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Abstract

Domain-specific named entity recognition on001
Computer Science (CS) scholarly articles is002
an information extraction task that is arguably003
more challenging and less studied than named004
entity recognition (NER) for the general do-005
main. Given that significant progress has006
been made on NER, we believe that scholarly007
domain-specific NER will receive increasing008
attention in the NLP community. Nevertheless,009
progress on the task is currently hampered in010
part by its recency and the lack of standard-011
ized concept types for scientific entities/terms.012
This paper presents a survey of the current state013
of research on scholarly domain-specific NER014
with a focus on language resources; further, it015
creates a novel dataset and model for CS NER.016

1 Introduction017

Named entity recognition over Computer Science018

scholarly articles (CS NER) is an information ex-019

traction task that involves identifying and classify-020

ing scientific terminology from CS scholarly publi-021

cations including articles, books, patent documents,022

etc. as predefined semantic concept types. To better023

understand the task, consider the sentence:024

Exploiting Headword Dependency and025

Predictive Clustering for Language Mod-026

eling027

Taken from an existing language resource (Gupta028

and Manning, 2011), the sentence has the follow-029

ing scientific entity annotations. Namely, ‘Head-030

word Dependency’ and ‘Predictive Clustering’ as031

technique; and ‘Language Modeling’ as focus and032

domain. Here the concept technique is expressed as033

method, domain as the research problem, and focus034

as the solution. Indeed, by the broadest definition035

of CS NER, the precise typing of CS entities is036

ambiguous since a term can have multiple concep-037

tual roles in a single paper context or even different038

roles across papers.039

CS NER is arguably more difficult than NER, 040

the task of identifying and typing commonsense 041

real-world entities such as person, location, orga- 042

nization, thing, or temporal information. For NER, 043

there are well-defined linguistic constraints at the 044

syntactic (e.g., proper noun part-of-speech for per- 045

son or location names), semantic (e.g., common 046

knowledge things such as ‘bat’ and ‘ball’ have gen- 047

erally agreed and unambiguous meanings), and 048

grammatical (e.g., prepositions such as ‘in’ or ‘at’ 049

as cues for temporal information) levels. In con- 050

trast, there are typically no clear syntactic or other 051

surface clues for identifying CS entities. While 052

the CL-Titles parser system (D’Souza and Auer, 053

2021) relied on repetitive lexicosyntactic patterns 054

in a rule-based approach to identify CS entities, 055

they were heuristically based. 056

As significant advances have been made in NER, 057

we believe that scholarly domain-specific NER will 058

gain increasing attention in the years to come. This 059

is owing to the digitalization of scholarly knowl- 060

edge impetus (sci; Manghi et al., 2010; Lewis et al., 061

2016; Auer, 2018). Semantically modeling fine- 062

grained actionable scholarly knowledge will make 063

their large-scale in-silico rapid surveying a new 064

paradigm shift in scholarly digital technologies. In- 065

stead of manual human comprehension of the latest 066

and greatest scholarly knowledge within expert si- 067

los, knowledge of discoveries can be routinely and 068

centrally screened for information about past and 069

novel discoveries. Further, “text mining” meth- 070

ods can help bridge the gap between the growing 071

amounts of data and our continuing need for in- 072

sight into their corresponding findings. Our goal in 073

this paper is to provide a timely survey of the cur- 074

rent state of research on scholarly domain-specific 075

NER with a specific focus on the Computer Science 076

(CS) domain, i.e. CS NER. Further, we release a 077

language resource which combines our surveyis- 078

tic insights on CS NER and an high-performing 079

machine learning tool trained on our dataset. 080
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Corpora Domain Coverage Semantic Concepts Size AnnotationPapers Tokens Entities
FTD (2011) CL titles, abstracts focus, domain, technique 426 57,182 5,382 human
ACL-RD
TEC (2016)

CL abstracts language resource, language re-
source product, measures and
measurements, models, other,
technology and method, tool
and library

300 32,758 4,391 human

ScienceIE
(2017)

CS, MS,
Phy

full text material, process, task 500 83,753 10,994 human

SciERC
(2018)

AI abstracts evaluation metric, generic, ma-
terial, method, task

500 60,749 8,089 human

NLP-TDMS
(2019)

CL titles, abstracts,
full text

task, dataset, metric, score 332 1,115,987 1,384 distant
supervision

STEM-ECR
(2020)

10
STEM

abstracts data, material, method, process 110 26,269 6,165 human

SciREX
(2020)

ML titles, abstracts,
full text

dataset, method, metric, task 438 248,7091 156,931 human

NCG (2021) CL, CV titles, abstracts research problem 405 47,127 908 human
ORKG-
TDM (2021)

AI titles, abstracts,
full text

task, dataset, metric 5,361 - 18,219 distant
supervision

CL-Titles
(2021)

CL titles language, method, research
problem, resource, solution, tool

50,237 284,672 87,567 rule-based
system

PwC (this
paper)

AI titles, abstracts research problem, method 12,271 1,317,256 29,273 distant
supervision

ACL (this
paper)

CL titles language, method, research
problem, resource, dataset, so-
lution, tool

31,041 263,143 67,270 human

Table 1: Comparison of Computer Science papers centric corpora for named entity recognition (CS NER). The
corpora names in bold are the corpora merged as part of the dataset of this work. Domain Acronyms. CL - Computational
Linguistics; CS - Computer Science; MS - Material Science; Phy - Physics; AI - Artificial Intelligence; STEM - Science,
Technology, Engineering, Medicine; ML - Machine Learning; CV - Computer Vision.

2 Definitions081

The NER “named entity” recognition task, first082

defined in the MUC conferences (Grishman and083

Sundheim, 1996), basically involved identifying084

the names of all the people, organizations, and geo-085

graphic locations in text. We perceive the CS NER086

task similarly, i.e. identifying all scientific entity087

names of relevant semantic concepts to CS schol-088

arly articles. E.g., the entity “F1” of concept metric;089

or “SQuAD” as an entity of the dataset concept.090

In the past (2016), the word “term” has also been091

introduced and defined as a lexical unit carrying a092

specialised meaning in a particular context. This,093

we find, is analogous to a “named entity.”094

Over the years, the set of CS concepts have095

evolved w.r.t. the number of types, their label096

names, and the aspects of the paper that were anno-097

tated with the concepts. Table 1 shows a high-level098

overview of the existing datasets with their seman-099

tic concepts. Overall nine main concepts emerge100

(see Appendix B for their label mappings) which,101

inspired from related works (2016; 2019; 2021),102

are defined as follows. A research problem (rp) is103

the theme of a work; a method (meth) is an existing104

protocol to support the solution; a solution (sol) is105

a novel contribution of a work that solves the rp; a 106

tool is found by asking the question “Using what?”; 107

resource (res) refers to utilities like the Web, En- 108

cyclopedia, etc.; dataset is the name of a dataset; 109

language (lang) is the natural language focus; a 110

metric is the component of evaluation systems used 111

for measuring; and score is the quantitative system 112

performance number associated with a metric. 113

3 Survey of Scholarly NER Corpora 114

3.1 Computer Science NER (CS NER) 115

Table 1 shows existing CS NER corpora compared 116

along five dimensions: (1) domain, (2) annota- 117

tion coverage, (3) semantic concepts, (4) size, and 118

(5) annotation method. Most of the corpora con- 119

sist of relatively short documents. The shortest is 120

the CL-Titles corpus (2021) with only paper titles. 121

The longer ones have sentences from full-text ar- 122

ticles, viz. ScienceIE (2017), NLP-TDMS (2019), 123

SciREX (2020), and ORKG-TDM (2021). We see 124

that the corpora have had from one (D’Souza et al., 125

2021) to atmost seven concepts (QasemiZadeh and 126

Schumann, 2016). Each corpora’ concepts purpose- 127

fully informs an overarching knowledge extraction 128

objective. E.g., the concepts focus, technique, and 129
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domain in the FTD corpus (2011) helped examine130

the influence between research communities; ACL-131

RD-TEC (2016) made possible a broader trends132

analysis with seven concepts. Eventually, corpora133

began to shed light on a novel scientific community134

research direction toward representing the entities135

as knowledge graphs (Auer, 2018) with hierarchi-136

cal relation annotations such as synonymy (2017)137

or semantic relations such ‘Method Used-for a138

Task’ (2018); otherwise, concepts were combined139

within full-fledged semantic constructs as LEADER-140

BOARDS with between three to four concepts (Hou141

et al., 2019; Jain et al., 2020; Mondal et al., 2021;142

Kabongo et al., 2021), viz. rp, dataset, meth, met-143

ric, and score; or were in extraction objectives144

with solely contributions-focused entities of a pa-145

per (Färber et al., 2021; D’Souza and Auer, 2021).146

3.2 Biomedical NER (BioNER)147

BioNER dates before CS NER. It aims to recognize148

concepts in bioscience and medicine. E.g., protein,149

gene, disease, drug, tissue, body part and location150

of activity such as cell or organism. The most fre-151

quently used corpora are GENETAG (full-text arti-152

cles annotated with protein/gene entities) (Tanabe153

et al., 2005), JNLPBA (~2400 abstracts annotated154

with DNA, RNA, protein, cell type and cell line155

concepts) (Collier and Kim, 2004), GENIA (~200156

Medline abstracts annotated with 36 different con-157

cepts from the Genia ontology and several levels158

of linguistic/semantic features) (Kim et al., 2003),159

NCBI disease corpus (793 abstracts annotated with160

diseases in the MeSH taxonomy) (Doğan et al.,161

2014), CRAFT (the second largest corpus with 97162

full text papers annotated with over 4000 corpus)163

(Bada et al., 2012) linking to the NCBI Taxonomy,164

the Protein, Gene, Cell, Sequence ontologies etc.165

Finally, the MedMentions corpus (Mohan and Li,166

2018) as the largest dataset with ~4000 abstracts167

with ~34,724 concepts from the UMLS ontology.168

By leveraging ontologies such as the Gene Ontol-169

ogy (Ashburner et al., 2000), UMLS (Bodenreider,170

2004), MESH, or the NCBI Taxonomy (Schoch171

et al., 2020), for the semantic concepts, these cor-172

pora build on years of careful knowledge represen-173

tation work and are semantically consistent with174

a wide variety of other efforts that exploit these175

community resources. This differs from CS NER176

which is evolving toward standardized concepts.177

Structured knowledge as knowledge bases (KB)178

were early seen as necessary in organizing biomed-179

ical scientific findings. E.g., protein-protein (PPI) 180

interaction databases as MINT (Chatr-Aryamontri 181

et al., 2007) and IntAct (Kerrien et al., 2007) or 182

the more detailed KBs as pathway (Bader et al., 183

2006) or Gene Ontology Annotation (Camon et al., 184

2004). Community challenges help curate these 185

KBs via text mining at a large-scale. E.g., BioCre- 186

ative for PPI (Krallinger et al., 2008, 2011), protein- 187

mutation associations (Krallinger et al., 2009), and 188

gene-disease relations (Krallinger et al., 2010); or 189

BioNLP (Kim et al., 2011) for complex n-ary bio 190

events. CS NER is also been addressed in equiv- 191

alent series such as SemEval (2017; 2018; 2021) 192

which is promising to foster rapid task progress. 193

3.3 Chemistry NER (ChemNER) 194

BioNER in part fosters Chemistry NER. Text 195

mining for drug and chemical compound enti- 196

ties (Herrero-Zazo et al., 2013; Krallinger et al., 197

2015) are indispensable to mining chemical disease 198

relations (Li et al., 2016), and drug and chemical- 199

protein interactions (Krallinger et al., 2017, 2021). 200

Obtaining this structured knowledge has implica- 201

tions in precision medicine, drug discovery as well 202

as basic biomedical research. Corpora for Chem- 203

NER are Corbett et al.’s dataset (42 full-text pa- 204

pers with ~7000 chemical entities), ChemDNER 205

(10,000 PubMed abstracts with 84,355 chemical 206

entities) (2015), and NLM-Chem (150 full-text pa- 207

pers with 38,342 chemical entities normalized to 208

2,064 MeSH identifiers) (Islamaj et al., 2021). 209

4 Our Contributions-Focused Resource 210

for CS NER 211

With surveyistic insights, we create a CS NER cor- 212

pus with a specific IE aim, i.e. to encapsulate only 213

the results-focused or, alternately, the contributions- 214

focused entities of a work. This aim would further 215

the state-of-the-art in CS NER. So far, only the 216

LEADERBOARDs construct (2019; 2020) involving 217

rp, dataset, meth, metric, score have enabled the 218

generation of progress overview knowledge graphs 219

of a field. We broaden this results-focused entities 220

mining notion to other CS concepts where contribu- 221

tions are also approaches as in the solution concept. 222

While similar concepts were annotated in other cor- 223

pora, we differ with our entity selection to only 224

the paper’s results-focused entities for the concepts. 225

SciREX (2020) and CitationIE (2021) adopt a simi- 226

lar “salient” entity perspective. They, however, con- 227

sider a weighted citations graph for entity mentions 228
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Types P R F1 Types P R F1
Method 66.8 49.13 56.62 Resource 75.72 78.61 77.14
Tool 72.01 66.05 68.9 Solution 78.51 82.61 80.51
Dataset 72.9 68.42 70.59 Language 86.22 87.78 86.99
Research
problem

68.24 79.68 73.52 macro
Overall

73.49 74.03 73.76

Table 2: CS Named entity recognition results on TITLES per-concept type

Types P R F1
Research
problem

81.18 75.81 78.4

Method 87.59 86.6 87.09
macro
Overall

84.39 81.2 82.76

Table 3: CS NER results on AB-
STRACTS per-concept type

TITLEs ABSTRACTs
P R F1 P R F1

74.14 76.26 75.18 84.89 81.9 83.37
73.67 75.16 74.41 88.2 78.85 83.26

Table 4: Cumulative results for salient CS NER on seven
concepts in TITLEs and on two concepts in ABSTRACTs
with GloVe embeddings (top row) and without (last row)

to determine saliency. This implies the method229

holds only given sufficient citations for the entity230

mentions. Our approach, then, is simpler where we231

do not deal with whether a results-focused entity is232

salient in the community, but merely that they are233

contributions-focused for each paper.234

Aligned with our IE aim, we create two corpora:235

1) TITLEs - noting that contributions-focused enti-236

ties of a paper are naturally present in titles; and 2)237

ABSTRACTs - for rp and meth. This latter corpus238

can offer a fallback for the two concepts if they are239

not in titles. A natural question may be why AB-240

STRACTs is annotated with only two of our seven241

entities? In this work, since our emphasis has been242

on reusing the existing corpora for their annota-243

tions and we found for Abstracts only rp and meth244

concepts satisfying our entities filter.245

TITLEs comprises four existing corpora. 1) ACL246

(last row in Table 1). This corpus was originally247

automatically generated as CL-Titles (2021) and248

includes all our concepts except dataset. We heuris-249

tically adapted it for dataset and manually veri-250

fied its annotations for 31,044 of its 49,728 titles.251

Thus our version includes all seven of our results-252

focused entities. While the corpus was verified253

by a single annotator, we performed an IAA exer-254

cise for 50 titles involving the main annotator (a255

NLP Postdoc) and a secondary “outsider” anno-256

tator (a NLP PhD candidate). They had a strong257

IAA of 71.52% Cohen’s κ. 2) PwC (second-to-258

last row in Table 1). It includes distant-labeled ti-259

tles from https://paperswithcode.com/260

for rp and meth. Note that NLP-TDMS (2019),261

SciREX (2020), and ORKG-TDMS (2021) are its262

subsets. 3) FTD corpus (2011) for rp, meth, and sol.263

And 4) NCG (2021) for rp entities. The distribu- 264

tions are 31,041 (82%) ACL/5,885 (15%) PwC/462 265

(1%) FTD/398 (1%) NCG. The sizes of the FTD 266

and NCG are the original dataset sizes. PwC was 267

a strategically randomly selected subset which of- 268

fered sufficient annotation diversity for rp and meth 269

without biasing an automatic system to just these 270

two types. Next, the ABSTRACTs corpus also com- 271

bines four existing corpora. 1) PwC for rp and 272

meth. 2) FTD for rp and meth. 3) NCG for ro. 4) 273

SciERC (2018) for rp. Their distributions are 6756 274

(85%) PwC/462 (5%) FTD/272 (3%) NCG/431 275

(5%) SciERC. While only PwC was a strategically 276

chosen subset for being representative of the two 277

entities, the other corpora were included as is. 278

A Strong Baseline Model. We train TITLEs CS 279

NER and ABSTRACTs CS NER as two separate 280

IOBES sequence tagging models. It is the state-of- 281

the-art 3-layered model: a character sequence layer 282

with a CNN encoder (CCNN), a word sequence 283

layer with a BiLSTM encoder (WBiLSTM), and 284

a CRF inference layer (CRF) (Yang and Zhang, 285

2018). Words in word sequences are represented 286

as embeddings which are initialized either as pre- 287

computed (we use GloVe (Pennington et al., 2014)) 288

or at random. The character sequence layer auto- 289

matically extracts word level features by encoding 290

the character sequence within the word and is ran- 291

domly initialized. Our results are shown in Tables 292

2, 3, and 4. We thus find optimal high-scores of 293

75.18% over seven concepts in TITLEs and 83.37% 294

over two concepts in ABSTRACTs in micro F1. In 295

TITLEs, language is the easiest to extract at 86.99% 296

F1, and in ABTRACTs, it is method at 87.09% F1. 297

5 Conclusion 298

We reported a focused result for contributions- 299

focused CS NER. Our work is in the broader 300

context of existing work by conducting a multi- 301

disciplinary corpus survey and shows how we 302

merge existing CS NER corpora tailored to our 303

IE aim. Our data and code is publicly released. 304
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A Inter-Annotator Agreement Scores555

Per-Concept556

Here we report agreement scores with alternate met-557

rics as precision, recall, F1. Additionally, detailed558

agreements per concept type is shown.559

Type P R F1
Tool 25 16.67 20
Method 52.17 85.71 64.86
Resource 73.33 61.11 66.67
Dataset 100 50 66.67
Research problem 62.96 77.27 69.39
Solution 86.49 71.11 78.05
Language 100 100 100
TOTAL 69

Table 5: Interannotator agreement scores on 50 titles

B Mappings between concepts for CS560

NER561

In the fourth “Semantic Concepts” column in Ta-562

ble 1 in the main paper reports the original dataset563

concepts labels. In Table 6, we show how differ-564

ent labels names can be mapped as one standard565

name since they have the same semantic definitions. 566

For our language resource section 4 reported in the 567

main paper, we adopt the standard names. 568

Types Mappings in Related Work
1 research-

problem
domain; application; task; research prob-
lem

2 method technique; technology and method;
method

3 solution focus; solution
4 tool tool and library; tool
5 resource language resource; resource
6 dataset language resource product; dataset
7 language language
8 metric measures and measurements; evaluation

metric; metric
9 score measures and measurements

Table 6: Mappings of nine scientific semantic types
across Computer Science papers centric corpora for CS
NER. The italicized types are in the dataset of this work.

C Detailed Baseline Model Ablations 569

Neural Architectures micro
P

micro
R

micro
F1

word CNN + CRF 70.28 71.24 70.76
69.32 69.16 69.24

word LSTM + CRF 69.24 70.08 69.65
68.41 66.76 67.58

word BiLSTM + CRF 71.92 73.34 72.62
71.44 72.91 72.17

word CNN + char CNN + 71.31 72.96 72.13
CRF 72.50 71.01 71.75
word LSTM + char CNN + 72.01 72.4 72.21
CRF 71.59 69.65 70.61
word BiLSTM + char CNN 74.14 76.26 75.18
+ CRF 73.67 75.16 74.41

Table 7: Results with different neural architectures for
CS NER over seven semantic concepts with embeddings
(top row) and without (bottom row) on TITLES.

Neural Architectures micro
P

micro
R

micro
F1

word CNN + CRF 90.55 72.51 80.53
91.78 73.58 81.68

word LSTM + CRF 85.45 75.54 79.62
90.02 71.82 79.9

word BiLSTM + CRF 88.22 76.24 81.79
90.14 76.36 82.68

word CNN + char CNN + 78.61 71.08 74.65
CRF 88.59 66.33 75.86
word LSTM + char CNN + 85.48 78 81.57
CRF 87.71 76.49 81.71
word BiLSTM + char CNN 84.89 81.9 83.37
+ CRF 88.2 78.85 83.26

Table 8: Results with different neural architectures for
CS NER over two semantic concepts with embeddings
(top row) and without (bottom row) on ABSTRACTS.
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