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ABSTRACT

Video anomaly detection (VAD) aims to detect anomalies that deviate from what
is expected. In open-world scenarios, the expected events may change as require-
ments change. For example, not wearing a mask may be considered abnormal
during a flu outbreak but normal otherwise. However, existing methods assume
that the definition of anomalies is invariable, and thus are not applicable to the
open world. To address this, we propose a novel open-world VAD paradigm
with variable definitions, allowing guided detection through user-provided nat-
ural language at inference time. This paradigm necessitates establishing a ro-
bust mapping from video and textual definition to anomaly scores. Therefore, we
propose LaGoVAD (Language-guided Open-world Video Anomaly Detector), a
model that dynamically adapts anomaly definitions under weak supervision with
two regularization strategies: diversifying the relative durations of anomalies via
dynamic video synthesis, and enhancing feature robustness through contrastive
learning with negative mining. Training such adaptable models requires diverse
anomaly definitions, but existing datasets typically provide labels without seman-
tic descriptions. To bridge this gap, we collect PreVAD (Pre-training Video
Anomaly Dataset), the largest and most diverse video anomaly dataset to date,
featuring 35,279 annotated videos with multi-level category labels and descrip-
tions that explicitly define anomalies. Zero-shot experiments on seven datasets
demonstrate LaGoVAD’s SOTA performance. Our dataset and code are released
at https://github.com/Kamino666/LaGoVAD-PreVAD.

1 INTRODUCTION

Video Anomaly Detection (VAD) aims to identify frames in videos that deviate from expected pat-
terns (Chandrakala et al., 2023; Wu et al., 2024a), which is applicable in fields such as intelligent
surveillance (Pang et al., 2020). In recent years, many VAD methods have achieved commendable
performance employing weak supervision (Pu et al., 2024; Joo et al., 2023; Yang et al., 2024b; Chen
et al., 2023; Sultani et al., 2018; Wu et al., 2024c) in the closed-set setting. However, there is a
consensus (Wu et al., 2024b; Pang et al., 2020; Zhu et al., 2022; 2024b) that the field is moving
towards enabling models to detect anomalies beyond the training data in open-world scenarios.

As shown in Fig. 1a, the training data of VAD models encompass patterns labeled as normal or
abnormal, where normal patterns include activities such as running or driving and abnormal pat-
terns include events like explosions. Conventional closed-set methods (Fig. 1b) (Pu et al., 2024;
Wu et al., 2024c) aim to detect patterns identical to those encountered during training when applied
to test sets, thereby restricting their application in open-world scenarios. In contrast, open-set ap-
proaches (Fig. 1c) (Zhu et al., 2022) (including open-vocabulary (Wu et al., 2024b) and domain
generalization (Aich et al., 2023; Jain et al., 2024; Wang et al., 2024c) methods) are able to detect
novel patterns absent from the training data without tuning. However, these methods neglect the crit-
ical issue of potential label change during testing (Fig.1d), i.e., patterns originally labeled as normal
may be redefined as abnormal (and vice versa). A representative example from Fig. 1e demonstrates
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Figure 1: Comparison of different VAD paradigms. Closed-set methods (b) can only detect anoma-
lies in the training scope, while open-set methods (c) can detect novel anomalies. Our open-world
approach (d) can deal with label change in open-world scenarios, with an example in (e).

this phenomenon: while pedestrian on road is regarded as a normal behavior in conventional crime
anomaly datasets, this same pattern would typically be classified as abnormal in freeway surveillance
scenarios. The cause of such label change lies in the user’s different definition of what constitutes
anomalies, driven by environments or temporal policies. Formally, this is a concept drift issue, as de-
fined in (Moreno-Torres et al., 2012), which refers to the divergence between the conditional proba-
bility distributions of training and testing phases, i.e., Ptrain(Y |V ) ̸= Ptest(Y |V ), where V are videos
and Y are anomaly labels. While some attempts have begun to address this, critical limitations re-
main. Scene-dependent methods (Cao et al., 2023; Cho et al., 2023; Aich et al., 2023) associate
the anomaly definition with scenes, neglecting user-specific requirements (e.g., hospital administra-
tors may require detecting the anomaly of not wearing masks during influenza outbreaks but not at
other times). Meanwhile, a dataset-dependent method (Cho et al., 2024) explores anomaly conflicts
across datasets, but remains constrained by predefined categories of training datasets. Besides the
limitation of task settings, existing methods are evaluated on limited scenes with small-scale data,
lacking extensive zero-shot cross-domain comparisons to verify the open-world capability.

To address the concept drift challenge, we propose a novel open-world paradigm. First, we explicitly
model the anomaly definition as a stochastic variable instead of fixing it as one or a few realizations.
Then, we condition predictions Y on both the video v and the anomaly definition Z, i.e., learning
a mapping Φ : (V, Z) → Y . Since we take the changing definition into account, we effectively
avoid concept drift (as detailed in Sec. 3). Finally, to enable natural interaction, we employ textual
anomaly definition, allowing users to dynamically define anomalies via language.

However, learning Φ requires modeling a more complex multimodal space, resulting in decaying
sample density that leads to overfitting. To address this, we mitigate it from both model and dataset
perspectives. As for the model, we propose a Language-Guided Open-world Video Anomaly
Detector (LaGoVAD), which employs two regularization strategies to reduce overfitting: 1) Align-
ing vision and language through contrastive learning with negative sample mining, which increases
the sample’s quality and learns more robust features. 2) Incorporating a dynamic video synthesis
module that generates long videos and pseudo-labels on the fly, which diversifys the relative duration
of abnormal events. As for the dataset, we construct a large-scale diversified Pre-training Video
Anomaly Dataset (PreVAD), collected through a scalable data curation pipeline utilizing foundation
models to automate data cleaning and annotation, significantly reducing manual labeling costs while
ensuring high quality. PreVAD comprises 35,279 videos annotated with multi-level categories and
anomaly descriptions, supporting weakly-supervised training. To our knowledge, PreVAD surpasses
existing datasets in diversity and scale.

The model is evaluated under two zero-shot evaluation protocols: one comprehensively assesses
open-world capability by evaluating cross-domain performance across seven diverse datasets, ad-
dressing key open-world challenges such as detecting unseen categories and handling concept drift,
while the other specifically measures concept drift by averaging performance on a dataset under
different anomaly definitions. Our contributions are summarized as follows:

1. We reformulate open-world VAD that pioneers the formulation of the concept drift in VAD
and proposes a joint modeling paradigm to avoid it.

2. We propose a novel language-guided video anomaly detection model, LaGoVAD, which
implements the proposed paradigm and incorporates two regularization strategies to miti-
gate overfitting.
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Table 1: Comparisons between PreVAD and existing datasets. Our dataset 1) has the largest scale
and broadest domain coverage, 2) is annotated with abnormal video descriptions, 3) enables zero-
shot evaluation without relying on existing VAD datasets.

Dataset # videos
(# abnormal videos) Domain # categories Text Anno. Source

ShanghaiTech (Zhong et al., 2019) 437 (107) campus 13 - recording
UCF-Crime (Sultani et al., 2018) 1900 (950) crime 14 - web
XD-Violence (Wu et al., 2020) 4754 (2405) crime 7 - web,movie
LAD (Wan et al., 2021) 2000 (762) crime, traffic, animal, mishap 14 - web
TAD (Lv et al., 2021) 500 (250) crime 8 - web
UBNormal (Acsintoae et al., 2022) 543 (278) pedestrian 28 - synthesis
DoTA (Yao et al., 2022) 5677 (5677) traffic 9 - web
MSAD (Zhu et al., 2024b) 720 (240) crime, traffic, mishap 55 - web
UCCD (Zhou et al., 2024) 1012 (382) crime - dense UCF
UCA (Yuan et al., 2024) 1854 (944) crime - dense UCF
VAD-Instruct50k (Zhang et al., 2024) 5547 (2715) crime - instruction UCF+XD
HAWK (Tang et al., 2024) 7852 (6677) crime, traffic - instruction 7 VAD datasets
CUVA (Du et al., 2024) 1000 (1000) crime, traffic, pedestrian, animal 42 instruction web

PreVAD 35279 (11979) crime, traffic, animal,
mishap, production 35 anomaly

description web

3. We build a large-scale and diverse dataset, PreVAD, annotated with multi-level taxonomy
and anomaly descriptions to enhance generalization under the new paradigm.

4. We conduct zero-shot cross-dataset evaluation and concept drift evaluation to validate the
generalization, where LaGoVAD achieves state-of-the-art performance.

2 RELATED WORK

2.1 VIDEO ANOMALY DATASETS

We summarize the characteristics of existing video anomaly datasets in Tab. 1. Scale: The largest
standalone dataset (Wu et al., 2020) contains only 5K videos, with ensemble datasets reaching 7.8K
(Tang et al., 2024). The data scarcity limits the performance of VAD. Domain & Category: Many
datasets focus only on a single scene, such as traffic or campus. The few datasets that cover multiple
scenes overlook domains like mishaps, animal-related violence, and production accidents. Text An-
notation: Existing VAD datasets are labeled with anomaly categories, which introduces semantic
ambiguity. Although some datasets provide different types of text annotation, they focus on under-
standing or captioning tasks and cannot provide a fine-grained overall description of the anomaly in
a video. Source: Current datasets are mainly from public web videos, while others rely on synthetic
generation (Acsintoae et al., 2022; Narwade et al., 2024) or movie clips (Wu et al., 2020). However,
synthetic datasets suffer from misalignment with the real world, and movie data raises concerns
about potential copyright infringement. In this paper, we propose a scalable data curation pipeline
to collect a novel dataset, which has large-scale diversified videos with multi-level taxonomy and
anomaly descriptions.

2.2 OPEN-WORLD VIDEO ANOMALY DETECTION METHODS

Intuitively, open-world VAD models should detect novel anomalies beyond the training set (Zhu
et al., 2022; Wu et al., 2024b; Tang et al., 2024; Jain et al., 2024). From a task paradigm perspec-
tive, early attempts adopt open-set and domain generalization strategies (Acsintoae et al., 2022; Zhu
et al., 2022; Jain et al., 2024). Then, Wu et al. (2024b) extends this paradigm with open-vocabulary
VAD, enabling both detection and classification of unseen anomalies. However, these approaches
implicitly assume a fixed anomaly definition and restrict model exposure to partial categories during
training, unable to deal with the concept drift issue. Recent studies explore the dynamic anomaly
definition: Cao et al. (2023); Cho et al. (2023); Aich et al. (2023) posit that anomaly is scene-
dependent (e.g., identical behaviors classified differently across scenes), training models to infer
scene-anomaly correlations from data, and Cho et al. (2024) trains dataset-specific classifiers. De-
spite these efforts, they lack the ability of user-customizable anomaly definition, limiting their ap-
plicability in open-world scenarios. Additionally, some recently developed MLLM-based methods
(Tang et al., 2024; Yang et al., 2024a; Zanella et al., 2024; Zhang et al., 2025; Ye et al., 2025) have
the potential to address open-world problems through prompt engineering, but they do not systemat-
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ically study the issue of concept drift and generally require great computational costs. And we find
that prompt engineering alone is unable to achieve satisfactory performance.

From a model design perspective, current advancements primarily adopt two ways: 1) data-driven
approaches (Acsintoae et al., 2022; Zhu et al., 2022; Jain et al., 2024; Wu et al., 2024b) enhance
generalization by utilizing more data, while 2) cross-modal alignment approaches (Chen et al., 2023;
Wu et al., 2024c; Yang et al., 2024b) aim to construct more robust feature spaces by aligning vision
and language. However, they neglect the problem of duration distribution shifts when leveraging
more data and only align videos to class-level text embeddings without further fine-grained aligning.

Our work introduces a novel open-world VAD paradigm that allows users to flexibly define anoma-
lies to guide detection, thereby avoiding concept drift. We implement this paradigm via a model
featuring dynamic video synthesis and contrastive learning with hard negative mining. Inspired
by data augmentation methods (Devries & Taylor, 2017; Ren et al., 2025) and contrastive learning
methods (Radford et al., 2021), the dynamic video synthesis module synthesizes videos of variable
durations to increase the diversity and coverage of temporal patterns, and the hard negative mining
module increases the sample’s quality to achieve fine-grained modal alignment.

3 PARADIGM: LANGUAGE-GUIDED OPEN-WORLD VIDEO ANOMALY
DETECTION

We define open-world video anomaly detection as the task of identifying video frames containing
abnormal patterns, where the definition of abnormality may change during testing. Abnormal pat-
terns manifest as events, behaviors, or actions (e.g., running). In practice, the definition of anomalies
may change as requirements change, influenced by cultural differences, policy updates, and specific
environments. The user may expand the definition to detect new anomalies or narrow the definition
to remove those of no interest, which causes the label of a particular pattern to change. For instance,
while running is generally normal behavior, it becomes abnormal in libraries or offices. Based on
these observations, we propose the definition-determined abnormality assumption:

Assumption 1 (Definition-determined abnormality). Let V, Z, Y be random variables denoting the
video, the definition, and the anomaly label, respectively. We assume that Y is solely determined by
V and Z. That is, there exists a deterministic function F such that for all v, z, y,

P (V = v, Z = z, Y = y) > 0 =⇒ y = F(v, z).

Proposition 1. Let D be a random variable denoting the domain, where each value d induces a
joint distribution Pd(V,Z, Y ) (e.g., training domain or testing domain). For each domain d, let
Pd(·) denote probabilities under the conditional distribution P (· | D = d). Under Assumption 1,
for any two domains d1 and d2,

Pd1
(Y | V, Z) = Pd2

(Y | V, Z).

Proposition 2. Consider two domains, d1 and d2, where the anomaly definition shifts between
domains, i.e., Pd1(Z | V ) ̸= Pd2(Z | V ). Suppose there exist at least one video v⋆ and one label
y⋆ such that the conditional probability mass assigned to anomaly definitions that predict v⋆ as y⋆
differs across domains, i.e.,∑

z:F(v⋆,z)=y⋆

Pd1
(Z = z | V = v⋆) ̸=

∑
z:F(v⋆,z)=y⋆

Pd2
(Z = z | V = v⋆),

then
Pd1(Y |V ) ̸= Pd2(Y |V ),

which corresponds to the concept drift issue defined in Moreno-Torres et al. (2012)

The proof of the above propositions is provided in Section I. We also discuss some special situation
of the assumption in Section H.

Intuitively, we assume that the anomaly label of a video is determined solely by the video itself and
the anomaly definition (Assumption 1). When the anomaly definition changes, the label of the same
video is likely to change as well, which leads to concept drift (Proposition 2). In contrast, for any
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Figure 2: Architecture of our proposed LaGoVAD, which implement Eq. 2 by adding an anomaly
definition branch (z → G → U). The model is trained with two novel regularization strategies:
dynamic video synthesis Ldvs (4.1) and contrastive learning loss with negative mining Lneg (4.2).

fixed video and anomaly definition, the corresponding label remains unchanged regardless of how
the underlying data distribution shifts, and thus eliminates concept drift (Proposition 1).

Existing methods can be seen as modeling Φ : V → Y and performing detection based on a fixed
definition z sampled from Z, which faces the concept drift since P (Y | V ) may change:

θ⋆ = argmin
θ

E(v,y)∼P (V,Y )[L(Φ(v; θ, z), y)], (1)

where θ denotes the parameters of the model Φ, and L denotes the loss function. It is worth empha-
sizing that some methods that can detect unknown anomalies also belong to this paradigm, including
open-set (Zhu et al., 2022; Acsintoae et al., 2022), domain generalization (Wang et al., 2024c) and
open-vocabulary (Wu et al., 2024b) methods, because they assume a fixed category set under a spe-
cific definition and only a subset are available in training. Under their assumption, an abnormal
pattern would never change to normal, and thus they are unable to deal with the concept drift.

In contrast, we propose a paradigm that directly models Φ : (V,Z) → Y , which could avoid the
concept drift since P (Y | V,Z) remains unchanged. It assumes a dynamic anomaly definition
during training and conditions predictions on both the video and the definition. Formally,

θ⋆ = argmin
θ

E(v,z,y)∼P (V,Z,Y )[L(Φ(v, z; θ), y)]. (2)

During training, the model Φ learns an optimal set of parameters θ that detect anomalies in video
v under the guidance of definition z. We later implement z in the form of natural language, but
theoretically, it could be images, videos, audio, or a learned embedding. It should be emphasized
that although the new paradigm theoretically avoids concept drift, its practical effectiveness still
depends on the model Φ and its parameters θ.

4 METHOD: LAGOVAD

We implement the language-guided VAD paradigm (Eq. 2) via LaGoVAD. We first introduce the
overall architecture, followed by details of two proposed regularization terms.

As illustrated in Fig. 2, we take video v and anomaly definition z as inputs. The video is synthesized
by a non-parametric dynamic video synthesis module. The anomaly definition is a category set
z = {z0, z1, . . . , zC−1}, where each class zi is defined by a class name or a description and C is the
number of categories in a certain definition. During training, we randomly choose either the class
names or the anomaly descriptions within a batch as the definition. A video is considered as normal
when the description does not belong to it. We extract and encode features of videos with F , which
includes a pretrained CLIP image encoder (Radford et al., 2021) and a Transformer-based temporal
encoder. And the text features are extracted with CLIP text encoder G. Then, the encoded features
are fused by a Transformer-based fusion module U . Finally, the fused features are fed into a binary
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detection head Hbin to obtain the anomaly score ybin ∈ RL×1 and a multi-classification head Hmul

to obtain the classification probability ymul ∈ RL×C , where L is the length of video. Formally,

[v, yp] = Synthesis(N,A), (3)

vt = F(v), zt = G(z), [vu, zu] = U(vt, zt), (4)

ybin = Hbin(vu), ymul = Hmul(vu, zu), (5)
where N,A are normal and abnormal video sets, Synthesis(·, ·) is the dynamic video synthesis
module, yp is the pseudo-label generated during synthesis, vt, zt are encoded features and vu, zu

are fused features.

During training, we optimize the model through four losses under weak supervision. Following
(Wu et al., 2024b;c), we calculate multiple instance learning loss LMIL (with ybin) and MIL-align
loss LMIL-align (with ymul) to optimize temporal binary detection and video-level multi-class classi-
fication. Our paradigm operates in multimodal joint spaces P (V, Z, Y ) that inherently suffer from
exponentially decaying sample density, thereby inducing overfitting problems. Specifically, the al-
gorithm may establish a wrong mapping or suppress a certain modality. Therefore, we leverage more
diverse videos via a dynamic video synthesis loss Ldvs to learn better mappings. We also incorporate
a contrastive learning loss with hard negative mining Lneg for better alignment. Formally,

L = LMIL + LMIL-align + Ldvs + Lneg. (6)

This work prioritizes addressing the challenge of concept drift over designing complex architec-
tures. Consequently, we adopt a simple but effective network. The proposed two regularizers are
independent in design, which could be seamlessly integrated into more sophisticated architectures.

4.1 DYNAMIC VIDEO SYNTHESIS

In real-world scenarios, anomalies typically occupy only a small portion of a lengthy video, whereas
current datasets predominantly contain videos with high anomaly ratios due to web-sourced data
limitations. To mitigate this bias, we dynamically synthesize videos with varying durations and
compute a loss based on the pseudo label generated during synthesis. The module initially de-
termines whether to generate a normal or abnormal video, followed by specifying the number of
segments. In particular, when the number is 1, it indicates that no synthesis is performed. It then
selects an anchor video and randomly selects similar videos from k-nearest neighbors to construct a
semantically coherent sequence, where the anchor’s position is transformed to a binary pseudo label
yp ∈ {0, 1}L, where L denotes the feature length. The visual representation used for semantic re-
trieval remains unchanged from that of the backbone, since segments retrieved with high similarity
are largely indistinguishable from the model’s perspective. Notably, the distance metrics required
for retrieval are pre-computed, effectively reducing computational overhead during training. Finally,
a dynamic video synthesis is calculated as:

Ldvs =− ŷ log
∑

i∈Ωa
k
σ(ybin

i )/k − (1− ŷ) log(1−
∑

i∈Ωn
k
σ(ybin

i )/k) (7)

−
∑L

i yp
i log σ(y

bin
i )/L, (8)

where σ denotes the Sigmoid function, ŷ denotes the video-level ground truth, Ωa
k and Ωn

k are indices
of Top-K scores of synthetic abnormal and normal videos, respectively.

4.2 CONTRASTIVE LOSS WITH HARD NEGATIVE MINING

Given the ambiguous boundary between normal and abnormal frames in anomaly videos, we in-
corporate contrastive learning with hard negative mining as a regularization term to enhance their
discriminability. Specifically, we first aggregate the frame-level visual features into video-level fea-
tures with binary abnormal scores as weights:

ṽpos =

L∑
i

vti
exp (ybin

i /η)∑L
j exp (ybin

j /η)
, ṽneg =

L∑
i

vti
exp (−ybin

i /η)∑L
j exp (−ybin

j /η)
, (9)

where vti denotes the i-th feature in vt, η denotes the temperature, ṽpos, ṽneg denote the aggregated
foreground/background feature. The background feature in an abnormal video is the normal part of
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it, which could be considered as the hard negative to its corresponding anomaly description. And
the selection of hard negatives can be adjusted through the temperature coefficient η. Then, we
obtain ṽpos of all samples and ṽneg of only abnormal samples in a batch, forming Ṽ ∈ R(B1+B2)×E ,
where B1 is the batch size, B2 is the number of abnormal videos in a batch, and E is the feature
dimension. We also obtain the text features before fusing, forming Z̃ ∈ RB2×E . The contrastive
loss is as follows:

Lt→v = −
B2∑
i

log
exp (Si,i/τ)∑B1+B2

j exp (Sj,i/τ)
, Lv→t = −

B2∑
j

log
exp (Sj,j/τ)∑B2

i exp (Si,j/τ)
, (10)

Lneg = Lt→v + Lv→t, (11)

where S = Norm(Ṽ )×Norm(Z̃), Norm is L2 normalization and τ denotes the temperature.

During inference, the user can input either descriptions or class names as the anomaly definition.
For the classification head, we select the minimum value of the normal class and the maximum
value of the abnormal class over the temporal axis and use these values after applying Softmax as
probabilities. More architecture details are provided in supp (Sec. C.1).

5 DATASET: PREVAD

5.1 DATA CURATION PIPELINE

We propose PreVAD—a large-scale pretraining VAD dataset to provide diverse (v, z, y) triples for
training, which is collected through a scalable curation pipeline. The proposed pipeline encompasses
three stages: source, cleansing, and annotation.

We aggregate videos from three sources: First, we retrieve anomaly videos from existing large-scale
video-text datasets (Xu et al., 2016; Wang et al., 2019; Liu et al., 2025; Zhu et al., 2024a) utilizing
their text annotation. Second, we expand the collection through curated web resources, including 1)
accident compilations and fail videos; 2) driving and travel vlogs; 3) violence recognition videos.
Last, we obtain normal surveillance videos from YouTube streams and traffic camera streams.

In the cleansing stage, we first remove irrelevant segments such as intros and outros with auto-
matic tools. Next, a multimodal LLM (MLLM) generates detailed video descriptions, and a vision-
language model verifies the consistency between the descriptions and video. Finally, an LLM eval-
uates the descriptions to confirm the presence of anomalies, decreasing hallucinations.

In the annotation stage, we employ a hybrid human-AI approach. First, we annotate each video with
a category label. Then, using this label as a constraint, we prompt an MLLM to generate fine-grained
descriptions of the anomalies, ensuring focused and relevant output. We also conduct frame-level
annotations for the validation set. Notably, we do not additionally label a test set, as we will conduct
zero-shot evaluations on other existing VAD datasets. More details can be found in the supp Sec. D.

5.2 DATASET STATISTICS

Our dataset stands out for its large scale, wide variety of anomalies, and high-quality descriptions.

Scale. PreVAD comprises 35,279 videos, spanning a total duration of 209.5 hours, with 11,979
abnormal videos and 23,300 normal videos, partitioned as shown in Fig. 3a, which is the largest
video anomaly dataset up to now, as compared in Fig. 3b.

Anomaly Types. Our dataset’s diversity stems from a hierarchical taxonomy with 7 first-level cat-
egories (i.e., Violence, Vehicle Accident, Fire-related Accident, Robbery, Daily Accident, Animal-
related Violence, Production Accident) and 35 subcategories (e.g., carjacking, mugging, sport fail,
war), spanning from minor (e.g., fall to the ground) to severe (e.g., shooting) anomalies, which
covers a broad range of scenarios.

Anomaly Descriptions. Each abnormal video is annotated with a text description, which has a total
vocabulary size of 5,298 words and an average of 22.9 words per description. As shown in Fig. 3c,
our annotation accurately describes the abnormal objects and behaviors in a fine-grained manner.
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Figure 3: The statistics, comparisons and a data sample of the proposed PreVAD dataset.

Sources. As shown in Fig. 3d, most of the videos are from existing video-text datasets or streaming,
significantly reducing the overhead of manual clipping and retrieval. PreVAD also obtains videos
independently without merging existing VAD datasets, enabling cross-dataset validation as a new
generalization benchmark. We provide more details of PreVAD in the supp Sec. D.

6 EXPERIMENTS

6.1 EXPERIMENT SETUP

Datasets We conduct comprehensive zero-shot evaluations across seven datasets: UCF-Crime
(UCF) (Sultani et al., 2018), XD-Violence (XD) (Wu et al., 2020), MSAD (Zhu et al., 2024b), UB-
Normal (UBN) (Acsintoae et al., 2022), DoTA (Yao et al., 2022), TAD (Lv et al., 2021), and LAD
(Wan et al., 2021), which encompass diverse anomaly types. The validation set of our proposed
PreVAD is also utilized for in-domain analysis and ablations. More details are in supp Sec. E.1.

Evaluation Protocols We evaluate the open-world capability with two zero-shot protocals: Pro-
tocol 1: Testing on multiple test sets separately, each representing a distinct scenario (e.g., TAD for
traffic scenarios), which evaluates the overall performance under concept drift, unseen categories,
feature distribution shifts, etc. Protocol 2: Testing on a dataset with varying anomaly definitions,
where in each definition only a subset of anomaly categories is considered as abnormal. Such vari-
ations between subsets simulate variable user requirements in real-world applications. The final
performance is averaged across five such definitions (denoted as drift@5), specifically evaluating
the model’s robustness to concept drift. The differences of test sets and the selected subsets are
detailed in supp Sec. E.2. During evaluation, we use manual designed prompts based on the class
name of the corresponding dataset as the anomaly definition.

Comparative Methods For Protocol 1, we compare against traditional methods (PEL (Pu et al.,
2024), VadCLIP (Wu et al., 2024c)), along with scene-dependent (CMRL (Cho et al., 2023)),
zero-shot (LAVAD (Zanella et al., 2024)), open-vocabulary (OVVAD (Wu et al., 2024b)), and
multi-domain generalization (MultiDomain (Cho et al., 2024)) approaches. We also include open-
vocabulary action recognition methods (ActionCLIP (Wang et al., 2021), ViFi-CLIP Rasheed et al.
(2023)) for multi-class comparison. For Protocol 2, as most methods do not support user-provided
anomaly definition, comparisons are primarily made with LLM-based (Qwen2-VL (Wang et al.,
2024a), Qwen2.5-VL (Bai et al., 2025), LAVAD, HolmesVAU Zhang et al. (2025)) and multi-modal
methods (VadCLIP). All results are based on their open-source codes and weights, detailed in Sec. F.

Metrics For binary detection metrics and without additional annotations, we follow existing works
using Average Precision (AP) for XD-Violence and using Area Under the Curve of the frame-level
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Table 2: Comparison in temporal binary anomaly detection under Protocol 1. Results marked with
† are taken from their publications and results marked with ‡ are from Zanella et al. (2024).
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LAD
(AUC)TAD (AUC)

DoTA
(AUC)

UBN
(AUC)

LaGoVAD
PEL (UCF pretrained)
VadCLIP (UCF pretrained)
Multi-Domain
Zero-shot SOTA
Weakly-supervised SOTA

LaGoVAD
PEL (UCF pretrained)
VadCLIP (UCF pretrained)
Multi-Domain
Zero-shot SOTA
Weakly-supervised SOTA

Methods Training-set
Test-set

UCF XD MSAD UBN DoTA TAD LAD
(AUC) (AP) (AUC) (AUC) (AUC) (AUC) (AUC)

OVVAD† AIGC+XD 82.42 - - - - - -
LaGoVAD PreVAD+XD 82.81 - - - - - -
OVVAD† AIGC+UCF - 63.74 - - - - -
LaGoVAD PreVAD+UCF - 76.28 - - - - -

CLIP‡ - 53.16 17.83 - - - - -
LLaVA1.5‡ - 72.84 50.26 - - - - -
LAVAD† - 80.28 62.01 - - - - -
CMRL† UCF - 46.74 - - - - -
MultiDomain† Multiple 78.55 - - - - 79.21 77.36
PEL UCF - 43.53 79.82 54.02 53.05 86.27 69.99
PEL XD 54.52 - 68.25 49.55 44.97 43.02 30.82
VadCLIP UCF - 58.29 88.09 56.24 50.93 74.46 74.29
VadCLIP XD 80.16 - 88.48 57.41 49.00 83.56 74.46

VadCLIP PreVAD 79.37 67.43 89.79 55.66 50.59 85.96 75.02
LaGoVAD PreVAD 81.12 74.25 90.41 58.07 62.60 89.56 78.91

Table 3: Comparison in video-level multi-
class classification on UCF-Crime and XD-
Violence under Protocol 1. All the methods
employ the same CLIP variant.

Method Training UCF XD

Acc. F1 Acc. F1

CLIP - 19.31 12.08 56.25 45.04
ActionCLIP K400 18.62 16.12 38.75 37.11
ViFi-CLIP K400 20.34 15.67 53.75 50.33
VadCLIP UCF - - 46.38 26.16
VadCLIP XD 38.28 10.52 - -

VadCLIP PreVAD 45.52 17.81 71.38 57.99
LaGoVAD PreVAD 51.72 16.64 78.13 63.80

Table 4: Comparison in temporal binary anomaly
detection on XD and MSAD under Protocol 2,
specifically evaluating robustenss to concept drift.
The model marked with † is trained on PreVAD.

Method XD-drift@5 MSAD-drift@5

AUC AP AUC AP

Qwen2-VL-7B 60.4 17.5 65.4 22.9
Qwen2.5-VL-7B 62.7 20.6 63.1 22.4
VadCLIP † 81.3 35.8 85.2 18.8
HolmesVAU - - 84.3 34.3
LAVAD 81.7 34.8 72.2 31.5

LaGoVAD 85.7 37.1 85.6 40.1

receiver operating characteristic (AUC) for other datasets. For multi-class classification metrics, we
use multi-class accuracy and F1-score on both abnormal and normal videos.

Details of implementation of our method are in supp Sec. C.2.

6.2 COMPARISON WITH STATE-OF-THE-ARTS

Under the comprehensive evaluation of Protocol 1 (Tabs. 2,3), our approach surpasses others across
all datasets, which includes comparisons with related methods in open-vocabulary setting (OVVAD,
ActionCLIP, ViFi-CLIP), cross-domain setting (MultiDomain), or scene-dependent setting (CMRL).
Notably, on XD-Violence, it achieves improvements of 20% and 32% in detection and classification,
respectively. Under the concept drift evaluation of Protocol 2 (Tab. 4), LaGoVAD achieves better
performance than multi-modal methods and LLM-based methods, while avoiding the significant
computational overhead from huge parameters.

6.3 ABLATION STUDIES Table 5: Ablation on each component. Lang-
guided: language guiding. Det. Avg.: aver-
age zero-shot temporal detection performance on
seven datasets. Cls. Avg.: average zero-shot
multi-classification performance on UCF and XD.

Lang-guided Ldvs Lneg PreVAD Det. Avg. Cls. Avg.

✓ ✓ ✓ 69.98 76.42 52.57
✓ ✓ 65.73 73.51 51.73
✓ ✓ 68.92 73.96 51.85
✓ 67.35 71.31 48.81

✓ ✓ 69.87 73.84 46.23

Module Effectiveness We report ablation
studies in Tab. 5. Removing either Ldvs or Lneg
led to a noticeable degradation in detection and
classification performance. When both are re-
moved, the model exhibits a significant decline
in zero-shot performance. When disabling the
language guidance, we followed approaches in
(Wu et al., 2024c;b) to place the fusion module
after the detection stage, which does not con-
dition detection results on the given text. Ex-
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periment shows that without language guidance, cross-domain performance decreased significantly,
which indicates that the conventional paradigm lack the capacity to incorporate user-defined guid-
ance for detection, thereby limiting their adaptability to open-world scenarios. More ablations of
modules and data are in the supp Sec. G.

Dataset & Architecture Effectiveness To quantify dataset and architecture impacts, we compare
VadCLIP trained on PreVAD. The results reveal that the model trained on PreVAD outperforms the
one trained on UCF-Crime by 14% in detection (average metric on six other datasets) and 88%
in classification (average metric on XD-Violence) while also surpassing the one trained on XD-
Violence by 7.6% in detection and 44% in classification, respectively. This substantial margin vali-
dates that a larger and more diverse dataset can significantly improve zero-shot performance. When
trained on PreVAD, our LaGoVAD achieves consistent improvements over VadCLIP, with gains of
7.2% in average detection performance across seven datasets and 2.8% in classification across on
two datasets. This confirms the superiority of our approach in open-world scenarios.

6.4 QUALITATIVE RESULTS

Fig. 4 visualizes the performance under concept drift. The conventional method (VadCLIP) fails to
handle dynamic definitions, producing same scores under the training definition. Although LLM
based methods (LAVAD, Qwen2.5-VL) can take definition prompts, LAVAD fails to recognize the
anomaly due to its limited understanding of dynamic events. Qwen2.5-VL recognizes it but cannot
localize it precisely. Our method, in contrast, adapts to the dynamic definition and achieves precise
anomaly localization.

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

(a) Definition: Knocking over a trashcan is normal (b) Definition: Knocking over a trashcan is abnormal

AbnormalAbnormal

LaGoVADLaGoVAD

LAVADLAVAD

Qwen2.5-VLQwen2.5-VL

VadCLIPVadCLIP

Abnormal

LaGoVAD

LAVAD

Qwen2.5-VL

VadCLIP

Figure 4: Visualization of different methods under concept drift. Knocking over a trashcan is consid-
ered normal in (a) but abnormal in (b). All models are prompted with the corresponding definition.

7 CONCLUSION

In this work, we propose a novel paradigm, language-guided open-world video anomaly detection,
to deal with concept drift in the open-world scenario. It assumes that the definition of anomaly
is dynamic and models it as a stochastic variable input to the network. To support training this
model, we build a large-scale video anomaly dataset that is annotated by multi-level taxonomy and
anomaly descriptions. We empirically verify the effectiveness of the proposed framework through
state-of-the-art zero-shot performance and sufficient ablations on seven datasets.
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A DECLARATION OF LLM USAGE

LLM is only used for writing, editing, and formatting, which does not impact the core methodology,
scientific rigorousness, or originality of this research.

B LIMITATION AND FUTURE WORK

While our work introduces a novel paradigm for addressing concept drift in open-world video
anomaly detection, we acknowledge that limitation exists. The current architecture instantiates the
paradigm through a simplified design, leaving room for architectural refinements to better capture
temporal dependencies and multimodal interactions. For future work, researchers may establish
comprehensive benchmarks beyond the current evaluation to systematically evaluate prompt com-
pliance and open-world capability. Moreover, through our proposed pipeline, a larger dataset could
be collected to further boost the performance.

C DETAILS OF LAGOVAD

C.1 ARCHITECTURE

Dynamic Video Synthesis In practical scenarios, abnormal events typically occupy a small pro-
portion of the total video duration. However, since people often edit videos to highlight events of
interest before uploading them to the Internet, web-sourced videos generally exhibit high anomaly
ratios. For instance, the test sets of MSAD, PreVAD, and LAD contain 42%, 39%, and 38% of
videos, respectively, where abnormal events occupy over 70% of the total duration. This data char-
acteristic leads to the loss of normal contextual information, consequently hindering the model’s
ability to learn normal-anomaly boundaries. Our proposed dynamic video synthesis addresses this
issue by concatenating semantically similar video segments to reconstruct normal contextual infor-
mation, with the detailed workflow described as follows.

Abnormal

0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

retrieve videos with the same "river" semantic

Figure A: An example of a synthesized video with our proposed dynamic video synthesis.

Dynamic video synthesis comprises a synthesis module and its corresponding pseudo-label loss.
Algorithm 1 illustrates the workflow of our synthesis module. The process begins by randomly
selecting either a normal or abnormal video as the anchor ṽ (determining whether the synthesis target
is normal or abnormal). Subsequently, it randomly determines the number of synthetic segments m
and their insertion positions j. The remaining positions are then populated by randomly selecting
videos from the N nearest neighbors in the normal video set. For nearest neighbor computation, we
employ CLIP-ViT-B/16 features extracted from the central frame of each video, using cosine
similarity as the distance metric. Unlike the 10-crop approach that pre-generates the augmented
data, our method dynamically synthesizes samples during training. To accelerate training efficiency,
we pre-compute the N nearest neighbors for each sample in advance.

Since the positions of abnormal segments are known during synthesis, we sequentially construct
pseudo-labels yp ∈ RL, where L denotes the total length of the synthesized video features. For
synthesized normal videos, all elements in yp are set to 0. For synthesized abnormal videos, yp
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Algorithm 1 Dynamic Video Synthesis Module

Input: Normal video set N , Abnormal video set A, Synthesis probability θ ∈ [0, 1], Normal video
probability α ∈ [0, 1], Maximum number of segments δm ∈ N+, Number of nearest neighbors
n ∈ N+

Output: Synthesized video segment sequence v
1: Initialize: video sequence v
2: Sample p1, p2 ∼ U(0, 1)
3: if p1 > θ then
4: m← 1
5: else
6: m← Randint(1, δm)
7: end if
8: if p2 > α then
9: Sample ṽ from A

10: else
11: Sample ṽ from N
12: end if
13: j ← Randint(1,m)
14: for i = 1 to m do
15: if i = j then
16: Append ṽ to v
17: else
18: Sample vn from NearestNeighbor(N, ṽ, n)
19: Append vn to v
20: end if
21: end for
22: return v

takes the value 1 in abnormal intervals and 0 elsewhere. Fig. A shows an example. Using these
pseudo-labels, we compute the following loss function:

Ldvs =− ŷ log
∑

i∈Ωa
k
σ(ybin

i )/k (12)

− (1− ŷ) log(1−
∑

i∈Ωn
k
σ(ybin

i )/k) (13)

−
∑L

i yp
i log σ(y

bin
i )/L, (14)

where σ denotes the Sigmoid function, ŷ denotes the video-level ground truth, L denotes the fea-
ture length, Ωa

k and Ωn
k are indices of Top-K scores of synthetic abnormal and normal videos, re-

spectively. The first two terms can be viewed as variants of MIL loss that constrain the selection
of abnormal instances to regions with pseudo-label value 1, while the last term directly leverages
pseudo-labels for supervised learning.

Temporal Encoder We employ a vanilla Transformer with rotary positional encoding (Su et al.,
2024) as our temporal encoder.

Fusion As illustrated in Fig. B, our vision-text modality fusion adopts a simple co-attention Trans-
former architecture. Each modality branch contains a cross-attention layer (CA) followed by a feed-
forward network (FFN), where the current modality serves as the query in the cross-attention while
the other modality provides keys and values.

Heads As illustrated in Fig. B, the temporal temporal detection head utilizes a 1D convolutional
network with replicate padding, which processes both pre-fusion and post-fusion features through
separate pathways to generate language-guided and language-agnostic anomaly scores. These scores
are subsequently fused via a learnable parameter to produce final predictions. The video-level multi-
class classification head computes a similarity matrix between linearly projected representations of
both modalities.

16



Published as a conference paper at ICLR 2026

Fusion

CA

CA

FFN

FFN

Classification Head

××Linear

Detection Head

Linear

Conv-1Dvisual 
feature

text 
feature

Conv-1D
anomaly
score

classification
probability

×2

Figure B: Detail architecture of fusion module and heads.

C.2 IMPLEMENTATION

All experiments could be conducted on a single NVIDIA RTX4090 GPU. We use PyTorch and
PyTorch-Lightning as the code architecture. We set the temperature factors τ, η as 0.02 and employ
a base hidden size of 512. The temporal encoder and the fusion module both have 2 layers, and
the detection head uses a single layer with a kernel size of 9. For dynamic video synthesis, we set
θ = 0.7, α = 0.5, δm = 5, n = 200. We use AdamW as the optimizer with a batch size of 64 and
a learning rate of 0.00005. The model is trained for 40 epochs. We do not use tricks like 5-crop,
10-crop, or score smooth, etc.. We take a sample every 8 frames, except for the DoTA dataset, which
provides 10fps extracted frames.

video-text 
datasets

VLM-based 
video-text matching

MLLM-based 
video captioning

Data Source Cleansing Annotation

Text-based
video retrieval

videos with 
noisy label

videos with 
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videos with 
relevant captions

videos with
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Human 
annotation
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prompted 

abnormal video 
describing

videos with high-
quality category label
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videos with precise 
anomaly description

Irrelevant clips 
removal
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(e.g., fire)
2. obtain texts from datasets 
as keys (e.g., a car catches fire)
3. extract embeddings
4. retrieve abnormal videos

streamingstreaming

web
videos
web
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Figure C: The data curation pipeline for our dataset. It includes three phases: data source, cleansing,
and annotation.

D DETAILS OF PREVAD

D.1 DATASET STATEMENT

The dataset introduced in this paper is an original collection compiled by the authors for the purpose
of advancing research in video anomaly detection. All data in the dataset were obtained from public
sources, and there are no privacy or ethical issues involved. The dataset presented in this paper is
publicly released under the Creative Commons Attribution-NonCommercial 4.0 International (CC-
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Table A: Details about the data sources used by PreVAD.

Source Notes

video-text datasets

VIDAL-10M (Zhu et al., 2024a)
The VIDAL-10M dataset comprises 3 million pairs of video-language data crawled from
YouTube Shorts and Freesound. It includes abnormal videos of accidents and normal videos
of everyday events taken by people with their smart phones.

MSR-VTT (Xu et al., 2016)

The MSR-VTT dataset is a video captioning dataset that comprises 10K videos
with 20 captions per video. The videos are crawled from YouTube and are annotated
by crowdsourcing. It contains many domains, including human activities, tutorials, games,
etc. We mainly use them as normal data.

VATEX (Wang et al., 2019)
The VATEX dataset is also a video captioning dataset with 35K videos,
each having 10 manually labeled captions. Its videos are from the Kinetics dataset,
and thus are mostly diverse human activities. We mainly use them as normal data.

VALOR (Liu et al., 2025)

The VALOR dataset is a video captioning dataset that focuses on audio-based description.
The authors release a subset of 32K videos, each with one manually annotated caption.
The videos are from AudioSet, which covers human activities and natural scenes.
We mainly use them as normal data.

web videos
collections

There are dedicated channels on YouTube and Bilibili that compile a variety of
accident videos for the purposes of entertainment or education (e.g., FailsArmy, ASP).
We clip segments from them as abnormal data.

long videos

Some channels post hour-long videos, the content of which includes
first-person-perspective driving, first-person-perspective traveling, and factory
production records, etc. We randomly clip segments from such videos as normal data.
(e.g., Driving)

RWF-2000 (Cheng et al., 2020) The RWF-2000 dataset is a violence recognition dataset that includes violent behaviors
from a surveillance perspective, and we incorporate it into our dataset.

streaming YouTube streams
On YouTube, there are numerous 24-hour surveillance live streams aimed at promoting tourism.
We searched for such content using the keyword webcam and recorded segments
at different times as normal data from a surveillance perspective. (e.g., Manchester UK Webcams)

traffic cameras

With the development of intelligent transportation, many countries have deployed
traffic cameras on highways and made their real-time footage publicly available
on the Internet to help the public better plan their travel. We also recorded these
as normal data. (e.g.,California Department of Transportation,
Shanghai Municipal Transportation Commission)

BY-NC-4.0) license 1. Due to relevant laws, regulations, and copyright restrictions, we are unable
to distribute the original raw videos directly. Instead, for videos that are available on the Internet,
we provide public links with a download script. For videos that are no longer available, processed
versions are released in which all personally identifiable information (PII)—such as license plates
and human faces—has been removed through blurring or other anonymization techniques. The
annotators participated voluntarily and were compensated at a rate substantially above the local
legally mandated minimum wage.

D.2 PIPELINE

Fig. C illustrates the proposed data curation pipeline, leveraging publicly accessible sources for
scalability and reproducibility, integrating multimodal foundation models (LLMs, MLLMs, VLMs)
for intelligent cleaning, and employing a hybrid human-AI annotation framework to ensure quality
while reducing costs.

Source Tab. A lists the data source details for PreVAD. An important issue faced by video anomaly
detection for many years is data scarcity, and we exploit multiple data sources. To the best of our
knowledge, we are the first to enumerate and analyze the data sources in detail. We mainly collected
the data in 2024. All data sources are publicly available. Using these datasets, future works may
construct a larger scale dataset.

Cleansing During the text-based video retrieval, we employ all-MiniLM-L6-v2 and
CLIP-Large Text Encoder to extract text embeddings of a set of abnormal queries (e.g.,
a fire broke out in the building) and captions in existing video-text datasets as keys. Then, we use
FAISS (Douze et al., 2024) to retrieve abnormal captions and obtain their corresponding videos. We
preliminarily retrieved over 55K videos in this phase, among which only nearly 75% of videos
are available when downloading. During the irrelevant clips removal, we employ PySceneDe-
tect2 to split segments of the video and then automatically filter them with predefined rules of

1https://creativecommons.org/licenses/by-nc/4.0/
2github.com/Breakthrough/PySceneDetect
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duration, RGB histogram, etc.. During the MLLM-based video captioning phase, we prompt
Qwen2-VL-72B-Instruct with:

You are a helpful video describing assistant. You are good at English communica-
tion. Please describe the given video in detail. Just give the description without
any other output.

to obtain captions of existing videos for later filtering. During the VLM-based video-text matching,
we utilize InternVideo2 (Wang et al., 2024b) and VALOR (Liu et al., 2025) to calculate the
matching scores of video-text pairs to remove irrelevant pairs with a threshold. During the LLM-
based abnormality judging, we prompt Qwen/Qwen2-72B-Instruct with:

Below is the JSON format metadata of the title and content information of a video.
I need you to determine if there are any anomalies in the video. Anomalies include:
- any type of accident
- ...
Note, you need to output two lines, the first line is a brief one-sentence analysis,
and the second line is a judgment of ‘abnormal’ or ‘normal’. If you cannot provide
analysis due to ethical guidelines, please just output ‘abnormal’.

to filter videos with wrong abnormality labels. After cleansing, we could obtain videos and corre-
sponding video-level binary labels.

Annotation During the human annotation phase, we asked 7 annotators with expert knowledge
for video anomaly detection to label each abnormal video with one video-level category among
our taxonomy. They are also responsible for removing videos of low quality (e.g., anomalies
far from the real world, excessive video effects or overlays of text, excessively short videos, and
videos containing clips of multiple different scenes). For the validation set, we let two annota-
tors independently annotate the segments of the selected abnormal videos and take the average as
the final result. If the annotation difference between the two people is too large, a team leader
will recheck. During the MLLM-based prompted abnormal video describing phase, we prompt
Qwen2-VL-72B-Instruct with:

You are a helpful video describing assistant. You are good at English communica-
tion. Please describe the ‘{VIDEO LABEL}‘ event in the given video in detail in
one sentence. The description should focus on the incident. Just describe without
any other output.

to obtain precise anomaly description. With this constrained prompt, the descriptions would be more
related to the anomaly, therefore, are suitable for being anomaly definitions.

To quantify the quality of the annotations, we conduct a subjective quality assessment. We ran-
domly sampled 200 videos, and asked three annotators to rate on a 1–5 scale independently, with
the scoring criteria showning in Tab. B. On average, the descriptions generated without constrained
prompt receive a score of 3.5, while those generated with constrained prompt receive a score of 4.3,
demonstrating the effectiveness of the constrained prompt. We also assess the description annota-
tions of HIVAU-70K dataset (Zhang et al., 2025) with the same criteria, which receive a score of
4.4, indicating the annotation noise is consistent with that of other works. We also calculate the in-
traclass correlation coefficient (ICC) (Shrout & Fleiss, 1979) to quantify inter-annotator agreement.
The ICC(2,k) value was 0.799, indicating a high level of consistency across annotators.

D.3 MORE STATISTICS

Fig. Da provides the taxonomy of PreVAD, with Fig. Db and Fig. Dc show the distribution of cate-
gories. Fig. Dd provides a detailed source distribution visualization. Fig. De shows the proportion
of anomaly in annotated abnormal videos and Fig. Df presents the distribution of video duration in
seconds.
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Table B: Scoring criteria for evaluating the consistency between description and video.

Score Criteria
5 The text fully matches the video content, providing an accurate, complete, and natural description

of the abnormal event.
4 The text is generally consistent with the video, with only minor deviations that do not affect overall

understanding.
3 The text captures the main content but contains notable omissions or partial inaccuracies.
2 The text largely fails to match the video, capturing only limited relevant information or showing

clear misinterpretations.
1 The text does not match the video content at all and fails to reflect the actual video.

Table C: Overview of test datasets. Abnormal categories not included in PreVAD are underlined:
some are unseen categories (e.g., Arrest), while others appear in PreVAD’s normal videos (e.g.,
Pedestrian on Road).

Datasets # testing videos Categories Notes

UCF-Crime 290
Abuse, Arrest, Arson, Assault, Accident, Burglary,
Explosion, Fighting, Robbery, Shooting, Stealing, Shoplifting, Vandalism crime scene from surveillance camera

XD-Violence 800 Abuse, Car accident, Explosion, Fighting, Riot, Shooting videos contain shot cut, and part of
the data comes from movies

MSAD 240 Assault, Fighting, People Falling, Robbery, Shooting, Traffic Accident,
Vandalism, Explosion, Fire, Object Falling, Water Incident the accident in the perspective

UBNormal 211
running, having a seizure, laying down, shuffling, walking drunk,
people and car accident, car crash, jumping, fire, smoke,
jaywalking, driving outside lane

videos of 3D animation

DoTA 1402 (9 kinds of fine-grained traffic anomalies) only contains abnormal videos in
both first-person and third-person view

TAD 100
Accidents, Illegal Turns, Illegal Occupations,
Retrograde Motion, Pedestrian on Road, Road Spills, Else

abnormal videos of traffic in both
first-person and third-person view

LAD 560
Crash, Crowd, Destroy, Drop, Falling, Fighting, Fire,
Fall Into Water, Hurt, Loitering, Panic, Thiefing, Trampled, Violence

accidents from surveillance and
first-person perspectives

D.4 EXAMPLES

We show examples of videos for each category and annotated examples in Figs. G,H. Our data
contains a variety of high-quality anomaly videos, and the human-AI annotation pipeline can obtain
accurate anomaly descriptions at a low cost.

E DETAILS OF EVALUATION

E.1 TEST SETS

Tab. C summarizes the number of test videos, anomaly categories, and other relevant details for
the seven datasets used as test sets. These datasets cover a diverse range of anomalies across do-
mains such as crime (UCF-Crime, XD-Violence, LAD, MSAD), pedestrian (UBNormal), and traffic
(DoTA, LAD), where each test set represents a distinct scenario with its own anomaly definition.
There exists many categories that are not included in PreVAD, where some are unseen categories
(e.g., Arrest), while others appear in PreVAD’s normal videos (e.g., Pedestrian on Road). This poses
a challenge to the open-world generalization ability of the model. Notably, the DoTA dataset only
contains abnormal videos, therefore, the predictions on this dataset are normalized for evaluation.

E.2 PROTOCOLS

We set up two protocols to evaluate the model, where Protocol 1 comprehensively evaluates the
open-world generalization capability of models, and Protocol 2 specifically evaluates robustness to
concept drift.
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Figure D: More statistics of PreVAD.

Protocol 1 Models are trained on pretraining datasets (e.g., PreVAD) and evaluated in a zero-
shot manner across multiple test sets, each representing a distinct scenario with unique definitions
of anomalies, video distributions, and anomaly categories. For instance, UCF-Crime focuses on
crime-related scenarios and contains normal videos showing pedestrians crossing roads—a behavior
considered abnormal in TAD, which focuses on traffic scenarios. Additionally, while UCF-Crime
and MSAD primarily consist of surveillance footage, XD-Violence and DoTA include movie clips
and dashcam videos, respectively. According to Tab. C, this protocol simulates the actual open-
world situation, i.e., training on limited data and testing in different scenarios.

Protocol 2 Models are trained on pretraining datasets (e.g., PreVAD) and tested in a zero-shot set-
ting under varying anomaly definitions. Each definition corresponds to a randomly selected subset of
anomaly categories from the test set. Videos belonging to the chosen subset are treated as abnormal,
while those outside the subset are considered normal. To ensure reliability, we randomly sample five
subsets per test set and report the average performance (denoted as drift@5). The selected subsets
are detailed in Tab. D. For example, when subset #1 is chosen, videos labeled as fighting, shooting,
and riot are regarded as abnormal, whereas videos labeled as normal, abuse, car accident, and ex-
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Figure E: Ablations of data usage during training.

plosion are considered normal. This protocol is specifically designed to assess the ability to handle
concept drift issue, which is the main focus of this paper.

Table D: Drift@5 settings for evaluation protocol 2.

Subset XD-Violence MSAD

1 Fighting, Shooting, Riot Assault, Fighting, Robbery, Shooting, Vandalism, Explosion
2 Abuse, Car accident, Explosion People falling, Traffic accident, Fire, Object falling, Water incident, Explosion
3 Fighting, Abuse, Explosion Assault, People falling, Traffic accident, Vandalism, Fire, Object falling
4 Shooting, Car accident, Riot Fighting, Robbery, Shooting, Traffic accident, Water incident, Fire
5 Riot, Abuse, Car accident People falling, Robbery, Object falling, Water incident, Explosion, Assault

F DETAILS OF REPRODUCED METHODS

Since this is a pioneering project, most of our comparisons are based on the results we reproduced
with open-source codes and weights. The compared methods can be divided into two groups: non-
LLM-based and LLM-based approaches.

Non-LLM-based methods We compare PEL (Pu et al., 2024) and VadCLIP (Wu et al., 2024c),
which achieve state-of-the-art performance in video anomaly detection, along with ActionCLIP
(Wang et al., 2021) and ViFi-CLIP (Rasheed et al., 2023), SOTA methods in open-vocabulary ac-
tion recognition. Additionally, a simple CLIP baseline is also included. All methods utilize the
same ViT-B/16 features, except for PEL, which uses I3D features. For VadCLIP, we employ its
A-branch and apply the same post-processing method as ours to obtain classification results. For
the CLIP baseline, we uniformly sampled 8 frames from normal videos and 8 frames from abnor-
mal segments of abnormal videos. Similarity are computed between the visual features and textual
prompts constructed from category names. The probabilities from the 8 frames are averaged to pro-
duce the final prediction. ActionCLIP and ViFi-CLIP are handled similarly to the CLIP baseline,
except that they directly process 8-frame video clips and output final results. Although this compari-
son setup inherently favors these models (as they do not require temporal localization), experimental
results demonstrate that our method still achieves superior performance.

LLM-based methods We compare general-purpose grounding-capable models including Qwen2-
VL (Wang et al., 2024a) and Qwen2.5-VL (Bai et al., 2025), the fine-tuned MLLM-based video
anomaly detection method HolmesVAU (Zhang et al., 2025), and the multi-VLM ensemble method
LAVAD (Zanella et al., 2024). These methods are capable of processing textual prompts, which
we use to inject anomaly definition information. Since Qwen2-VL and Qwen2.5-VL cannot out-
put frame-level scores and only predict boundaries, we set the anomaly score of each frame to 0
when no segment is predicted and to 1 for frames within predicted boundaries. HolmesVAU could
not be included in the zero-shot comparison on XD-Violence since its training set contains videos
from XD-Violence. Although a direct comparison of computational efficiency is challenging due to
differences in hardware and implementation optimizations, our proposed method are significantly
faster (minutes vs. hours during evaluation).
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Table E: Ablations of hyperparameters in dynamic video synthesis. Following symbols in Algorithm
1, δm denotes the max number of segments, θ denotes the synthesis probability, and KNN refers to
retrieval of K nearest neighbors.

δm θ KNN PreVAD UCF-Crime XD-Violence

5 0.7 ✓ 69.98 81.12 74.25
1 - ✓ 65.73 79.18 71.41
3 0.7 ✓ 68.24 80.34 67.96
7 0.7 ✓ 66.99 80.60 78.09
9 0.7 ✓ 67.13 79.28 72.90
5 0.7 67.85 79.98 68.95
5 1 ✓ 67.86 78.81 71.63
5 0.3 ✓ 66.53 80.50 68.74

Table F: Ablation on prompting method during inference.

Prompt method UCF-Crime AUC

class name 80.44
manual prompt (default) 81.12
video-specific description 83.03

G MORE EXPERIMENTAL RESULTS

G.1 ABLATIONS

In Tab. F, we experiment with different prompting methods: 1) class name uses only category la-
bels as anomaly definitions (e.g., explosion, fighting), 2) manual prompt employs human-designed
description of the category (e.g., Explosion, often resulting in fire, smoke, and scattered debris),
which serves as our default approach, and 3) video-specific description utilizes the description of
specific abnormal events as definitions (e.g., two people catch fire in the explosion near the garage).
Experimental results demonstrated that better prompts could enhance performance. Although video-
specific descriptions are unavailable in standard test datasets, it reveals our method’s potential for
practical applications like locating relevant surveillance clips when specific event details are known.

We provide the complete version of Tab. 5 in Tab. G, which contains more metrics of ablations.
We also report hyperparameter search results of dynamic video synthesis in Tab. E. And Tab. E
illustrates the importance of large-scale datasets.

G.2 QUALITATIVE RESULTS

As in Fig. I, we present more zero-shot comparisons on different datasets. The compared three
methods all performed visual-language alignment. VadCLIP and LaGoVAD, which utilize pre-
aligned feature extractors, demonstrate a significant advantage in cross-dataset testing, further prov-
ing the importance of semantic alignment for generalization. Additionally, our proposed LaGoVAD
achieves predictions with fewer false alarms, thanks to the contrastive learning with in-sample neg-
ative mining we conducted. Finally, LaGoVAD was also able to make accurate predictions for the
novel Arrest category.

Fig. J shows a prediction example of LaGoVAD on the XD-Violence dataset. The primary anomaly
in this video is a riot scene, accompanied by secondary anomalies including fighting, explosion,
and shooting. We visualize the outputs from both the detection head and the classification head.
Our model achieves accurate detection in normal intervals (a-c) as well as in riot scenarios (b).
Furthermore, the model effectively captures mixed fighting (e) and shooting events (f-g) through
its classification head, demonstrating a sensitive response to co-occurring anomalies. Notably, even
for transient explosion events (d) with extremely short durations, our model could produce sharp
response spikes.

We provide some failure cases of the proposed method in Fig. F. When the definition is internally
contradictory, LaGoVAD produces unstable and unreliable scores because it has no mechanism
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Table G: Ablation on each component (full version). guided refers to guiding the detection with
language. Det. Avg. refers to the average zero-shot detection performance on seven datasets. Cls.
Avg. refers to the average zero-shot classification performance on UCF-Crime and XD-Violence.

Ldvs Lneg guided PreVAD average metrics Detection Classification
Det. Avg. Cls. Avg. UCF XD MSAD UBN DoTA TAD LAD UCF ACC UCF F1 XD ACC XD F1

✓ ✓ ✓ 69.98 76.42 52.57 81.12 74.25 90.41 58.07 62.60 89.56 78.91 51.72 16.64 78.13 63.80
✓ ✓ 65.73 73.51 51.73 79.18 70.24 84.14 55.79 60.02 85.95 79.23 44.83 16.25 79.00 66.82

✓ ✓ 68.92 73.96 51.85 77.66 70.66 90.02 57.56 59.88 83.26 78.65 48.97 17.76 75.88 64.78
✓ 67.35 71.31 48.81 77.77 62.49 89.50 55.80 57.50 80.92 75.19 43.82 17.60 73.75 60.06

✓ ✓ 69.87 73.84 46.23 76.64 71.39 88.60 56.88 61.40 83.96 78.02 46.21 13.28 66.87 58.54
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Figure F: Visualization of failure cases under contradictory and ambiguous definitions. The good
definition is consistent with the prompt shown in Figure 4(b), i.e., Knocking over a trashcan is
abnormal.

of handling contradiction (e.g., request clarification from the user). As for ambiguous definition,
LaGoVAD shows a certain level of robustness, which we attribute to the semantic understanding
capability of the CLIP text encoder.

H DISCUSSION OF THE ASSUMPTION

This section discusses some special cases in Assumption 1.

One scenario arises when additional hidden factors influence abnormality beyond the explicit def-
inition. For example, consider an access-control rule where entering a corridor is abnormal only
during examination periods. If the examination schedule is not part of the definition, it would af-
fects whether a behavior is abnormal. However, such factors can be incorporated into an augmented
anomaly definition Z, and the assumption remains valid once the definition is expanded to include
these external conditions.

Another scenario occurs when the anomaly definition is entirely dependent on the video. However,
many anomaly definitions in practice are not inferable from the visual evidence alone. For instance,
if it is impossible to determine from the scene whether smoking is permitted, the abnormality of
smoking depends on an external policy rather than the video itself. Similarly, carrying a backpack
may be abnormal only in restricted zones, but if the boundary of the restricted zone is not visually
indicated, the definition cannot be recovered from the video. These cases further demonstrate the
validity of our assumption.

I PROOF OF PROPOSITIONS

Proof of Proposition 1. Under Assumption 1, there exists a deterministic function F such that
whenever (V = v, Z = z, Y = y) occurs with positive probability, there exists y = F(v, z).
We now compute the conditional distribution Pd(Y = y | V = v, Z = z) under any domain d. By
the definition of conditional probability,

Pd(Y = y | V = v, Z = z) =
Pd(V = v, Z = z, Y = y)

Pd(V = v, Z = z)
. (15)
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Because of Assumption 1, for any fixed (v, z), there is exactly one value y∗ = F(v, z) such that

Pd(V = v, Z = z, Y = y∗) = Pd(V = v, Z = z), (16)

and for all y ̸= y∗,
Pd(V = v, Z = z, Y = y) = 0. (17)

Substituting these two cases into the conditional probability formula:

Pd(Y = y | V = v, Z = z) =

{
1, y = F(v, z),

0, y ̸= F(v, z).
(18)

This distribution depends only on the deterministic mapping y = F(v, z) and does not depend on
the choice of domain d. Therefore, for any two domains d1 and d2,

Pd1
(Y | V, Z) = Pd2

(Y | V, Z). (19)

Proof of Proposition 2. By the law of total probability, for any domain d, video v and label y, we
have

Pd(Y = y | V = v) =
∑
z

Pd(Y = y | Z = z, V = v)Pd(Z = z | V = v). (20)

Under Assumption 1, the label Y is deterministically given by F(V, Z). Hence, for all y ̸= F(v, z),
we have Pd(V = v, Z = z, Y = y) = 0, which implies

Pd(Y = y | V = v) =
∑

z:F(v,z)=y

Pd(Z = z | V = v). (21)

Now assume that there exists at least one pairs of v⋆, y⋆ such that∑
z:F(v⋆,z)=y⋆

Pd1
(Z = z | V = v⋆) ̸=

∑
z:F(v⋆,z)=y⋆

Pd2
(Z = z | V = v⋆), (22)

applying this identity to Eq. 21 yields∑
z:F(v⋆,z)=y⋆

Pd1
(Z = z | V = v⋆) ̸=

∑
z:F(v⋆,z)=y⋆

Pd2
(Z = z | V = v⋆). (23)

Therefore,
Pd1(Y |V ) ̸= Pd2(Y |V ). (24)
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Air Accident Animal Attack Animal Animal Attack Human
Animal-related Violence

(Others) Assault Car Accident

Carjacking Collapse Crowd Violence
Daily Accident

(Others) Drop Something Explosion

Fall from Height Fall into Water Fall to the Ground Fire Fume Mechanical Accident

Mugging Object Impact Predation
Production Accident

(Others) Range Shooting Riot

Robbery
(Others) Shooting Accident Sport Fail Store Robbery Stunt Fail Train Accident

Vandalism
Vehicle Accident

(Others)
Violence
(Others) War

Figure G: Examples of each abnormal category in PreVAD.
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Description: A man is riding a horse in a field, and the horse 

suddenly rears up and kicks the man off its back, causing the 

man to fall to the ground.

level-1: Animal-related Violence

level-2: Animal Attack Human

Id: R3w1wNNrBYw.mp4

Description: A person in a white shirt is standing on a 

stage, then they fall down and are helped up by others.

level-1: Daily Accident

level-2: Fall to the Ground

Id: Jqbmw7NQ3Ns.mp4

Description: A surveillance camera captures a robbery in 

progress at a convenience store, where a man in a hoodie and 

mask is seen attempting to steal items from the shelves and the 

cash register.

level-1: Robbery

level-2: Store Robbery

Id: 6LMXs4FyVH8_25_56.mp4

Description: A black car crashes into a white car on the road, 

causing the white car to flip over and crash into a truck.

level-1: Vehicle Accident

level-2: Car Accident

Id: fnCWVcMj13M.mp4

Description:  A large red crane is lifting a large metal 

object, but it suddenly tips over and falls into the water.

level-1: Production Accident

level-2: Mechanical Accident

Id: 3mY9sAp0LQk.mp4

Description: A group of children are seen running into a room 

and pushing a chair out of the way, then they start fighting over 

a pair of shoes.

level-1: Violence

level-2: Crowd Violence

Id: 0TFi8D8IBg4.mp4

Figure H: Examples of annotations in PreVAD.

XD-Violence
Bullet.in.the.Head.1990__#00-17-20_00-18-55_label_B1-0-0

Fighting

LaGoVAD
VadCLIP
PEL

LaGoVAD
VadCLIP
PEL

(a)

LAD
v_Fire_a_s008_c001

Fire

LaGoVAD
VadCLIP
PEL

LaGoVAD
VadCLIP
PEL

(b)

XD-Violence
About.Time.2013__#00-30-50_00-32-31_label_A

LaGoVAD
VadCLIP
PEL

LaGoVAD
VadCLIP
PEL

(c)

UCF-Crime
Arrest001

Arrest

LaGoVAD
VadCLIP
PEL

LaGoVAD
VadCLIP
PEL

(d)

Figure I: Qualitative comparisons with other models. The two models used for comparison are
trained on the UCF dataset (a)(b)(c) or the XD-Violence dataset (d). All the results are zero-shot
results.
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(a) (b) (c) (d)

(e) (f) (g)

XD-Violence

Bullet.in.the.Head.1990__#00-41-30_00-44-16_label_B4-G-0

Figure J: Visualization of results of the detection head and the classification head of the proposed
LaGoVAD. The top-left plot illustrates the detection head output, while the remaining plots corre-
spond to the classification head outputs, activated via the Sigmoid function. Frames (a)-(g) denote
key frames. LaGoVAD is able to detect fine-grained anomalies in a video that contains multiple
different anomalies.
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