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Abstract

Domain-specific named entity recognition on
Computer Science (CS) scholarly articles is
an information extraction task that is arguably
more challenging and less studied than named
entity recognition (NER) for the general do-
main. Given that significant progress has
been made on NER, we believe that scholarly
domain-specific NER will receive increasing
attention in the NLP community. Nevertheless,
progress on the task is currently hampered in
part by its recency and the lack of standard-
ized concept types for scientific entities/terms.
This paper presents a survey of the current state
of research on scholarly domain-specific NER
with a focus on language resources; further, it
creates a novel dataset and model for CS NER.

1 Introduction

Named entity recognition over Computer Science
scholarly articles (CS NER) is an information ex-
traction task that involves identifying and classify-
ing scientific terminology from CS scholarly publi-
cations including articles, books, patent documents,
etc. as predefined semantic concept types. To better
understand the task, consider the sentence:

Exploiting Headword Dependency and
Predictive Clustering for Language Mod-
eling

Taken from an existing language resource (Gupta
and Manning, 2011), the sentence has the follow-
ing scientific entity annotations. Namely, ‘Head-
word Dependency’ and ‘Predictive Clustering’ as
technique; and ‘Language Modeling’ as focus and
domain. Here the concept technique is expressed as
method, domain as the research problem, and focus
as the solution. Indeed, by the broadest definition
of CS NER, the precise typing of CS entities is
ambiguous since a term can have multiple concep-
tual roles in a single paper context or even different
roles across papers.

CS NER is arguably more difficult than NER,
the task of identifying and typing commonsense
real-world entities such as person, location, orga-
nization, thing, or temporal information. For NER,
there are well-defined linguistic constraints at the
syntactic (e.g., proper noun part-of-speech for per-
son or location names), semantic (e.g., common
knowledge things such as ‘bat’ and ‘ball’ have gen-
erally agreed and unambiguous meanings), and
grammatical (e.g., prepositions such as ‘in’ or ‘at’
as cues for temporal information) levels. In con-
trast, there are typically no clear syntactic or other
surface clues for identifying CS entities. While
the CL-Titles parser system (D’Souza and Auer,
2021) relied on repetitive lexicosyntactic patterns
in a rule-based approach to identify CS entities,
they were heuristically based.

As significant advances have been made in NER,
we believe that scholarly domain-specific NER will
gain increasing attention in the years to come. This
is owing to the digitalization of scholarly knowl-
edge impetus (sci; Manghi et al., 2010; Lewis et al.,
2016; Auer, 2018). Semantically modeling fine-
grained actionable scholarly knowledge will make
their large-scale in-silico rapid surveying a new
paradigm shift in scholarly digital technologies. In-
stead of manual human comprehension of the latest
and greatest scholarly knowledge within expert si-
los, knowledge of discoveries can be routinely and
centrally screened for information about past and
novel discoveries. Further, “text mining” meth-
ods can help bridge the gap between the growing
amounts of data and our continuing need for in-
sight into their corresponding findings. Our goal in
this paper is to provide a timely survey of the cur-
rent state of research on scholarly domain-specific
NER with a specific focus on the Computer Science
(CS) domain, i.e. CS NER. Further, we release a
language resource which combines our surveyis-
tic insights on CS NER and an high-performing
machine learning tool trained on our dataset.



Corpora Domain | Coverage Semantic Concepts Papers Tosklgcls Entities Annotation
FTD (2011) | CL titles, abstracts | focus, domain, technique 426 57,182 5,382 | human
ACL-RD CL abstracts language resource, language re- | 300 32,758 4,391 | human
TEC (2016) source product, measures and

measurements, models, other,

technology and method, tool

and library
SciencelE CS, MS, | full text material, process, task 500 83,753 10,994 | human
(2017) Phy
SciERC Al abstracts evaluation metric, generic, ma- | 500 60,749 8,089 | human
(2018) terial, method, task
NLP-TDMS | CL titles, abstracts, | task, dataset, metric, score 332 1,115,987 1,384 distant
(2019) full text supervision
STEM-ECR | 10 abstracts data, material, method, process | 110 26,269 6,165 human
(2020) STEM
SciREX ML titles, abstracts, | dataset, method, metric, task 438 248,7091 156,931 human
(2020) full text
NCG (2021) | CL,CV | titles, abstracts | research problem 405 47,127 908 human
ORKG- Al titles, abstracts, | task, dataset, metric 5,361 - 18,219 | distant
TDM (2021) full text supervision
CL-Titles CL titles language, method, research | 50,237 284,672 87,567 | rule-based
(2021) problem, resource, solution, tool system
PwC (this | Al titles, abstracts | research problem, method 12,271 1,317,256 29,273 | distant
paper) supervision
ACL (this | CL titles language, method, research | 31,041 263,143 67,270 | human
paper) problem, resource, dataset, so-

lution, tool

Table 1: Comparison of Computer Science papers centric corpora for named entity recognition (CS NER). The
corpora names in bold are the corpora merged as part of the dataset of this work. Domain Acronyms. CL - Computational
Linguistics; CS - Computer Science; MS - Material Science; Phy - Physics; Al - Artificial Intelligence; STEM - Science,
Technology, Engineering, Medicine; ML - Machine Learning; CV - Computer Vision.

2 Definitions

The NER “named entity” recognition task, first
defined in the MUC conferences (Grishman and
Sundheim, 1996), basically involved identifying
the names of all the people, organizations, and geo-
graphic locations in text. We perceive the CS NER
task similarly, i.e. identifying all scientific entity
names of relevant semantic concepts to CS schol-
arly articles. E.g., the entity “F1” of concept metric;
or “SQuAD?” as an entity of the dataset concept.
In the past (2016), the word “term” has also been
introduced and defined as a lexical unit carrying a
specialised meaning in a particular context. This,
we find, is analogous to a “named entity.”

Over the years, the set of CS concepts have
evolved w.r.t. the number of types, their label
names, and the aspects of the paper that were anno-
tated with the concepts. Table 1 shows a high-level
overview of the existing datasets with their seman-
tic concepts. Overall nine main concepts emerge
(see Appendix B for their label mappings) which,
inspired from related works (2016; 2019; 2021),
are defined as follows. A research problem (rp) is
the theme of a work; a method (meth) is an existing
protocol to support the solution; a solution (sol) is

a novel contribution of a work that solves the rp; a
tool is found by asking the question “Using what?”’;
resource (res) refers to utilities like the Web, En-
cyclopedia, etc.; dataset is the name of a dataset;
language (lang) is the natural language focus; a
metric is the component of evaluation systems used
for measuring; and score is the quantitative system
performance number associated with a metric.

3 Survey of Scholarly NER Corpora

3.1 Computer Science NER (CS NER)

Table 1 shows existing CS NER corpora compared
along five dimensions: (1) domain, (2) annota-
tion coverage, (3) semantic concepts, (4) size, and
(5) annotation method. Most of the corpora con-
sist of relatively short documents. The shortest is
the CL-Titles corpus (2021) with only paper titles.
The longer ones have sentences from full-text ar-
ticles, viz. SciencelE (2017), NLP-TDMS (2019),
SciREX (2020), and ORKG-TDM (2021). We see
that the corpora have had from one (D’Souza et al.,
2021) to atmost seven concepts (QasemiZadeh and
Schumann, 2016). Each corpora’ concepts purpose-
fully informs an overarching knowledge extraction
objective. E.g., the concepts focus, technique, and




domain in the FTD corpus (2011) helped examine
the influence between research communities; ACL-
RD-TEC (2016) made possible a broader trends
analysis with seven concepts. Eventually, corpora
began to shed light on a novel scientific community
research direction toward representing the entities
as knowledge graphs (Auer, 2018) with hierarchi-
cal relation annotations such as synonymy (2017)
or semantic relations such ‘Method Used-for a
Task’ (2018); otherwise, concepts were combined
within full-fledged semantic constructs as LEADER-
BOARDS with between three to four concepts (Hou
et al., 2019; Jain et al., 2020; Mondal et al., 2021;
Kabongo et al., 2021), viz. rp, dataset, meth, met-
ric, and score; or were in extraction objectives
with solely contributions-focused entities of a pa-
per (Férber et al., 2021; D’Souza and Auer, 2021).

3.2 Biomedical NER (BioNER)

BioNER dates before CS NER. It aims to recognize
concepts in bioscience and medicine. E.g., protein,
gene, disease, drug, tissue, body part and location
of activity such as cell or organism. The most fre-
quently used corpora are GENETAG (full-text arti-
cles annotated with protein/gene entities) (Tanabe
et al., 2005), INLPBA (.2400 abstracts annotated
with DNA, RNA, protein, cell type and cell line
concepts) (Collier and Kim, 2004), GENIA (~.200
Medline abstracts annotated with 36 different con-
cepts from the Genia ontology and several levels
of linguistic/semantic features) (Kim et al., 2003),
NCBI disease corpus (793 abstracts annotated with
diseases in the MeSH taxonomy) (Dogan et al.,
2014), CRAFT (the second largest corpus with 97
full text papers annotated with over 4000 corpus)
(Bada et al., 2012) linking to the NCBI Taxonomy,
the Protein, Gene, Cell, Sequence ontologies etc.
Finally, the MedMentions corpus (Mohan and Li,
2018) as the largest dataset with 4000 abstracts
with 34,724 concepts from the UMLS ontology.
By leveraging ontologies such as the Gene Ontol-
ogy (Ashburner et al., 2000), UMLS (Bodenreider,
2004), MESH, or the NCBI Taxonomy (Schoch
et al., 2020), for the semantic concepts, these cor-
pora build on years of careful knowledge represen-
tation work and are semantically consistent with
a wide variety of other efforts that exploit these
community resources. This differs from CS NER
which is evolving toward standardized concepts.

Structured knowledge as knowledge bases (KB)
were early seen as necessary in organizing biomed-

ical scientific findings. E.g., protein-protein (PPI)
interaction databases as MINT (Chatr-Aryamontri
et al., 2007) and IntAct (Kerrien et al., 2007) or
the more detailed KBs as pathway (Bader et al.,
2006) or Gene Ontology Annotation (Camon et al.,
2004). Community challenges help curate these
KBs via text mining at a large-scale. E.g., BioCre-
ative for PPI (Krallinger et al., 2008, 2011), protein-
mutation associations (Krallinger et al., 2009), and
gene-disease relations (Krallinger et al., 2010); or
BioNLP (Kim et al., 2011) for complex n-ary bio
events. CS NER is also been addressed in equiv-
alent series such as SemEval (2017; 2018; 2021)
which is promising to foster rapid task progress.

3.3 Chemistry NER (ChemNER)

BioNER in part fosters Chemistry NER. Text
mining for drug and chemical compound enti-
ties (Herrero-Zazo et al., 2013; Krallinger et al.,
2015) are indispensable to mining chemical disease
relations (Li et al., 2016), and drug and chemical-
protein interactions (Krallinger et al., 2017, 2021).
Obtaining this structured knowledge has implica-
tions in precision medicine, drug discovery as well
as basic biomedical research. Corpora for Chem-
NER are Corbett et al.’s dataset (42 full-text pa-
pers with 7000 chemical entities), ChemDNER
(10,000 PubMed abstracts with 84,355 chemical
entities) (2015), and NLM-Chem (150 full-text pa-
pers with 38,342 chemical entities normalized to
2,064 MeSH identifiers) (Islamaj et al., 2021).

4 Our Contributions-Focused Resource
for CS NER

With surveyistic insights, we create a CS NER cor-
pus with a specific IE aim, i.e. to encapsulate only
the results-focused or, alternately, the contributions-
focused entities of a work. This aim would further
the state-of-the-art in CS NER. So far, only the
LEADERBOARDS construct (2019; 2020) involving
rp, dataset, meth, metric, score have enabled the
generation of progress overview knowledge graphs
of a field. We broaden this results-focused entities
mining notion to other CS concepts where contribu-
tions are also approaches as in the solution concept.
While similar concepts were annotated in other cor-
pora, we differ with our entity selection to only
the paper’s results-focused entities for the concepts.
SciREX (2020) and CitationIE (2021) adopt a simi-
lar “salient” entity perspective. They, however, con-
sider a weighted citations graph for entity mentions



Types P R F1
Types P R I Types P R F1 Research | 8I.18 | 75.81 | 784
Method 66.8 49.13 | 56.62 Resource | 75.72 | 78.61 | 77.14 problem
Tool 72.01 | 66.05 | 68.9 Solution | 78.51 | 82.61 | 80.51 Method 3759 | 86.6 | 87.00
Dataset 72.9 68.42 | 70.59 Language | 86.22 | 87.78 | 86.99 macro 84.39 31 '2 82.76
Research | 68.24 | 79.68 | 73.52 macro 73.49 | 74.03 | 73.76 Overall ' ' '
problem Overall

Table 3: CS NER results on AB-

Table 2: CS Named entity recognition results on TITLES per-concept type

TITLES ABSTRACTS
P R F1 P R F1
74.14 | 76.26 | 75.18 | 84.89 81.9 | 83.37
73.67 | 75.16 | 74.41 88.2 | 78.85 | 83.26

Table 4: Cumulative results for salient CS NER on seven
concepts in TITLEs and on two concepts in ABSTRACTS
with GloVe embeddings (top row) and without (last row)

to determine saliency. This implies the method
holds only given sufficient citations for the entity
mentions. Our approach, then, is simpler where we
do not deal with whether a results-focused entity is
salient in the community, but merely that they are
contributions-focused for each paper.

Aligned with our IE aim, we create two corpora:
1) TITLEs - noting that contributions-focused enti-
ties of a paper are naturally present in titles; and 2)
ABSTRACTS - for rp and meth. This latter corpus
can offer a fallback for the two concepts if they are
not in titles. A natural question may be why AB-
STRACTSs is annotated with only two of our seven
entities? In this work, since our emphasis has been
on reusing the existing corpora for their annota-
tions and we found for Abstracts only rp and meth
concepts satisfying our entities filter.

TITLEs comprises four existing corpora. 1) ACL
(last row in Table 1). This corpus was originally
automatically generated as CL-Titles (2021) and
includes all our concepts except dataset. We heuris-
tically adapted it for dataset and manually veri-
fied its annotations for 31,044 of its 49,728 titles.
Thus our version includes all seven of our results-
focused entities. While the corpus was verified
by a single annotator, we performed an IAA exer-
cise for 50 titles involving the main annotator (a
NLP Postdoc) and a secondary “outsider” anno-
tator (a NLP PhD candidate). They had a strong
TIAA of 71.52% Cohen’s k. 2) PwC (second-to-
last row in Table 1). It includes distant-labeled ti-
tles from https://paperswithcode.com/
for rp and meth. Note that NLP-TDMS (2019),
SciREX (2020), and ORKG-TDMS (2021) are its
subsets. 3) FTD corpus (2011) for rp, meth, and sol.

STRACTS per-concept type

And 4) NCG (2021) for rp entities. The distribu-
tions are 31,041 (82%) ACL/5,885 (15%) PwC/462
(1%) FTD/398 (1%) NCG. The sizes of the FTD
and NCG are the original dataset sizes. PwC was
a strategically randomly selected subset which of-
fered sufficient annotation diversity for rp and meth
without biasing an automatic system to just these
two types. Next, the ABSTRACTS corpus also com-
bines four existing corpora. 1) PwC for rp and
meth. 2) FTD for rp and meth. 3) NCG for ro. 4)
SciERC (2018) for rp. Their distributions are 6756
(85%) PwC/462 (5%) FTD/272 (3%) NCG/431
(5%) SciERC. While only PwC was a strategically
chosen subset for being representative of the two
entities, the other corpora were included as is.

A Strong Baseline Model. We train TITLEs CS
NER and ABSTRACTs CS NER as two separate
IOBES sequence tagging models. It is the state-of-
the-art 3-layered model: a character sequence layer
with a CNN encoder (CCNN), a word sequence
layer with a BILSTM encoder (WBiLSTM), and
a CRF inference layer (CRF) (Yang and Zhang,
2018). Words in word sequences are represented
as embeddings which are initialized either as pre-
computed (we use GloVe (Pennington et al., 2014))
or at random. The character sequence layer auto-
matically extracts word level features by encoding
the character sequence within the word and is ran-
domly initialized. Our results are shown in Tables
2, 3, and 4. We thus find optimal high-scores of
75.18% over seven concepts in TITLEs and 83.37%
over two concepts in ABSTRACTS in micro F1. In
TITLESs, language is the easiest to extract at 86.99%
F1, and in ABTRACTS, it is method at 87.09% F1.

5 Conclusion

We reported a focused result for contributions-
focused CS NER. Our work is in the broader
context of existing work by conducting a multi-
disciplinary corpus survey and shows how we
merge existing CS NER corpora tailored to our
IE aim. Our data and code is publicly released.


https://paperswithcode.com/
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A Inter-Annotator Agreement Scores
Per-Concept

Here we report agreement scores with alternate met-
rics as precision, recall, F1. Additionally, detailed
agreements per concept type is shown.

Type P R F1
Tool 25 16.67 20
Method 52.17 85.71 64.86
Resource 7333  61.11 66.67
Dataset 100 50 66.67
Research problem | 62.96 77.27 69.39
Solution 86.49 71.11 78.05
Language 100 100 100
TOTAL 69

Table 5: Interannotator agreement scores on 50 titles

B Mappings between concepts for CS
NER

In the fourth “Semantic Concepts” column in Ta-
ble 1 in the main paper reports the original dataset
concepts labels. In Table 6, we show how differ-
ent labels names can be mapped as one standard

name since they have the same semantic definitions.
For our language resource section 4 reported in the
main paper, we adopt the standard names.

Types Mappings in Related Work
1| research- | domain; application; task; research prob-
problem lem
2| method technique; technology and method;
method
3| solution focus; solution
41 tool tool and library; tool
5| resource language resource; resource
6| dataset language resource product; dataset
7| language language
8| metric measures and measurements; evaluation
metric; metric
9| score measures and measurements

Table 6: Mappings of nine scientific semantic types
across Computer Science papers centric corpora for CS
NER. The italicized types are in the dataset of this work.

C Detailed Baseline Model Ablations

Neural Architectures micro | micro | micro
P R F1
word CNN + CRF 70.28 | 71.24 | 70.76
69.32 | 69.16 | 69.24
word LSTM + CRF 69.24 | 70.08 | 69.65
68.41 | 66.76 | 67.58
word BiLSTM + CRF 71.92 | 73.34 | 72.62
71.44 | 7291 | 72.17
word CNN + char CNN + 71.31 | 72.96 | 72.13
CRF 72.50 | 71.01 | 71.75
word LSTM + char CNN + | 72.01 | 72.4 72.21
CRF 7159 | 69.65 | 70.61
word BiLSTM + char CNN | 74.14 | 76.26 | 75.18
+ CRF 73.67 | 75.16 | 74.41

Table 7: Results with different neural architectures for
CS NER over seven semantic concepts with embeddings
(top row) and without (bottom row) on TITLES.

Neural Architectures micro | micro | micro
P R F1
word CNN + CRF 90.55 | 72.51 | 80.53
91.78 | 73.58 | 81.68
word LSTM + CRF 85.45 | 75.54 | 79.62
90.02 | 71.82 | 79.9
word BiLSTM + CRF 88.22 | 76.24 | 81.79
90.14 | 76.36 | 82.68
word CNN + char CNN + 78.61 | 71.08 | 74.65
CRF 88.59 | 66.33 | 75.86
word LSTM + char CNN + | 85.48 | 78 81.57
CRF 8771 | 76.49 | 81.71
word BiLSTM + char CNN | 84.89 | 81.9 83.37
+ CRF 88.2 78.85 | 83.26

Table 8: Results with different neural architectures for
CS NER over two semantic concepts with embeddings
(top row) and without (bottom row) on ABSTRACTS.
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