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Abstract

(Distributionally) robust optimization has gained momentum in machine learning
community recently, due to its promising applications in developing generalizable
learning paradigms. In this paper, we derive generalization bounds for robust opti-
mization and Wasserstein robust optimization for Lipschitz and piecewise Hölder
smooth loss functions under both stochastic and adversarial setting, assuming that
the underlying data distribution satisfies transportation-information inequalities.
The proofs are built on new generalization bounds for variation regularization (such
as Lipschitz or gradient regularization) and its connection with robustness.

1 Introduction

Consider the following stochastic optimization problem of seeking a function f : X ! R from the
hypothesis space F so as to minimize the expected loss:

min
f2F

�
Ltrue(f) := EX⇠Ptrue [f(X)]

 
.

Here the data X follows some underlying distribution Ptrue on X . In practice, Ptrue is often replaced
with its empirical estimate Pn = 1

n

Pn
i=1 �x̂i , where � is the Dirac measure:

min
f2F

{Lerm
n (f) := EX⇠Pn [f(X)]} .

The discrepancy between Ptrue and Pn may be resulted from

(i) The sampling error of Pn when data are independently drew from Ptrue;
(ii) Non-i.i.d. data, e.g., xi’s are samples from a Markov chain with a stationary distribution Ptrue;

(iii) The deploying environment is (adversarially) different from the data-collecting environment.

Such discrepancy largely contributes to the poor generalization behavior of empirical risk minimiza-
tion. To tackle this issue, robust optimization [4, 37, 38] studies

min
f2F

⇢
Lro
n,p(f ; %) := max

{xi}n
i=12X

n
1
n

nP

i=1
f(xi) :

�
1
n

nP

i=1
kxi � x̂ikp

� 1
p  %

o�
. (RO)

Here p 2 [1,1]; the uncertainty set, denoted by Xp(%), describes the data perturbations to hedge
against; and the radius % > 0 specifies the level of robustness. In a similar spirit, Wasserstein robust
optimization [15, 7, 19] studies

min
f2F

n
Lwo
n,p(f ; %) := max

P

�
Ex⇠P[f(x)] : Wp(P,Pn)  %

 o
. (WO)

Here the distributional uncertainty set, denoted by Pp(%), consists of all probability distributions that
are close to Pn in p-Wasserstein distance. When p = 1, (WO) and (RO) coincide. Both problems
have received increasing attentions in machine learning; see [25] for a survey.
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When data is generated stochastically, such as i.i.d. or Markovian (see (i)(ii) above), we would like to
choose the radius % = %n adaptive to the sample size, so that the robust loss can balance between
performance and robustness. More precisely, %n should be large enough so that the robust loss
dominates the true loss with high probability, but not be too large to produce an inferior solution.
When the testing environment is adversarially different from the training environment (see (iii) above),
consider the adversarial loss minimization

min
f2F

⇢
Ladv
p (f ; %) := max

P2Pp(%)

�
Ex⇠P[f(x)] : Wp(P,Ptrue)  %

 �
, (Adv)

where the radius % captures the difference between the training and testing environments. When Ptrue

is not available, a surrogate problem (WO) based on Pn is often considered. In this case, % is often
fixed and we hope that the robust solution yielding from (WO) generalizes well.

The goal of this paper is to provide a comprehensive analysis of the generalization capability of the
above robust learning paradigms. Specifically, in the stochastic setting, under proper choice of the
radius %n, we derive finite-sample guarantees for (RO) and (WO). In the adversarial setting, we derive
generalization bounds for (Adv) with a small fixed radius %.

Related Literature

Stochastic setting. The most related work to ours is [17], but we differ in several important ways.
First, [17] studies only (WO) while we also consider (RO). Second, [17] studies i.i.d. data while
we also consider non-i.i.d. by exploiting a different notion of transport inequality. Third, even in
the i.i.d. setting, [17] studies only smooth losses and Wasserstein order p = 1, 2. We consider
non-smooth losses and p 2 [1, 2], which includes important cases like |✓>x � y|p. Moreover, for
p = 1, we tighten the order of the remainder; for p = 2, we obtain a cleaner expression using a
different set of assumptions. All these extensions require in-depth analysis on worst-case scenarios.

For (WO) with i.i.d. data, [15] originally proposed to choose the radius %n such that Ptrue is contained
in the uncertainty set with high probability, but the resulting performance bound is overly conservative
and suffers from the curse of dimensionality. This issue has been mitigated asymptotically for smooth
loss functions [6, 8, 33], and non-asymptotically for linear models [32, 12] and for smooth loss
functions [17]. As mentioned above, our results apply to non-i.i.d. data and non-smooth losses.

For (RO) in the stochastic setting, its generalization properties were first studied in the pioneer work
[39], which established algorithmic generalization generalization bounds for various learning tasks
with i.i.d. and Markovian data. Nonetheless, many bounds developed therein suffer from the curse of
dimensionality. This framework is then extended to metric learning [3] and ensemble models [41].
Our results circumvent the curse of dimensionality of the bounds developed in [39].

Adversarial setting. For p 2 [1,1), generalization properties of (WO) with fixed radius was
considered first in [27]. The main difference is that we consider different magnitudes of data
perturbation. We mainly focus on adversarial robustness where the radius is often a tiny number, and
our results in Section 5 suggest that the generalization gap is small when the radius is small. While
their motivation was from domain adaptation, and their bound is mostly useful when the Wasserstein
radius is not extremely small, which suggests that the generalization gap becomes smaller as the
radius grows to infinity (see their Remark 4). The bounds developed in [34, 30] does not depend on
the Wasserstein radius, while our result indicates that when the radius is small, the remainder actually
demonstrates its linear scaling and therefore tighter.

For p = 1, [24, 40, 1] focus on deriving generalization bounds for specific loss function classes such
as linear hypotheses and neural networks. Our results apply to generic function classes, and most
importantly, the bound suggests the the generalization gap is controlled by not only the complexity of
the loss function class, but also the complexity of the gradient norm functions of the loss functions.
The intuition is that the gradient norm controls the robustness of the model subject to adversarial
perturbations. As far as we know, the bound in such form is new in the literature. There are also some
earlier works focusing on investigating the fundamental limit of adversarial learning and its difference
from empirical risk minimization, such as [31, 35, 10, 11]. They consider somewhat different settings
than ours, which usually involves a stylized data generating model that facilitates theoretical findings.

Regularization. Part of our analysis is based on the connection between robustness and regular-
ization. The connection between (RO)(WO) and norm regularization was established for various
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machine learning tasks [38, 37, 5, 6, 12], and the connection between (WO) and Lipschitz/gradient
regularization has been established for smooth loss functions [32, 34, 16, 13, 8, 2] and non-smooth
loss functions [18]. Our results improve the sandwich bounds in [18] for p = 1, and generalizes
the results therein to piecewise Hölder smooth loss functions for p 2 (1,1]. Finally, there are
also works connecting regularization and distributional robustness under other choices of distance
[26, 21, 14, 23].

2 Preliminaries

In this section, we prepare several technical tools that are useful in deriving our main results.

Notations For p 2 [1,1], we denote by q its Hölder conjugate number, i.e. 1
p + 1

q = 1. Let
P(X ) be the set of Borel probability distributions on X = (Rd, k·k), and let Pp(X ) = {P 2
P(X ) : EP[kxkp] < 1}. For a given probability measure Q, denote by (Lp

Q(X ), k·kp,Q) the
set of Lp functions on X with respect to Q. Unless stated otherwise, we will not assume the
samples are i.i.d. Instead, we use Sn = {x̂i}ni=1 to represent a sample of size n, and denote by
µSn the sampling distribution and use ESn to indicate the expectation with respect to the µSn , and
Ltrue(f) = ESn [

1
n

Pn
i=1 f(x̂

i)]. For a fixed set of n points, we denote Pn as the empirical uniform
distribution on these n points. For two real numbers, a and b, we denote a ^ b = min(a, b), and
a _ b = max(a, b).

Transport inequalities In the stochastic setting, we will work with distributions that satisfy the
following condition. Let p 2 [1,1) and ⌧ > 0. A distribution Q 2 Pp(X ) satisfies a transport
inequality, denoted as Tp(⌧), if for all P 2 Pp(X ) it holds that

W2
p (P,Q)  ⌧

Z

X
log(dP/dQ)dP,

where dP/dQ denotes the Radon-Nikodym derivative. The integral on the right-hand side of the
inequality above represents the relative entropy between P and Q. The transportation-information
inequality Tp(⌧) covers a variety of useful classes of distributions. For example, if X is bounded by
B, then any distribution on X satisfies T1(8B2). Gaussian distributions with covariance ⌃ satisfies
T2(2�max(⌃)). Interested readers are referred to [22] for a recent survey.

Variation Regularization Following [18], we define the local and global slope of a continuous
function f : X ! R at x 2 X , denoted by |@f |(x) and G(f)(x) respectively, as

|@f |(x) = lim sup
kx̃�xk!0

(f(x̃)� f(x))+
kx̃� xk , G(f)(x) = sup

x̃2X

(f(x̃)� f(x))+
kx̃� xk .

When f is differentiable at x, we have |@f |(x) = krf(x)k⇤. When f is L-Lipschitz, we have
G(f)(x)  L for all x 2 X and kG(f)k1,Ptrue = kfkLip. For a function f , denote by kfkLip its
Lipschitz norm whenever it exists, and by k|@f |kq the Lq(Ptrue)-norm of its slope function. We
define variation regularization as

min
f2F

Lvr
n,q(f ; %) :=

⇢
1
n

Pn
i=1 f(x̂

i) + %k|@f |kq,Pn , q < 1,
1
n

Pn
i=1 f(x̂

i) + %kfkLip, q = 1.
(VR)

We introduce the following class of functions consisting of slope functions of loss functions.

@Fq :=
�
|@f |q : f 2 F

 
, Nq :=

n
|@f |q

k|@f |kq
q
: f 2 F

o
. (1)

Throughout we utilize the following assumptions, which covers most loss functions that are amenable
to optimize efficiently using first-order methods.
Assumption 1. Every f 2 F is L-Lipschitz.
Assumption 2. Every f 2 F is piecewise differentiable. There exists h,↵ > 0 such that for every
f 2 F and every x̃, x in the same piece of f , it holds that krf(x̃)�rf(x)k⇤  hkx̃� xk↵.

3



3 Robustness and Variation Regularization

In this section, we establishes connection between robust optimization (RO) (WO) and variation
regularization (VR), which serve as building blocks for results in Section 5.

We make the following assumption, which states that the loss function family has sufficient variation.
Assumption 3. ⌘ := inff2Fk|@f |kq,Ptrue > 0.

We also define ⌘̃ := inff2Fk|@f |kq,Pn . To simplify notations, we introduce a function en : R+ !
R+, defined as

en(⇢) = sup
f2F

n
EX⇠Pn

h
(⇢� d(X,Df ))+

io
, (2)

which describes the data concentration within a margin of non-differentiable points.
Remark 1. ⌘̃ can be ensured to be positive with high probability using Assumptions 1, 3 (see Lemma
5 in the supplementary). en(%) vanishes for differentiable families, and is often Õp(1/n) when
% = %n = Õ(1/

p
n) (c.f., [18]).

Our first result in this section bounds the difference between (WO) and (VR) for p > 1.
Proposition 1. Let p 2 (1,1]. Assume Assumptions 1, 2 and 3 hold. Then it holds that

|Lwo
n,p(f ; %)� Lvr

n,q(f ; %)|  C̃0%
(↵+1)^p + 2Len

�
(pL/⌘̃)

1
p�1 %

�
, 8f 2 F ,

where C̃0 equals h if p = 1, hmax(1, (Lp/⌘̃)
↵+1
p�1 ) if p 2 (↵+ 1,1), and L(h/L)

p�1
↵ otherwise.

Proposition 1 shows that (WO) and (VR) are close with a gap controlled by two high-order terms:
one term %(↵+1)^p depends on the Hölder smoothness parameter ↵; while the other term en depends
on the data distribution around the non-differentiable region. The smoother the loss function, the
smaller the gap is. Intuitively, the worst-case distribution in (WO) perturbs the data approximately
aligned with gradient ascent direction, thus the gradient norm in (VR) provides a tighter first-order
approximation on the difference between the worst-case and the empirical losses for smoother losses.
Compared to [18, Theorem 1], here we focus on Lipschitz loss functions, thereby we are able to
obtain a cleaner result, but we have to modify the proof therein by bounding the worst-case loss
differently.

Our second result in this section establishes a relationship between (WO) and (RO) for p 2 (1,1),
recalling that they coincide for p = 1.
Proposition 2. Let p 2 (1,1). Assume Assumptions 1, 2 and 3 hold. Then it holds that

0  Lwo
n,p(f ; %)� Lro

n,p(f ; %)  2L
n ( L

�n
)

1
p�1 , 8f 2 F ,

where �n is the dual minimizer of (WO) satisfying

(2p�1)%p�n � ⌘̃·%�2↵+1%↵+1h�2Len(2%)�2Len
�
(Lp/⌘̃)

1
p�1 %

�
�L( hL )

p�1
↵ %p�h(Lp/⌘̃)%↵+1.

Proposition 2 shows that (WO) and (RO) have a uniformly upper bounded gap. Intuitively, both these
two robust paradigms perturbs data points aligned with gradient ascent direction. The difference
is that (WO) allows to perturb a tiny fraction of probability arbitrarily far away, but (RO) prohibits
probability splitting. The proof is based on careful analysis on the probabilistic nature of the worst-
case distribution. The first result of this kind was established in [19] for a single loss function, but the
bound therein is not controlled uniformly for a family of losses. Under the conditions in Remark 1,
the gap vanishes in the order Õp(%/n).

Thus far, we have shown that when p 2 (1,1], Lvr
n,q(f ; %n), Lro

n,p(%n) and Lwo
n,p(%n) only differ by a

higher order gap that depends on the smoothness of the loss function class.

Next, we consider the case p = 1. In light of the example in [18], it is not always possible to have
Lvr
n,1(%)� Lwo

n,1(%) being of a higher order than %. Below we identify conditions to achieve this. For
f 2 F , we define cumulative distribution functions Hf , H̃f as

Hf (a) := Ptrue

�
kfkLip �G(f)(X)  a

 
, H̃f (a) := Ptrue

�
kfkLip � |@f |(X)  a

 
, a � 0,

where the random variable X has distribution Ptrue. They describe how the global and local slope
functions distribute around their maximum, i.e., the Lipschitz norm.
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Assumption 4. Assume there exists �, ā, c > 0 such that for all a 2 [0, ā) and all f 2 F , it holds
that Hf (a�) � ca for (WO), and H̃f (a�) � ca for (RO).

This assumption ensures sufficient concentration on the maximal slope kfkLip, and large � indicates
that G(f)(X) or |@f |(X) concentrates more on the maximal slope. Ideally, we would like to have
a large �, and in particular, Hf has a density at 0 when � = 1. For example, if Hf has a density
near zero, then Assumption 4 imposes a positive lower bound on the density with � = 1. As another
example, if f is a linear function, then the set of global slopes is a singleton and Hf (a) = H̃f (a) = 1
for all a � 0, hence Assumption 4 is trivially satisfied with ā = � = 1. More generally, under
the assumption that lim supkx�x̂k!1

(f(x)�f(x̂))+
kx�x̂k = kfkLip, which is imposed by [17], the global

slope G(f)(x) = kfkLip for all x 2 X , thereby Hf (a) = 1 for all a � 0.

Proposition 3. Let p = 1. Assume Assumptions 1, 2, 4 hold. Let � 2 [0, 1
2 ). Then for every f 2 F ,

it holds that
Lro
n,1(f ; %)  Lwo

n,1(f ; %)  Lvr
n,1(f ; %),

and that
Lwo
n,1(f ; %) � Lvr

n,1(f ; %)� ✏n, Lro
n,1(f ; %) � Lvr

n,1(f ; %)� ✏̃n,

where
✏n = %�n + 4hn↵�%↵+1 + 2Len(%n

�),

✏̃n = %�̃n + 4hn↵�%↵+1 + 2Len(%n
�),

where �n (resp. �̃n) equals the (bn1��c + 1)-th order statistics of the sample {kfkLip �
G(f)(x̂i)}ni=1 (resp. {kfkLip � |@f |(x̂i)}ni=1).
Remark 2. Consider data are generated i.i.d., % = %n = O(1/

p
n), and f has piecewise Lipschitz

gradient (i.e., ↵ = 1). As shown in the supplementary, the remainder would be O(n� �+1
2 +

n�( 1
2+��) + n�(1�2�)) = O(n� �+1

�+2 ). When Gf (X) has a positive mass on the maximal global
slope, by setting � = 0, with high probability, we have �n = 0, and ✏n = O(%2 + en(%)), which is
Õp(1/n) under the condition in Remark 1.

Proposition 3 shows that for p = 1, (RO), (WO) and (VR) are equivalent up to a higher order error
term, which depends on the smoothness of the loss function as indicated by ↵ and en, and the
concentration of slopes as indicated by �n. The smoother the function and the more concentrated
on the maximal global slope, the smaller the gap between (WO), (RO) and (VR) is. This improves
the sandwich result of [18] in which ✏n = O(1/

p
n). Our finer analysis is based on construction of

feasible solutions for (WO) and (RO) obtained from perturbation of empirical data points as well as
careful control on the distances of perturbation.

4 Generalization Bounds for Variation Regularization

In this section, we derive generalization bounds for variation regularization in the stochastic setting,
which are building blocks to develop the generalization bounds for (WO) and (RO).

We make the following assumptions on the sampling distribution.
Assumption 5. The sampling distribution µSn satisfies Tp(⌧n).

When Sn contains i.i.d. samples from some underlying distribution Ptrue that satisfies Tp(⌧), then by
tensorization of transport inequalities [22], µSn satisfies Tp(⌧n) with ⌧n = ⌧n2/p�1. In Example 2,
we will consider Markovian data that satisfies T1(⌧n) with ⌧n = O(n).

Suppose we work with a parametric family F = {f✓}✓2⇥, where the parameter space ⇥ is endowed
with a norm k·k⇥. We impose the following assumption of a Lipschitz parametric family.
Assumption 6. There exists  > 0 such that |f✓0(x)� f✓(x)|  k✓0 � ✓k for all x 2 X .
Proposition 4. Let p = 1. Assume Assumptions 1, 5 and 6 are in force. Let t > 0. Set

%n =

s
⌧n(t+ logN ( 1n ;⇥, k·k⇥))

n2
.
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Then with probability at least 1� e�t, for all f 2 F , it holds that

Ltrue(f)  Lvr
n,1(f ; %n) +

2

n
.

Proposition 4 shows that by choosing the radius properly, Lipschitz regularization upper bounds the
true risk Ltrue(f) uniformly with high probability up to some error terms. The radius %n depends on
the transport inequality parameter of sampling distribution in Assumption 5 and the complexity of
the loss function class. When ⌧n = O(n) and logN ( 1n ;⇥, k·k⇥) = Õ(1), we have %n = Õ(1/

p
n),

corresponding to the canonical choice.

For p > 1, let us assume Ptrue is continuous and define the population counterpart of en(%) in (2) as

e(⇢) = sup
f2F

n
EX⇠Ptrue

h
(⇢� d(X,Df ))+

io
. (3)

Proposition 5. Let p 2 (1, 2]. Assume Assumptions 1, 2, 3, 5 and 6 are in force. Let t > 0. Set

%n =
⇣
1� 2Rn(Nq)� (L/⌘)q

r
t

2n

⌘� 1
q

s
⌧n(t+ log(1 +N ( 1n ;⇥, k·k⇥)))

n2/p
.

Then with probability at least 1� e�t, for all f 2 F , it holds that

Ltrue(f)  Lvr
n,q(f ; %n) +

2

n
+ C0%

(↵+1)^p
n + 2Le

�
(pL/⌘)

1
p�1 %n

�
,

where C0 equals h if p = 1, hmax(1, (Lp/⌘)
↵+1
p�1 ) if p 2 (↵+ 1,1), and L(h/L)

p�1
↵ otherwise.

Recalling Nq is the set of normalized slope defined in (1), and the inflation of the radius compared with
the case of p = 1 is to compensate the discrepancy between k|@f |kq and k|@f |kq,Pn . The inflation
factor is well-defined so long as the Rademacher complexity of Nq diminishes with respect to sample
size. The additional remainder term is similar to the one in Proposition 1, which measures the
difference between (WO) and (VR) when the nominal distribution is Ptrue. The proof of Propositions
4 and 5 follows a similar flow as that of [17, Corollary 2], but our result extends it to non-i.i.d. and
non-smooth settings.
Example 1 (Linear Prediction with Polynomial Loss). Consider a supervised learning problem with
a feature vector x 2 X ⇢ Rd and a response variable y 2 Y ⇢ R. Suppose kxk2  B1 for all
x 2 X and |y|  B2 for all y 2 Y . Let ⇥ be a bounded set in Rd such that k✓k2  B3 � 1 for all
✓ 2 ⇥. Consider a linear predictor with polynomial loss F = {(x, y) 7! f✓(x, y) = |✓>x� y|p :
✓ 2 ⇥}. We now discuss how to ensure the assumptions in Propositions 4, with details in the
supplementary. It is easy to verify that every f✓(x, y) is Lipschitz in both variables and parameters,
with  = p(B1 + B2)pB

p�1
3 in Assumption 6. Suppose the samples are i.i.d. from Ptrue satisfying

Tp(⌧), which implies Assumption 5 with ⌧n = ⌧n
2
p�1. Hence we can apply Proposition 4, and by

[36, Example 5.8], we have logN ( 1n ;⇥, k·k⇥)  d log(1 + 2B3n).
Example 2 (Markovian Data). In this example, we show that our Assumption 5 about µSn can be
satisfied for Markovian data. Consider a homogeneous Markov chain on X with a transition kernel
P (dy|x). Assume there exist ↵0 > 0, �̄ < ↵0 and C < 1, such that

Z

X
e↵0kyk2

P (dy|x)  Ce�̄kxk
2

, 8x 2 X .

Let {xi}ni=1 be n consecutive outputs of this Markov chain. Then by Theorem 4.1 in [9], µSn satisfies
T1(⌧n) with ⌧n = 2n(1+logC)

↵0��̄
. Thus Assumption 5 is satisfied.

5 Generalization Bounds for (Wasserstein) Robust Optimization

In this section, we develop the generalization bounds for (WO) and (RO), based on the results in
previous sections.
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5.1 Stochastic Setting

Combining the results in Sections 3 and 4, we immediately obtain the following theorems.

Theorem 1. Let p 2 (1, 2] and t > 0. Under the setup of Propositions 1 and 5, with probability at
least 1� e�t, for all f 2 F , it holds that

Ltrue(f)  Lwo
n,p(f ; %n) + ✏n,

where

✏n = (C0 + C̃0)%
(↵+1)^p
n + 2Len

�
(pL/⌘̃)q�1%n

�
+ 2Le

�
(pL/⌘)q�1%n

�
+

2

n
.

With the additional setup as in Proposition 2, it holds that

Ltrue(f)  Lro
n,p(f ; %n) + ✏n +

2L

n
(
L

�n
)

1
p�1 .

Theorem 2. Let p = 1 and t > 0. Under the setup of Propositions 3 and 4, with probability at least
1� e�t, for all f 2 F , it holds that

Ltrue(f)  Lwo
n,1(f ; %n) + ✏n +

2

n
,

Ltrue(f)  Lro
n,1(f ; %n) + ✏̃n +

2

n
.

Both Theorems 1 and 2 show that by choosing a reasonably small radius without suffering from
the curse of dimensionality, the robust solution resulting from solving (VR), (RO), or (WO) has a
nice generalization bound, expressed as the robust loss plus a high-order term. The high-order term
depends mainly on the smoothness of the loss function as indicated by ↵, the (non-)concentration
of probability distributions on non-differentiable points as indicated by en, and the concentration
of the maximal slope as indicated by �n (resp. �̃n) in the expression of ✏n (resp. ✏̃n) (when the
Wasserstein order p = 1).

Example 3 (Unsupervised Learning). Consider the principal component analysis

max
W2Rd⇥k

�
kW>Xk2F : W>W = Ik

 
,

that seeks for d principal directions, along which the data has maximized variance. Here X is
a d ⇥ n sample matrix consisting of n samples {Xi}ni=1 from Ptrue on a set X ⇢ {x 2 Rd :
kxk2  B}; k·kF denotes the Frobenius norm; Ik denotes the k-dimensional identity matrix; and
W = [w1, . . . wk] is the set of k orthonormal principal directions in Rd. Assume that Ptrue satisfies
T2(⌧), Ex⇠Ptrue [x] = 0, and the smallest eigenvalue of the covariance matrix Ex⇠Ptrue [xx

>] is positive.
Let p = 2 and F = {x 7! fW (x) = �kW>xk22 : W>W = Ik}. Below we verify Assumptions 1,
2, 3, 5, 6 as required by Theorem 1 and compute the constants, and refer to the supplementary for
detailed calculation.

It is easy to verify that Assumption 1 since fW is 2Bk-Lipschitz; Assumption 2 holds with ↵ = 1;
the zero-mean and non-singular covariance of Ptrue imply Assumption 3; Assumption 5 holds with
⌧n = ⌧ ; and Assumption 6 holds with  = 2

p
kB2. Finally, to compute the covering number of the

set W = {W : W>W = Ik}, observe that each W consists of k orthogonal vectors, each of which
belongs to the unit ball in Rd. Hence logN ( 1n ;W, k·k2)  kd log((1 + 2n)). Thus, we improve the
bound in [39, Example 8] which has an exponential dependence on d.

Before closing this subsection, we would like to emphasize that this stochastic setting is drastically
different from the adversarial setting in the next subsection, for which many recent studies on the
generalization properties of robust optimization. In fact, choosing a good radius scaling scheme with
nice finite-sample guarantees is at the core of Wasserstein DRO and remains open for quite some
time until the recent work [17]. We generalize this result to non-i.i.d. and non-smooth settings as
well as for (RO).
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5.2 Adversarial Setting

In the adversarial setting (Adv), we are trying to minimize the expected loss under the worst-case
scenario when the learning algorithm is being purposely attacked by an adversary. By replacing
Ptrue with Pn in (Adv), we obtain the empirical adversarial robustness problem, which is the same
as the Wasserstein robust optimization problem (WO). One of the most fundamental questions in
adversarial robustness problem is to estimate the generalization gap between (Adv) and its empirical
counterpart (WO). We aim to derive generalization bounds for p 2 [1,1] by virtue of Theorems 1
and 3. Following the literature, in this subsection, we assume Pn consists of i.i.d. samples from a
continuous distribution Ptrue.

We start with p = 1.
Theorem 3. Let p = 1. Under the setup of Proposition 3, assume that kfk1  M for all f 2 F .
Let � 2 [0, 1

2 ) and t > 0. Then with probability at least 1� e�t, it holds that for every f 2 F ,

|Lwo
n,1(f ; %)� Ladv

1 (f ; %)|  2Rn(F ) +M
q

t
2n + 2✏n + C%1+

↵�
↵+� .

On the right-hand side of the inequality in Theorem 3, the first two terms are identical to the
generalization bound of empirical risk minimization. The third term ✏n from Theorem 3 is linear
in the adversarial perturbation level %, which represents the inflation of generalization bound in the
adversarial setting as opposed to the stochastic setting, whose dominating factor is the concentration
of the maximal slope. The rest terms are of higher-order for small adversarial perturbation level %,
that mainly depends on the smoothness of the loss function.

Next, we consider p 2 (1,1].
Theorem 4. Let p 2 (1,1]. Under the setup of Proposition 1, assume that kfk1  M for all
f 2 F . Let %  c

1
� ( ā2 )

1
�� and t > 0. Then with probability at least 1� 2e�t, it holds that for every

f 2 F ,

|Lwo
n,p(f ; %)� Ladv

p (f ; %)|  2Rn(F ) +M

r
t

2n
+

2Rn(@Fq) + Lq
q

t
2n

q · (⌘ ^ ⌘̃)
1

p�1

· %

+ C0%
(↵+1)^p + Len

⇣
(pL/⌘̃)

1
p�1 %

⌘
+ C%2.

Similar to the case of p = 1, the first two terms in the above bound is identical to the bound of
empirical risk minimization, and the high-order term in the second row depends on the smoothness
of the loss functions. The major difference from p = 1 is that, the inflation term in the adversarial
setting depends on Rn(@Fq), the Rademacher complexity of the class of gradient norm functions.
This term appears to be new in the literature. Intuitively, if the complexity of the variation is small,
the model is more robust to the adversarial perturbations and thus generalizes better.

Theorems 3 and 4 are proved based on a different strategy than that in the stochastic setting. Set
Lvr
q (%) := minf2F{EPtrue [f ] + %k|@f |kq,Ptrue}. Using the triangle inequality we decompose the dif-

ference |Lwo
n,p(f ; %)�Ladv

p (f ; %)| into three terms |Lwo
n,p(f ; %)�Lvr

n,q(f ; %)|, |Lvr
n,q(f ; %)�Lvr

q (f ; %)|,
|Lvr

q (f ; %)� Ladv
p (f ; %)| and then bound each term individually.

6 Concluding Remarks

In this paper, we thoroughly analyzed the finite-sample performance bounds for robust optimization,
drawing connection with transport inequality and local Rademacher complexity. Our results generalize
existing results from various perspectives, and particularly, to non-smooth loss functions and to non-
i.i.d. data, both of which requires non-trivial analysis. Our results help to better understand the
regularization effect of robust learning and explain their superior empirical performances. We
hope our results can inspire regularization schemes for other applications as well. Our bounds
involve the Rademacher complexities of (normalized) gradient norm function @Fq,Nq and margin
to discontinuity I%, which are non-standard; we have provided various examples and will investigate
in more depth for future work.
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