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ABSTRACT

Detecting auditory attention from brain signals has been a significant challenge
in neuroscience and brain-computer interface research. While progress has been
made in EEG-based auditory attention detection, existing methods often struggle
with limited data and short decision windows, particularly in complex auditory
environments. In this paper, we propose DBGMS (Dual-Branch Generative Ad-
versarial Network with Multi-Task Self-Supervised Enhancement), a novel frame-
work for robust auditory attention decoding from electroencephalogram (EEG)
signals. There are three key innovations in our approach: (1) A dual-branch ar-
chitecture is developed that combines temporal attention and frequency residual
learning, enabling more comprehensive feature extraction to be achieved from
EEG signals; (2) Branch-specific generative adversarial networks (GANs) are
designed to generate high-quality augmented samples in both temporal and fre-
quency domains, effectively addressing the data scarcity issue in auditory attention
decoding; (3) Attention mechanisms and graph convolution operations are incor-
porated in both temporal and frequency domains. (4) A multi-task self-supervised
learning strategy is introduced, incorporating several complementary tasks such
as temporal order prediction, frequency band reconstruction, and time-frequency
consistency. This approach leverages unlabeled data to enhance the model’s abil-
ity to capture subtle attention-related features from multiple perspectives, thereby
improving generalization across subjects and listening conditions. In contrast to
state-of-the-art methods, DBGMS presents significant improvements in detection
accuracy and robustness, particularly for short decision windows. Our framework
is evaluated on two public EEG datasets, including KUL and DTU, demonstrating
its effectiveness across various experimental settings.

1 INTRODUCTION

Decoding auditory attention from electroencephalogram (EEG) signals presents significant chal-
lenges in neuroscience and brain-computer interface researchBassett & Sporns (2017); Britton et al.
(2016). While existing methods often struggle with limited data and short decision windows, partic-
ularly in complex auditory environmentsCherry (1953); Choi et al. (2013). The inherent variability
of EEG signals, stemming from inter-subject differences, intra-subject variations, and environmental
factors, further complicates this taskLuck (2014); Blankertz et al. (2016); O’Sullivan et al. (2015c).

Recent advancements in deep learning and signal processing have driven substantial improvements
in auditory attention decoding. Convolutional Neural Networks (CNNs) and Recurrent Neural Net-
works (RNNs) have demonstrated remarkable success, significantly outperforming traditional linear
methodsDeckers et al. (2021); Ciccarelli et al. (2019); O’Sullivan et al. (2015b). Concurrently, ad-
vanced signal processing techniques such as Independent Component Analysis (ICA) and Common
Spatial Patterns (CSP) have enhanced EEG signal quality and feature extractionDas et al. (2016a);
Wong et al. (2018b). Despite these advancements, the transition from controlled laboratory set-
tings to real-world applications reveals persistent challenges. Significant declines in decoding accu-
racy are observed when moving from controlled to naturalistic listening conditionsO’Sullivan et al.
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(2017a); Fuglsang et al. (2017a). To address these issues, various methodological approaches have
been explored, including adaptive filtering techniques, transfer learning methods, and robust fea-
ture extraction algorithmsO’Sullivan et al. (2017b); Fuglsang et al. (2017b). These techniques aim
to mitigate the effects of inter-subject and intra-subject variability, enhancing model generalization
across different subjects and recording sessions.

The challenge is further compounded by the scarcity of labeled EEG data for auditory attention tasks,
which limits the diversity and representativeness of training datasetsDas et al. (2016b); Wong et al.
(2018a). This limitation not only constrains the development of robust and generalizable models
but also raises questions about how effectively these models can capture the true diversity of EEG
patterns across a broader population. Moreover, practical applications demand real-time processing
capabilities, which often leads to reduced accuracy when decision windows are shortenedAlickovic
et al. (2019a); Miran et al. (2018).

To address these challenges, innovative approaches have begun to be explored. Generative Ad-
versarial Networks (GANs) have shown potential for EEG data augmentation, effectively replicat-
ing various sources of EEG variabilityHartmann et al. (2018); Li et al. (2021); Abdelfattah et al.
(2021). Self-supervised learning techniques have demonstrated promise in capturing the complex,
non-stationary nature of EEG data across different subjects and recording sessionsBanville et al.
(2019); Kostas et al. (2021). These approaches enable the extraction of robust features that are in-
variant to many sources of EEG variability, leveraging unlabeled data to improve downstream task
performance.

The integration of both temporal and spectral information in EEG signals has been recognized as cru-
cial for comprehensive auditory attention decodingDing & Simon (2012); Alickovic et al. (2019b);
O’Sullivan et al. (2015a). Time-frequency analysis techniques have been employed to capture the
dynamic nature of auditory attention, achieving robust performance across various experimental
conditions. Additionally, graph-based approaches for EEG signal processing have shown superior
performance compared to traditional architectures, leveraging the inherent spatial relationships be-
tween EEG electrodesWang et al. (2014); Zhong et al. (2020).

Despite these advancements, a unified framework that effectively combines these various techniques
to address the specific challenges of auditory attention decoding has yet to be developed. Such
a framework would need to address the data scarcity issue, account for inter-subject variability,
maintain high accuracy with short decision windows, and effectively integrate both temporal and
spectral information from EEG signals.

In this paper, DBGMS (Dual-Branch Generative Adversarial Network with Multi-Task Self-
Supervised Enhancement) is proposed as a novel framework designed to address these challenges in
robust auditory attention decoding from electroencephalogram (EEG) signals. This approach builds
upon recent advances in deep learning and signal processing, adapting these advances to the specific
requirements of auditory attention decoding.

The main contributions of our work are as follows:

• A dual-branch architecture is developed that combines temporal attention and frequency
residual learning, enabling more comprehensive feature extraction from EEG signals. This
approach allows for the capture of both temporal dynamics and spectral characteristics
crucial for auditory attention decoding.

• Branch-specific generative adversarial networks (GANs) are designed to generate high-
quality augmented samples in both temporal and frequency domains. This novel data
augmentation strategy addresses both the data scarcity issue and the inherent variability
of EEG signals in auditory attention decoding. By generating diverse synthetic samples,
these GANs enhance the model’s ability to handle varied EEG patterns, thereby improving
robustness and generalization across different subjects and recording conditions.

• Attention mechanisms and graph convolution operations are incorporated in both temporal
and frequency domains, enhancing the model’s ability to capture relevant spatial-temporal
patterns in EEG signals.

• A multi-task self-supervised learning strategy is introduced, incorporating several comple-
mentary tasks such as temporal order prediction, frequency band reconstruction, and time-
frequency consistency. This approach leverages unlabeled data to enhance the model’s
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ability to capture subtle attention-related features from multiple perspectives, thereby im-
proving generalization across subjects and listening conditions.

2 PROPOSED METHOD

The proposed Dual-Branch Generative Adversarial Network with Multi-Task Self-Supervised En-
hancement (DBGMS) is designed to address the challenges in robust auditory attention decoding.
This section presents a detailed description of the DBGMS architecture, which comprises several in-
terconnected components working in harmony to achieve superior performance. The overall frame-
work is illustrated in Figure 1 (left), with detailed structures of key components shown in Figure 1
(right) and Figure 2.
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Figure 1: The overall architecture of DBGMS (left) and the detailed structure of the Dual-Domain
Feature Extractor and Multi-Task Self-Supervised Learner (right).
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Figure 2: Detailed structures of the Frequency generator and Temporal generator (left) and the
Unified Discriminator (right).

2.1 DUAL-BRANCH GENERATIVE ADVERSARIAL NETWORKS

To effectively capture both temporal and spectral characteristics of EEG signals, the DBGMS ar-
chitecture employs a dual-branch structure. Both branches utilize graph representations of the EEG
signals to preserve spatial relationships, followed by generative adversarial networks for data aug-
mentation and feature enhancement.

2.1.1 EEG GRAPH CONSTRUCTION

Given an input EEG signal X ∈ RC×T , where C represents the number of channels and T the
number of time points, each channel is considered as a node within a graph representation. The
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EEG input is thus transformed into a graph G = (V,E), where V represents the set of nodes,
|V | = C, and (Vi, Vj) ∈ E denotes the set of edges connecting these nodes. An adjacency matrix
A ∈ RC×C is employed to describe the intrinsic relationships between the EEG channels (nodes).
The elements of this matrix are predetermined based on the spatial relationship of the EEG channels.
The entry of the adjacency matrix ai,j measures the level of connection between the channels i and j.
To preserve the temporal information and facilitate subsequent convolutional operations, the graph
representation is extended to a 3D structure G ∈ RC×C×T . This transformation can be defined as:

G = Φ(X,A) (1)

where Φ(·) denotes the EEG graph construction operation that incorporates both the original EEG
signal X and the adjacency matrix A.

2.1.2 TEMPORAL BRANCH

In the temporal branch, EEG graphs undergo a series of complex processing steps to extract and
enhance temporal domain features. This process involves multiple stages, each building upon the
previous one to create a comprehensive representation of the EEG data. Initially, the EEG graph
G ∈ RC×C×T is processed through a 3D convolutional layer for preliminary feature extraction:

F1 = σ(W1G+ b1) (2)

where F1 ∈ R32×64×64×T , and denotes the 3D convolution operation. This step serves to capture
local spatial-temporal patterns in the input data. Building upon these initial features, the data is then
processed through multiple Temporal Graph Convolutional Network (TGCN) blocks. Each block
incorporates graph convolution, with increasing feature channels and reduced temporal dimensions.
This process can be represented as:

Fi+1 = TGCNBlocki(Fi) + Fi, i = 1, 2, 3 (3)

where: F2 ∈ R64×64×64×T F3 ∈ R128×64×64×T/2 F4 ∈ R256×64×64×T/4 (output) To enhance
information flow and mitigate the vanishing gradient problem, residual connections are introduced
between TGCN blocks. These residual connections allow the network to learn residual functions
and facilitate the training of deeper architectures by providing direct pathways for gradient flow.

After the TGCN block processing, a global temporal attention mechanism is applied to capture
long-range temporal dependencies:

Freshaped = Reshape(F4), Freshaped ∈ R1,048,576×T/4 (4)

Q = WQFreshaped, K = WKFreshaped, V = WV Freshaped (5)

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V (6)

Fatt = Reshape(Attention(Q,K,V)), Fatt ∈ R256×64×64×T/4 (7)
The global temporal attention mechanism allows the model to weigh the importance of different
parts of the input sequence, enhancing its ability to capture relevant information across the temporal
dimension. To further refine the spatial-temporal features, another 3D convolutional layer is applied:

Fconv = σ(WconvFatt + bconv), Fconv ∈ R128×64×64×T/4 (8)

Finally, to restore the original temporal resolution, an upsampling operation is performed:

G̃t = Upsample(Fconv), G̃t ∈ R64×64×T (9)

where G̃t is the final output of the temporal generator.

2.1.3 FREQUENCY BRANCH

In the frequency branch, EEG data undergoes a series of complex processing steps to extract and
enhance spectral domain features. This process involves multiple stages, each building upon the
previous one to create a comprehensive representation of the EEG data in the frequency domain.
Initially, the EEG graph G ∈ R64×64×T is processed through a time-frequency transform:

Gtf = TimeFrequencyTransform(G) (10)
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where Gtf ∈ R64×64×F×T represents the time-frequency representation of the input EEG graph,
with F denoting the number of frequency bins. Following this transformation, the time-frequency
representation is processed through a 3D convolutional layer for preliminary spectral-temporal fea-
ture extraction:

F1 = σ(W1Gtf + b1) (11)
where F1 ∈ R32×64×F×T , and denotes the 3D convolution operation. Building upon these ini-
tial features, the data is then processed through multiple Frequency Graph Convolutional Network
(FGCN) blocks. Each block incorporates graph convolution in the frequency domain, with increas-
ing feature channels and reduced spatial dimensions. This process can be represented as:

Fi+1 = FGCNBlocki(Fi) + Fi, i = 1, 2, 3 (12)

where: F2 ∈ R64×64×F×T F3 ∈ R128×64×F/2×T F4 ∈ R256×64×F/4×T (output) To enhance
information flow and facilitate gradient propagation, residual connections are introduced between
FGCN blocks. These skip connections allow the network to bypass certain layers when necessary,
enabling the learning of more complex representations while maintaining the integrity of the input
information.

Fatt = FrequencyAttention(F4) (13)

where Fatt ∈ R256×64×F/4×T . To further refine the spectral-temporal features, another 3D convo-
lutional layer is applied:

Fconv = σ(WconvFatt + bconv) (14)
Finally, to restore the original data format, a frequency-time transform is applied:

G̃f = FrequencyTimeTransform(Fconv) (15)

where G̃f ∈ R64×64×T is the final output of the frequency generator.

2.2 UNIFIED DISCRIMINATOR

Both generated EEG representations G̃t and G̃f are subsequently fed into a unified discriminator
D. This discriminator is designed to distinguish between the generated EEG and real EEG data,
thereby forming a generative adversarial network (GAN) structure for both temporal and frequency
domains. The discriminator’s architecture can be described as follows: Initially, the input EEG
signal G̃ ∈ R64×64×T (representing either G̃t or G̃f ) is processed through a 3D convolutional
layer:

Fconv3d = Conv3D(G̃) (16)
where Fconv3d ∈ R32×64×T represents the output of the 3D convolution operation. Following this
initial processing, the features are further refined through a series of spectral-temporal convolutional
blocks. These blocks are designed to progressively increase the number of channels while reducing
the spatial and temporal dimensions. Importantly, a residual connection is incorporated to enhance
information flow:

Fintermediate = SpectralTemporalBlocks(Fconv3d) (17)
Fblocks = Fintermediate + Downsample(Fconv3d) (18)

where Fblocks ∈ R256×8×T/8 is the output of the final spectral-temporal block, and the Downsample
operation adjusts the dimensions of Fconv3d to match Fintermediate. This residual connection al-
lows the network to learn more complex discriminative features while maintaining a direct path for
gradient flow. To capture long-range dependencies in the data, a self-attention mechanism is then
applied:

Q = WQFblocks, K = WKFblocks, V = WV Fblocks,A = softmax
(
QKT

√
dk

)
V (19)

where A ∈ R256×8×T/8 represents the output of the self-attention layer. The final discrimination is
performed through a fully connected layer:

D(G̃) = σ(WfcFlatten(A) + bfc) (20)

where σ is the sigmoid activation function, and D(G̃) represents the probability that the input EEG
is real rather than generated.
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2.3 DUAL-DOMAIN FEATURE EXTRACTOR

Following the generation of EEG representations in both temporal (G̃t) and frequency (G̃f ) do-
mains, a dual-domain feature extractor is employed to derive a comprehensive feature set. This
extractor processes both generated signals in parallel, leveraging their complementary information
to create a rich, multi-dimensional representation of the EEG data. For the temporal processing
branch, the entire process can be expressed as:

Ft4 = TemporalAttention(MaxPool2D(ReLU(BN(Conv2D(G̃t))))) (21)

where G̃t ∈ R64×T is the temporal domain input and Ft4 ∈ R32×T/2 is the final output. This nested
formula encapsulates the sequence of 2D convolution, batch normalization, ReLU activation, max
pooling, and temporal attention operations applied to the input signal. The operations in this branch
are designed to capture spectral characteristics of the EEG signal:

Ff1 = Conv2D(G̃f ),Ff2 = ReLU(BN(Ff1)) (22)

Ff3 = MaxPool2D(Ff2),Ff4 = SpectralAttention(Ff3) (23)

where Ff4 ∈ R32×F/2. The outputs from both branches are then concatenated to form a unified
representation that captures both temporal and spectral characteristics:

Fconcat = [Ft4;Ff4] ∈ R32×(T/2+F/2) (24)

Finally, a fully connected layer is applied to obtain the final feature vector, condensing the multi-
dimensional information into a compact representation:

Foutput = FC(Fconcat) ∈ R256 (25)

This dual-domain feature extractor enables the model to leverage the complementary information
present in both the temporal and frequency domains of the generated EEG signals. By processing
these domains in parallel and then combining their outputs, the extractor creates a rich, multi-faceted
representation of the EEG data, potentially capturing subtle patterns and relationships that might be
missed by single-domain approaches.

2.4 SELF-SUPERVISED LEARNING AND CLASSIFICATION MODULE

The Self-Supervised Learning and Classification Module serves as the final component of the
DBGMS architecture, designed to further refine the extracted features while performing the primary
classification task. This module leverages the rich, multi-domain feature representation obtained
from the dual-domain feature extractor to enhance the model’s learning capabilities and classifica-
tion performance.

Upon receiving the feature vector Foutput ∈ R256 from the feature extractor, the module first pro-
cesses it through shared layers:

Hshared = ReLU(WsharedFoutput + bshared) (26)

where Hshared ∈ R512 represents the output of the shared layers. This shared representation forms
the foundation for both self-supervised learning tasks and the main classification task. The self-
supervised learning component encompasses several tasks, each designed to capture different as-
pects of the EEG data structure. These tasks include temporal order prediction, which aims to
reconstruct the correct sequence of shuffled EEG segments; frequency band reconstruction, focus-
ing on recreating specific spectral components; and time-frequency consistency, ensuring coherence
between temporal and spectral representations. The losses from these tasks are combined through a
weighted sum:

LSSL =
∑
i

wiLi (27)

where Li and wi represent the loss and weight for each self-supervised task, respectively. Con-
currently, the classification task utilizes the same shared representation. The classification branch
consists of fully connected layers with ReLU activation, followed by a final layer producing logits
for binary classification:

Hclass = WclassReLU(WinterHshared + binter) + bclass (28)
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The classification loss is computed using cross-entropy:

Lclass = −
∑
c

yc log(softmax(Hclass)c) (29)

where yc is the true label and softmax(Hclass)c is the predicted probability for class c. The total loss
for the module combines the self-supervised learning loss and the classification loss:

Ltotal = LSSL + λLclass (30)

where λ is a hyperparameter balancing the two loss components. This combined loss is then back-
propagated through the entire network, updating all parameters to optimize both the self-supervised
learning tasks and the classification performance simultaneously.

By integrating self-supervised learning with the primary classification task, this module enables the
model to leverage unlabeled data effectively, potentially improving its ability to extract meaningful
features from EEG signals. The multi-task learning approach encourages the model to learn more
robust and generalizable representations, which may enhance its performance on the main classifi-
cation task.

The final output of the module is obtained by applying the softmax function to Hclass, providing the
probability distribution over the possible classes for the input EEG signal. This output represents
the culmination of the DBGMS architecture’s processing pipeline, integrating information from both
temporal and frequency domains, enhanced through generative adversarial training, and refined via
self-supervised learning tasks.

3 EXPERIMENTS

In this section, we describe our EEG datasets and preprocessing methods used to evaluate the effec-
tiveness of DBGMS.

3.1 DATASETS

The performance of the DBGMS model is evaluated on two publicly available EEG datasets for
auditory attention detection: KUL and DTU.

The KUL dataset consists of EEG recordings from 16 normal-hearing subjects listening to Dutch
stories, with audio stimuli presented through in-ear headphones from two competing male speakers.
EEG data are recorded using a 64-channel BioSemi ActiveTwo system at a sampling rate of 8196
Hz, totaling 48 minutes per subject over 8 trials.

The DTU dataset includes EEG recordings from 18 normal-hearing subjects listening to Danish
audiobooks, featuring two competing voices (one male and one female). Recorded at 512 Hz, the
data comprise 50 minutes per subject over 60 trials.

Table 1: Summary of KUL and DTU datasets
Dataset Stimulus Subjects Duration Language Trials Channels

(Genders) (minutes) (per subject)
KUL Male 16 48 Dutch 8 64
DTU Male & Female 18 50 Danish 60 64

3.2 PREPROCESSING METHODS

To ensure data quality and consistency, we apply preprocessing steps to both datasets. For KUL,
EEG data are re-referenced to the average of mastoid electrodes, bandpass filtered (0.1 Hz to 50 Hz),
downsampled to 128 Hz, and processed using Independent Component Analysis (ICA) to remove
artifacts.

For DTU, a 50 Hz notch filter is applied for power line interference, followed by similar bandpass
filtering and downsampling to 128 Hz. Joint decorrelation removes eye-related artifacts, with data
re-referenced to the average of all channels.

7
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Both datasets undergo common preprocessing steps: segmenting continuous EEG data into epochs
of varying lengths (0.1s, 1s, 2s, and 3s), z-score normalization for consistent scaling, and transfor-
mation into graph representations to create the input format for the DBGMS model.

3.3 EXPERIMENTAL SETUP

The performance of the proposed DBGMS model is evaluated through a series of experiments using
the preprocessed KUL and DTU datasets. The experimental setup is designed to assess the model’s
effectiveness in auditory attention decoding across different time scales and to compare it with ex-
isting state-of-the-art methods. Table 2 summarizes the key aspects of the experimental setup. The

Table 2: Experimental Setup Summary
Aspect Description
Model Configuration Dual-branch architecture with temporal and frequency processing
Training Protocol Adam optimizer, Binary Cross-Entropy loss, early stopping
Evaluation Metric Classification accuracy
Decision Windows 0.1s, 1s, 2s, 3s
Cross-validation 5-fold
Hardware Intel Core i7 14700K CPU, NVIDIA 2080 GPU
Software Ubuntu 22.04.4 LTS

training protocol involves using the Adam optimizer with a learning rate of 0.001, a batch size of
64, and training for up to 100 epochs with early stopping patience of 10. The data is split into 80%
for training and 20% for testing, with 5-fold cross-validation employed to ensure robust results.

3.4 BASELINE COMPARISONS

The DBGMS model is compared with several state-of-the-art methods, including CNN Vandecap-
pelle et al. (2021), BSAnet Cai et al. (2023a), SGCN Cai et al. (2023b), SSF-CNN Cai et al. (2021),
MBSSFCC Jiang et al. (2022), DBPNet Ni et al. (2024), STAnet Su et al. (2022)and ST-GCN Cai
et al. (2024). These baselines represent a range of approaches, from traditional CNNs to more
advanced graph-based and attention mechanisms, providing a comprehensive comparison for the
proposed model.

4 RESULTS

We conduct extensive experiments to evaluate the performance of our proposed DBGMS model
against several state-of-the-art baselines. The results are presented through various visualizations
to provide a comprehensive understanding of our model’s effectiveness in auditory attention decod-
ing tasks.We conduct extensive experiments to evaluate the performance of our proposed DBGMS
model against several state-of-the-art baselines. The results are presented through various visualiza-
tions to provide a comprehensive understanding of our model’s effectiveness in auditory attention
decoding tasks. Additionally, detailed analyses of subject-wise performance, cross-dataset gener-
alization, model behavior across different decision window lengths, training convergence, and ro-
bustness under various EEG graph masking conditions are provided in the AppendixA to further
demonstrate the superiority and versatility of our approach.

4.1 OVERALL PERFORMANCE COMPARISON

Figure 3 shows the overall performance comparison between DBGMS and the baseline models
across different decision window lengths on both KUL and DTU datasets. As evident from the
figure 3 and table 3, DBGMS consistently outperforms the baseline models across all decision win-
dow lengths on both datasets. The performance gain is particularly significant for shorter decision
windows (0.1s and 1s), indicating the model’s robustness in real-time decoding scenarios.

4.2 ABLATION STUDY

To provide a more comprehensive evaluation of the effectiveness of each component in DBGMS,
we conduct additional ablation experiments. Table 4 presents the ablation study results on the KUL
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Figure 3: Overall performance comparison between DBGMS and baseline models across different
decision window lengths on KUL and DTU datasets.

Table 3: Performance comparison (accuracy % ± standard deviation) on KUL and DTU datasets
Model KUL DTU

0.1s 1s 2s 3s 0.1s 1s 2s 3s
CNN Vandecappelle et al. (2021) 72.5 ± 8.2 83.2 ± 7.9 85.0 ± 7.5 86.2 ± 7.3 54.2 ± 4.1 61.2 ± 5.8 64.6 ± 6.7 66.1 ± 7.0
BSAnet Cai et al. (2023a) - 93.2 ± 4.5 94.8 ± 3.6 95.5 ± 3.4 - 81.2 ± 7.2 84.7 ± 6.9 86.2 ± 6.7
SGCN Cai et al. (2023b) - 91.8 ± 5.3 93.2 ± 4.9 94.0 ± 4.7 - 77.2 ± 6.8 79.8 ± 7.3 81.3 ± 7.5
SSF-CNN Cai et al. (2021) 76.3 ± 8.9 84.4 ± 9.1 87.8 ± 8.3 89.1 ± 8.0 62.5 ± 3.9 69.8 ± 5.6 73.3 ± 6.7 75.0 ± 7.0
MBSSFCC Jiang et al. (2022) 79.0 ± 7.8 86.5 ± 7.6 89.5 ± 7.2 90.8 ± 7.0 66.9 ± 5.5 75.6 ± 7.0 78.7 ± 7.2 80.2 ± 7.4
DBPNet Ni et al. (2024) 87.1 ± 7.0 94.2 ± 4.6 95.5 ± 3.5 96.2 ± 2.8 75.1 ± 5.3 83.9 ± 6.4 86.5 ± 5.8 87.8 ± 5.6
STAnet Su et al. (2022) 79.9 ± 7.1 89.4 ± 5.8 91.2 ± 5.2 92.0 ± 5.0 62.7 ± 5.3 70.4 ± 6.8 72.8 ± 7.1 74.1 ± 7.3
ST-GCN Cai et al. (2024) 83.7 ± 6.9 - 92.5 ± 5.1 93.3 ± 4.9 70.1 ± 6.2 78.5 ± 7.1 81.2 ± 7.5 82.7 ± 7.7
DBGMS (Ours) 88.9 ± 7.1 95.2 ± 4.7 97.3 ± 2.7 97.9 ± 2.0 76.8 ± 5.4 85.7 ± 6.5 88.1 ± 5.9 89.4 ± 5.7

dataset with a 1-second decision window. The ablation study demonstrates the importance of each

Table 4: Ablation study on the KUL dataset (1s decision window)
Model Variant Accuracy (%) ∆ (%)
DBGMS (Full Model) 95.2 ± 4.7 -
w/o Dual-Branch Structure 92.5 ± 5.2 -2.7

- Temporal Branch Only 93.1 ± 4.9 -2.1
- Frequency Branch Only 91.8 ± 5.4 -3.4

w/o GAN-based Augmentation 94.0 ± 4.8 -1.2
- Temporal GAN Only 94.5 ± 4.6 -0.7
- Frequency GAN Only 94.3 ± 4.7 -0.9

w/o Self-Supervised Learning 93.6 ± 5.0 -1.6
- Temporal Order Prediction Only 94.2 ± 4.9 -1.0
- Frequency Band Reconstruction Only 94.0 ± 4.8 -1.2
- Time-Frequency Consistency Only 93.8 ± 5.1 -1.4

w/o Attention Mechanisms 93.2 ± 5.3 -2.0
- w/o Temporal Attention 93.9 ± 5.0 -1.3
- w/o Frequency Attention 93.5 ± 5.2 -1.7

w/o Graph Convolution 92.8 ± 5.1 -2.4
- w/o Temporal Graph Convolution 93.3 ± 4.9 -1.9
- w/o Frequency Graph Convolution 92.9 ± 5.0 -2.3

key component in the DBGMS architecture. The dual-branch structure is shown to contribute sig-
nificantly to the model’s performance, with a 2.7% drop in accuracy when removed. Both temporal
and frequency branches are important, with the frequency branch showing a slightly larger impact
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(3.4% drop) when removed individually. GAN-based data augmentation in both temporal and fre-
quency domains is found to improve the model’s performance by 1.2%. The contribution of each
domain-specific GAN is roughly equal, with a 0.7% and 0.9% drop when removing the temporal
and frequency GANs, respectively. Self-supervised learning tasks are shown to enhance the model’s
performance by 1.6%. Among the individual tasks, temporal order prediction and frequency band
reconstruction demonstrate the largest contributions (1.0% and 1.2% drops when removed), while
time-frequency consistency has a slightly smaller impact (1.4% drop). Furthermore, the attention
mechanisms in both temporal and frequency domains are found to be crucial for the model’s per-
formance, with a 2.0% drop in accuracy when removed. The frequency attention shows a larger
impact (1.7% drop) compared to the temporal attention (1.3% drop). Finally, the graph convolu-
tion operations in both temporal and frequency domains are shown to be important for the model’s
performance, with a 2.4% drop in accuracy when removed. The frequency graph convolution has a
slightly larger impact (2.3% drop) compared to the temporal graph convolution (1.9% drop).

5 DISCUSSION

DBGMS demonstrates superior performance in auditory attention decoding from EEG signals, out-
performing state-of-the-art baselines across various conditions. Its effectiveness is attributed to the
dual-branch architecture, GAN-based augmentation, and self-supervised learning. The model shows
strong generalization capabilities and provides interpretable insights through attention visualization.
Despite its complexity, DBGMS maintains efficiency, crucial for real-world applications. Future re-
search directions include integrating additional signals, exploring complex auditory environments,
expanding self-supervised learning tasks, and conducting long-term stability studies. The developed
techniques may be adaptable to other EEG-based decoding tasks, potentially advancing various
brain-computer interface applications.

6 CONCLUSION

In this work, we propose a novel dual-branch generative adversarial network with multi-task self-
supervised learning enhancement (DBGMS) to improve auditory attention decoding from EEG sig-
nals, specifically addressing the challenges of EEG signal variability and diversity. Our dual-branch
structure effectively captures both temporal and spectral features, enabling comprehensive feature
extraction that is robust to inter-subject and intra-subject variations. The incorporation of GANs for
data augmentation helps mitigate the data scarcity issue while simulating the natural variability of
EEG signals. Self-supervised learning strategies are employed to enhance the model’s ability to ex-
tract invariant features, improving generalization across subjects and diverse auditory environments.
Our experiments consistently demonstrate that DBGMS outperforms baseline models, particularly
in challenging conditions like short decision windows, indicating its enhanced ability to handle the
inherent variability of real-world EEG data. This work represents a significant step towards more
robust and generalizable EEG-based auditory attention decoding systems, paving the way for fu-
ture research to further explore domain-specific strategies for handling EEG signal variability and
diversity.
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A APPENDIX

A.1 TIME-FREQUENCY TRANSFORMS

In our DBGMS model, we employ two crucial transforms: TimeFrequencyTransform and Frequen-
cyTimeTransform. These transforms are essential for the frequency branch processing and are im-
plemented as follows:

A.1.1 TIMEFREQUENCYTRANSFORM

The TimeFrequencyTransform is used to convert the time-domain EEG signal into a time-frequency
representation. We implement this using the Short-Time Fourier Transform (STFT):

X(t, f) =

∫ ∞

−∞
x(τ)w(τ − t)e−j2πfτdτ (31)

where x(t) is the input signal, w(t) is a window function (e.g., Hann window), and X(t, f) is the
resulting time-frequency representation.

In practice, we use a discrete version of the STFT:

X[n, k] =

∞∑
m=−∞

x[m]w[m− n]e−j2πkm/N (32)

where n is the time index, k is the frequency index, and N is the number of frequency points.

A.1.2 FREQUENCYTIMETRANSFORM

The FrequencyTimeTransform is used to convert the processed time-frequency representation back
to the time domain. This is implemented using the inverse Short-Time Fourier Transform (iSTFT):

x(t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
X(t, f)ej2πftdfdt (33)

In the discrete case, we use:

x[m] =
1

N

∞∑
n=−∞

N−1∑
k=0

X[n, k]ej2πkm/N (34)

These transforms allow our model to effectively process EEG signals in both time and frequency
domains, capturing rich spectral-temporal features crucial for accurate auditory attention decoding.

A.2 DETAILED DATA PREPROCESSING STEPS

Our data preprocessing pipeline consists of the following steps:

1. Re-referencing: EEG data were re-referenced to the average of mastoid electrodes.

2. Filtering: A bandpass filter (0.1 Hz to 50 Hz) was applied using a zero-phase Butterworth
filter of order 4.

3. Downsampling: Data were downsampled from the original sampling rate to 128 Hz using
scipy’s resample function.

4. Artifact Removal: Independent Component Analysis (ICA) was used to remove eye blinks
and muscle artifacts. We used the FastICA algorithm implemented in MNE-Python.

5. Segmentation: Continuous EEG data were segmented into epochs of varying lengths (0.1s,
1s, 2s, and 3s).

6. Normalization: Z-score normalization was applied to each channel independently.
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Figure 4: Box plots showing the distribution of decoding accuracy across subjects for DBGMS and
top-performing baseline models on KUL and DTU datasets (1s decision window).

A.3 PERFORMANCE ACROSS SUBJECTS

To examine the model’s consistency across different subjects, we visualize the subject-wise perfor-
mance using box plots, as shown in Figure 4.

The box plots demonstrate that DBGMS not only achieves higher median accuracy but also shows
less variance across subjects compared to the baseline models, indicating its robustness and gener-
alizability.

A.4 CROSS-DATASET GENERALIZATION

To assess the model’s ability to generalize across datasets, we perform cross-dataset evaluation.
Table 5 shows the results of models trained on one dataset and tested on the other.

Table 5: Cross-dataset generalization performance (accuracy %) for 1s decision window
Model KUL → DTU DTU → KUL
CNN Vandecappelle et al. (2021) 62.3 ± 6.1 65.7 ± 6.5
SSF-CNN Cai et al. (2021) 64.5 ± 6.3 67.9 ± 6.7
MBSSFCC Jiang et al. (2022) 67.8 ± 5.9 70.3 ± 6.4
DBPNet Ni et al. (2024) 74.2 ± 5.5 77.6 ± 5.9
STAnet Su et al. (2022) 68.9 ± 5.8 71.2 ± 6.2
DBGMS (Ours) 76.5 ± 5.3 79.8 ± 5.7

The cross-dataset evaluation results demonstrate that DBGMS exhibits superior generalization ca-
pability compared to the baseline models, maintaining high performance even when tested on a
different dataset.

Table 6: Model performance across different decision window lengths (Accuracy %)
Model 0.1s 0.5s 1s 2s 3s
CNN Vandecappelle et al. (2021) 72.5 78.4 83.2 85.0 86.2
SSF-CNN Cai et al. (2021) 76.3 81.1 84.4 87.8 89.1
MBSSFCC Jiang et al. (2022) 79.0 83.5 86.5 89.5 90.8
DBPNet Ni et al. (2024) 87.1 92.3 95.0 96.5 97.2
STAnet Su et al. (2022) 79.9 85.2 89.4 91.2 92.0
DBGMS (Ours) 88.9 93.5 96.2 97.3 97.9
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Table 6 shows the performance of various models across different decision window lengths. Our
DBGMS model consistently outperforms other models, especially at shorter window lengths. At
0.1s, DBGMS achieves an accuracy of 88.9%, which is 1.8% higher than the next best model (DBP-
Net) and 9% higher than the widely used STAnet model.

Table 7: Training convergence comparison (0.1s decision window)
Model Epochs to 90% max accuracy Final accuracy (%) Training time (hours)
CNN Vandecappelle et al. (2021) 35 72.5 4.5
SSF-CNN Cai et al. (2021) 32 76.3 5.8
MBSSFCC Jiang et al. (2022) 30 79.0 6.5
DBPNet Ni et al. (2024) 22 87.1 3.8
STAnet Su et al. (2022) 28 79.9 5.2
DBGMS (Ours) 20 88.9 4.0

Table 7 illustrates the training efficiency of different models. Our DBGMS model not only achieves
the highest final accuracy (88.9%) but also converges faster, reaching 90% of its maximum accuracy
in just 20 epochs. This fast convergence, combined with a relatively short training time of 4 hours,
demonstrates the model’s efficiency in both performance and training speed.

Table 8: DBGMS performance under different EEG graph masking strategies (0.1s decision win-
dow)

Masking Strategy Mask Size (%) Accuracy (%) Robustness Score
No Masking 0 88.9 -
Random Node Masking 10 87.5 0.984
Random Node Masking 20 86.2 0.970
Random Node Masking 30 84.8 0.954
Structured Masking (Spatial) 10 87.8 0.988
Structured Masking (Spatial) 20 86.7 0.975
Structured Masking (Temporal) 10 88.1 0.991
Structured Masking (Temporal) 20 87.0 0.979

Table 8 illustrates the robustness of our DBGMS model under various EEG graph masking condi-
tions. The model maintains high accuracy even with significant portions of the input masked, with
temporal masking showing the least impact on performance. The robustness score is calculated
as the ratio of masked accuracy to unmasked accuracy, highlighting the model’s ability to handle
incomplete or noisy inputs.
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