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ABSTRACT

Recent advances in vision–language models (VLMs) have made impressive strides
in understanding spatio-temporal relationships in videos. However, when spatial
information is obscured, these models struggle to capture purely temporal patterns.
We introduce SpookyBench, a benchmark where information is encoded solely
in temporal sequences of noise-like frames, mirroring natural phenomena from
biological signaling to covert communication. Interestingly, while humans can
recognize shapes, text, and patterns in these sequences with over 98% accuracy,
state-of-the-art VLMs achieve 0% accuracy. This performance gap highlights
a critical limitation: an over-reliance on frame-level spatial features and an in-
ability to extract meaning from temporal cues. Overcoming this limitation will
require novel architectures or training paradigms that decouple spatial dependen-
cies from temporal processing. Our systematic analysis shows that this issue
persists across model scales and architectures. We release SpookyBench to cat-
alyze research in temporal pattern recognition and bridge the gap between human
and machine video understanding. Dataset is available at this anonymous link:
https://tinyurl.com/spooky-bench

1 INTRODUCTION

Large multimodal models have revolutionized visual understanding in both images (Liu et al., 2023;
Wang et al., 2024b; Bai et al., 2025; Chen et al., 2024f; Deitke et al., 2024; Dai et al., 2024) and
videos (Zhang et al., 2024b; Maaz et al., 2023; Ataallah et al., 2024; Weng et al., 2024; Wang et al.,
2025). Recent Video-Vision Language Models (Video-VLMs) demonstrate impressive capabilities
in various tasks, from action recognition (Wu et al., 2023; Kahatapitiya et al., 2024; Zhao et al.,
2023) and visual question answering (Yu et al., 2023; Min et al., 2024; Zhong et al., 2022; Ayyubi
et al., 2025; Park et al., 2024) to dense captioning (Qasim et al., 2025; Yang et al., 2023; Xu et al.,
2024a; Kim et al., 2024; Chen et al., 2024d; 2025b; 2024a) and temporal grounding (Chen et al.,
2024c; Wang et al., 2024a; Xu et al., 2024b). Despite this rapid progress, a fundamental limitation
persists. These models excel at extracting spatial features from individual frames, but struggle with
purely temporal reasoning (Cores et al., 2024; Cai et al., 2024; Li et al., 2024d), a capability that
comes naturally to humans. This paper introduces SpookyBench, a novel benchmark designed
to isolate and evaluate purely temporal understanding in video models by presenting information
exclusively through temporal sequences where individual frames appear as noise. Although existing
benchmarks test temporal reasoning alongside spatial understanding (Cai et al., 2024; Li et al., 2024e;
Yang et al., 2025b; Li et al., 2024b), SpookyBench differs by completely eliminating spatial cues,
forcing models to derive meaning solely from changes across frames. Current approaches to video
understanding (Tang et al., 2023; Nguyen et al., 2024) typically follow a hierarchical paradigm:
extract frame-level features using ViTs (Bertasius et al., 2021; Radford et al., 2021; Dosovitskiy et al.,
2020), integrate these features temporally, and fuse them with language for downstream tasks (Zhang
et al., 2024a; Li et al., 2024c; Wu et al., 2024; Wang et al., 2024c). This paradigm has yielded
significant advances in general video understanding (Li et al., 2024a; Dubey et al., 2024; Tang et al.,
2023; Nguyen et al., 2024). However, our findings reveal a critical blind spot: when information
exists purely in the temporal domain without reliable frame-level features, state-of-the-art models fail
catastrophically (Figure 1).

The inability to decode temporal patterns has significant implications for real-world applications.
In nature, organisms such as fireflies communicate through precise temporal sequences of biolumi-
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Figure 1: Illustration of the current video-language models’ limitations: over reliance on spatial
visual features within individual frame. Frame sampling results in temporal information loss, while
the visual encoder exhibits a strong spatial bias. This creates a coherence gap (×) between well-
represented spatial features (objects, scene layouts) and under-represented temporal features (motion
patterns, causality), limiting video understanding capabilities.

nescence (Carlson & Copeland, 1985; Owens et al., 2022; Ramı́rez-Ávila et al., 2018), encoding
information exclusively through timing rather than spatial arrangements. These natural examples
demonstrate how temporal patterns can carry rich information even when individual observations
contain minimal static content. Similarly, various human technologies from Morse code to digital
communication protocols rely on temporal encoding, yet current Video-VLMs lack the fundamental
mechanisms to process such information. The human visual system has evolved mechanisms for
processing temporal information without relying solely on spatial cues. Neuroscience research has
revealed that temporal processing is distributed across neural structures rather than centralized in a
single area (Mauk & Buonomano, 2004), and the brain uses intrinsic network dynamics to perform
temporal computations (Paton & Buonomano, 2018). Areas such as the parietal cortex integrate
temporal information along with spatial and numeric magnitudes (Bueti & Walsh, 2009). Our experi-
ments confirm humans’ remarkable temporal perception: participants achieve over 98% accuracy
on SpookyBench tasks without training. In stark contrast, our evaluation of 15 state-of-the-art
Video-VLMs, including closed-source commercial systems such as GPT-4o (Hurst et al., 2024), and
Gemini 2.0 Flash (DeepMind, 2025), reveals near-zero accuracy on these same tasks.

This striking performance gap persists across model architectures, parameter scales, and pre-training
strategies. Models ranging from relatively compact systems (VideoLLaMA3-2B (Zhang et al.,
2025)) to massive ones (GPT-4o (Hurst et al., 2024), Qwen-VL (Wang et al., 2024b)) all struggle
with purely temporal patterns. Even models specifically designed for video understanding such as
LongVLM (Weng et al., 2024), LLaVA-NeXT-Interleave (Li et al., 2024c), and InternVideo2.5 (Wang
et al., 2025) exhibit minimal temporal pattern recognition capability.

Recent efforts to enhance temporal reasoning in Video-VLMs have explored various approaches.
Models like TimeChat (Ren et al., 2024), Momentor (Qian et al., 2024), and VideoLLM (Wang
et al., 2024e) incorporate specialized temporal modeling mechanisms, while ST-LLM (Liu et al.,
2024b), TimeMaker (Chen et al., 2024c), and Grounded-VideoLLM (Wang et al., 2024a) focus on
enhancing fine-grained temporal localization capabilities. However, our evaluation reveals that none
of these approaches adequately addresses the fundamental challenge of extracting meaning from
purely temporal patterns without reliable spatial features.

Our findings suggest that achieving human-like video understanding requires fundamentally rethink-
ing how neural architectures process temporal information. Rather than treating temporal integration
as secondary to spatial feature extraction, future models may need dedicated mechanisms for temporal
pattern recognition, possibly drawing inspiration from cognitive neuroscience research on distributed
neural timing mechanisms (Paton & Buonomano, 2018; Mauk & Buonomano, 2004) and specialized
brain regions for temporal processing (Bueti & Walsh, 2009; Merchant et al., 2013). The substantial
gap between human and machine performance on SpookyBench indicates that current architectures
remain fundamentally “time-blind” despite their impressive performance on standard benchmarks. By
exposing this critical limitation, we hope to inspire a new wave of research into temporal reasoning
in Video-VLMs, bridging the gap between human and machine perception and enabling applications
that rely on precise temporal understanding, from medical diagnostics to autonomous systems that
must interpret subtle temporal cues in complex environments.
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2 RELATED WORK

2.1 TEMPORAL REASONING IN VIDEO-VLMS

Transformer-based Video-Vision Language Models (Video-VLMs) have advanced through several
architectural families, including LLaVA variants (Liu et al., 2023; Zhang et al., 2024b; Li et al.,
2024c;a; Maaz et al., 2023; Liu et al., 2024a), the Qwen series (Wang et al., 2024b; Bai et al.,
2025), and InternVL models (Chen et al., 2024g;f; Wang et al., 2025). Alternative approaches
have explored dual encoders (Maaz et al., 2024), interleaved tokens (Ataallah et al., 2024; Zhu
et al., 2023), compression techniques (Shen et al., 2024), and multimodal fusion (Zhang et al.,
2024a; Wu et al., 2024; Wang et al., 2024c). Despite architectural diversity, these models consis-
tently exhibit limited temporal reasoning, manifesting as hallucinations (Li et al., 2024b), grounding
difficulties (Wang et al., 2024a), and a reliance on linguistic shortcuts (Ko et al., 2023) across
action recognition (Wu et al., 2023; Kahatapitiya et al., 2024; Zhao et al., 2023), question an-
swering (Yu et al., 2023; Min et al., 2024; Ayyubi et al., 2025), and captioning tasks (Yang
et al., 2023; Kim et al., 2024; Chen et al., 2024a). Efforts to address these shortcomings; such
as timestamp-aware encoding (Ren et al., 2024), segment-level reasoning (Qian et al., 2024), direct
token processing (Liu et al., 2024b), temporal separation tokens (Chen et al., 2024c), specialized
temporal streams (Wang et al., 2024a;e), and novel training paradigms (Zhang et al., 2024b; Yu
et al., 2023; Tang et al., 2023; Nguyen et al., 2024); have shown incremental promise. However,

Model Direct Prompt CoT Params
Human Performance 98.0% ± 0.6 N/A N/A

Open-Source Models
VideoLLaMA3-7B (Zhang et al., 2025) 0% ± 0.0 0% ± 0.0 7B
VideoLLaMA3-2B (Zhang et al., 2025) 0% ± 0.0 0% ± 0.0 2B
TimeChat-7B (Ren et al., 2024) 0% ± 0.0 0% ± 0.0 7B
MiniGPT4-Video (Ataallah et al., 2024) 0% ± 0.0 0% ± 0.0 7B
MovieChat (Song et al., 2024) 0% ± 0.0 0% ± 0.0 7B
Video-ChatGPT-7B (Maaz et al., 2023) 0% ± 0.0 0% ± 0.0 7B
VideoGPT-plus-Phi3-mini-4k (Maaz et al., 2024) 0% ± 0.0 0% ± 0.0 7B
VILA1.5-13bLin et al. (2024) 0% ± 0.0 0% ± 0.0 13B
ShareGPT4Video-8B (Chen et al., 2024a) 0% ± 0.0 0% ± 0.0 8B
VideoLLaMA2-7B (Cheng et al., 2024) 0% ± 0.0 0% ± 0.0 7B
Video-LLaVA (Zhang et al., 2024b) 0% ± 0.0 0% ± 0.0 7B
LLaVA-NeXT-Video (Li et al., 2024c) 0% ± 0.0 0% ± 0.0 8B
InternVL2-40B (Chen et al., 2024f) 0% ± 0.0 0% ± 0.0 40B
InternVL2-8B (Chen et al., 2024f) 0% ± 0.0 0% ± 0.0 8B
InternVL2.5-78B (Chen et al., 2024e) 0% ± 0.0 0% ± 0.0 78B
InternVL2.5-8B (Chen et al., 2024e) 0% ± 0.0 0% ± 0.0 8B
InternVideo2.5-Chat-8B (Wang et al., 2025) 0% ± 0.0 0% ± 0.0 8B
InternVideo2-Chat-8B (Wang et al., 2024d) 0% ± 0.0 0% ± 0.0 8B
Qwen2-VL-2B-Instruct (Wang et al., 2024b) 0% ± 0.0 0% ± 0.0 2B
Qwen2-VL-7B-Instruct (Wang et al., 2024b) 0% ± 0.0 0% ± 0.0 7B
Qwen2-VL-72B-Instruct (Wang et al., 2024b) 0% ± 0.0 0% ± 0.0 72B
Qwen2.5-VL-3B-Instruct (Bai et al., 2025) 0% ± 0.0 0% ± 0.0 3B
Qwen2.5-VL-7B-Instruct (Bai et al., 2025) 0% ± 0.0 0% ± 0.0 7B
Qwen2.5-VL-72B-Instruct (Bai et al., 2025) 0% ± 0.0 0% ± 0.0 72B

Closed-Source Models
Gemini 1.5 Pro (Team et al., 2024) 0% ± 0.0 0% ± 0.0 N/A
Gemini 2.0 FlashDeepMind (2025) 0% ± 0.0 0% ± 0.0 N/A
GPT-4o (Hurst et al., 2024) 0% ± 0.0 0% ± 0.0 N/A

Table 1: Benchmark results comparing model performance on
SpookyBench across different prompting strategies along with
model size. Human accuracy (98.0%) is the weighted average of
accuracy across 3 different categories.

these methods, and even spe-
cialized video architectures like
VideoGPT+ (Maaz et al., 2024),
TimeChat (Ren et al., 2024),
LinVT (Gao et al., 2024),
LongVLM (Weng et al., 2024),
and Baichuan-Omni (Li et al.,
2024f), still operate on a spatial-
first paradigm where temporal
understanding is secondary to
spatial feature extraction.

The fundamental limitations of
this spatial-first approach are in-
creasingly evidenced by tempo-
ral understanding benchmarks.
TemporalBench (Cai et al., 2024)
reveals a significant gap be-
tween model and human perfor-
mance, while TVBench (Cores
et al., 2024), VITATECS (Li
et al., 2024e), and Fateh et
al. (Fateh et al., 2024) confirm
that many datasets inadvertently
reward spatial analysis over gen-
uine temporal reasoning. Fo-
cused evaluations further target
specific failures such as temporal
hallucinations with VidHalluc (Li et al., 2024b), streaming video reasoning with SVBench (Yang
et al., 2025b), and challenges in temporal location, object tracking, and anomaly detection with
VideoVista (Li et al., 2024g). A critical and consistent finding across these analyses is that mod-
els—including video-specific ones like LLaVA-Video (Zhang et al., 2024b), Video-ChatGPT (Maaz
et al., 2023), TemporalVLM (Fateh et al., 2024), and VidChain (Lee et al., 2025)—exploit spatial
shortcuts to circumvent temporal reasoning (Wang et al., 2024a; Chen et al., 2024c; Li et al., 2024b;
Ko et al., 2023). Our SpookyBench benchmark is designed to directly address this issue. By de-
liberately obscuring spatial information, it isolates temporal pattern recognition, forcing models to
derive meaning solely from temporal dynamics. This approach provides a rigorous evaluation of
the “time-blindness” in current architectures, exposing fundamental limitations that remain hidden in
conventional assessments.
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2.2 NEUROSCIENCE INSIGHTS ON TEMPORAL PROCESSING

Neuroscience research offers critical insights for addressing temporal limitations in Video-VLMs.
Mauk and Buonomano (Mauk & Buonomano, 2004) established that temporal processing is dis-
tributed across neural structures through intrinsic circuit properties, contrasting with current Video-
VLMs’ sequential spatial processing. Biological systems span multiple granularities: cerebellum
handles millisecond-to-second timing (Merchant et al., 2013); parietal cortex integrates temporal,
spatial and numerical magnitudes (Bueti & Walsh, 2009); and neural patterns dynamically encode
time through “population clocks” (Paton & Buonomano, 2018). Models could benefit from dis-
tributed temporal representations that evolve over time (Wittmann, 2009; Paton & Buonomano, 2018)
rather than treating temporal integration as secondary. The performance gap on temporal tasks (Cai
et al., 2024; Cores et al., 2024; Li et al., 2024b) and our SpookyBench findings demonstrate that
current architectures lack mechanisms for processing purely temporal patterns—a natural capability
in humans through neural systems representing time as intrinsic dynamics.

3 SPOOKYBENCH

We introduce SpookyBench, a novel synthetic dataset specifically designed to isolate and evaluate
pure temporal understanding in video language models. The key innovation of our benchmark lies
in its unique design: All meaningful information is encoded exclusively in the temporal domain
through dynamic patterns of texts, images and video depth maps, while individual frames contain
only structured noise. Our dataset is fundamentally different from the existing datasets used for
training, fine-tuning, and evaluation of video-VLMs. Many state-of-the-art video language models
employ advanced techniques, such as dynamic resolution strategies (Bai et al., 2025; Wang et al.,
2024b; Chen et al., 2024f), specialized temporal encoding methods (Ren et al., 2024; Wang et al.,
2024b; Bai et al., 2025), hierarchical token merging (Weng et al., 2024; Wang et al., 2025), and joint
video-motion training frameworks (Chen et al., 2024b) to capture temporal dynamics. However,
these methods still rely on spatial representations extracted from individual frames, which currently
remain the only viable mechanism for inferring temporal information. In contrast, SpookyBench
forces models to depend only on temporal cues, thereby creating the first benchmark that exclusively
evaluates a model’s ability to process and understand pure temporal information.

Key Principle: Opposing Noise Movement

Content Mask Background Noise Foreground Noise

Animation States: Moving vs. Paused

Moving (Content Visible)

Background Foreground

Background

Content

Down/Right Up/Left

Brain groups pixels by motion direction
Content becomes visible

Paused (Content Disappears)

Background Foreground

No motion = No content

Content Mask
(Text, Object, Shape)

Background Noise
(Moves Down/Right)

Foreground Noise
(Moves Up/Left)

Brain Perceives Content Through Motion Brain groups motion → Content becomes visible

Figure 2: Illustration of the temporal encoding framework used in SpookyBench. Left: Core
mechanism showing how content becomes visible through opposing motion patterns. A content mask
defines regions where foreground noise (moving up/left) and background noise (moving down/right)
are applied. When animated, the human visual system groups pixels with similar motion, causing
the content to emerge. Right: Comparison between moving and paused states, demonstrating how
content is only perceptible during animation and disappears when static, as individual frames contain
only structured noise.

3.1 DATASET GENERATION

Figure 2 shows our proposed data generation framework. The dataset consists of specially designed
videos that encode three types of content - words, images, and videos - using binary noise patterns
with specific motion properties. In this approach, content is embedded within noise patterns such
that individual frames appear as random noise, while the content becomes perceptible only when
viewed as a temporal sequence. Our dataset encodes different types of content (Figure 3) through
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temporal noise animations in the following categories: 1) Words: Text rendered as masks in which
the background noise and foreground noise move in opposite directions, making the text visible only
through temporal movement. 2)Images: Binary masks generated using SAM2 (Ravi et al., 2024)
from single-object images generated using text-to-image model Flux (Labs, 2024), encoded using the
same content mask animation approach as words. 3) Dynamic Scenes: Depth maps extracted from
videos in single-object tracking datasets LaSOT (Fan et al., 2019) and OTB2015 (Wu et al., 2015)
using Video Depth Anything (Chen et al., 2025a). These are encoded using a technique in which
pixels above a brightness threshold move while others remain static as shown in the algorithm 2.

3.2 TEMPORAL ENCODING FRAMEWORK

Our temporal encoding framework implements two distinct motion configurations as detailed in
Algorithms 1 and 2. For words, and image masks (Algorithm 1), we employ opposing motion
patterns between foreground and background. The content is first converted to a binary mask M
where M(x, y) = 1 represents foreground pixels and M(x, y) = 0 represents background. We
generate two separate noise patterns Nbg and Nfg consisting of random binary values (0 or 255).
During animation, foreground pixels sample from Nfg with a positive offset that increases with time
(y + vt mod h), while background pixels sample from Nbg with a negative offset (y − vt mod h).

Category Basic SNR (dB) Perceptual SNR Temporal Coherence Motion Contrast
Images -46.95 ± 2.40 -47.28 ± 2.28 8.00 ± 2.08 7.17 ± 5.00
Dynamic Scenes -48.95 ± 3.64 -63.43 ± 5.74 21.91 ± 5.76 -3.18 ± 10.17
Text -39.27 ± 1.58 -49.18 ± 3.31 7.84 ± 0.65 8.26 ± 6.44

Table 2: Signal-to-Noise Ratio (SNR) metrics across Spooky-
Bench categories.

This creates the perception of op-
posing motion within and out-
side the masked regions. For
video depth maps (Algorithm 2),
we employ a threshold-based ap-
proach. Using depth maps D ex-
tracted from videos, pixels with
brightness values between lower
and upper thresholds (tl ≤ d ≤ tu) are animated by sampling a noise pattern N with a time-varying
offset (y + vt mod h), while pixels outside this range remain static. This creates the illusion that
brighter regions (typically foreground objects) are moving while darker regions (typically back-
ground) remain static. The noise patterns are generated using binary values (0 or 255) in square
blocks of variable size. We used different speckle sizes ranging from 1 × 1 to 3 × 3 pixels to
investigate the effect of noise granularity on perception. For each speckle size, we also varied the
noise density - the probability that a block is white versus black - using values of 10%, 30%, 50%, and
90%. These noise patterns arranged in pixel blocks create optimal perceptual conditions for human
viewers while remaining challenging for vision language models. To ensure seamless animation,
the noise patterns are made tileable by copying edge pixels to the opposite boundaries. All videos
maintain consistent technical specifications: 960× 540 pixel resolution, with an average duration
of 7.11 seconds (ranging from 1.0 to 35.0 seconds) and an average of 333.5 frames per video. Text
videos have a consistent duration of around 4 seconds; however, videos of dynamic scenes are longer,
ranging up to 35 seconds. Figure 2 illustrates the structure of the data set and the encoding patterns in
categories. We used binary masks for the images using SAM2 (Ravi et al., 2024). For videos, depth
maps are extracted using Depth Anything V2 (Yang et al., 2025a) and Video Depth Anything (Chen
et al., 2025a) from the LaSOT (Fan et al., 2019) and OTB2015 (Wu et al., 2015) datasets.

3.3 DATA STATISTICS

SpookyBench comprises 451 videos in three distinct categories, each requiring purely temporal
reasoning for content identification. The dataset is distributed as follows: Text (46.6%, 210 videos),
Object Images (40.8%, 184 videos) and Dynamic Scenes (12.6%, 57 videos). This distribution
ensures comprehensive coverage of different temporal perception challenges while maintaining a
natural frequency distribution that reflects real-world scenarios. Additionally, more dataset can be
generated indefinitely through the data generator on our project page, thus the dataset size is essentially
unlimited. The “Text” category contains common English words rendered through temporal noise
patterns, enabling evaluation of models’ ability to identify linguistic content through purely temporal
cues. The “Object Images” category presents single objects extracted from high-quality images using
segmentation techniques (Ravi et al., 2024), encoded with the same temporal animation approach. It
also contains a synthetic silhouette of simple objects generated using DALL-E 3 (Betker et al., 2023)
and flux (Labs, 2024).
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3.3.1 ANALYSIS OF TEMPORAL METRICS

To ensure a rigorous quantification of the temporal information present in each video, we analyzed
five key 2. SNR metrics that capture different aspects of the complexity and perceptibility of
temporal patterns in SpookyBench, as shown in Table. These metrics provide insight into why
temporal patterns might be visible to humans but challenging to detect by computational models.

Figure 3: Noise generation process: (Top) masks ap-
plied for dynamic noise video generation, (Mid) word-
specific mask, and (Bottom) depth map of video frame
used for constructing noise-overlaid stimulus.

Basic SNR measures signal-to-noise ra-
tio in decibels:

SNRB = 10 log10

(
PS

PN

)
(1)

where PS = E[∥∇F∥2] is motion bound-
ary energy derived from spatial gradients
of optical flow field F(x, y) = (Fx, Fy),
and PN = Var(I0) is variance of the static
frame I0.

Perceptual SNR incorporates frequency-
dependent visual sensitivity:

SNRP = 10 log10

(
∥H(B)⊙W∥2

∥H(N)⊙W∥2

)
(2)

where B is the average motion boundary
strength, N is the static noise frame, H
is the 2D Fourier transform, ⊙ denotes
element-wise multiplication, and W (f) = f · e−f/f0 is the contrast sensitivity weighting func-
tion with peak f0 ≈ 0.1 cycles/pixel.

Temporal Coherence SNR quantifies motion consistency:

SNRT = 10 log10

(
Var(C)

E[Varlocal(C)]

)
(3)

where C = e−Varθ(F) ·1(∥F∥ > τ) is the directional coherence map, Varθ computes circular variance
of flow direction angles over time, 1 is indicator function, τ is magnitude threshold, and Varlocal
computes variance over small spatial neighborhoods.

Motion Contrast SNR measures foreground-background motion differentiation:

SNRM = 10 log10

(
∥µM − µB∥2
1
2 (σ

2
M + σ2

B)

)
(4)

where µM = E[F | M ] and µB = E[F | ¬M ] are mean flow vectors within mask region M and
background region ¬M respectively, σ2

M = E[∥F − µM∥2 | M ] and σ2
B = E[∥F − µB∥2 | ¬M ]

are corresponding motion variances. The mask M is estimated from the motion boundaries.

The distribution of these metrics reveals why current vision models struggle with SpookyBench:
they lack mechanisms to leverage temporal coherence (particularly high in Dynamic Scenes, 21.91 ±
5.76 dB) and motion contrast (negative for Dynamic Scenes, -2.20 and -3.18 dB), while text stimuli
benefit from higher basic SNR (-39.27 ± 1.58 dB), explaining the observed performance gap.

3.3.2 BINARY SNR THRESHOLD EFFECT IN DETECTION

Our analysis revealed a critical binary threshold phenomenon in detecting text within dynamic
noise videos. The words exhibited negligible detection (∼0%) below 2.5dB SNR, but jumped to
85.7% accuracy above this threshold, displaying an abrupt rather than gradual transition as show in
4. Prompts performed best (40% accuracy), with Chain-of-Thought reasoning improving general
identification tasks compared to direct prompting. This phenomenon parallels medical imaging
diagnostics, where pathologies like microcalcifications in mammography become either entirely

6
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Algorithm 1 Content Mask Animation

1: Input: Content mask M , velocity v
2: Output: Animated frame Ft

3: Generate noise patterns Nbg , Nfg

4: for each pixel (x, y) do
▷ Check pixel’s mask status

5: if M(x, y) then
6: Ft(x, y)← Nfg(x, y + vt mod h)

▷ Foreground
7: else
8: Ft(x, y)← Nbg(x, y − vt mod h)

▷ Background
9: end if

10: end for

Algorithm 2 Video Depth Map Animation

1: Input: Depth map D, thresholds (tl, tu),
velocity v

2: Output: Animated frame Ft

3: Generate noise pattern N
4: for each pixel (x, y) do
5: d← brightness from D(x, y)
6: if tl ≤ d ≤ tu then
7: Ft(x, y)← N(x, y + vt mod h)

▷ Moving noise
8: else
9: Ft(x, y)← N(x, y) ▷ Static noise

10: end if
11: end for

visible or invisible based on specific SNR thresholds. The implications are significant: unlike
perceptual phenomena that degrade gradually with noise, text detection functions as a step function,
creating vulnerabilities in safety-critical applications. Just as radiologists cannot diagnose what
remains invisible, language models cannot identify text below certain noise thresholds, leading to
false certainties and potential catastrophic performance drops with minimal noise increases. This
characteristic creates particular concerns for autonomous vehicles reading road signs or medical
systems interpreting labels, while also exposing systems to adversarial attacks where slight SNR
manipulations could render text completely undetectable.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models. We evaluated SpookyBench on both open source models (Video-LLaVA (Zhang et al.,
2024b), LLaVA-NeXT-Video (Li et al., 2024c), TimeChat (Ren et al., 2024), InternVL2 (Chen et al.,
2024f), Qwen2-VL (Wang et al., 2024b), Qwen2.5-VL (Bai et al., 2025) etc.) and closed source
models (GPT-4o (Hurst et al., 2024), Gemini 2.0 Flash (DeepMind, 2025), and Gemini 1.5 Pro (Team
et al., 2024). We design different prompts for each category. All the prompts are included in the
Appendix C. All prompts instruct models to respond with only 1-5 words identifying the content.
We input sequences of multiple video frames simultaneously for models that do not directly support
video input.

Setup. We evaluate model performance using exact match accuracy between model responses and
our labels. For the Text categories, each video has a single correct label yi. For Object Images
and Dynamic Scenes categories, we define a set of acceptable labels Yi = {yi1, yi2, . . . , yin} to
account for semantic ambiguity. For example, a video showing “a man playing basketball” accepts
responses such as “playing basketball,” “man”, “human”, or “woman playing basketball” as correct.
Formally, for each video i, given a model response ri and corresponding label or set of labels Li

(where Li = yi for Text or Li = Yi for objects and dynamic scenes), we calculate the accuracy
as: Accuracy = 1

N

∑N
i=1 1(ri ∈ Li), where 1 is the indicator function that equals 1 if ri ∈ Li

and 0 otherwise, and N is the total number of videos in the evaluation set. Despite this flexible
evaluation protocol that accepts multiple valid responses for certain categories, none of the models
tested produced responses that matched any of the acceptable options.

4.2 HUMAN EVALUATION

To evaluate human performance against our benchmark, we designed and conducted a controlled
experiment involving human participants. We recruited a total of six human participants for
this study, each independently evaluating all videos. Participants were instructed to view each
video carefully and subsequently record their responses on an anonymized website in the fol-
lowing structured form: 1) Perceptibility Rating (1-5): Participants rated how perceptible the
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presented word, shape, or object was, ranging from 1 (very difficult to perceive) to 5 (very
clearly perceptible). This measure provided insights into the clarity and ease of visual grouping.

Annotator Text Images Dynamic Scenes
Acc(%) Perc(1-5) Acc(%) Perc(1-5) Acc(%) Perc(1-5)

Annotator 1 99.5 4.7 99.5 4.7 96.5 4.3
Annotator 2 98.6 4.8 98.4 4.9 91.2 4.0
Annotator 3 99.5 4.9 97.2 4.5 94.7 4.4
Annotator 4 97.6 4.6 96.7 4.5 91.2 4.0
Annotator 5 100.0 4.8 99.5 4.7 99.0 4.7
Annotator 6 98.0 4.7 97.8 4.5 93.0 4.2

Mean 98.9±0.7 4.8±0.0 98.2±1.1 4.7±0.1 94.3±3.1 4.3±0.1

Table 3: Human evaluation results showing accuracy and
perceptibility ratings across different visual categories in
SpookyBench.

2) Words/Objects Identification:
Participants typed out exactly what
they identified in the video. This re-
sponse directly tested the accuracy of
their visual perception. We collect and
evaluate participant responses using
exact match criteria based on our pre-
defined labels. Similar to the evalu-
ation accuracy of the video language
models for the categories of Object
Images and Dynamic Scenes, we ac-
cepted multiple correct responses to avoid ambiguity. Table 3 shows the average precision and
the perception rating of different annotators for different categories. The results show high human
performance across all categories: participants correctly identified Words with 98% accuracy, while
Object Images had 92% accuracy. We also observe a very high perceptibility rating (4.8 for texts and
4.3 and 4.0 for Object images and Dynamic scenes, respectively) across all three categories. This
shows that the human brain can easily extract coherent information in videos, which seems to be very
difficult for video language models.

4.3 IMPACT OF FRAME RATES ON HUMAN AND MODEL ACCURACY

To examine whether temporal sampling affects performance, we evalu-
ated both humans and VLMs across frame rates from 1 to 30 FPS.

Category 1 FPS 5 FPS 10 FPS 20 FPS 30 FPS
Images 0.0 12.5 80.0 95.8 97.5
Words 0.0 10.8 35.8 95.8 95.8
Videos 0.0 15.0 62.5 93.3 93.3

Average 0.0 12.8 59.4 95.0 95.6

Table 4: Human accuracy (%) across different content
categories at varying frame rates. Results are averaged
across 3 participants on 120 videos (40 per category).

Three human participants tested 120 ran-
domly sampled videos (40 per category) at
1, 5, 10, 20, and 30 FPS, while four VLMs
(Qwen2-VL-7B, Qwen2.5-VL-7B, Qwen2.5-
VL-3B, and GPT-4o) were evaluated using
identical temporal downsampling. As shown
in Tables 4 and 5, human accuracy remains
above 95% at 20-30 FPS, degrades to 59.4%
at 10 FPS, and drops to 0% at 1 FPS. In con-
trast, all VLMs achieved 0% accuracy across
all frame rates. This demonstrates that tem-
poral sampling frequency does not explain
the performance gap between humans and current video-language models, indicating that VLMs lack
the architectural mechanisms to process information conveyed through temporal patterns regardless
of temporal resolution.

4.4 IMPACT OF FINETUNING ON MODEL ACCURACY

To investigate whether the performance gap stems from out-of-distribution data rather than archi-
tectural limitations, we finetuned two state-of-the-art video-language models on SpookyBench:
InternVL2.5-8B and Qwen2-VL-7B. Both models were trained on 400 SpookyBench videos for 10
epochs using LlamaFactory (Zheng et al., 2024). Despite this targeted training on the exact task and
data distribution, both models maintained 0% accuracy on the test set. This result demonstrates that
the failure to decode temporal patterns is not attributable to domain mismatch or insufficient exposure
to the task, but rather indicates a fundamental architectural inability to process information conveyed
purely through motion without relying on spatial content.

5 RESULTS AND DISCUSSION

Table 1 presents the accuracy scores on the SpookyBench benchmark. Human participants achieved
98% accuracy under all test conditions. In contrast, all Video-VLMs scored 0% regardless of
the type, size, or origin of the model. This pattern was held across all three task categories in
our benchmark: temporal symbol recognition, temporal sequence understanding, and temporal
pattern reasoning. We tested two different prompting strategies to determine if performance lim-
itations could be overcome through interface modifications. First, we used direct prompts with
basic instructions asking the models to identify content in the videos. Next, we implemented
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chain-of-thought prompts with explicit guidance to focus on temporal patterns rather than individ-
ual frames. As shown in Table 1, none of these approaches yielded improvements. All models
maintained 0% accuracy across all prompting conditions, suggesting that the limitation is inher-
ent in the model architectures rather than a matter of optimization or prompt design. Examina-
tion of model output revealed consistent failure modes when processing SpookyBench videos.

Model Qwen2-VL-7B Qwen2.5-VL-7B Qwen2.5-VL-3B GPT-4o
Accuracy (%) 0.0 0.0 0.0 0.0

Table 5: VLM accuracy (%) averaged across all tested frame rates (1-30
FPS).

Across all models
tested, we observed
attempts to extract
information from
individual frames
rather than temporal
patterns. When ex-
plicitly prompted to consider temporal changes, the models acknowledged the instruction but
still failed to identify the patterns. Fine-tuned models produced outputs that mimicked training
examples without correctly identifying test patterns. In particular, specialized temporal models
like TimeChat (Ren et al., 2024), which were specifically designed for fine-grained temporal
understanding, failed at the same rate as general-purpose models. This suggests that the limitation
extends beyond general Video-VLMs to models explicitly optimized for temporal tasks.

Architectural Implications for Vision Models. Distinctive signal profiles in SpookyBench
demonstrate a fundamental gap between human and machine perception of temporal in-
formation. Current vision models struggle with SpookyBench stimuli primarily be-
cause they: (1) lack robust temporal integration mechanisms that could leverage high
temporal coherence, (2) process information primarily through spatial rather than tempo-
ral channels, and (3) fail to perform motion-based figure-ground segregation effectively.
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Figure 4: Analysis of effects of SNR on detecting words with
direct prompting and chain of thought prompting.

The consistently high temporal co-
herence values in Dynamic Scenes,
coupled with their poor static-frame
metrics, suggest that successful mod-
els must implement recurrent process-
ing or attention mechanisms that op-
erate across extended temporal win-
dows rather than focusing on frame-
level feature extraction. The negative
motion contrast observed in Dynamic
Scenes further indicates that models
require more sophisticated motion seg-
regation capabilities to match human
perceptual abilities in dynamic visual
environments. These findings high-
light the need for architectural inno-
vations that specifically address tem-
poral processing limitations. Future
models should incorporate dedicated
temporal coherence pathways, motion contrast analysis, and longer temporal integration windows to
bridge the perception gap demonstrated by SpookyBench.
6 CONCLUSION

In this paper, we introduced SpookyBench, a novel benchmark designed to evaluate the temporal
reasoning capabilities of video-language models by isolating temporal understanding from spatial
comprehension. Our experiments revealed a striking performance gap: while humans effortlessly
achieve 98% accuracy on tasks requiring pure temporal pattern recognition, all tested models, in-
cluding state-of-the-art open and closed-source systems, fail completely with 0% accuracy. This
consistent failure across different model architectures, scales, and prompting strategies highlights a
fundamental limitation in current video understanding approaches, which typically process spatial
features first and then establish temporal connections, rather than integrating spatio-temporal informa-
tion simultaneously. The benchmark effectively exposes the time blindness of current architectures
that remain hidden in conventional evaluation settings where spatial features can provide shortcuts
to correct answers. We hope that SpookyBench will inspire the development of next-generation
temporal-connected models.
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ETHICS STATEMENT

This work introduces SpookyBench, a synthetic benchmark for evaluating temporal understanding
in video-language models, and does not involve collection of personally identifiable information or
creation of harmful content. The human evaluation component involved six volunteer participants
who provided informed consent and were free to withdraw at any time. All participant responses were
anonymized and stored securely. We used publicly available datasets (LaSOT, OTB2015) and models
under their original licenses, and evaluated both open-source and commercial VLMs following
their respective usage policies. While exposing fundamental limitations in current video-language
models may impact their deployment in safety-critical applications, we believe this transparency is
essential for responsible AI development. The synthetic nature of our dataset eliminates concerns
about data consent or privacy violations. We acknowledge that improved temporal understanding
capabilities could potentially be misused, but the same capabilities are fundamental for beneficial
applications in medical imaging, autonomous systems, and accessibility technologies. We encourage
responsible development and deployment practices, including human oversight in critical applications
and adherence to existing AI safety guidelines.

REPRODUCIBILITY STATEMENT

SpookyBench is generated using fully deterministic algorithms detailed in Algorithms 1 and 2, with
specific parameters for noise generation, motion patterns, and video specifications clearly documented.
We will release: (i) complete code for dataset generation with all hyperparameters (velocity values,
noise densities, speckle sizes, threshold ranges); (ii) the full SpookyBench dataset with 451 videos
across three categories; (iii) exact evaluation prompts for both direct and chain-of-thought strategies;
(iv) model evaluation scripts with specific version numbers and inference parameters; and (v) fine-
tuning configurations used with LlamaFactory. All SNR metrics are computed using the mathematical
formulations provided in Section 3.3. We document the exact model versions evaluated (e.g.,
Qwen2.5-VL-7B-Instruct, InternVL2.5-8B) and will provide environment specifications including
framework versions, hardware details, and computational requirements. The human evaluation
methodology, including participant instructions and response collection protocols, is fully documented
to enable replication of the human baseline results.
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GM Ramı́rez-Ávila, J Kurths, and Jean-Louis Deneubourg. Fireflies: A paradigm in synchronization.
Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives, pp. 35–64, 2018.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. arXiv preprint arXiv:2408.00714, 2024.

Shuhuai Ren, Linli Yao, Shicheng Li, Xu Sun, and Lu Hou. Timechat: A time-sensitive multimodal
large language model for long video understanding. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14313–14323, 2024.

Xiaoqian Shen, Yunyang Xiong, Changsheng Zhao, Lemeng Wu, Jun Chen, Chenchen Zhu, Zechun
Liu, Fanyi Xiao, Balakrishnan Varadarajan, Florian Bordes, et al. Longvu: Spatiotemporal adaptive
compression for long video-language understanding. arXiv preprint arXiv:2410.17434, 2024.

Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Haozhe
Chi, Xun Guo, Tian Ye, Yanting Zhang, et al. Moviechat: From dense token to sparse memory for
long video understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 18221–18232, 2024.

Yunlong Tang, Jing Bi, Siting Xu, Luchuan Song, Susan Liang, Teng Wang, Daoan Zhang, Jie An,
Jingyang Lin, Rongyi Zhu, et al. Video understanding with large language models: A survey.
arXiv preprint arXiv:2312.17432, 2023.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Haibo Wang, Zhiyang Xu, Yu Cheng, Shizhe Diao, Yufan Zhou, Yixin Cao, Qifan Wang, Weifeng
Ge, and Lifu Huang. Grounded-videollm: Sharpening fine-grained temporal grounding in video
large language models. arXiv preprint arXiv:2410.03290, 2024a.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024b.

Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
arXiv preprint arXiv:2409.18869, 2024c.

Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Guo Chen, Baoqi Pei, Rongkun Zheng,
Zun Wang, Yansong Shi, et al. Internvideo2: Scaling foundation models for multimodal video
understanding. In European Conference on Computer Vision, pp. 396–416. Springer, 2024d.

Yi Wang, Xinhao Li, Ziang Yan, Yinan He, Jiashuo Yu, Xiangyu Zeng, Chenting Wang, Changlian
Ma, Haian Huang, Jianfei Gao, et al. Internvideo2.5: Empowering video mllms with long and rich
context modeling. arXiv preprint arXiv:2501.12386, 2025.

Yueqian Wang, Xiaojun Meng, Yuxuan Wang, Jianxin Liang, Jiansheng Wei, Huishuai Zhang, and
Dongyan Zhao. Videollm knows when to speak: Enhancing time-sensitive video comprehension
with video-text duet interaction format. arXiv preprint arXiv:2411.17991, 2024e.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yuetian Weng, Mingfei Han, Haoyu He, Xiaojun Chang, and Bohan Zhuang. Longvlm: Efficient
long video understanding via large language models. In European Conference on Computer Vision,
pp. 453–470. Springer, 2024.

Marc Wittmann. The experience of time: neural mechanisms and the interplay of emotion, cognition
and embodiment. Philosophical Transactions of the Royal Society B: Biological Sciences, 364
(1525):1809–1813, 2009.

Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda
Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified multimodal
understanding and generation. arXiv preprint arXiv:2410.13848, 2024.

Wenhao Wu, Zhun Sun, and Wanli Ouyang. Revisiting classifier: Transferring vision-language
models for video recognition. In Proceedings of the AAAI conference on artificial intelligence,
volume 37, pp. 2847–2855, 2023.

Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object tracking benchmark. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 37(9):1834–1848, 2015. doi: 10.1109/TPAMI.2014.
2388226.

Lin Xu, Yilin Zhao, Daquan Zhou, Zhijie Lin, See Kiong Ng, and Jiashi Feng. Pllava: Parameter-free
llava extension from images to videos for video dense captioning. arXiv preprint arXiv:2404.16994,
2024a.

Yifang Xu, Yunzhuo Sun, Zien Xie, Benxiang Zhai, and Sidan Du. Vtg-gpt: Tuning-free zero-shot
video temporal grounding with gpt. Applied Sciences, 14(5):1894, 2024b.

Antoine Yang, Arsha Nagrani, Paul Hongsuck Seo, Antoine Miech, Jordi Pont-Tuset, Ivan Laptev,
Josef Sivic, and Cordelia Schmid. Vid2seq: Large-scale pretraining of a visual language model for
dense video captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10714–10726, 2023.

Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
Zhao. Depth anything v2. Advances in Neural Information Processing Systems, 37:21875–21911,
2025a.

Zhenyu Yang, Yuhang Hu, Zemin Du, Dizhan Xue, Shengsheng Qian, Jiahong Wu, Fan Yang,
Weiming Dong, and Changsheng Xu. Svbench: A benchmark with temporal multi-turn dialogues
for streaming video understanding, 2025b. URL https://arxiv.org/abs/2502.10810.

Shoubin Yu, Jaemin Cho, Prateek Yadav, and Mohit Bansal. Self-chained image-language model for
video localization and question answering. Advances in Neural Information Processing Systems,
36:76749–76771, 2023.

Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong Leng,
Yuming Jiang, Hang Zhang, Xin Li, et al. Videollama 3: Frontier multimodal foundation models
for image and video understanding. arXiv preprint arXiv:2501.13106, 2025.

Haotian Zhang, Mingfei Gao, Zhe Gan, Philipp Dufter, Nina Wenzel, Forrest Huang, Dhruti Shah,
Xianzhi Du, Bowen Zhang, Yanghao Li, et al. Mm1. 5: Methods, analysis & insights from
multimodal llm fine-tuning. arXiv preprint arXiv:2409.20566, 2024a.

Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
instruction tuning with synthetic data. arXiv preprint arXiv:2410.02713, 2024b.
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APPENDIX

A USE OF LARGE LANGUAGE MODELS

An LLM was used to help solely polish the writing of the paper, while all methods, ideas and
experiments were prepared and carried out entirely by the authors.

B DATA STATISTICS

Figure 5 shows the data distribution explained in the section 3.3.
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Figure 5: Distribution of the SpookyBench dataset across three video categories. Each category
represents a different type of content encoded through temporal noise patterns: Text, Object Images,
and Dynamic Scenes.

C PROMPT DESIGN FOR EVALUATION

Prompt design significantly affects the performance of vision-language models (Jin et al., 2021;
Gu et al., 2023). Considering this fact, we performed careful prompt engineering to ensure fair
and comprehensive evaluation. We developed a systematic prompting methodology that builds on
established principles while introducing novel elements specific to temporal pattern recognition.

C.1 PROMPT DESIGN PRINCIPLES

We designed our prompts based on three key principles:

1. Specificity: Each prompt explicitly states that the content is encoded through temporal
patterns to direct attention to motion-based cues rather than static frame analysis.

2. Category targeting: We created specialized prompts for each content category (text, objects,
dynamic scenes) to account for the different perceptual mechanisms involved in each.

3. Constrained response format: All prompts request brief, specific answers (1-3 words) to
ensure objective evaluation and minimize the influence of language generation capabilities.
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Text-Specific Direct Prompt

This video contains text encoded through temporal patterns. What specific word or phrase do
you see? The text is only visible through the temporal changes in the video. Please respond
with just the text you identify.

Object-Specific Direct Prompt

This video contains a common object encoded through temporal patterns. Individual frames
may appear as noise, but an object is visible through the temporal changes. What object do
you see? Please respond with just the object name.

Dynamic Scenes-Specific Direct Prompt

This video contains movement or action encoded through temporal patterns. The content
is only visible through temporal changes, not in individual frames. What is being shown?
Please respond with just 1-3 words describing what you see.

Figure 6: Category-specific direct prompts for the SpookyBench benchmark. These prompts test
immediate pattern recognition without step-by-step guidance.

Text-Specific CoT Prompt

This video encodes text through temporal patterns. To identify it:
1. Look for areas where opposing motion patterns reveal letters
2. Focus on the overall word or phrase that emerges
3. Read the specific text content

Please respond with just the text you identify.

Figure 7: Category-specific chain-of-thought prompts for the SpookyBench benchmark. These
prompts provide explicit step-by-step guidance to test structured temporal reasoning.

C.2 DIRECT VS. CHAIN-OF-THOUGHT PROMPTING

We implemented two distinct prompting strategies to investigate different aspects of temporal under-
standing.

• Direct prompts test immediate pattern recognition without explicit guidance, similar to how
humans naturally perceive temporal patterns without conscious step-by-step processing.

• Chain-of-Thought (CoT) prompts provide explicit steps to guide attention and processing,
testing whether models could benefit from structured reasoning about temporal patterns.

The figures below present our category-specific prompts for both strategies, which were carefully
optimized through pilot testing to maximize clarity while maintaining consistent evaluation criteria
across categories.

C.3 PROMPT EFFECTIVENESS ANALYSIS

Our experiments revealed that, surprisingly, neither prompt strategy improved model performance
on the SpookyBench tasks. All tested models achieved 0% accuracy regardless of prompt type,
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Object-Specific CoT Prompt

This video encodes an object through temporal patterns. To identify it:
1. Look for areas where motion patterns reveal object contours
2. Focus on the overall silhouette and form that emerges
3. Determine what specific object is represented

Please respond with just the object name.

Dynamic Scenes-Specific CoT Prompt

This video encodes movement through temporal patterns. To identify it:
1. Look for areas where temporal changes reveal motion
2. Focus on the action or activity that emerges from the pattern
3. Identify the specific movement or object in motion

Please respond with just 1-3 words describing what you see.

Figure 8: Additional category-specific chain-of-thought prompts for object images and dynamic
scenes.

indicating a fundamental limitation in their ability to process purely temporal information rather than
a prompt engineering issue.

The complete ineffectiveness of even carefully engineered prompts across all tested models further
strengthens our argument that current video-language models lack the fundamental architectural
mechanisms needed for processing purely temporal patterns.

D IMPACT OF FPS

To test the impact of frame rate on both human and VLM performance, we conducted additional
experiments examining how temporal sampling affects the ability to perceive information encoded
purely through motion patterns. This analysis addresses a critical question: could the performance gap
between humans and VLMs be attributed to differences in temporal sampling rather than fundamental
architectural limitations?

We evaluate both human participants and video-language models across multiple frame rates ranging
from 1 to 30 FPS. For the human study, three participants from our human annotator were tested
on 60 randomly sampled videos (15 from each category) at frame rates of 1, 5, 10, 20, and 30 FPS.
For the VLM evaluation, we test four state-of-the-art models: Qwen2-VL-7B, Qwen2.5-VL-7B,
Qwen2.5-VL-3B, and GPT-4o. We applied the same temporal downsampling approach, ensuring that
models received the exact number of frames corresponding to each target frame rate.

Table 4 presents the human performance results across different frame rates and content categories.
Human accuracy remains remarkably robust at higher frame rates, maintaining over 95% accuracy
at 20-30 FPS across most categories. Performance begins to degrade at 10 FPS, dropping to 59.4%
on average, with particularly pronounced effects on the Words category (35.8%). At extremely low
frame rates (1-5 FPS), human performance drops substantially, reaching only 0% at 1 FPS.

In stark contrast, Table 5 shows that all tested VLMs achieved 0% accuracy regardless of frame
rate. This consistent failure across the entire range of tested frame rates, from 1 FPS to 30 FPS,
demonstrates that temporal sampling frequency is not the limiting factor for current video-language
models.

These results reveal a fundamental difference in how humans and current VLMs process temporal
information. While human performance degrades gracefully as frame rate decreases,particularly

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

SNR Metric Value (dB)
Basic SNR -49.07
Perceptual SNR -55.02
Temporal Coherence SNR 7.18
Motion Contrast SNR 14.24
Combined SNR -20.61

Table 6: Signal-to-Noise Ratio Analysis for Ant Silhouette Video

below 10 FPS where temporal patterns become harder to perceive,VLMs show no improvement even
at optimal frame rates. This finding effectively rules out temporal undersampling as an explanation
for the observed performance gap. The graceful degradation in human performance at lower frame
rates aligns with our understanding of human temporal perception, where motion detection requires
sufficient temporal resolution. However, the complete insensitivity of VLMs to frame rate variations
suggests that these models are not engaging with temporal information in any meaningful way,
regardless of how much temporal data is provided.

This analysis strengthens our core argument that current video-language models lack the fundamental
architectural mechanisms needed to process information conveyed purely through temporal patterns,
independent of spatial content quality or temporal sampling considerations.

E TEMPORAL MOTION COHERENCE ANALYSIS

Visual content in noise presents a significant challenge for perception. However, temporal coher-
ence and motion boundaries provide powerful cues that enable the human visual system to extract
meaningful shapes even from extremely noisy stimuli. We present a comprehensive analysis of
these phenomena using our SpookyBench dataset, specifically examining how temporal information
facilitates shape perception in high-noise conditions.

E.1 MOTION-BASED PERCEPTION IN NOISY ENVIRONMENTS

Our analysis demonstrates that even when individual frames contain low signal-to-noise ratios (SNR),
temporal integration of motion information allows for robust shape perception. Figure 9 shows the
motion direction coherence map of an ant silhouette, revealing how consistent motion patterns across
frames enable object identification despite significant noise.

The importance of temporal integration for shape perception is further demonstrated in Figure 11,
which shows both the average motion boundary strength and its overlay on a noisy frame. Motion
boundaries emerge clearly despite the extreme noise levels in individual frames (measured at -49.07
dB basic SNR), highlighting the importance of temporal information for noisy visual content.

E.2 SIGNAL-TO-NOISE RATIO ANALYSIS

To quantify the perceptual phenomenon observed in our stimuli, we conducted detailed SNR analysis.
Table 6 presents the results for the ant silhouette video shown in the figures above. Notably, while the
basic and perceptual SNR metrics show extremely low values (-49.07 dB and -55.02 dB respectively),
the temporal coherence SNR and motion contrast SNR reveal significantly higher values (7.18 dB
and 14.24 dB), demonstrating that temporal information provides crucial signal enhancement that
supports human perception.

This analysis provides important insights into how the human visual system utilizes temporal infor-
mation to extract meaningful content from extremely noisy visual stimuli. The stark contrast between
the negative frame-based SNR values and the positive temporal SNR metrics directly supports our
hypothesis that temporal integration plays a crucial role in human perception of noisy visual content.
These findings align with the high human evaluation accuracy reported in the main paper, where
participants achieved over 95% accuracy for Object Images despite the extreme noise levels in
individual frames.
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Figure 9: Motion Direction Coherence visualization for the ant silhouette video. Yellow regions
(high coherence value of 1.0) indicate areas where motion direction remains consistent across frames,
while blue regions (coherence value of 0.0) represent the silhouette itself.

(a) Estimated object mask extracted from temporal
motion coherence.

(b) Estimated mask overlay (red) on a single noise
frame.

Figure 10: Shape extraction through temporal integration. These visualizations demonstrate how
object shape can be recovered from noisy video sequences.

F ADDITIONAL IMAGES

We present additional images from the analysis of temporal motion coherence across all categories in
SpookyBench. Figures 12, 13, 14, and 15 show motion boundaries, boundary overlays, estimated
masks, and mask overlays for different examples in our dataset, demonstrating the varying effec-
tiveness of temporal integration across different content types. In Figure 15, we observe that the
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(a) Average motion boundary strength across frames.
(b) Motion boundaries (teal) overlaid on a single
noise frame.

Figure 11: Motion boundary analysis demonstrating how temporal integration can extract object
boundaries despite extremely noisy individual frames.

temporal motion coherence based method does not perform effectively for the case of videos. Since
the Dynamic Scenes category contains real-life videos with complex motion patterns, several factors
contribute to the reduced clarity observed in dynamic content:

1. Distributed Motion Patterns: Human movement involves multiple articulated body parts
moving in different directions simultaneously, creating competing motion signals that
fragment coherent boundaries.

2. Non-rigid Deformation: Dynamic content involves continuous shape changes throughout
motion sequences, making consistent boundary extraction significantly more challenging
than static objects.

3. Complex Temporal Dynamics: Mechanical motions in examples like Plane 2 and Bicy-
cle 10 create temporal discontinuities that disrupt motion coherence essential for shape
perception.

This comprehensive analysis demonstrates the systematic nature of temporal pattern recognition
challenges across all SpookyBench categories, with each content type presenting distinct perceptual
and computational difficulties that current video-language models fail to address.
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Figure 12: Temporal motion coherence analysis for Images category (Part 1). Each row shows motion
boundaries, boundary overlay, estimated mask, and mask overlay for: Cycle, Deer, Dolphin, and
Duck (top to bottom).

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 13: Temporal motion coherence analysis for Images category (Part 2). Each row shows motion
boundaries, boundary overlay, estimated mask, and mask overlay for: Kangaroo, Hammer, T-Rex,
and Mouse (top to bottom).
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Figure 14: Temporal motion coherence analysis for Words category. Each row shows motion
boundaries, boundary overlay, estimated mask, and mask overlay for: Gold, Laser Beams Cross,
Ancient Olive Trees, and Artificial Minds Think (top to bottom).
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Figure 15: Temporal motion coherence analysis for Videos category. Each row shows motion
boundaries, boundary overlay, estimated mask, and mask overlay for: Human 6, Man 1, Plane 2, and
Bicycle 10 video sequence(top to bottom).
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