove that under the proposed representation, temporally-coded SNNs (tSNNs) can be185

equivalently transformed into ANNs by appropriately assigning the operator via f and encoding via186

σ1 and σ2, Then we demonstrate practical benefits of doing so by running some benchmarks.187

4.1 New perspective on ANN-SNN equivalence188

Proposition 1: When driven by a global clock of T (n)
i = nTc, operator-descritized neural networks189

defined by Eqs. 28 and 30 for the neural events (xi, ti) with the followng setting consistute ANNs.190

ANN: σ1(x) = *, σ2 = 0, and f(x) = 1. (35)

The neural signals stay constant at X(n)
i = x

(n)
i for T (n)

i = nTc. The operators become arbitrarily191

picked single-mode (k, ω) ones. Perceptrons are constructed with binary inputs and Heaviside step192

function for σ1.193

Proposition 2: When driven by a global clock of T (n)
i = nTc, operator-descritized neural networks194

defined by Eqs. 28 and 30 for the neural events (xi, ti) with the following setting constitute tSNNs.195

tSNN: σ1(x) = 1 and σ2(x) = *. (36)

The tSNN signals for X(n)
i = f(t

(n)
i −T

(n)
i ) take specific spike waveforms defined by nonstationary196

operators which spread into multiple modes in the (k, ω) basis. The cut-off Xmin is defined as197

T
(n)
j ≤ t

(n)
j ≤ T

(n)
j + Tc ⇔ 1 ≥ X

(n)
j ≥ Xmin = f(Tc). (37)

Theorem 1: tSNN in Proposition 2 with f ′(x)σ′
2(x) = 1 runs equivalently in forward and backward198

to ANN in Proposition 1 with σ1(x) = x · (x > Xmin) for Xmin = f(Tc) > 0.199
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Figure 3: (a) Activation function for operator-discretized tSNNs with excitatory and inhibitory
neurons; (b) MNIST benchmark results for ANN, operator-discretized tSNN, and Euler-discretized
tSNN; (c) Realtive comparison of the number of neural signals and throughput.

Proof. In forward, weighted sum of tSNN reduces to that of ANN as200

(xj)ANN = (f(t
(n)
j − Tj))SNN , and (wij)ANN = (wijf(−Tc + dij))tSNN . (38)

This is because for tSNN,201 ∑
j

wijf(t
(n)
j +dij−T

(n+1)
i ) =

∑
j

wijf(−Tc+dij)f(t
(n)
j −T

(n)
j ) =

∑
j

wijf(−Tc+dijf(t
(n)
j −Ti).

(39)
In backward,202 (
∂X

(n+1)
i

∂X
(n)
j

)
ANN

= (wij)ANN = (wijf(−Tc + dij))tSNN =

(
∂X

(n+1)
i

∂X
(n)
j

f(−Tc + dij)

)
tSNN

.

(40)
203

Thus we can emulate tSNN using ANN by renormalizing wij with the constant f(−Tc + dij).204

Example 1: We can set tSNN as205

f(x) = β−x, σ2(x) = − logβ x and Tc = dij (i.e.,f(−Tc + dij) = 1) (41)

β works as a base constant to carry or borrow across a fine-grained unit time interval. The logarith-206

mic conversion works as a ReLU activation function in ANN since the conversion is only valid for207

Xmin > 0. Bipolar neural signals are represented by combining excitatory and inhibitory neurons208

as shown in Fig.3(a). This setting can also support rSNNs by allowing multiple spikes within Tc.209

Building blocks in modern ANN models, such as convolution, max pooling, and batch normaliza-210

tion, have to be translated to those in SNNs. The translation is straightforward as long as they are211

linear transformations. However, batch normalization blocks may require some attention, since they212

involve nonlinear operations to control both the number and the delay distribution of neural signals.213

Once the translations of building blocks are completed, the proposed representation for SNNs can214

support not only specific models and learning algorithms but a wide variety of them. Under the215

operator-discretized representation, the inference paths of SNNs can be translated to those of the216

corresponding ANNs. Thus the standard autograd learning strategy [42] for ANNs equally works217

without using costly strategies specific to SNNs. The instability associated with differentiating the218

spike activation function can be avoided by substituting adjoint computation [43] to the operators219

rather than using arbitrary surrogate functions [6, 44].220

4.2 Evaluation221

Figure 3(b) compares MNIST benchmark results for ANN, Euler-discretized tSNN, and operator-222

discretized tSNN. We used a stand-alone computing environment without GPU to minimize unde-223

sired throughput variations. The code for ANN straightforwardly follows reference implementations224
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Figure 4: Relative test accuracy and throughput as a function of Xmin for CIFAR10&100 with
resnet18 : (a) With batch normalization; (b) Without batch normalization. Xmin = 0 is for ANN.

and default parameter settings under python 3.8.5 and PyTorch 1.9.1. lr = 0.001 with Adam op-225

timizer and is multiplied by 0.9 after every10 epochs. To accommodate Euler-discretized tSNN,226

simple architecture of 784-350-10 is chosen. The Euler discretization algorithm follows the one227

in [12], There, forward and backward paths were calculated manually in 30 ∆T steps in each Tc228

period. On the other hand„ operator-discretized SNN fully takes advantage of the existing toolchain229

capabilities of ANN, including autograd. For operator-discretized tSNN, we used the conversion as230

stated in Example 1 with Xmin = 0.1. In short, the result for operator-discretized tSNN achieves a231

significantly better throughput, than Euler-discretized one, demonstrating competitive accuracy and232

throughput to those of ANN.233

Figure 3(c) compares the number of neural signals and throughput for rSNN, Euler-discretized234

tSNN, and operator-discretized tSNN. In the Euler-discretized tSNN, the throughput is severely235

affected despite the reduction of the number of spikes, Since information is encoded in time rather236

than in amplitude, naive discretization using fine-grained ∆T steps is not very efficient in terms of237

both accuracy and throughput. Indeed, the computing complexity proportionally increases as the238

number of ∆T steps, rather than as the number of neural signals. In contrast, both the number of239

spikes and throughput are comparable to those of ANN in operator-discretized tSNN. The proposed240

emulation strategy meets computing efficiency without washing out actual neural signal waveforms241

by embedding fine-grained temporal dynamics into crosscorrelations of operators.242

The proposed emulation strategy is expected to be as scalable to larger workloads as ANNs. To243

validate this assumption, our emulation approach was applied to larger data sets and architectures.244

Figure 4 summarises the benchmark results for CIFAR10&100 and resnet18. This time, we used245

SGD with lr = 0.1 with batch normalization and lr = 0.05 without batch normalization for better246

convergence. The learning rates were reduced by × 10 after every 30 epochs for a total of 90247

epochs. Again, the ANN code follows reference implementations and default parameter settings in248

PyTorch documentation, The programs were executed in x86 internal clusters for higher throughput249

(at an expense of throughput variations due to other jobs) with python 3.6.9 and PyTorch 1.2.0, but250

again without GPUs. We used multicores in a single node since the conversion between ANN and251

tSNN is local i.e., not affected by the node configuration. The result confirms that both accuracy252

and throughput are similarly competitive to ANNs for larger datasets and models. We performed253

multiple runs for 10 different seeds. The standard deviations were ≲ 1 % and ≲ 10 % for accuracy254

and throughput, respectively.255

5 Conclusion256

This paper proposed a new representation of neural networks that can efficiently compute their dy-257

namics as sequences of operator-discretized events. Our approach takes advantage of existing math-258

ematical frameworks that have been originally developed to abstract and discretize high-dimensional259

quantum systems with necessary modifications to handle neural networks. Different generations of260

neural networks, such as ANN and SNN, were attributed to different selections for operators and261

encoding. Our formulation, when applied to tSNNs, led to a more computationally efficient SW em-262

ulation with fully exploiting existing ANN assets. Presently, learning is not perfectly asynchronous263

because of Eq. 32. However, this limitation makes sense considering that the biological brains also264

use slow brain waves to efficiently regulate their operations without much affecting online tracking.265
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