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Abstract
Machine learning models are often personalized
with categorical attributes that define groups. In
this work, we show that personalization with
group attributes can inadvertently reduce perfor-
mance at a group level – i.e., groups may receive
unnecessarily inaccurate predictions by sharing
their personal characteristics. We present for-
mal conditions to ensure the fair use of group
attributes in a prediction task, and describe how
they can be checked by training one additional
model. We characterize how fair use conditions
be violated due to standard practices in model de-
velopment, and study the prevalence of fair use
violations in clinical prediction tasks. Our results
show that personalization often fails to produce
a tailored performance gain for every group who
reports personal data, and underscore the need
to evaluate fair use when personalizing models
with characteristics that are protected, sensitive,
self-reported, or costly to acquire.

1. Introduction
Machine learning models are often used to assign predic-
tions to people – be it to predict if a patient has a rare
disease, the risk that a consumer will default on a loan, or
the likelihood that a student will matriculate.

Models in such applications are often personalized to tar-
get heterogeneous subgroups. In the most common ap-
proach, models are trained with group attributes – i.e.,
categorical attributes that define groups. In consumer fi-
nance, credit scores may include group attributes that are
protected such as age_group [21]. In medicine, clinical
prediction models may include group attributes that are sen-
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sitive (e.g., AIDS as in the SAPS II Score), self-reported (e.g.
sexual_practices as in the Denver HIV Risk Score), or
costly to acquire (e.g., Brief Psychiatry Rating Scale).

The widespread use of group attributes in modern pre-
diction models reflects a belief that personalization can
only improve performance. In effect, practitioners who de-
velop clinical prediction models include protected attributes
like race because they believe it can only improve perfor-
mance [53]. Likewise, individuals report sensitive attributes
like sexual_practices to a self-reported screening tool
because they expect to receive more accurate predictions.

In this work, we formalize these expectations through a
principle that we call fair use – i.e., that every person who
reports personal characteristics should expect receive a tai-
lored gain in performance in return. Given a model that
is personalized with group attributes, we then test that it
satisfies these minimal expectations. First, by testing that
every group expects more accurate predictions from a per-
sonalized compared to a generic model trained without their
group attributes. Next, by testing that the gains are tai-
lored, meaning that every group prefers their personalized
predictions to predictions personalized for any other group.

The vast majority of machine learning models are not de-
signed to ensure fair use (see Fig. 1). This result stems
from the fact that standard approaches to empirical risk min-
imization use group attributes to improve performance at
a population level. As we will show, the resulting models
may assign unnecessarily inaccurate predictions at the group
level due to routine decisions such as model specification
and model selection (see Fig. 2).

In practice, however, these fair use violations may inflict
harm. In clinical applications, for example, inaccurate pre-
dictions lead to worse decisions and health outcomes [88].
More broadly, these effects are silent and avoidable. Silent
as fair use violations would only draw attention if we were
to evaluate the gains of personalization for intersectional
groups. Avoidable because a fair use violation implies that a
group could receive better predictions from a generic model
or a personalized model for another group. Thus, one could
resolve a fair use violation by assigning predictions from
this better-performing model.
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Group Size Training Error Gain

g ng R(h0) Rg(h) ∆g(h, h0)

female, <30 48 38.1% 26.8% 11.3%
male, <30 49 23.9% 26.7% -2.8%

female, 30 to 60 304 30.3% 29.1% 1.2%
male, 30 to 60 447 15.4% 15.2% 0.2%

female, 60+ 123 19.3% 21.9% -2.6%
male, 60+ 181 11.0% 8.2% 2.8%

Total 1,152 20.4% 19.4% 1.0%

Figure 1: Personalization can reduce performance at the group
level. We train a personalized model hg and generic model h0

with logistic regression, personalizing hg with a one-hot encoding
of sex and age_group to screen for obstructive sleep apnea
(see the apnea dataset in Section 4). As shown, personalization
reduces training error at a population level from 20.4% to 19.4%
yet increases error for two groups: (female, 60+) and (male,
<30). These effects are also present on test data.

Our goal in this work is to expose this effect and lay the
foundations to address it. Our main contributions include:

1. We present formal conditions to ensure the fair use of
group attributes in prediction task. Our conditions reflect
collective preference guarantees that are necessary for
truthful self-reporting, and that can be tested by training
one additional model.

2. We characterize how empirical risk minimization with
group attributes can violate fair use. Our analysis in-
cludes counterexamples and sufficient conditions that
illustrate failure modes in model development and in-
form interventions to mitigate their effects.

3. We conduct a comprehensive empirical study on fair
use violations in clinical prediction tasks, showing their
prevalence across major model classes, personalization
techniques, and prediction tasks.

4. We present a case study on personalization for a model
trained to predict mortality for patients with acute kid-
ney injury. Our study shows how a fair use audit can
safeguard against incorrect “race correction" in clinical
prediction models, and presents targeted interventions
that reduce harm.

Related Work Personalization encompasses a broad
range of techniques that use personal data. Here, we use it to
describe techniques that target groups rather than individu-
als – i.e., “categorization" rather than “individualization" as
per the taxonomy of Fan & Poole [33]. Modern approaches
to personalization with group attributes use them to im-
prove population-level performance by, e.g., automatically
including higher-order interaction effects [12, 59, 86] or
recursively partitioning data [30, 13, 11, 10]. In practice,
few works measure the gains of personalization, and those
that do measure the gains at a population level rather over
the groups who provide personal data [see e.g., 48, 79].

We introduce conditions for models that use group attributes

Group Data Personalized Generic Gain

g n+
g n−g h Rg(h) h0 Rg(h0) ∆g(h, h0)

female, young 0 24 + 24 − 0 −24
male, young 25 0 + 0 − 25 25
female, old 25 0 + 0 − 25 25
male, old 0 27 − 0 − 0 0

Total 50 51 24 50 26

Figure 2: Stylized classification task where the best personalized
model reduces performance for a group due to model misspec-
ification. There are n+ = 50 positive and n− = 51 negative
examples. We train a personalized linear classifier with a one-hot
encoding of g ∈ {male,female} × {old,young}, and eval-
uate the gains to personalization with respect to a generic model
h0 without group attributes. Personalization reduces overall error
from 50 to 24. However, not all groups gain from personaliza-
tion: (young, female) receives less accurate predictions and
(old, male) receives no gain.

to assign more accurate predictions. Much work in algorith-
mic fairness discusses the need for models to account for
group membership [95, 29, 22, 56, 60, 91], observing that
it is otherwise impossible for a model to perform equally
well for all groups [42, 94, 96, 34, 2, 67, 19]. These results
highlight the need to account for group attributes in person-
alization. Nevertheless, methods to equalize performance
are ill-suited for personalization because they can equal-
ize performance by assigning less accurate predictions to
groups for whom the model performs well, rather than by
assigning more accurate predictions to groups for whom the
model performs poorly [60, 46, 73, 61, 62].

We build on the work of Ustun et al. [84], who propose the
preference guarantees of rationality and envy-freeness [see
also 95]. Their work develops a recursive decoupling al-
gorithm that uses preference guarantees to guide decou-
pling [c.f., 29, 3]. In contrast, we study these guarantees
as standalone conditions to ensure personalization without
harm. Our work complements an emerging stream on fair
use in prediction models [see e.g., 69, 47]. More broadly, it
highlights a practical application for preference-based no-
tions of fairness [95, 84, 55, 87, 27], and represents a new
use case to evaluate model performance across intersectional
groups [c.f., 52, 45, 39, 90].

2. Fair Use Conditions
We present formal conditions for the fair use of group at-
tributes in prediction tasks.

Preliminaries We start with a dataset (xi, yi, gi)
n
i=1,

where example i consists of a feature vector xi =
[xi,1, . . . , xi,d] ∈ Rd, a label yi ∈ Y , and k categorical
group attributes gi = [gi,1, . . . , gi,k] ∈ G1 × . . .× Gk = G.
We refer to gi as the group membership of person i. For ex-
ample, a female over 60 would have gi = [female, age ≥
60]. We let ng := |{i |gi = g}| denote the size of group g,
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and m := |G| denote the number of intersectional groups.

We use the data to train a personalized model with group
attributes h : X × G → Y; and a generic model that does
not h0 : X → Y . We train all models via ERM with a loss
function ` : Y × Y → R+, denoting the empirical and true
risks as R̂(h) and R(h), respectively. We assume that the
personalized and generic models represent the empirical risk
minimizers on datasets with group attributes (xi, yi, gi)

n
i=1

and without them (xi, yi)
n
i=1:

h ∈ argmin
h∈H

R̂(h) h0 ∈ argmin
h∈H0

R̂(h)

Here, H and H0 denote the class of personalized models
and generic models respectively.

We measure the gains of personalization for a personalized
model h for each group. As part of this evaluation, we mea-
sure how the model will perform for group g when they are
assigned the predictions personalized for a different group –
i.e., the predictions that they could receive by “misreport-
ing" their group membership as g′. Given a personalized
model h, we denote its empirical risk and true risk for group
g when they report g′ as:

R̂g(hg′) :=
1

ng

∑

i:gi=g

` (h(xi, g
′), yi)

Rg(hg′) := E [` (h(x, g′), y) | G = g] .

We use hg′ := h(·, g′) to denote a personalized model
where group attributes are fixed to g′.

We assume that each group prefers models that assign more
accurate predictions as measured in terms of true risk, and
evaluate the preferences of group g between h and h′ using
the gain measure: ∆g(h, h′) := Rg(h′)−Rg(h). This is a
plausible assumption in settings where models are used to
assign personalized predictions. It does not hold in settings
where individuals may prefer models that [see e.g., polar
prediction tasks 70].

As Collective Preference Guarantees In Definition 1,
we characterize the fair use of a group attribute in terms
of collective preference guarantees.

Definition 1. A personalized model h : X × G → Y guar-
antees the fair use of group attributes G if it obeys:

∆g(hg, h0) ≥ 0 for all groups g ∈ G, (1)
∆g(hg, hg′) ≥ 0 for all groups g, g′ ∈ G (2)

These conditions are collective in that performance is mea-
sured over individuals in a group. Here, condition (1) en-
sures rationality for group g – i.e., that a majority of group
g prefers a personalized model hg to a generic model h0.
Condition (2) ensures envy-freeness for group g – i.e., that

majority of group g prefers their personalized predictions
to the personalized predictions for any other group. These
conditions reflect minimal expectations of groups from a
personalized model.

These conditions can be adapted to different supervised
learning tasks by choosing a suitable risk metric. Since fair
use conditions reflect the expected gains from personaliza-
tion, a “suitable" metric should represent an exact measure
of model performance rather than a surrogate measure op-
timized for training. In classification tasks where we want
accurate predictions, this would be the error rate. In tasks
where we want reliable risk estimates, it would be the ex-
pected calibration error [66].

As Prerequisites for Truthful Self-Reporting In copy-
right law, fair use conditions characterize when we can use
copyrighted material without permission from copyright
owners [93, 68]. In this setting, fair use conditions charac-
terize when we can use personal data without asking per-
mission from the owners of that data. In particular, fair use
conditions are necessary for “truthful self-reporting" [see
e.g., 77, 50, 40].

Proposition 2. Consider a prediction model where each
person reports their group membership to a personalized
model h : X × G → Y in deployment. Denote the reported
group membership of person i as:

ri = gi ⇔ i reports truthfully
ri ∈ G \ {gi} ⇔ i misreports
ri = ? ⇔ i withholds

If a personalized model guarantees the fair use of G then
each person would choose to report truthfully as this strat-
egy would maximize their expected performance:

gi ∈ argmin
ri∈G∪{?}

E [` (h(x, ri), yi) | G = gi] .

Truthful self-reporting incentives reflect basic principles re-
garding consent in data privacy. In effect, a personalized
model that violates fair use uses group membership in a way
that is coercive. If groups were allowed to report personal in-
formation to a personalized model at prediction time, group
who experience a fair use violation would not report group
membership voluntarily or truthfully, choosing to withhold
or misreport instead. If a model obeys fair use, individuals
may still withhold group membership because the gain is
insufficient. In light of this, fair use conditions should be
viewed as minimal requirements to flag harm rather than a
“rubber stamp" for consent.

Use Cases Fair use conditions should hold in prediction
tasks where individuals are entitled to control or report their
own data. In such tasks, we should ensure fair use conditions
for group attributes that encode:
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Immutable Attributes: Group attributes often encode charac-
teristics like sex [see e.g., 71]. In this setting, fair use con-
ditions ensure that individuals will not receive unnecessarily
inaccurate predictions due to immutable characteristics.
Sensitive Information: Models that use attributes like
hiv_status should guarantee a tailored gain in perfor-
mance for the sensitive group, hiv_status = +. Other-
wise, they require individuals to disclose information that
may be harmful when leaked [see e.g., 7].
Self-Reported Information: Models are often personalized
using information that individuals report directly – see e.g.,
self-reported screening tests for mental illnesses [ 54, 83].
These models should obey fair use conditions to incentivize
truthful self-reporting as per Proposition 2.
Costly Information: Group attributes can encode character-
istics that must be collected at test time – e.g., an attribute
like pcr_test whose value requires a medical test. Models
that ensure fair use with respect to pcr_test guarantee
that patients with a specific outcome will not receive a less
accurate prediction after taking a test.

Testing for Fair Use We can evaluate fair use conditions
by training a generic model in addition to a personalized
model. Given a personalized model and its generic coun-
terpart, we can check the conditions in Definition 1 on a
sample by computing the relevant performance gains. This
procedure will return point estimates that should be paired
with a measure of uncertainty to guide model development.
In some tasks, a significant fair use violation may warrant a
new model. In others, we may wish to ensure a significant
gain to use a group attribute in the first place.

In practice, we check for a rationality violation using a
one-sided hypothesis test of the form:

H0 : Rg(h0)−Rg(hg) ≤ 0

HA : Rg(h0)−Rg(hg) > 0

Here, the null hypothesis H0 assumes that group g prefers
hg to h0. Thus, we would reject H0 when there is enough
evidence to support a rationality violation for g on held-out
data. We can test all conditions in Definition 1 by repeating
this test for all m groups to check rationality, and repeating
analogous tests for all m(m− 1) pairs of groups to check
envy-freeness. In general, one can test these hypotheses
for any performance metric using a bootstrap hypothesis
test [25], and control the false discovery rate using a Bon-
ferroni correction [28]. In practice, one should draw on
more powerful tests when working with salient performance
metrics [e.g., the McNemar test for accuracy 26].

3. Failure Modes and Guarantees
Practitioners naturally presume that training a model with
group attributes will provide a uniform performance gain

for all groups. Here, we characterize how empirical risk
minimization may fail to improve performance at a group
level through counterexamples and sufficient conditions. We
include additional examples and proofs in Appendix B.

3.1. Failure Modes

We characterize common practices that lead personaliza-
tion to reduce performance at a group level. We present
examples related to model misspecification and model selec-
tion as they motivate interventions for model development
in Section 4. We include examples related to generaliza-
tion, distributional shifts, and training with a surrogate loss
function in Appendix B.1.

Misspecification We start with misspecification – i.e.,
when a model that cannot capture the influence of group
membership in a conditional data distribution. A common
form of misspecification occurs when we personalize simple
models with a one-hot encoding [85]. In such cases, models
exhibit fair use violations on data distributions that exhibit
intersectionality. Consider, for example, a logistic regres-
sion model with a one-hot encoding that assigns higher risk
to patients who are young, and to patients who are female.
This model would exhibit a fair use violation for patients
who are young and female if their true risk were lower due
to an interaction effect among group attributes (see Fig. 2).

Misspecification can also stem from group-specific inter-
action effects – e.g., tasks where group attributes act as
mediators or moderators [see e.g., 9]. In Example 1, we
show an example that exhibits the hallmarks of personaliza-
tion: a generic model performs poorly on “heterogeneous"
groups A and C, and a personalized model that targets these
groups improves performance at a population-level.

Example 1. Consider a 2D classification task with groups
G = {A,B,C} with 1 positive and 1 negative example in
which a Bayes optimal classifier h : X × G → Y should
assign a personalized intercept to each group and a person-
alized slope to group B:

h(x, g) =





sign
(
tA + w>x

)
if g = A

sign
(
tB + w>Bx

)
if g = B

sign
(
tC + w>x

)
if g = C

Here, ERM with a standard one-hot encoding of G would
return a personalized model that assigns a personalized
intercept for each group, but the same slope to all three
groups:

h(x, g) =





sign
(
tA + w>x

)
if g = A

sign
(
tB + w>x

)
if g = B

sign
(
tC + w>x

)
if g = C
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erwise, they will be disclosing information that may be
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to incentivize truthful self-reporting as per Proposition 2.
Costly Information: Group attributes can encode character-
istics that must be collected at test time – e.g., an attribute
like pcr_test whose value requires a medical test. Models
that ensure fair use with respect to pcr_test guarantee
that patients with a specific outcome will not receive a less
accurate prediction after taking a test.

Testing for Fair Use We can evaluate fair use conditions
by training a generic model in addition to a personalized
model. Given a personalized model and its generic counter-
part, we can assess the conditions in Definition 1 for a given
sample by computing the relevant performance gains. This
procedure will return point estimates that should be paired
with a measure of uncertainty to guide practical decisions
in model development. In some tasks, a significant fair use
violation may flag the need for a new model. In others, we
may wish to ensure a significant gain to use a group attribute
in the first place.

In practice, we check for a rationality violation using a
one-sided hypothesis test of the form:

H0 : Rg(h0) � Rg(hg)  0

HA : Rg(h0) � Rg(hg) > 0

Here, the null hypothesis H0 assumes that group g prefers
hg to h0. Thus, we would reject H0 when there is enough
evidence to support a rationality violation for g on held-out
data. We can test all conditions in Definition 1 by repeating
this test for all m groups to check rationality, and repeating
analogous tests for all m(m � 1) pairs of groups to check
envy-freeness. In general, one can test these hypotheses
for any performance metric using a bootstrap hypothesis
test [29], and control the false discovery rate using a Bon-
ferroni correction [32]. In practice, one should draw on
more powerful tests when working with salient performance
metrics [e.g., the McNemar test for accuracy 30].

3. Failure Modes and Guarantees
Practitioners naturally presume that training a model with
group attributes will provide a uniform performance gain to
all groups. In practice, however, this is not the case. Here,
we characterize how empirical risk minimization may re-
duce performance at a group level through counterexamples
and sufficient conditions. We include proofs and additional
examples in Appendix B.

3.1. Failure Modes

We characterize common practices that lead personaliza-
tion to reduce performance at a group level. We present
examples related to model misspecification and model selec-
tion as they motivate interventions for model development
in Section 4. We include examples related to generaliza-
tion, distributional shifts, and training with a surrogate loss
function in Appendix B.1.

Misspecification We start with misspecification – i.e.,
when a model that cannot capture the influence of group
membership in a conditional data distribution. A common
form of misspecification occurs when we personalize simple
models with a one-hot encoding [93]. In such cases, models
exhibit fair use violations on data distributions that exhibit
intersectionality. Consider, for example, a logistic regres-
sion model with a one-hot encoding that assigns higher risk
to patients who are young, and to patients who are female.
This model would exhibit a fair use violation for patients
who are young and female if their true risk were lower due
to an interaction effect among group attributes (see Fig. 2).

Misspecification can also stem from group-specific inter-
action effects – e.g., tasks where group attributes act as
mediators or moderators [see e.g., 11]. In Example 1, we
show an example that exhibits the hallmarks of personaliza-
tion: a generic model performs poorly on “heterogeneous"
groups A and C, and a personalized model that targets these
groups improves performance at a population-level.

Example 1. Consider a 2D classification task with groups
G = {A, B, C} with 1 positive and 1 negative example in
which a Bayes optimal classifier h : X ⇥ G ! Y should
assign a personalized intercept to each group and a person-
alized slope to group B:

h(x, g) =

8
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>:
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�
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�
tB + w>

Bx
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if g = B
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�
tC + w>x
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Here, ERM with a standard one-hot encoding of G would
return a personalized model that assigns a personalized
intercept for each group, but the same slope to all three
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8
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�
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�
if g = B
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tC + w>x

�
if g = C
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in the first place.

In practice, we check for a rationality violation using a
one-sided hypothesis test of the form:

H0 : Rg(h0) � Rg(hg)  0

HA : Rg(h0) � Rg(hg) > 0

Here, the null hypothesis H0 assumes that group g prefers
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erwise, they will be disclosing information that may be
harmful when leaked [see e.g., 9].
Self-Reported Information: Models are often personalized
using information that individuals report themselves – see
e.g., self-reported screening tests for mental illnesses [see
e.g., 60, 91]. These models should obey fair use conditions
to incentivize truthful self-reporting as per Proposition 2.
Costly Information: Group attributes can encode character-
istics that must be collected at test time – e.g., an attribute
like pcr_test whose value requires a medical test. Models
that ensure fair use with respect to pcr_test guarantee
that patients with a specific outcome will not receive a less
accurate prediction after taking a test.

Testing for Fair Use We can evaluate fair use conditions
by training a generic model in addition to a personalized
model. Given a personalized model and its generic counter-
part, we can assess the conditions in Definition 1 for a given
sample by computing the relevant performance gains. This
procedure will return point estimates that should be paired
with a measure of uncertainty to guide practical decisions
in model development. In some tasks, a significant fair use
violation may flag the need for a new model. In others, we
may wish to ensure a significant gain to use a group attribute
in the first place.

In practice, we check for a rationality violation using a
one-sided hypothesis test of the form:

H0 : Rg(h0) � Rg(hg)  0

HA : Rg(h0) � Rg(hg) > 0

Here, the null hypothesis H0 assumes that group g prefers
hg to h0. Thus, we would reject H0 when there is enough
evidence to support a rationality violation for g on held-out
data. We can test all conditions in Definition 1 by repeating
this test for all m groups to check rationality, and repeating
analogous tests for all m(m � 1) pairs of groups to check
envy-freeness. In general, one can test these hypotheses
for any performance metric using a bootstrap hypothesis
test [29], and control the false discovery rate using a Bon-
ferroni correction [32]. In practice, one should draw on
more powerful tests when working with salient performance
metrics [e.g., the McNemar test for accuracy 30].

3. Failure Modes and Guarantees
Practitioners naturally presume that training a model with
group attributes will provide a uniform performance gain to
all groups. In practice, however, this is not the case. Here,
we characterize how empirical risk minimization may re-
duce performance at a group level through counterexamples
and sufficient conditions. We include proofs and additional
examples in Appendix B.

3.1. Failure Modes

We characterize common practices that lead personaliza-
tion to reduce performance at a group level. We present
examples related to model misspecification and model selec-
tion as they motivate interventions for model development
in Section 4. We include examples related to generaliza-
tion, distributional shifts, and training with a surrogate loss
function in Appendix B.1.

Misspecification We start with misspecification – i.e.,
when a model that cannot capture the influence of group
membership in a conditional data distribution. A common
form of misspecification occurs when we personalize simple
models with a one-hot encoding [93]. In such cases, models
exhibit fair use violations on data distributions that exhibit
intersectionality. Consider, for example, a logistic regres-
sion model with a one-hot encoding that assigns higher risk
to patients who are young, and to patients who are female.
This model would exhibit a fair use violation for patients
who are young and female if their true risk were lower due
to an interaction effect among group attributes (see Fig. 2).

Misspecification can also stem from group-specific inter-
action effects – e.g., tasks where group attributes act as
mediators or moderators [see e.g., 11]. In Example 1, we
show an example that exhibits the hallmarks of personaliza-
tion: a generic model performs poorly on “heterogeneous"
groups A and C, and a personalized model that targets these
groups improves performance at a population-level.

Example 1. Consider a 2D classification task with groups
G = {A, B, C} with 1 positive and 1 negative example in
which a Bayes optimal classifier h : X ⇥ G ! Y should
assign a personalized intercept to each group and a person-
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who are young and female if their true risk were lower due
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to incentivize truthful self-reporting as per Proposition 2.
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istics that must be collected at test time – e.g., an attribute
like pcr_test whose value requires a medical test. Models
that ensure fair use with respect to pcr_test guarantee
that patients with a specific outcome will not receive a less
accurate prediction after taking a test.

Testing for Fair Use We can evaluate fair use conditions
by training a generic model in addition to a personalized
model. Given a personalized model and its generic counter-
part, we can assess the conditions in Definition 1 for a given
sample by computing the relevant performance gains. This
procedure will return point estimates that should be paired
with a measure of uncertainty to guide practical decisions
in model development. In some tasks, a significant fair use
violation may flag the need for a new model. In others, we
may wish to ensure a significant gain to use a group attribute
in the first place.

In practice, we check for a rationality violation using a
one-sided hypothesis test of the form:

H0 : Rg(h0) � Rg(hg)  0
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Here, the null hypothesis H0 assumes that group g prefers
hg to h0. Thus, we would reject H0 when there is enough
evidence to support a rationality violation for g on held-out
data. We can test all conditions in Definition 1 by repeating
this test for all m groups to check rationality, and repeating
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test [29], and control the false discovery rate using a Bon-
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all groups. In practice, however, this is not the case. Here,
we characterize how empirical risk minimization may re-
duce performance at a group level through counterexamples
and sufficient conditions. We include proofs and additional
examples in Appendix B.

3.1. Failure Modes

We characterize common practices that lead personaliza-
tion to reduce performance at a group level. We present
examples related to model misspecification and model selec-
tion as they motivate interventions for model development
in Section 4. We include examples related to generaliza-
tion, distributional shifts, and training with a surrogate loss
function in Appendix B.1.
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when a model that cannot capture the influence of group
membership in a conditional data distribution. A common
form of misspecification occurs when we personalize simple
models with a one-hot encoding [93]. In such cases, models
exhibit fair use violations on data distributions that exhibit
intersectionality. Consider, for example, a logistic regres-
sion model with a one-hot encoding that assigns higher risk
to patients who are young, and to patients who are female.
This model would exhibit a fair use violation for patients
who are young and female if their true risk were lower due
to an interaction effect among group attributes (see Fig. 2).

Misspecification can also stem from group-specific inter-
action effects – e.g., tasks where group attributes act as
mediators or moderators [see e.g., 11]. In Example 1, we
show an example that exhibits the hallmarks of personaliza-
tion: a generic model performs poorly on “heterogeneous"
groups A and C, and a personalized model that targets these
groups improves performance at a population-level.
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istics that must be collected at test time – e.g., an attribute
like pcr_test whose value requires a medical test. Models
that ensure fair use with respect to pcr_test guarantee
that patients with a specific outcome will not receive a less
accurate prediction after taking a test.

Testing for Fair Use We can evaluate fair use conditions
by training a generic model in addition to a personalized
model. Given a personalized model and its generic counter-
part, we can assess the conditions in Definition 1 for a given
sample by computing the relevant performance gains. This
procedure will return point estimates that should be paired
with a measure of uncertainty to guide practical decisions
in model development. In some tasks, a significant fair use
violation may flag the need for a new model. In others, we
may wish to ensure a significant gain to use a group attribute
in the first place.

In practice, we check for a rationality violation using a
one-sided hypothesis test of the form:
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hg to h0. Thus, we would reject H0 when there is enough
evidence to support a rationality violation for g on held-out
data. We can test all conditions in Definition 1 by repeating
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sion model with a one-hot encoding that assigns higher risk
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who are young and female if their true risk were lower due
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Figure 3: ERM returns a misspecified personalized model that assigns a personalized intercept for each group but the same slope for all
groups. It does not capture the personalized slope needed to accurately model group B. The model improves overall performance by
assigning more accurate predictions to groups A and C. However, it performs worse for group B.

The model would improve overall performance by assigning
more accurate predictions to groups A and C. However, it
would perform worse for group B (Figure 3).

Resolving violations from model misspecification is difficult
since it requires interventions that can resolve them for all
groups. In practice, one could fit models from a class that
is rich enough to capture these effects, or train a separate
model for each group. Both approaches are challenging
when working with multiple groups. The first requires that
we either specify interactions for each group and fit these
terms correctly. The second requires that we train models
using a limited amount of data for each group.

Model Selection Model development often involves
choosing a model from candidate models – e.g., when set-
ting a regularization penalty to avoid overfitting or to induce
sparsity. Common criteria for model selection guide these
decisions on the basis of population-level performance [e.g.,
mean K-CV test error 5]. As shown in Example 2, the
resulting model may improve performance for one group
while reducing performance for another group in tasks with
heterogeneous data distributions.

Example 2. Consider a classification task where a person-
alized model must use either x1 ∈ {0, 1} or x2 ∈ {0, 1}.
We are given 60 examples from group A and 90 examples
from group B. We train a personalized model with a one-
hot encoding of G = {A,B} choosing between x1 or x2 to
minimize the overall error rate.

Generic Personalized with x1 Personalized with x2

Group (x1, x2) n+ n− h0 R(h0) h1 R(h1) ∆ h2 R(h2) ∆

A (0, 0) 10 0 + 0 + 0 0 + 10 −10
A (0, 1) 10 0 + 0 + 0 0 + 0 0
A (1, 0) 0 20 + 20 − 0 20 − 0 20
A (1, 1) 20 0 + 0 − 20 −20 + 0 0

B (0, 0) 5 0 + 0 − 5 −5 + 0 0
B (0, 1) 0 20 + 20 − 0 20 + 20 0
B (1, 0) 20 0 + 0 + 0 0 + 0 0
B (1, 1) 30 0 + 0 + 0 0 + 0 0

Total 95 40 40 25 15 30 10
Group A 40 20 20 20 0 10 10
Group B 55 20 20 5 15 20 0

The generic model h0 is the same whether it uses x1 or x2.
However, the personalized model violates fair use for either
group A when it uses x1, and violates fair use for group B
when it uses x2. In this case, ERM returns the personalized
model that benefits the majority group (A).

Example 2 could arise, for example, when developing a
clinical prediction model using features that encode the out-
come of competing diagnostics. More broadly, Example 2
highlights how fair use violations may be unavoidable when
we must assign predictions with a single model – as the task
shows that models trained with x1 and x2 would lead to fair
use violations on A or B respectively.

3.2. Sufficient Conditions

We present sufficient conditions for ERM with group at-
tributes to output a model that obeys fair use in training
(Proposition 3) and testing (Proposition 4).
Proposition 3. Consider training a personalized model
by ERM h ∈ argminh∈H R̂(h), and evaluating its gains
to personalization with respect to a generic model h0 ∈
argminh∈H0

R̂(h) whereH0 ⊆ H. The personalized model
h obeys fair use in terms of empirical risk so long as the
model achieves the same risk as a model that specifically
targets the group. That is:

R̂g(h) = R̂g(hg) for all groups g ∈ G.

Proposition 3 holds for settings where we fit personalized
models from a classH that extends the generic model class
H0 (see Definition 5). This requirement implies that we
should fit personalized models from model classes that are
rich enough to target each intersectional group. When we
personalize a linear classifier via “score correction" [85], we
should include a correction term for each group. Otherwise,
we may violate fair use due to model misspecification when
using a one-hot encoding as in Fig. 2. Likewise, if we per-
sonalize a model with interaction terms, we should include
an interaction for each group. More broadly, the conditions
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in Proposition 3 are met when, for example, we use the data
from each group to train a model for each group. Given that
these are sufficient conditions, it is still possible to achieve
fair use even when they don’t hold.

Proposition 4. Consider a personalized model h : X ×
G → Y that ensures rationality and envy-freeness for group
g in terms of empirical risk. Denote the empirical gains in
rationality and envy-freeness for group g as:

ε̂g := ∆̂g(hg, h0), γ̂g := min
g′∈G/{g}

∆̂g(hg, hg′).

If ε̂g > 0, then rationality for group g generalizes with
probability at least 1− δ as long as:

ng ≥
4D log

(
2ng

D + 1
)

+ log
(

8
δ

)

ε̂2g

If γ̂g > 0, then envy-freeness for group g generalizes with
probability at least 1− δ as long as:

ng ≥
4D log

(
2ng

D + 1
)

+ log
(

8m
δ

)

γ̂2
g

Proposition 4 characterizes the sample complexity of gener-
alization for personalized models that satisfy fair use condi-
tions on training data. The bounds apply to a general class
of personalized models, and can be strengthened by assum-
ing a finite hypothesis class [e.g, in 84], or by accounting
for distributional differences between groups [e.g., 92]. The
result holds in tasks where personalization leads to strictly
positive gains with respect to rationality and envy-freeness
on the training data, which is not guaranteed in practice and
must be checked in practice.

4. Empirical Study
In this section, we present an empirical study of fair use
in clinical prediction models – i.e. a class of models that
routinely include group attributes and where fair use viola-
tions inflict harm. Our goals are to discuss the prevalence of
fair use violations, the impact of standard personalization
techniques, and the potential to resolve them through inter-
ventions in model development. We provide code to repro-
duce these results at https://github.com/ustunb/
fairuse and include additional results in Appendix D.

4.1. Setup

We work with 6 datasets for clinical prediction tasks listed
in Table 1 and Appendix C. We minimally process each
dataset to impute the values of missing points (using mean
value imputation), and repair class imbalances across inter-
sectional groups (to eliminate “trivial" fair use violations

that occur due to class imbalance). We split each dataset
into a training sample (80%) to fit models, and a test sample
(20%) to evaluate the gains of personalization.

We train 9 personalized models for each dataset. Each model
belongs to one of 3 model classes: logistic regression (LR),
random forests (RF), and neural nets (NN), and encodes
group attributes using one of 3 personalization techniques:

One-Hot Encoding (1Hot): We train a model with features
that include dummy variables for each group attribute.
Intersectional Encoding (All): We train with features that
include dummy variables for each intersectional group.
Decoupling (DCP): We train a separate model for each in-
tersectional group using only data from this group gi = g.

These three techniques reflect the increasingly complex ap-
proaches available to practitioners to account for group
membership in a prediction model as measured in terms of
the interactions between group attributes and other features:
1Hot reflect no interactions; All reflect interactions between
group attributes; and DCP reflects all possible interactions
between group attributes and features.

We evaluate the gains of personalization for each model
in terms of three performance metrics, reflecting common
metrics that are encountered in different tasks: (1) error rate,
which reflects the accuracy of yes-or-no predictions, e.g.,
for a diagnostic test [32]; (2) area under ROC curve (AUC),
which measures accuracy in ranking, e.g., for triage [e.g.,
97]; (3) expected calibration error (ECE), which measures
the reliability of risk predictions for a risk score [14, 81].

4.2. Results

We summarize our results for logistic regression in Table 1
and for neural networks and random forests in Appendix D.

On the Prevalence of Fair Use Violations Our results
show that we train models that improve population level
performance across prediction tasks in terms of training loss
(guaranteed), training performance (expected), and test per-
formance (expected). Yet personalized models that improve
performance at a population level can also reduce perfor-
mance for specific groups. These violations arise across
datasets, personalization techniques, and model classes.

We consider the standard configuration used to develop clin-
ical prediction models – i.e., a logistic regression model
with a one-hot encoding of group attributes (LR+1Hot). In
this case, we find that at least one group experiences a sta-
tistically significant fair use violation in terms of error on
4/6 datasets (5/6 for AUC and ECE). On saps, for exam-
ple, LR + 1Hot exhibits a statistically significant gain from
personalization for patients over 30 who are HIV negative.
Conversely, in cardio_eicu when training LR+All we de-
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Test Error Test AUC Test ECE

Dataset Metrics 1Hot All DCP 1Hot All DCP 1Hot All DCP

apnea

n = 1152, d = 26
G = {age, sex}
m = 6
Ustun et al. [82]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

34.2%
-1.0%

0.0% / -9.6%
6/4
0/0

33.8%
-0.7%

1.7% / -7.8%
5/3
1/0

26.2%
7.0%

21.7% / -7.8%
2/2
5/4

0.750
0.001

0.002 / -0.001
1/4
0/6

0.750
0.000

0.001 / -0.010
1/2
0/6

0.803
0.053

0.119 / -0.005
4/4
0/0

7.5%
-1.5%

0.9% / -8.6%
3/3
3/0

5.5%
0.6%

0.8% / -4.6%
3/3
0/0

7.2%
-1.1%

1.7% / -6.6%
3/3
4/4

cardio_eicu

n = 1341, d = 49
G = {age, sex}
m = 4
Pollard et al. [75]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

29.1%
-0.4%

0.0% / -3.1%
4/2
1/0

29.1%
-0.4%

0.2% / -3.1%
4/2
1/0

29.5%
-0.9%

13.0% / -8.6%
2/2
3/3

0.768
0.000

0.002 / -0.001
2/3
0/4

0.767
-0.001

0.001 / -0.001
2/3
0/4

0.762
-0.007

0.096 / -0.104
1/1
1/1

4.4%
0.4%

1.6% / -1.5%
1/1
0/0

4.6%
0.2%

0.9% / -0.2%
0/0
0/0

8.9%
-4.1%

-0.9% / -6.2%
4/4
1/1

cardio_mimic

n = 5289, d = 49
G = {age, sex}
m = 4
Johnson et al. [49]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

23.3%
0.3%

0.9% / -0.1%
1/0
1/0

23.4%
0.3%

0.9% / -0.1%
1/0
1/0

21.4%
2.2%

7.9% / -0.0%
0/0
4/4

0.854
0.001

0.001 / -0.000
2/2
0/4

0.854
0.001

0.001 / -0.000
2/2
0/4

0.870
0.017

0.053 / 0.006
4/4
0/0

2.1%
-0.4%

0.5% / 0.4%
0/0
1/1

2.3%
-0.5%

0.6% / -0.2%
0/0
0/0

2.3%
-0.6%

0.8% / -2.3%
2/2
3/3

heart

n = 181, d = 26
G = {sex, age}
m = 4
Detrano et al. [24]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

19.7%
-1.3%

0.0% / -6.8%
4/1
3/0

19.7%
-1.3%

0.1% / -9.9%
4/1
3/0

15.8%
2.6%

10.6% / -8.4%
2/1
2/2

0.870
-0.007

0.008 / -0.036
1/3
0/4

0.846
-0.030

0.017 / -0.055
0/3
0/4

0.817
-0.060

0.039 / -0.190
1/1
2/2

8.4%
2.8%

3.7% / -0.5%
1/1
1/1

17.8%
-6.6%

-1.2% / -3.2%
3/3
0/0

17.5%
-6.3%

10.1% / -4.6%
1/1
2/2

mortality

n = 25366, d = 468
G = {age, sex}
m = 6
Johnson et al. [49]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

23.6%
-0.2%

0.8% / -2.5%
4/4
2/0

23.4%
0.0%

2.1% / -0.4%
2/2
2/1

20.2%
3.2%

20.8% / -0.6%
1/1
6/6

0.848
0.000

0.004 / -0.001
3/3
0/6

0.848
0.001

0.004 / -0.000
4/4
0/6

0.880
0.033

0.114 / 0.011
6/6
0/0

2.0%
0.2%

1.6% / 0.0%
0/0
4/0

2.1%
0.1%

2.9% / -0.5%
0/0
3/3

2.5%
-0.3%

11.2% / -2.5%
3/3
5/5

saps

n = 7797, d = 36
G = {hiv, age}
m = 4
Allyn et al. [4]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

18.9%
0.0%

16.4% / -12.2%
2/2
2/1

18.9%
0.0%

0.7% / -12.2%
3/2
2/2

18.5%
0.4%

3.5% / -23.3%
2/1
2/2

0.890
0.001

0.013 / -0.000
1/3
0/4

0.890
0.001

0.013 / -0.000
1/3
0/4

0.888
-0.001

0.017 / -0.246
2/2
1/2

1.6%
0.0%

2.9% / -2.1%
2/2
2/2

1.6%
0.0%

2.5% / -1.3%
2/2
2/2

1.9%
-0.3%

9.4% / -19.1%
2/2
3/3

Table 1: Performance of personalized logistic regression models on all datasets. We show the gains of personalization in terms of test
AUC, ECE, and error. We report: model performance at the population level, the overall gain of personalization, the range of gains over
m intersectional groups, and the number of rationality and envy-freeness gains/violations (evaluated using a bootstrap hypothesis test
(Section 2) at a 10% significance level). We include results for other model classes in Appendix D.

tect a fair use violation for old females (see e.g., 4/2 Rat.
Gains/Viols. respectively for test error in Table 1).

On the Robustness of Personalization Techniques Our
results show there is no one personalization technique that
can avoid fair use violations, as demonstrated by the fact
that the personalization technique that minimizes fair use
violations varies across datasets, model classes, and pre-
diction tasks. In Table 1, for example, we find that the
best technique to personalize a logistic regression model
for cardio_eicu is to use an intersectional encoding, but
to train decoupled models for mortality. These strate-
gies change across model classes – as the ideal strategies
for neural networks are decoupling and intersectional en-
coding, respectively cardio_eicu and mortality (see
Appendix D). Even configurations that exhibit few viola-
tions across datasets may fail critically across groups. For
example, LR+DCP for saps leads to a 10% increase in error
for HIV+ & >30. Overall, these results suggest that the
most reliable way to avoid a fair use violation is to check.

On Detecting Violations Our results underscore the need
for reliable procedures to spot fair use violations or claim
gains from personalization. We can often find reliable in-
stances of benefit or harm but we sometimes are unable to
do so. An actionable finding from evaluating the gains of

personalization is a group does not experience a meaningful
gain nor harm due to personalization. We note a number of
cases across datasets, personalization techniques, and model
classes where we note no meaningful gain or harm. Often
times this is because the effect size is small or the group
sample sizes are too small.

In such cases where we are unable to detect any impact from
personalizationo, one may wish to intervene to avoid solicit-
ing unnecessary data. For example, when group attributes
encode information that is sensitive or must be collected at
prediction time (e.g., HIV), we may prefer to avoid soliciting
information unless it is demonstrably useful for prediction.

On Resolving Violations Our results show that routine
decisions in model development can induce considerable
differences in group-level performance. This suggests that
we can reduce fair use violations through “interventions"
in model development. We studied the effectiveness of this
approach through an ablation study where we repeated our
experiments with interventions that address failure modes in
Section 3, namely: using an intersectional one-hot encoding,
decoupled training, and equalizing sample sizes.

Our results show that interventions can often reduce fair
use violations. For example, we can eliminate all fair use
violations for cardio_mimic in our standard configuration
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by decoupled training. However, there is no “silver bul-
let" intervention that resolves fair use violations across all
datasets and model classes. In general, the best intervention
varies across model classes and datasets. In some cases, the
best intervention may fail to resolve all fair use violations as
resolving a violation for one group may induce a violation
on another group. In cardio_eicu, for example, a logistic
regression model with a one-hot encoding will exhibit a vio-
lation on old males. Switching an intersectional encoding
will fix this violation but introduce another for old females.

5. Mortality in Acute Kidney Injury
In this section, we audit fair use for mortality prediction
model for patients with acute kidney injury. Our results
demonstrate how evaluating the gains to personalization can
inform model development and improve simple interven-
tions to mitigate harm.

5.1. Setup

We consider a mortality prediction task for critically-ill
patients who receive continuous renal replacement therapy.
The data contains n = 2, 066 patients from MIMIC III
and IV [49] and includes d = 78 features related to their
health, lab tests, length of stay, and potential for organ
failure. Here, yi = +1 if patient i dies in the ICU and
Pr(yi = +1) = 51.1%. We train personalized models
using the setup in Section 4.1, and evaluate fair use for
groups defined by the attributes sex ∈ {male, female}
and race ∈ {white, black, other}.

5.2. Results

We show performance for the personalized logistic regres-
sion model with a one-hot encoding in Table 2, and present
results for other configurations in Appendix D. Our findings
show that personalization yields uneven gains at a group
level, leading to fair use violations across prediction tasks
and model classes. In this case, the gains in error across
range from -5.2% to 6.8%, and two groups experience statis-
tically significant fair use violations: (male, black) and
(male, other).

On the Use of Race Clinical prediction models include
group attributes whenever there is a plausible biological
relationship between group membership and the outcome
of interest or social determinants of health. These norms
have led to development of models that use race an ethnic-
ity [31, 88, 36, 44, 58, 65, 37, 51]. Recently, Vyas et al.
[88] discuss how such models can inflict harm and urge
physicians to check if “race correction is based on robust
[statistical] evidence." Our results highlight how a fair use
audit can yield evidence that serves to guide the use “race
correction" in such cases. Here, checking rationality shows

that a race-specific model can reduce performance for spe-
cific groups – e.g., (male, black) and (male, other).
Checking envy-freeness reveals that groups expect better
performance by misreporting group membership – e.g.,
(male,other) would experience a 5.6% gain in test error
by reporting any other race.

In tasks where race improves performance, race may act as
a proxy for broader social determinants of health. Thus, a
model that includes race may act as a “smoke screen" in that
it attributes differences in health outcomes to an immutable
factor, and perpetuates inaction on the root causes of health
disparities [72]. Given these uncertainties, we advocate that
race should only be included in clinical model when there
is evidence of gain. Regardless of its use in prediction, col-
lecting information about race and ethnicity is necessary to
measure model performance across these groups. In such
cases, one should be careful to disclose the purposes of data
collection – stating that it will be used to evaluate perfor-
mance but not to assign personalized predictions. In tasks
where race does not improve model performance, models
may exhibit differences in performance across racial groups
– as data may encode proxies of race in redacted notes [1],
or even band-pass filtered images [38].

Interventions We build on our results to discuss interven-
tions that can resolve fair use violations and broaden the
gains to personalization by using multiple models. These are
simple interventions that have the benefit of being broadly
applicable – i.e., we can use them to mitigate harm from fair
use violations for any prediction task and model class.

Assigning a Generic Model. We assign groups who expe-
rience a fair use violation the predictions from a generic
model h0. This intervention will resolve all fair use viola-
tions in a way that strictly improves performance. In this
case, it resolves all rationality violations (2/3/2 in terms of
error/AUC/ECE respectively). We also observe a potential
to reduce data usage in deployment: seeing how both (male,
black) and (male, other) experience a fair use violation
in terms of error, we could soliciting race for all male pa-
tients and reduce test error by 1% (as the loss in accuracy
for (white, male) are offset by the gain in accuracy for
(male,black) and (male, other).

Assigning a Decoupled Model. We assign groups who ex-
perience a fair use violation predictions from the best of a
generic model, personalized model, or a decoupled model
hdcp
g – i.e., a model trained using only data from their group.

While this approach may not resolve fair use violations, it
can produce surprisingly large gains as decoupling effec-
tively personalizes the entire model development pipeline.
Our results in Table 2 show the potential gains of this in-
tervention across all performance metrics. Focusing on
error, we see that one can: (1) eliminate fair use violations
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Group TEST ERROR INTERVENTION

g Rg(hg) ∆g Assign h0 Assign hdcp
g

female, black 55.5% 3.5% 3.5% 33.1%
female, white 21.9% 2.0% 2.0% 2.0%
female, other 20.4% 6.6% 6.6% 9.1%

male, black 29.4% -2.7% 0.0% 15.6%
male, white 21.9% 8.1% 8.1% 3.7%
male, other 25.3% -1.9% 0.0% 1.3%

Total 27.1% 1.4% - -

TEST AUC INTERVENTIONS

Rg(hg) ∆g Assign h0 Assign hdcp
g

0.443 0.010 0.010 0.315
0.845 0.004 0.004 0.057
0.861 -0.003 0.000 0.038
0.799 0.020 0.020 0.096
0.767 0.006 0.006 0.104
0.835 -0.003 0.000 0.017

0.803 0.010 - -

TEST ECE INTERVENTIONS

Rg(hg) ∆g Assign h0 Assign hdcp
g

32.2% 2.1% 2.1% 11.9%
10.1% 2.0% 2.0% 0.03%
14.7% 1.8% 1.8% 5.3%
18.1% -0.0% 0.0% 6.4%
10.6% -1.4% 0.0% 1.4%
13.5% 0.0% 0.0 0.0%

4.7% 0.2% - -

Table 2: Fair use evaluation of a personalized logistic regression model with a one-hot encoding of group attributes. As shown,
personalization can improve overall performance while reduces performance for specific groups (red). This result holds across all
performance metrics. In such cases, we can resolve fair use violations and improve the gains from personalization by assigning
personalized predictions to each group with multiple models. By this we mean selecting from one of three available models which
provides the most accurate predictions for a group: a generic model h0, the personalized model hg , or a decoupled model hdcp. We
highlight cases where assigning predictions from one of these models led to a gain in green, and where it resolved a violation in yellow.

for (male,black) and (male,other); (2) greatly improve
accuracy for (female,black) who experience a gain of
37.3% from a previous accuracy of less than 50%; and (3)
improve overall gains by 6.2%. We observe similar effects
across other configurations and model classes.

6. Concluding Remarks
Machine learning models that are personalized with group
attributes can fail to improve performance for all groups
who provide personal data. Our results underscore the need
to evaluate fair use when developing models with group at-
tributes that are protected, sensitive, self-reported, or costly
to acquire [e.g., 78, 89, 20, 23, 15, 17, 53]. Evaluating fair
use is a routine procedure that whose results can be summa-
rized and communicated in a model report [63, 6, 8, 16, 18]
– and that can be used to flag instances where personalization
reduces performance for specific groups and guide interven-
tions that broaden the gains of personalization.

Limitations Our work assumes that a gain in performance
is a suitable “stand-in" for preference or harm, which holds
in tasks where every group benefits from a more accurate
model. This assumption may not hold when, for example,
models are trained to use proxy labels, or groups may prefer
a specific prediction over the most accurate prediction.

In closing, we caution that fair use should be considered
a safeguard against “worsenalization" rather than a rubber
stamp for consent. In effect, fair use is not an individual-
level guarantee. The gains associated with fair use condi-
tions reflect average measures of performance over individ-
uals in a group. In tasks where these gains are reported to
individuals, they should be presented alongside information
that summarizes the impact of personalization on their pre-
diction – e.g., the degree of change in individual predictions
due to personalization, and the degree of representation in
the sample used to evaluate the gains of personalization.
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A. Notation
We provide a list of the notation used throughout the paper in Table 3.

Symbol Meaning
xi = (xi,1, xi,2, . . . , xi,d) feature vector of example i
yi ∈ Y label of example i
gi ∈ {gi,1, gi,2, . . . , gi,k} group membership of example i
G = G1 × G2 × . . .× Gk space of group attributes
m = |G| number of intersectional groups

ng :=
∑

1[gi = g] number of examples of group g ∈ G
n+
g :=

∑
1[gi = g, yi = +1] number of examples of group g ∈ G with yi = +1

n−g :=
∑

1[gi = g, yi = −1] number of examples of group g ∈ G with yi = −1

h : X × G → Y personalized model
H hypothesis class of personalized models
hg : X × G → Y personalized classifier where group membership is reported truthfully as g
h0 : X → Y generic model
H0 hypothesis class of generic models
Rg(hg′) true risk of model h0 of group g if they report g′

R̂g(hg′) empirical risk of model h of group g if they report g′

∆g(h, h′) gain (i.e., reduction in true risk) for group g when using h instead of h′

∆g(hg, h0) rationality gap for group g under model h
∆g(hg, hg′) envyfreeness gap for group g under model h

Table 3: Notation
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B. Supporting Material for Section 3
B.1. Additional Failure Modes of Personalization

We describe additional mechanisms that lead personalized models to exhibit fair use violations. The mechanisms below
reflect failure modes that arise in later stages of the machine learning pipeline, and that are more difficult to address through
interventions.

ERM with a Surrogate Loss Function Consider a setting where we want a personalized model that maximizes classi-
fication accuracy – i.e., one that minimizes the 0–1 loss. If we fit this classifier using a linear SVM – e.g., by solving an
ERM problem that optimizes the hinge loss – the approximation error between the 0-1 loss and the hinge loss can produce a
fair use violation (see Figure 4). This example is specifically designed to avoid fair use violations that stem from model
misspecification.

Group A Group B

Figure 4: Fair use violations resulting from empirical risk minimization with a surrogate loss function. We consider a classification
task with two features x = (x1, x2) and one group attribute g ∈ {A,B} in which we fit a linear SVM hg but evaluate the the gains of
personalization in terms of the error rate (i.e., hinge loss vs. 0-1 loss). We plot the data for group A and group B separately, and show the
generic classifier (h0; grey) and the personalized classifiers for the corresponding group (hA or hB ; black). In this case, the personalized
model produces a fair use violation for Group B due to an outlier xO . As a baseline for comparison, we show the personalized models
that we would obtain by optimizing an exact loss function (i.e., 0-1 loss, which matches the performance metric that we use to evaluate
the gains for personalization). As shown, we would expect to avoid this violation had we fit a model by optimizing the 0–1 loss directly.

Generalization & Dataset Shifts Fair use violations can arise in deployment. Small samples may distort the relative
prevalence of each group, leading ERM to return a personalized model or suboptimal generic model. In Fig. 5, we show how
fair use violations occur when sampling bias results in a difference in the training data distribution and the true distribution.
Here, we sample data from the true distribution where the small sample size or sampling bias results in a label shift for one
specific group. Likewise, violations can arise as a result of changes in the data distribution [i.e., dataset shift 76, 35, 41]
(see Fig. 6)

Group Training Data Data Distribution Predictions Observed Performance True Performance

g1 g2 n+ n− n+ n− h0 hg Rg(h0) Rg(h) ∆g(hg, h0) Rg(h0) Rg(h) ∆g(hg, h0)

0 0 65 60 130 120 + + 60 60 0 120 120 0
1 0 60 65 120 130 + − 65 60 5 130 120 10
0 1 60 65 130 120 + − 65 60 5 120 130 −10
1 1 70 55 140 110 + + 55 55 0 110 110 0

Total 255 245 520 480 245 235 10 480 470 0

Figure 5: Fair use violations can arise when personalizing models on small samples. Here, we show a 2D classification task in which a
personalized model only exhibits fair use violations in deployment. Here, group (1, 0) experiences an gain once the model is deployment.
In contrast, group (0, 1) experiences a fair use violation as a result of sampling error.
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Group Training Data Data Distribution Predictions Observed Performance True Performance

g1 g2 n+ n− n+ n− h0 h Rg(h0) Rg(h) ∆g(hg, h0) Rg(h0) Rg(h) ∆g(hg, h0)

0 0 20 0 20 0 + + 0 0 0 0 0 0
1 0 5 25 5 25 + − 25 5 20 25 5 20
0 1 5 25 30 25 + − 25 5 20 20 30 −10
1 1 20 0 20 0 + + 0 0 0 0 0 0

Total 50 50 75 45 50 10 40 45 35 10

Figure 6: Label shift produces a fair use violation. Here, we train a linear classifier on a dataset with [one binary feature and one binary
group attribute]. As shown, personalization leads to overall improvement reducing aggregate reduce from 50 to 24 and group-specific
improvement on the training data. However, not all groups perform equally well in deployment. While groups (0, 1) and (1, 1) see
improvements, a violation (red) occurs for group (1, 0) due to the label shift where positive examples in the true distribution for group
(0, 1) (highlighted in yellow) are undersampled in the training data.

B.2. Missing Proofs

We provide the proofs for our sufficient conditions described in Section 3. We start with a simple condition to ensure the
empirical risk minimizer overH can return a model that assigns the same predictions as a generic model for every group.

Definition 5. A personalized model classH extends a generic model classH0 if for every personalized model h ∈ H, there
exists a generic model h0 ∈ H0 such that h0(x) = h(x, g) for all x ∈ X and all groups g ∈ G.

This is a basic condition that is often satisfied in practice, and can be guaranteed by practitioners during model specification.
Intuitively the condition is meant to rule out instances where a personalized model exhibits a rationality violation because it
is required to account for group membership (see e.g., Example 2).

Proposition 3 Consider training a personalized model by ERM h ∈ argminh∈H R̂(h), and evaluating its gains to
personalization with respect to a generic model h0 ∈ argminh∈H0

R̂(h) whereH0 ⊆ H. The personalized model h obeys
fair use in terms of empirical risk so long as:

R̂g(h) = R̂g(hg) for all groups g ∈ G.

Proof. Say that we have a personalized model h ∈ argminh∈H R̂(h) that obeys R̂g(h) = R̂g(hg) for all groups g ∈ G. This
implies that R̂g(hg) ≤ R̂g(h) for any model h ∈ H and any group g ∈ G. Since h0 ∈ H, we have that R̂g(hg) ≤ R̂g(h0)

for all groups g ∈ G. Thus, rationality holds for all groups g ∈ G. Likewise, since hg′ ∈ H, we have that R̂g(hg) ≤ R̂g(hg′ )
for all groups g, g′ ∈ G. Thus, envy-freeness holds for all groups g ∈ G.

Proposition 4 Consider a personalized model h : X × G → Y that ensures rationality and envy-freeness for group g in
terms of empirical risk. Denote the empirical gains in rationality and envy-freeness for group g as:

ε̂g := ∆̂g(hg, h0), γ̂g := min
g′∈G/{g}

∆̂g(hg, hg′)

If ε̂g > 0, then rationality for group g generalizes with probability at least 1− δ as long as:

ng ≥
4D log

(
2ng

D + 1
)

+ log
(

8
δ

)

ε̂2g
(3)

If γ̂g > 0, then envy-freeness for group g generalizes with probability at least 1− δ as long as:

ng ≥
4D log

(
2ng

D + 1
)

+ log
(

8m
δ

)

γ̂2
g

(4)

The proof of Proposition 4 are based on a generalized version of a lemma from Ustun et al. [84] which assumes that the
dimension of the hypothesis class is finite whereas we use VC-dimension instead of the dimension of the hypothesis class.
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Lemma 6 (Generalization of Gains). Consider a pair of classifiers ha and hb from a hypothesis classH with VC-dimension
D. If the empirical risk of each classifier on group g satisfy ∆̂g(ha, hb) := R̂g(hb)− R̂g(ha) > 0, then for any δ > 0, the
corresponding gap in true risk will satisfy ∆g(ha, hb) > 0 with probability at least 1− δ so long as:

√√√√4D
(

log
2ng

D + 1
)

+ log ( 8
δ )

ng
≤ ∆̂g(ha, hb). (5)

Proof. The proof applies a standard concentration inequality [64] to bound the generalization error of a classifier over groups
as follows. Given a classifier h ∈ H from hypothesis class H with VC-dimension D, and any δ > 0, the generalization
error of h on group g ∈ G with ng will obey the following inequality [64] with probability at least 1− δ

2 :

∣∣∣R̂g(h)−Rg(h)
∣∣∣ ≤

√√√√D
(

log
2ng

D + 1
)

+ log 8
δ

ng
. (6)

We denote the quantity on the right hand side of Eq. (6) as the bounding function B(ng,H, δ) :=

√
D
(

log
2ng
D +1

)
+log 8

δ

ng
.

Given the bounding function B(ng,H, δ), Lemma 6 states that for any δ > 0, with probability at least 1− δ,

2B(ng,H, δ) ≤ ∆̂g(ha, hb) =⇒ Rg(hb)−Rg(ha) ≥ 0

We will prove the statement by showing that the condition on the left hand side implies the condition on the right hand side.
Assume that the condition on the left hand side holds so that 2B(ng,H, δ) ≤ ∆̂g(ha, hb). Then we can observe that the
right hand side is bounded as follows:

Rg(hb)−Rg(ha) = Rg(hb)−Rg(ha) + R̂g(ha)− R̂g(ha) + R̂g(hb)− R̂g(hb)

= Rg(hb)− R̂g(hb)︸ ︷︷ ︸
≥−B(ng,H,δ)

+ R̂g(ha)−Rg(ha)︸ ︷︷ ︸
≥−B(ng,H,δ)

+ R̂g(hb)− R̂g(ha)︸ ︷︷ ︸
:=∆̂g(ha,hb)

≥ −2B(ng,H, δ) + ∆̂g(ha, hb)

≥ 0

Thus we have that Rg(hb)−Rg(ha) ≥ 0 whenever 2B(ng,H, δ) ≤ ∆̂g(ha, hb). This completes the proof.

We now present the proof to Proposition 4.

Proof. We recover the bounds by applying Lemma 6. We start with the bound on rationality in Eq. (3). Given that ε̂g > 0,
we apply Lemma 6 to the personalized and model hg and the generic model h0 to obtain:

√√√√4D
(

log
2ng

D + 1
)

+ log ( 8
δ )

ng
≤ ε̂g

ng ≥
4D
(

log
2ng

D + 1
)

+ log ( 8
δ )

ε̂2g

We now consider the bound on envy-freeness Eq. (4). Given that γ̂g > 0, we apply Lemma 6 to the personalized model hg
and hg′ for all g, g′ ∈ G. This produces m− 1 preferences to generalize. Given that m− 1 ≤ m, we apply Lemma 6 with
probability 1− δ

m . Doing so and inverting for ng proves the result.
√√√√4D

(
log

2ng

D + 1
)

+ log 8m
δ

ng
≤ γ̂g

ng ≥
4D
(

log
2ng

D + 1
)

+ log ( 8m
δ )

γ̂2
g
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C. Additional Information on Datasets
In this Appendix, we include additional information on the datasets used in Section 4 and Section 5. We present a summary
of the goals and characteristics for each dataset in Table 4. We include a brief description of each dataset and preprocessing
steps taken below.

Dataset n d Group Attributes – G Prediction Task Reference
apnea 1, 152 26 Age× Sex = {<30, 30 to 60, 60+} × {Male, Female} patient has obstructive sleep apnea Ustun et al. [82]

cardio_eicu 1, 341 49 Age× Sex = {Young, Old} × {Male, Female} patient with cardiogenic shock dies Pollard et al. [75]

cardio_mimic 5, 289 49 Age× Sex = {Young, Old} × {Male, Female} patient with cardiogenic shock dies Johnson et al. [49]

heart 181 26 Age× Sex = {Young, Old} × {Male, Female} patient has heart disease Detrano et al. [24]

kidney 2, 066 78 Sex× Race = {Male, Female} × {White, Black, Other} mortality of patient on CRRT Zhang et al. [98]

mortality 21, 139 484 Age× Sex = {< 30, 30 to 60, 60+} × {Male, Female} mortality of patient in ICU Harutyunyan et al. [43]

saps 7, 797 36 Age× HIV = {≤ 30, 30+} × {Positive, Negative} mortality of patient in ICU Le Gall et al. [57]

Table 4: Clinical prediction tasks considered in Section 4 and Section 5. We state conditions for yi = +1 for each dataset. All
datasets used are publicly available. Datasets based on MIMIC-III [49] (kidney, mortality) and eICU [75] (cardio) are hosted on
PhysioNet under the PhysioNet Credentialed Health Data License. The heart dataset is hosted on the UCI ML Repository under an
Open Data license. The apnea and saps datasets must be requested from the authors of the papers listed under references [57, 82]. In
cases where data access requires consent or approval from the data holders, we have followed the proper procedure to obtain such consent.

apnea We use the obstructive sleep apnea dataset from Ustun et al. [82] [see also 80]. The dataset contains a cohort of
1,152 patients of which Pr(y = +1) = 23% have OSA and includdes 26 features that cover information that is readily
available in an electronic health record (e.g. BMI, comobordities, age, sex).

cardio_eicu & cardio_mimic Cardiogenic shock is a serious acute condition where the heart cannot provide sufficient
blood to the vital organs. We create a cohort of patients who have cardiogenic shock during an ICU stay from the eICU
Collaborative Research Database V2.0[75] and MIMIC-III databases [49], respectively. The goal is to predict mortality for
a patient with cardiogenic shock. As features include summarize statistics for vitals and lab tests (e.g. systolic BP, heart rate,
hemoglobin count) obtained up to 24 hours prior to the onset of cardiogenic shock. The final dataset contains 8,815 patients
and Pr(yi = +1) = 13.5%.

heart We use the Heart dataset from the UCI Machine Learning Repository, where the goal is to predict the presence of
heart disease which covers a cohort of 303 patients, of which Pr(yi = +1) = 54.5% have heart disease. We use all available
features, treating cp, thal, ca, slope and restecg as categorical, and all remaining features as continuous.

kidney We use MIMIC-III and MIMIC-IV [49] to define a cohort of patients who were given continuous renal replacement
therapy (CRRT) at any point during their ICU stay. For patients with multiple ICU stays, we select their first one. We define
the target as whether the patient dies during the course of their selected hospital admission. As features, we select the most
recent instances of relevant lab measurements (e.g. sodium, potassium, creatinine) prior to the CRRT start time, along with
the patient’s age, the number of hours they have been in ICU when CRRT was administered, and their Sequential Organ
Failure Assessment (SOFA) score at admission. We treat all variables as continuous with the exception of the SOFA score,
which we treat as ordinal. This results in a dataset of 1,722 CRRT patients, with Pr(yi = +1) = 51.1%.

mortality We define a cohort of patients for in-hospital mortality prediction task following Harutyunyan et al. [43]. We
select the first ICU stay longer than 48 hours for patients in MIMIC-III[49], and predict in-hospital mortality for this visit.
As features, we include periodic lab and vital measurements used by Harutyunyan et al. [43] into four 12-hour time-bins,
and compute the mean in each time-bin. This results in a cohort of 21,139 patients where Pr(yi = +1) = 13.2%.

saps The Simplified Acute Physiology Score II (SAPS II) is a risk score developed to predict ICU mortality [57]. This
study contains a cohort of critically-ill patients from 137 medical centers across 12 countries. For each patient we have
access to demographics, comorbidities, and vitals which are used to predict the risk of mortality in the ICU. The final dataset
contains 7,797 patients where percentage of patients in the dataset who experience mortality is Pr(yi = +1) = 21.8%.
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D. Additional Experimental Results
We include additional results showing the gains of personalization when training personalized neural nets and random forests.
We present tables that summarize the gains of personalization for neural networks and random forests. The following tables
are analogous to Table 1, except that they also include results for the kidney dataset in Section 5.

Neural Nets We trained neural networks with two hidden layers of size 5 and 2 and learning rate of 1−3. We applied Platt
scaling [74] to ensure that the models assigned calibrated probabilities. As in Section 4.2 and Section 5, we can identify
significant fair use violations and gains as noted by the gains and violations.

Test Error Test AUC Test ECE

Dataset Metrics 1Hot All DCP 1Hot All DCP 1Hot All DCP

apnea
n = 1152, d = 26
G = {age,sex}
m = 6
Ustun et al. [82]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

35.0%
-1.7%

15.7% / -4.5%
4/3
3/0

48.4%
-15.1%

-6.1% / -34.4%
6/6
0/0

41.5%
-8.1%

-2.2% / -50.5%
6/6
2/1

0.704
-0.012

0.097 / -0.040
2/2
4/5

0.502
-0.215

-0.052 / -0.496
0/0
6/6

0.622
-0.095

-0.068 / -0.328
0/0
4/4

4.8%
0.8%

8.0% / -9.5%
2/2
1/1

2.4%
3.2%

25.2% / 3.3%
0/0
0/0

5.3%
0.4%

9.8% / -5.7%
2/2
1/1

cardio_eicu
n = 1341, d = 49
G = {age,sex}
m = 4
Pollard et al. [75]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

31.5%
1.6%

8.4% / -0.5%
0/0
2/0

31.8%
1.3%

5.5% / -1.3%
2/1
3/0

36.6%
-3.5%

0.0% / -10.3%
3/3
2/2

0.739
0.001

0.067 / -0.003
3/3
4/4

0.738
-0.001

0.029 / -0.012
1/1
3/4

0.687
-0.051

-0.000 / -0.091
0/0
2/2

4.5%
2.3%

2.6% / -1.2%
1/1
2/2

5.5%
1.4%

2.4% / -1.9%
1/1
1/1

5.4%
1.5%

5.4% / -2.8%
2/2
1/1

cardio_mimic
n = 5289, d = 49
G = {age,sex}
m = 4
Johnson et al. [49]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

23.7%
0.6%

2.0% / -1.1%
1/1
1/1

24.0%
0.2%

2.3% / -2.4%
2/2
0/0

23.9%
0.4%

1.4% / -1.3%
2/2
3/3

0.849
0.004

0.018 / -0.005
3/3
3/3

0.849
0.004

0.012 / -0.000
3/3
3/3

0.836
-0.009

0.003 / -0.015
1/1
0/0

3.1%
1.1%

2.1% / -0.4%
1/1
0/0

4.7%
-0.4%

1.4% / -2.3%
2/2
0/0

3.3%
1.0%

2.5% / -0.2%
0/0
1/1

heart
n = 181, d = 26
G = {sex,age}
m = 4
Detrano et al. [24]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

50.0%
1.3%

12.0% / -12.8%
2/1
2/1

26.3%
25.0%

29.7% / 16.6%
0/0
2/1

38.2%
13.2%

28.1% / 7.1%
0/0
3/1

0.451
-0.096

0.046 / -0.387
1/1
1/4

0.771
0.225

0.393 / 0.119
4/4
0/3

0.554
0.007

0.257 / -0.023
1/2
1/2

21.3%
-7.8%

-0.1% / -27.2%
3/3
1/1

19.5%
-5.9%

16.8% / -5.7%
1/1
0/0

18.1%
-4.5%

6.2% / -14.8%
1/1
1/1

kidney
n = 2066, d = 78
G = {sex,ethnicity}
m = 6
Zhang et al. [98]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

29.5%
-2.3%

1.2% / -7.8%
5/4
3/0

31.7%
-4.5%

5.2% / -6.8%
5/5
1/0

30.9%
-3.7%

-1.6% / -16.3%
6/6
4/4

0.758
-0.013

0.047 / -0.144
2/2
4/6

0.774
0.004

0.049 / -0.103
4/4
3/5

0.762
-0.009

0.032 / -0.135
2/2
2/2

5.6%
0.3%

4.6% / -7.8%
2/2
1/0

6.8%
-0.9%

1.9% / -5.6%
4/4
0/0

7.3%
-1.4%

1.0% / -5.9%
5/5
3/3

mortality
n = 25366, d = 468
G = {age,sex}
m = 6
Johnson et al. [49]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

20.4%
0.1%

5.2% / -1.7%
2/2
5/1

21.6%
-1.1%

-0.6% / -3.2%
6/6
2/2

17.7%
2.8%

12.9% / 0.0%
0/0
6/6

0.870
-0.003

0.032 / -0.018
3/3
0/4

0.869
-0.004

-0.000 / -0.022
0/0
4/4

0.895
0.022

0.042 / 0.005
6/6
0/0

2.8%
0.6%

2.7% / -0.8%
3/3
4/1

4.7%
-1.3%

2.9% / -1.8%
3/3
3/3

3.0%
0.5%

8.3% / 0.1%
0/0
6/6

saps
n = 7797, d = 36
G = {hiv,age}
m = 4
Allyn et al. [4]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

53.9%
7.7%

13.1% / 0.0%
2/0
4/1

22.5%
39.0%

54.8% / 1.4%
1/0
3/0

48.9%
12.7%

22.0% / 0.0%
1/0
3/2

0.521
0.328

0.727 / 0.197
4/4
1/3

0.872
0.679

0.757 / 0.638
4/4
1/3

0.758
0.565

0.743 / -0.273
3/3
3/4

43.6%
1.7%

13.2% / 1.6%
0/0
0/0

9.4%
36.0%

45.1% / -2.9%
1/1
1/1

31.5%
13.9%

49.9% / 6.4%
0/0
1/1

Table 5: Gains of personalization for neural network models on test data.

Random Forests We trained random forests with the following hyperparameters: 100 estimators, max depth of 20,
minimum samples per split is 5, and minimum number of samples in each leaf is 2. We expect these models to perform well
in terms of error rare but not necessarily in terms in terms of AUC or risk calibration. We observe this effect in the Table
below. For example, using an intersectional encoding with random forests minimizing fair use violations in terms of error
rate as measured on multiple datasets (e.g. apnea, kidney). As noted with other model classes, we can find statistically
significant violations.
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Test Error Test AUC Test ECE

Dataset Metrics 1Hot All DCP 1Hot All DCP 1Hot All DCP

apnea
n = 1152, d = 26
G = {age,sex}
m = 6
Ustun et al. [82]

()

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

29.7%
1.8%

4.7% / -4.4%
2/2
3/0

31.0%
0.3%

1.4% / -3.8%
4/1
3/1

26.5%
5.3%

17.0% / -6.0%
1/1
5/5

0.751
-0.004

0.061 / -0.021
1/2
2/6

0.757
-0.001

0.019 / -0.015
1/2
2/4

0.815
0.055

0.104 / -0.008
5/5
1/1

8.2%
-2.3%

2.2% / -3.9%
3/3
0/0

7.2%
-1.1%

2.1% / -2.0%
3/3
1/1

8.0%
-1.0%

2.8% / -2.6%
2/2
0/0

cardio_eicu
n = 1341, d = 49
G = {age,sex}
m = 4
Pollard et al. [75]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

30.8%
0.4%

3.6% / -3.6%
2/2
1/0

30.5%
-0.3%

0.0% / -0.9%
4/1
2/2

27.1%
3.9%

16.4% / 0.4%
0/0
4/4

0.770
0.003

0.016 / -0.008
2/2
2/3

0.769
0.003

0.013 / -0.012
2/2
1/1

0.801
0.032

0.121 / 0.007
4/4
0/0

8.0%
-0.5%

0.7% / -2.0%
3/3
1/1

8.5%
-0.3%

0.5% / -0.0%
0/0
1/1

9.4%
-1.9%

4.2% / -1.4%
2/2
0/0

cardio_mimic
n = 5289, d = 49
G = {age,sex}
m = 4
Johnson et al. [49]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

24.0%
-0.3%

0.9% / -1.3%
2/2
2/0

23.7%
0.3%

0.6% / -0.1%
1/0
3/3

20.9%
2.9%

5.8% / 1.1%
0/0
4/4

0.849
0.001

0.003 / -0.002
3/3
2/2

0.850
-0.002

0.004 / -0.004
1/1
1/1

0.871
0.023

0.047 / 0.007
4/4
0/0

10.0%
-0.8%

0.5% / -1.7%
3/3
0/0

11.0%
-0.9%

-0.0% / -1.6%
3/3
1/1

11.7%
-2.3%

-0.1% / -4.6%
3/3
0/0

heart
n = 181, d = 26
G = {sex,age}
m = 4
Detrano et al. [24]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

18.4%
1.3%

5.9% / 0.0%
3/0
4/0

21.1%
2.6%

10.8% / 0.0%
3/0
3/1

21.1%
-1.3%

16.3% / -18.6%
3/2
1/1

0.899
0.001

0.004 / -0.067
0/3
0/4

0.896
-0.000

0.016 / -0.063
1/3
1/4

0.936
0.035

0.094 / 0.001
3/4
0/0

9.2%
2.0%

7.1% / -3.7%
2/2
2/2

10.6%
4.5%

4.3% / -4.6%
2/2
4/4

13.5%
1.1%

11.3% / -13.8%
2/2
2/2

kidney
n = 2066, d = 78
G = {sex,ethnicity}
m = 6
Zhang et al. [98]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

30.1%
-0.4%

0.5% / -3.4%
4/2
5/0

30.5%
-1.2%

0.0% / -3.4%
6/4
1/0

22.3%
7.8%

17.8% / 3.1%
0/0
6/6

0.773
-0.003

0.008 / -0.022
2/2
3/5

0.773
-0.005

0.015 / -0.008
2/2
3/3

0.860
0.083

0.143 / 0.062
6/6
0/0

7.5%
0.8%

1.8% / -1.8%
3/3
2/0

7.5%
1.3%

1.7% / -2.6%
1/1
0/0

13.2%
-5.1%

-1.7% / -8.1%
6/6
0/0

mortality
n = 25366, d = 468
G = {age,sex}
m = 6
Johnson et al. [49]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

27.1%
0.2%

0.8% / -1.1%
4/4
5/0

26.9%
0.4%

1.0% / -0.7%
2/2
6/0

24.6%
2.4%

22.2% / 0.2%
0/0
6/6

0.803
-0.004

0.004 / -0.011
1/1
0/6

0.806
0.002

0.009 / -0.011
3/3
0/6

0.841
0.035

0.186 / 0.013
6/6
0/0

11.0%
-0.5%

0.2% / -1.2%
3/3
3/0

10.9%
-0.6%

0.3% / -1.3%
4/4
6/0

12.0%
-0.9%

0.7% / -7.8%
4/4
0/0

saps
n = 7797, d = 36
G = {hiv,age}
m = 4
Allyn et al. [4]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

19.6%
0.0%

0.1% / -0.2%
3/1
2/1

19.8%
0.0%

22.2% / -0.4%
1/1
3/1

19.1%
0.6%

4.6% / 0.0%
1/0
3/3

0.880
-0.001

0.000 / -0.001
0/2
0/2

0.880
0.000

0.002 / -0.023
1/2
1/3

0.882
0.002

0.023 / -0.187
2/2
1/2

5.0%
-0.5%

1.9% / -0.6%
2/2
1/0

4.9%
-0.5%

0.3% / -1.0%
2/2
1/1

4.7%
0.3%

8.7% / -0.4%
1/1
3/3

Table 6: Performance of personalized random forests models on all datasets. We describe the metrics shown for each model and dataset
in Table 1.
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