
Oracle-Efficient Combinatorial Semi-Bandits

Jung-hun Kim
CREST, ENSAE, IP Paris
FairPlay joint team, France
junghun.kim@ensae.fr

Milan Vojnović
London School of Economics

United Kingdom
m.vojnovic@lse.ac.uk

Min-hwan Oh
Seoul National University

South Korea
minoh@snu.ac.kr

Abstract

We study the combinatorial semi-bandit problem where an agent selects a subset of
base arms and receives individual feedback. While this generalizes the classical
multi-armed bandit and has broad applicability, its scalability is limited by the
high cost of combinatorial optimization, requiring oracle queries at every round.
To tackle this, we propose oracle-efficient frameworks that significantly reduce
oracle calls while maintaining tight regret guarantees. For the worst-case linear
reward setting, our algorithms achieve Õ(

√
T) regret using only O(log log T)

oracle queries. We also propose covariance-adaptive algorithms that leverage
noise structure for improved regret, and extend our approach to general (non-
linear) rewards. Overall, our methods reduce oracle usage from linear to (doubly)
logarithmic in time, with strong theoretical guarantees.

1 Introduction

The combinatorial semi-bandit problem extends the classical multi-armed bandit (MAB) model to
settings where an agent selects a subset of base arms (a combinatorial action) and receives individual
feedback for each. This general framework captures many real-world scenarios, such as product
recommendation, where a set of items is recommended to a user [17]; ad slot allocation, where
multiple ads are displayed on a webpage [13]; and network routing, where a path comprising several
links is selected in a communication network [27].

Due to its broad applicability, the combinatorial semi-bandit problem has been extensively studied in
the literature [6, 8, 19, 10, 23, 32]. However, a central challenge lies in the computational complexity
of solving the combinatorial optimization problem, which is often NP-hard. As a result, most
existing algorithms assume access to an oracle that returns a solution to the combinatorial problem.
These algorithms rely on querying the oracle at every round, leading to excessive oracle usage and
substantial computational overhead in practice.

In this work, following the computational complexity notions introduced in Balkanski and Singer
[1], Fahrbach et al. [12], we distinguish between two measures of oracle efficiency: adaptivity
complexity and query complexity, which are defined later. Our goal is to improve oracle efficiency
by substantially reducing the overall oracle adaptivity and query complexities in decision-making
over a time horizon T , while maintaining tight gap-free regret guarantees that do not depend on the
suboptimality gaps. Our main contributions are summarized below and compared with prior work on
gap-free combinatorial semi-bandits in Table 1.

• Oracle-efficient algorithms for worst-case linear rewards: We propose two frameworks
that significantly reduce oracle query usage while maintaining tight regret guarantees. Using
an adaptive oracle query framework, AROQ-CMAB achieves near-optimal regret of Õ(

√
mdT),

with both adaptivity and query complexity bounded by O(d log log(Tm/d)), where d
denotes the number of base arms and m is the maximum number of activated base arms per
action. To further improve computational practicality by reducing adaptivity complexity,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Table 1: Gap-free regret bounds for combinatorial semi-bandit algorithms.

Combinatorial
Reward Model

Algorithm Regret Adaptivity
Complexity

Query
Complexity

Linear
(Worst-case)

CUCB [6] Õ(m
√
dT) Θ(T) Θ(T)

CUCB [19] Õ(
√
mdT) Θ(T) Θ(T)

AROQ-CMAB (our work) Õ(
√

mdT) O(d log log(Tm
d

))O(d log log(Tm
d

))

SROQ-CMAB (our work) Õ(m
√

dT) Θ(log log T) O(d log log T)

Linear
(Covariance
-dependent)

OLS-UCB-C [32] Õ

(√∑
i∈[d]

max
a∈A s.t. i∈a

σ2
i (a)T

)
Θ(T) Θ(T)

AROQ-C-CMAB (our work) Õ

(√∑
i∈[d]

max
a∈A s.t. i∈a

σ2
i (a)T

)
O(d2 log(Tm)) O(d2 log(Tm))

SROQ-C-CMAB (our work) Õ

(√
dmax

a∈A

∑
i∈a

σ2
i (a)T

)
Θ(log log T) O(d2 log log T)

General
SDCB [5] Õ(L

√
mdT) Θ(T) Θ(T)

AROQ-GR-CMAB (our work) Õ(L
√

mdT) O(d log log(Tm
d

))O(d log log(Tm
d

))

SROQ-GR-CMAB (our work) Õ(Lm
√

dT) Θ(log log T) O(d log log T)

we propose a scheduled oracle query framework that executes multiple independent oracle
queries in parallel. Under this framework, SROQ-CMAB achieves regret Õ(m

√
dT) with

adaptivity complexity of Θ(log log T) and query complexity of O(d log log T).

• Covariance-adaptive oracle-efficient algorithms for linear rewards: Utilizing our
proposed frameworks, we design oracle-efficient algorithms that leverage the estimated
covariance structure of the reward noise. AROQ-C-CMAB achieves near-optimal regret
Õ
(√∑

i∈[d] maxa∈A s.t. i∈a σ2
i (a)T

)
, where σ2

i (a) denotes the variance contribution of

base arm i under action a, with adaptivity and query complexities of O(d2 log(Tm)).

SROQ-C-CMAB achieves regret Õ
(√

dmaxa∈A
∑

i∈a σ
2
i (a)T

)
with adaptivity complexity

of O(log log T) and query complexity of Θ(d log log T).

• Oracle-efficient algorithm for general reward models: We extend our frameworks to
general (non-linear) reward functions. AROQ-GR-CMAB achieves regret Õ(L

√
mdT) with

adaptivity and query complexities of O(d log log(Tm/d)), where L denotes the maximum
possible value of the reward. SROQ-GR-CMAB achieves regret Õ(Lm

√
dT) with adaptivity

complexity of O(log log T) and query complexity of Θ(d log log T).

Related Work. The combinatorial semi-bandit problems have been extensively studied, starting
from the foundational work of Chen et al. [6]. Kveton et al. [19] established tight regret bounds that
are near-optimal. Further improvements were made by Combes et al. [8], who derived better bounds
under the assumption that the feedback from selected arms is independent.

More recently, a unified framework that accounts for both dependent and independent feedback
through covariance analysis was introduced by Degenne and Perchet [10], assuming knowledge of
the covariance matrix. This line of research has been further advanced by Perrault et al. [23] and
Zhou et al. [32], who developed covariance-adaptive algorithms based on confidence ellipsoids. In
addition to linear reward structures, generalized linear reward functions have also been studied in the
combinatorial semi-bandit setting by Chen et al. [5].

Despite these advances, all of the aforementioned works require solving a combinatorial optimization
problem frequently at every round using an offline oracle, which is generally NP-hard [9]. To
alleviate the computational burden, Cuvelier et al. [9] proposed an approximation-based approach
that achieves polynomial-time complexity. However, their method introduces a trade-off between
regret and computational cost, as achieving near-optimal regret necessitates increasingly accurate

2

approximations—leading to potentially unbounded computational time.1 Similarly, Chen et al. [6]
considered approximation oracles but focused on minimizing approximate regret, rather than the
original regret, and their method is limited to cases where such approximation oracles are available.
Neu and Bartók [21] studied efficient algorithms in the adversarial semi-bandit setting, but their
method still requires solving the optimization problem at every round and does not attain optimal
regret in the stochastic setting. Similarly, Zhou et al. [32] proposed an adaptive covariance-based
algorithm using ellipsoidal confidence regions, yet it also incurs oracle calls at every round.

As a related line of research, oracle-efficient algorithms have been studied for submodular function
optimization problems [2, 3, 12]. However, these approaches do not involve latent models that
can be learned from stochastic sequential feedback, as in bandit learning. As a result, they differ
fundamentally in formulation and are not applicable to the bandit setting. Oracle-efficient bandit
algorithms have also been proposed for bandit linear optimization [18], achieving O(poly(d, log T))
oracle complexity. However, these approaches assume linear rewards with full-arm decisions and do
not handle combinatorial action spaces or semi-bandit feedback, which are central to our setting. To
the best of our knowledge, rare oracle queries in combinatorial semi-bandit problems have only been
empirically explored by Combes et al. [8], who proposed a heuristic using O(log T) oracle calls but
without theoretical regret guarantees. Furthermore, several variants of combinatorial bandits heavily
rely on frequent oracle queries, including Thompson Sampling methods [28], maximum-reward
feedback settings [29], and pure exploration problems [4].

2 Problem Formulation

There are d base arms, and let A ⊆ {0, 1}d denote the set of available actions, where each action
a ∈ A is a binary vector indicating the activated base arms. We allow A to be an arbitrary subset of
{0, 1}d. Then, we define m = maxa∈A ∥a∥0 as the maximum number of activated base arms across
all actions. At each time t ∈ [T], the environment samples a vector of rewards yt ∈ [0, 1]d from a
fixed distribution D that is unknown to the agent, and the agent chooses an action at ∈ A. For any
vector x ∈ Rd, we use xi to denote its i-th entry. Then, the agent receives a reward r(at, yt) where
r : A× [0, 1]d → R, and observes the values of yt,i for each i ∈ [d] such that at,i = 1 (semi-bandit
feedback). The mean of the latent distribution D is denoted by µ = (µ1, . . . , µd). We first focus on
the standard linear reward setting studied in prior work [19, 8, 10, 23, 32], where the reward is given
by r(a, yt) := ⟨a, yt⟩. We will discuss generalizations beyond the linear case later.

Regret. Let a∗ be an optimal action, a∗ ∈ argmaxa∈A r̄(a), where r̄(a) = Ey∼D[r(a, y)] repre-
sents the expected reward function (e.g., r̄(a) = ⟨a, µ⟩ in the linear case). The goal is to minimize
the cumulative regret over horizon T , defined asR(T) = E[

∑T
t=1(r̄(a

∗)− r̄(at))].

Combinatorial Optimization. For finding an optimal action, it is required to solve the combina-
torial optimization problem argmaxa∈A r̄(a), whose computational cost, in general with arbitrary
A ⊆ {0, 1}d, is proportional to the size of A which is O(dm). To address this computational
complexity, the previous work on combinatorial semi-bandits [8, 6, 19] assumed access to an oracle,
which returns a solution for the combinatorial optimization. However, these methods require querying
the oracle at every round. In this work, we aim to substantially reduce the number of oracle queries
while achieving tight regret. Formally, as in the previous work, we assume access to an oracle that
returns a† ∈ argmaxa∈A f(a) for given f : A → R. Furthermore, our oracle-efficient approach can
be incorporated with an approximation oracle, which will be discussed later.

Oracle Efficiency. Following the computational complexity notions introduced in [1, 12], we
evaluate the oracle efficiency of our algorithms using two key measures, which are described as
follows and illustrated in Figure 1: Query complexity refers to the total number of individual oracle
queries made over the entire time horizon. This reflects the standard computational workload of the
algorithm. Adaptivity complexity captures the number of sequential rounds of oracle queries, where
each round may consist of a set of queries that can be executed in parallel without depending on each
other.

1To reach optimal regret, the approximation level δt must satisfy limt→∞ δt = 0, and each round incurs cost
O(1/δt) → ∞

3

Oracle
Query

Round 1 Round 10

Parallel Oracle
Query

Oracle
Query

Oracle
Query

Adaptivity Complexity :
Query Complexity :

1
3

1
1

1
2+ + = 3

6

Round 100

Oracle
Query

Oracle
Query

… …

No Queries No Queries

Figure 1: Oracle adaptivity and query complexities.

While query complexity is important in general, adaptivity complexity often dominates the actual
runtime cost in parallel or distributed environments, where parallelizing queries within a round is
easy, but synchronizing between rounds incurs overhead. Our goal is to reduce both measures of
oracle complexity while maintaining tight regret guarantees.

Additional Notation. With a slight abuse of notation, we write i ∈ a for a ∈ A if the i-th coordinate
of a satisfies ai = 1. For any b, c ∈ R, we write b ≲ c to indicate that b is upper bounded by c up to a
constant factor. We use b+ for max{b, 0}.

3 Oracle-Efficient Algorithms and Regret Analysis

We present two frameworks for combinatorial semi-bandit problems with rare oracle queries: one
based on an adaptive oracle calls, and the other based on scheduled oracle queries, both inspired by
batch learning [22, 26, 14, 7, 11, 31, 16, 24, 30, 15].

3.1 Adaptive Rare Oracle Queries

We propose an algorithm (Algorithm 1) that leverages adaptive oracle queries. The algorithm
employs a UCB-based strategy with adaptive epoch-based updates, enabling efficient exploration
despite infrequent oracle access. We use the UCB indices defined as: for some constant C > 0,

rUCB
t (a) =

∑
i∈a

(
µ̂t,i +

√
C log t

nt,i

)
, (1)

where µ̂t,i =
∑t−1

s=1 ys,i1(i ∈ as) and nt,i =
∑t−1

s=1 1(i ∈ as). The UCB index for each action is
updated when there exists a base arm i whose selection count exceeds a specified threshold. More
precisely, the indices are updated when the number of rounds in which arm i has been selected in the
current epoch, denoted by |Ti(τi)|, satisfies |Ti(τi)| ≥ 1 +

√
Tm · |Ti(τi − 1)|/d, where τi is the

epoch index for arm i, and Ti(τ) is the set of rounds in epoch τ where i was selected.

The intuition for the threshold condition of oracle queries is as follows: for i ∈ [d] with
τi, the instance regret is bounded by

√
1/|Ti(τi − 1)| so that with the bound for |Ti(τi)| from

the update condition, the overall regret for τi epochs is bounded by |Ti(τi)|
√
1/|Ti(τi − 1)| ≲√

Tm|Ti(τi − 1)|/d
√
1/|Ti(τi − 1)| =

√
Tm/d. By considering all τi for i ∈ [d], we can obtain

the near-optimal regret bound with oracle efficiency.

Theorem 1 With oracle adaptivity and query complexities of O(d log log(Tm/d)), respectively,
Algorithm 1 achieves a regret bound of

R(T) = O
(√

mdT log T log log(Tm/d)
)
.

Proof. The full version of the proof is provided in Appendix A.2.

4

Algorithm 1 Adaptive Rare Oracle Queries for Combinatorial MAB (AROQ-CMAB)
Initialize: τi = 1 for all i ∈ [N]
for t = 1, 2..., T do

for i ∈ [d] s.t. |Ti(τi)| ≥ 1 +
√

Tm · |Ti(τi − 1)|/d do
τi ← τi + 1, Ti(τi)← ∅
Update← True

if Update = True then
at ← argmaxa∈A rUCB

t (a) with (1) // Oracle Query
Update← False

else
at ← at−1

Play at and observe feedback yt,i for i ∈ at
Ti(τi)← Ti(τi) ∪ {t} for all i ∈ at

Comparison to Previous Work. The worst-case regret lower bound for this problem is known to be
Ω(
√
mdT) [6], and a near-optimal regret was achieved by the algorithm of Chen et al. [6], Kveton et al.

[19]. However, their approach requires Θ(T) oracle adaptivity and query complexity, respectively. In
contrast, our proposed algorithm, AROQ-CMAB (Algorithm 1), achieves a near-optimal regret bound
while significantly reducing both oracle adaptivity and query complexities to O(d log log(Tm/d)).

α-Approximation Oracle. Prior work on combinatorial bandits [6] mitigates the cost of exact ora-
cles by using α-approximation oracles, which return an action a† satisfying f(a†) ≥ αmaxa∈A f(a)
for some approximation factor α ∈ [0, 1], when such oracles are available. This leads to analyzing the
regret relative to the best α-approximate reward, rather than the true optimal reward. In contrast, our
method targets the original (non-approximate) regret while reducing the frequency of oracle queries.
Nevertheless, our framework can naturally incorporate α-approximation oracles, achieving the same
regret guarantee in terms of α-approximate regret with only infrequent approximate oracle calls. See
Appendix A.3 for details.

3.2 Scheduled Rare Oracle Queries

To further reduce adaptivity complexity and enable more efficient distributed computation, we propose
an algorithm that performs scheduled batched oracle queries at predetermined epochs (Algorithm 2),
allowing these oracle queries to be synchronized and executed in parallel. At each epoch τ , we define
UCB and LCB indices as: for some constant C > 0

rUCB
τ (a) =

∑
i∈a

(
µ̂τ,i +

√
C log T

nτ,i

)
and rLCB

τ (a) =
∑
i∈a

(
µ̂τ,i −

√
C log T

nτ,i

)
, (2)

where µ̂τ,i = (1/nτ,i)
∑tτ−1

t=1 yt,i1(i ∈ at), nτ,i =
∑tτ−1

t=1 1(i ∈ at), and tτ denotes the start time
of the τ -th epoch.

To schedule oracle queries, we adopt an elimination-based bandit strategy [26]. However, in combi-
natorial bandits, the exponentially large number of suboptimal actions poses a significant challenge
for efficient exploration. To address this, we construct a representative action a

(i)
τ for each base

arm i ∈ [d] in epoch τ . Using elimination conditions applied to these representative actions, we
can efficiently eliminate a large number of suboptimal actions by focusing on suboptimal base
arms—those that are not part of the optimal action a∗. In each epoch, these representative actions
are selected for exploration, after which the estimators and representative actions are updated. This
process requires oracle queries but only at the batch level, keeping the query frequency low.

Let T = {t1, . . . , tM} denote the set of time steps at which oracle queries are made, where M > 0,
t1 = 1, tM = T , and for 1 < τ < M , the sequence is defined recursively as tτ = η

√
tτ−1. The

scaling factor is set to η = T 1/(2−21−M). We choose M = Θ(log log T) to ensure doubly logarithmic
adaptivity and query complexity. Parallel execution of oracle queries is discussed in Appendix A.1.

5

Algorithm 2 Scheduled Rare Oracle Queries for Combinatorial MAB (SROQ-CMAB)
Input: T

1 for τ = 1, 2, . . . ,M do
2 Update µ̂τ := (µ̂τ,1, . . . , µ̂τ,d)

3 a
(i)
τ := argmaxa∈Aτ−1:i∈a r

UCB
τ (a) for all i ∈ Nτ−1 with (2) // Oracle Queries

4 Nτ ← {i ∈ Nτ−1 | rUCB
τ (a

(i)
τ) ≥ maxa∈Aτ−1

rLCB
τ (a)} with (2) // Oracle Query

5 Aτ ← {a ∈ Aτ−1 | ai = 0 for all i ∈ [d]/Nτ}
6 Tτ ← [tτ , tτ+1 − 1]
7 for t ∈ Tτ do
8 i← (t mod |Nτ |)-th element in Nτ

9 Play at = a
(i)
τ and observe feedback yt,i for i ∈ at

Theorem 2 With oracle adaptivity complexity of Θ(log log T) and oracle query complexity of
O(d log log T), Algorithm 2 achieves a regret bound of

R(T) = O
(
m
√
dT log T log log T

)
.

Proof. The full version of the proof is provided in Appendix A.4.

We observe that Algorithm 2 improves the adaptivity complexity from O(d log log(Tm/d)) in
Algorithm 1 to Θ(log log T), at the cost of an additional

√
m/ log log T factor in the regret.

Remark 1 In practice, Algorithm 2 can be more computationally efficient than Algorithm 1. First,
due to its reduced adaptivity complexity, Algorithm 2 enables more efficient parallel execution
of oracle queries. Second, the elimination process progressively discards suboptimal base arms,
reducing the oracle query complexity per round from O(dm) to O(|Nτ |m), where |Nτ | ≤ d denotes
the number of remaining base arms at epoch τ . These computational advantages are further supported
by our experimental results presented later.

Our proposed frameworks for combinatorial semi-bandits with rare oracle queries can be extended to
variants of the combinatorial semi-bandit, including covariance-dependent CMAB and general-reward
CMAB. In the following, we examine each of these settings in turn.

4 Extension to Covariance-dependent CMAB

In this section, instead of targeting worst-case regret, we consider covariance-dependent regret,
inspired by [10, 23, 32]. The covariance-dependent analysis can cover independent or dependent
(worst-case) semi-bandit rewards of arms in an action. Here, the covariance matrix for the reward
distribution D is denoted by Σ ∈ Rd×d, which is assumed to be unknown to the agent. In the
following, we propose covariance-adaptive algorithms based on our two frameworks—adaptive and
scheduled rare oracle queries—to handle this setting.

4.1 Adaptive Rare Oracle Queries for Covariance-adaptive Approach

We first propose an algorithm (Algorithm 3) based on the adaptive rare oracle query framework.
Recall that nt,i =

∑t−1
s=1 1(i ∈ at) and nt := (nt,1, . . . , nt,d). Let Dx and DX denote diagonal

matrices, where Dx has the entries of vector x on its diagonal, and DX has the diagonal entries of
matrix X .

We define the estimated means as µ̂t = D−1
nt

∑t−1
s=1 Dasys. We also define covariance estimator

Σ̂t = Ŝt − µ̂tµ̂
⊤
t where Ŝt,(i,j) = 1

nt,(i,j)

∑t−1
t=1 at,iat,jyt,iyt,j , and confidence bound Σt,(i,j) =

Σ̂t,(i,j)+
1
4

(
5ht√
nt,(i,j)

+
h2
t

nt,(i,j)
+ 1

n2
t,(i,j)

)
, where nt,(i,j) =

∑t−1
t=1 1(i ∈ at)1(j ∈ at) with nt,(i,i) =

nt,i, and ht = O(
√
log t+ log d). Define the gram matrix Gt =

∑t−1
s=1 Das

ΣtDas
+DΣt

Dnt
+ I .

6

Algorithm 3 Adaptive Rare Oracle Queries for Covariance-adaptive CMAB (AROQ-C-CMAB)
Initialize: τi,j = 0 for all i, j ∈ [d]× [d]
for t = 1, 2..., T do

if t ≤ ⌈d(d+ 1) log3(T)/2⌉ then
Let (i, j) be the

(
t mod d(d+1)

2

)
-th pair in a fixed enumeration of all

(
d
2

)
pairs

at ← any a ∈ A s.t. i ∈ a, j ∈ a
if t = ⌈d(d+ 1) log3(T)/2⌉ then

τi,j ← τi,j + 1 for all i, j ∈ [d]× [d]

else
for i, j ∈ [d]× [d] s.t. |Ti,j(τi,j)| ≥ 1 + 2|Ti,j(τi,j − 1)| do

τi,j ← τi,j + 1, Ti,j(τi,j)← ∅
Update← True

if Update = True then
at ← argmaxa∈A rUCB

t (a) with (3) // Oracle Query
Update← False

else
at ← at−1

Play at and observe feedback yi,t for i ∈ at
Ti,j(τi,j)← Ti,j(τi,j) ∪ {t} for all i ∈ at and j ∈ at,

Then, we utilize the UCB index, defined as

rUCB
t (a) = ⟨a, µ̂t⟩+ ft∥D−1

nt
a∥Gt

, (3)

where ft = O(log t+ d log log t).

To initialize, the algorithm uniformly explores actions as a warm-up phase for the stability of the
covariance estimator. Then in the main stage, for the adaptive update condition, we adopt a stricter
criterion than that of (worst-case) Algorithm 1, resulting in more frequent updates—though oracle
queries remain rare—while handling the covariance-dependent bound to achieve a tighter guarantee.
For the covariance dependent regret bound, we define σ2

i (a) =
∑

j∈a(Σi,j)+. The algorithm achieves
a near-optimal regret bound asymptotically as follows.

Theorem 3 With oracle adaptivity and query complexities of O(d2 log(Tm)), respectively, Algo-
rithm 3 achieves an asymptotic regret bound of

R(T) = Õ

√T
∑
i∈[d]

max
a∈A s.t. i∈a

σ2
i (a)

 .

Proof. The full version of the proof is provided in Appendix A.5.

In the worst case of dependent base arm rewards, our regret bound becomes Õ(
√
mdT), which is the

same as that of Algorithm 1. However, for the independent reward case across all base arms (i.e.,
Σ = I), the regret bound becomes Õ(

√
dT), which is tighter by a factor of

√
m.

Comparison to Previous Work. As discussed in [32], the proposed algorithms in [10, 23]
achieved gap-dependent asymptotic regret bound, which is not tight for the gap-free bound with
respect to T because of the additional 1/∆2

min factor. The regret lower bound of this problem is

Ω(
√
T
∑

i∈[d] maxa∈A s.t. i∈a σ2
i (a)) [32] and [32] propose an algorithm achieving near-optimal gap-

free asymptotic regret bound of Õ(
√

T
∑

i∈[d] maxa∈A s.t. i∈a σ2
i (a)) with Θ(T) oracle adaptivity

and query complexity, respectively. Our algorithm achieves the near-optimal asymptotic regret bound
with reduced oracle adaptivity and query complexity of O(d2 log(mT)), respectively.

7

Algorithm 4 Scheduled Rare Oracle Queries for Covariance-adaptive CMAB (SROQ-C-CMAB)
Input: T

10 for t ∈ [1, ⌈d(d+ 1)/2⌉] do
11 Let (i, j) be the

(
t mod d(d+1)

2

)
-th pair in a fixed enumeration of all

(
d
2

)
pairs

12 at ← any a ∈ A s.t. i ∈ a, j ∈ a

13 for τ = 1, 2, . . . ,M do
14 Update µ̂τ,i, Ŝτ,(i,j) for all (i, j) ∈ [d]× [d]

15 a
(i)
τ := argmaxa∈Aτ−1:i∈a r

UCB
τ (a) for all i ∈ Nτ−1 with (4) // Oracle Queries

16 a
(i,j)
τ := argmaxa∈Aτ−1:i,j∈a r

UCB
τ (a) for all (i, j) ∈ N (2)

τ−1 : i ̸= j // Oracle Queries

17 Nτ ← {i ∈ Nτ−1 | rUCB
τ (a

(i)
τ) ≥ maxa∈Aτ−1

rLCB
τ (a)} with (4) // Oracle Query

18 A′
τ ← {a ∈ Aτ−1 | ai = 0 for all i ∈ [d]/Nτ}

19 N (2)
τ ← {(i, j) ∈ Nτ ×Nτ | rUCB

τ (a
(i,j)
τ) ≥ maxa∈A′

τ
rLCB
τ (a), i ̸= j} // Oracle Query

20 Aτ ← {a ∈ A′
τ | ai = 0 or aj = 0 for all (i, j) ∈ [d]× [d]/N (2)

τ , i ̸= j}
21 T (1)

τ ← [tτ , tτ +Tτ−(d2m2Tτ log T)
2/3−1], T (2)

τ ← [tτ +Tτ−(d2m2Tτ log T)
2/3

, tτ+1−1]
22 for t ∈ T (1)

τ do
23 i← (t mod |Nτ |)-th element in Nτ

24 Play at = a
(i)
τ

25 Receive reward ⟨at, yt⟩ and observe feedback yt,i for i ∈ [d] s.t. at,i = 1

26 for t ∈ T (2)
τ do

27 (i, j)← (t mod |N (2)
τ |)-th element in N (2)

τ

28 Play at = a
(i,j)
τ

29 Receive reward ⟨at, yt⟩ and observe feedback yt,i for i ∈ [d] s.t. at,i = 1

4.2 Scheduled Rare Oracle Queries for Covariance-adaptive Approach

Here, we propose a covariance-adaptive algorithm (Algorithm 4) by utilizing the framework of
scheduled rare oracle queries. Recall that for each epoch τ , µ̂τ,i = (1/nτ,i)

∑tτ−1
t=1 yt,i1(i ∈ at)

where nτ,i =
∑tτ−1

t=1 1(i ∈ at) and tτ is the start time of epoch τ in the algorithm. For the
covariance estimator, we define Σ̂τ = Ŝτ − µ̂τ µ̂

⊤
τ where Ŝτ,(i,j) = (1/nτ,i,j)

∑tτ−1
t=1 at,iat,jyt,iyt,j ,

and confidence bound Στ,(i,j) = Σ̂τ,(i,j) +
1
4

(
5hT√
nτ,(i,j)

+
h2
T

nτ,(i,j)
+ 1

n2
τ,(i,j)

)
, where nτ,(i,j) =∑tτ−1

t=1 1(i ∈ at)1(j ∈ at), nτ,(i,i) = nτ,i, and hT = O(
√
log T + log d). Define the gram matrix

Gτ =
∑tτ−1

s=1 Das
ΣτDas

+DΣτ
Dnτ

+ I . Then, for the confidence bounds, we utilize

rUCB
τ (a) = ⟨a, µ̂(τ)⟩+ fT ∥D−1

nτ
a∥Gτ

and rLCB
τ (a) = ⟨a, µ̂(τ)⟩ − fT ∥D−1

nτ
a∥Gτ

, (4)

where fT = O(log T + d log log T). For scheduled oracle queries, we employ the same time grid
T = {t1, . . . , tM}, as in Algorithm 2. Parallel execution of oracle is discussed in Appendix A.1.

Theorem 4 With oracle adaptivity complexity of Θ(log log T) and oracle query complexity of
O(d2 log log T), Algorithm 4 achieves an asymptotic regret bound of

R(T) = Õ

√dmax
a∈A

∑
i∈a

σ2
i (a)T

 .

Proof. The full version of the proof is provided in Appendix A.6.

In the worst case, the scheduled query-based Algorithm 4 achieves a regret bound of Õ(m
√
dT),

which matches that of the scheduled query-based Algorithm 2 but is larger than the bounds achieved
by the adaptive oracle query framework of Algorithm 1 and Algorithm 3 by a factor of

√
m. This gap

8

arises from the inefficiency of using a fixed-time framework compared to an adaptive-time framework.
However, the oracle complexities of Algorithm 4 are significantly lower than the O(d2 log(mT))
complexities of Algorithm 3, achieving Θ(log log T) adaptivity and O(d log log T) query complexity.

5 Extension to General-Reward CMAB

In this section, beyond a linear reward function we explored in the previous sections, we consider
general reward functions r(a, y) defined on A × [0, 1]d → [0, L] for L > 0. We adopt the same
setting with assumptions as in [5]. Specifically, at each time t, each base arm i ∈ [d] produces
yt,i ∈ [0, 1] i.i.d drawn from distribution D, where the distribution is discrete with finite support2 and
the expected reward is denote by r̄(a) = Ey∼D[r(a, y)]. In this setting, we consider the following
assumption.

Assumption 1 (Monotone reward function) For any y, y′ ∈ [0, 1]d satisfying yi ≤ y′i for all i ∈
[d] and any a ∈ A, we have r(a, y) ≤ r(a, y′).

The assumption for the monotone reward function is commonly observed in various combinatorial
problems such as K-MAX [25], K-SUM [6], and Expected Utility Maximization [20].

By adopting our adaptive and scheduled frameworks for rare oracle queries, we propose oracle-
efficient algorithms for general reward CMAB; Algorithms 6 and 7, respectively. The details of
the algorithms are provided in Appendix A.7. In what follows, we provide theorems for oracle
complexities and regret of each algorithm. The proofs are provided in Appendices A.8, A.9.

Theorem 5 With oracle adaptivity and query complexities of O(d log log(Tm/d)), respectively,
Algorithm 6 achieves a regret bound ofR(T) = Õ(L

√
dmT).

Theorem 6 With oracle adaptivity complexity of Θ(log log T) and oracle query complexity of
O(d log log T), Algorithm 7 achieves a regret bound ofR(T) = Õ(Lm

√
dT).

Comparison to Previous Work. Chen et al. [5] proposed an algorithm achieving a regret bound
of Õ(L

√
mdT) with oracle adaptivity and oracle query complexities of Θ(T). However, our algo-

rithms achieve Õ(L
√
mdT) and Õ(Lm

√
dT), respectively, requiring significantly reduced oracle

complexities of of order log log T .

6 Experiments

We compare our algorithms to benchmarks in terms of oracle efficiency and regret using synthetic
datasets3. We begin with the linear reward setting, where the mean vector is sampled from Unif[0, 1]
with d = 20 and m = 3, and stochastic rewards are uniformly generated around these means
at each round. As shown in Figure 2 (a,b), our algorithms (AROQ-CMAB, SROQ-CMAB) achieve
significantly lower oracle adaptivity and query complexities than CUCB [6], consistent with Theorems 1
and 2. Importantly, as shown in Figure 2 (d), our algorithms achieve faster runtime than the
benchmark. In particular, SROQ-CMAB outperforms AROQ-CMAB in runtime, benefiting from a lower
total adaptivity complexity up to T (Figure 2 (e)), which enables more efficient parallel oracle
execution (Remark 1). Figure 2(c) demonstrates that AROQ-CMAB incurs slightly higher regret
and SROQ-CMAB incurs somewhat larger regret than CUCB, which is consistent with our theoretical
predictions: the regret bounds involve an additional logarithmic factor for AROQ-CMAB and a

√
m

factor for SROQ-CMAB. Additional results for the covariance-adaptive variants and general reward
functions are provided in Appendix A.11.

2The finite-support assumption simplifies the algorithms and analysis but is not essential. As noted in Chen
et al. [5], the results can extend to Lipschitz-continuous reward functions by discretization techniques that
preserve the same regret bound (see Appendix A.10).

3Source Code: https://github.com/junghunkim7786/OracleEfficientCombinatorialBandits

9

https://github.com/junghunkim7786/OracleEfficientCombinatorialBandits

0 5000 10000 15000 20000
Time t

0.0

0.5

1.0

1.5

2.0

Cu
m

ul
at

iv
e

Ad
ap

tiv
ity

 C
om

pl
ex

ity

1e4
Cumulative Oracle Adaptivity Complexity over Time

CUCB
AROQ-CMAB (Alg1)
SROQ-CMAB (Alg2)

0 5000 10000 15000 20000
Time t

0.0

0.5

1.0

1.5

2.0

Cu
m

ul
at

iv
e

Qu
er

y
Co

m
pl

ex
ity

1e4
Cumulative Oracle Query Complexity over Time

CUCB
AROQ-CMAB (Alg1)
SROQ-CMAB (Alg2)

0 5000 10000 15000 20000
Time t

0

2

4

6

(t)

1e3 Cumulative Regret over Time
CUCB
AROG-CMAB (Alg1)
SROQ-CMAB (Alg2)

(a) (b) (c)

125

130

135
Runtime Comparison

AROQ-CMAB
(Alg1)

SROQ-CMAB
(Alg2)

CUCB

Algorithms

0

10

Ru
nt

im
e

(s
ec

on
ds

)

19800

20000 Total Oracle Adaptivity Complexity up to T

AROQ-CMAB
(Alg1)

SROQ-CMAB
(Alg2)

CUCB

Algorithms

0

100

To
ta

l
Ad

ap
tiv

ity
 C

om
pl

ex
ity

19800

20000 Total Oracle Query Complexity up to T

AROQ-CMAB
(Alg1)

SROQ-CMAB
(Alg2)

CUCB

Algorithms

0

100

To
ta

l
Qu

er
y

Co
m

pl
ex

ity

(d) (e) (f)

Figure 2: Experimental results for linear rewards with d = 20 and m = 3.

7 Conclusion

In this work, we proposed oracle-efficient algorithms for semi-combinatorial bandits. We intro-
duced two algorithmic frameworks for handling rare oracle queries—adaptive and scheduled—and
demonstrated that our algorithms significantly improve oracle efficiency while maintaining tight
regret guarantees for worst-case linear rewards, covariance-dependent linear rewards, and general
(non-linear) reward functions.

Societal Impact. The research is primarily theoretical and does not engage with human subjects,
sensitive data, or domains with identifiable risks of negative societal impact.

Acknowledgements

J. Kim acknowledges the support of ANR through the PEPR IA FOUNDRY project (ANR-23-
PEIA-0003) and the Doom project (ANR-23-CE23-0002), as well as the ERC through the Ocean
project (ERC-2022-SYG-OCEAN-101071601). M. Oh was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2022-NR071853
and RS-2023-00222663), by the Global-LAMP Program of the NRF grant funded by the Ministry
of Education (No. RS-2023-00301976), and by AI-Bio Research Grant through Seoul National
University.

References
[1] Balkanski, E. and Singer, Y. (2018a). The adaptive complexity of maximizing a submodular

function. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, page 1138–1151, New York, NY, USA. Association for Computing Machinery.

[2] Balkanski, E. and Singer, Y. (2018b). The adaptive complexity of maximizing a submodular
function. In Proceedings of the 50th annual ACM SIGACT symposium on theory of computing,
pages 1138–1151.

[3] Chekuri, C. and Quanrud, K. (2019). Parallelizing greedy for submodular set function maximiza-
tion in matroids and beyond. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, pages 78–89.

[4] Chen, S., Lin, T., King, I., Lyu, M. R., and Chen, W. (2014). Combinatorial pure exploration of
multi-armed bandits. Advances in neural information processing systems, 27.

10

[5] Chen, W., Hu, W., Li, F., Li, J., Liu, Y., and Lu, P. (2016). Combinatorial multi-armed bandit
with general reward functions. Advances in Neural Information Processing Systems, 29.

[6] Chen, W., Wang, Y., and Yuan, Y. (2013). Combinatorial multi-armed bandit: General framework
and applications. In International conference on machine learning, pages 151–159. PMLR.

[7] Chen, X., Krishnamurthy, A., and Wang, Y. (2024). Robust dynamic assortment optimization in
the presence of outlier customers. Operations Research, 72(3):999–1015.

[8] Combes, R., Talebi Mazraeh Shahi, M. S., Proutiere, A., et al. (2015). Combinatorial bandits
revisited. Advances in neural information processing systems, 28.

[9] Cuvelier, T., Combes, R., and Gourdin, E. (2021). Statistically efficient, polynomial-time
algorithms for combinatorial semi-bandits. Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 5(1):1–31.

[10] Degenne, R. and Perchet, V. (2016). Combinatorial semi-bandit with known covariance.
Advances in Neural Information Processing Systems, 29.

[11] Dong, K., Li, Y., Zhang, Q., and Zhou, Y. (2020). Multinomial logit bandit with low switching
cost. In International Conference on Machine Learning, pages 2607–2615. PMLR.

[12] Fahrbach, M., Mirrokni, V., and Zadimoghaddam, M. (2019). Non-monotone submodular
maximization with nearly optimal adaptivity and query complexity. In International Conference
on Machine Learning, pages 1833–1842. PMLR.

[13] Feldman, J., Henzinger, M., Korula, N., Mirrokni, V. S., and Stein, C. (2010). Online stochastic
packing applied to display ad allocation. In European Symposium on Algorithms, pages 182–194.
Springer.

[14] Gao, Z., Han, Y., Ren, Z., and Zhou, Z. (2019). Batched multi-armed bandits problem. Advances
in Neural Information Processing Systems, 32.

[15] Hanna, O., Yang, L., and Fragouli, C. (2023a). Efficient batched algorithm for contextual linear
bandits with large action space via soft elimination. Advances in Neural Information Processing
Systems, 36:56772–56783.

[16] Hanna, O. A., Yang, L., and Fragouli, C. (2023b). Contexts can be cheap: Solving stochastic
contextual bandits with linear bandit algorithms. In The Thirty Sixth Annual Conference on
Learning Theory, pages 1791–1821. PMLR.

[17] Hao, J., Zhao, T., Li, J., Dong, X. L., Faloutsos, C., Sun, Y., and Wang, W. (2020). P-companion:
A principled framework for diversified complementary product recommendation. In Proceedings
of the 29th ACM International Conference on Information & Knowledge Management, pages
2517–2524.

[18] Ito, S., Hatano, D., Sumita, H., Takemura, K., Fukunaga, T., Kakimura, N., and Kawarabayashi,
K.-I. (2019). Oracle-efficient algorithms for online linear optimization with bandit feedback.
Advances in Neural Information Processing Systems, 32.

[19] Kveton, B., Wen, Z., Ashkan, A., and Szepesvari, C. (2015). Tight regret bounds for stochastic
combinatorial semi-bandits. In Artificial Intelligence and Statistics, pages 535–543. PMLR.

[20] Li, J. and Deshpande, A. (2011). Maximizing expected utility for stochastic combinatorial
optimization problems. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, pages 797–806. IEEE.

[21] Neu, G. and Bartók, G. (2013). An efficient algorithm for learning with semi-bandit feedback.
In International Conference on Algorithmic Learning Theory, pages 234–248. Springer.

[22] Perchet, V., Rigollet, P., Chassang, S., and Snowberg, E. (2015). Batched bandit problems. In
Conference on Learning Theory, pages 1456–1456. PMLR.

[23] Perrault, P., Valko, M., and Perchet, V. (2020). Covariance-adapting algorithm for semi-bandits
with application to sparse outcomes. In Conference on Learning Theory, pages 3152–3184. PMLR.

11

[24] Ren, X., Jin, T., and Xu, P. (2024). Optimal batched linear bandits. In International Conference
on Machine Learning, pages 42391–42416. PMLR.

[25] Simchowitz, M., Jamieson, K., and Recht, B. (2016). Best-of-k-bandits. In Conference on
Learning Theory, pages 1440–1489. PMLR.

[26] Slivkins, A. et al. (2019). Introduction to multi-armed bandits. Foundations and Trends® in
Machine Learning, 12(1-2):1–286.

[27] Vesselinova, N., Steinert, R., Perez-Ramirez, D. F., and Boman, M. (2020). Learning com-
binatorial optimization on graphs: A survey with applications to networking. IEEE Access,
8:120388–120416.

[28] Wang, S. and Chen, W. (2018). Thompson sampling for combinatorial semi-bandits. In
International Conference on Machine Learning, pages 5114–5122. PMLR.

[29] Wang, Y., Chen, W., and Vojnović, M. (2023). Combinatorial bandits for maximum value
reward function under max value-index feedback. arXiv preprint arXiv:2305.16074.

[30] Yu, S. and Oh, M.-h. (2025). Optimal and practical batched linear bandit algorithm. In Proceed-
ings of the 42nd International Conference on Machine Learning, volume 267 of Proceedings of
Machine Learning Research, pages 73262–73285. PMLR.

[31] Zhang, Z., Ji, X., and Zhou, Y. (2021). Almost optimal batch-regret tradeoff for batch linear
contextual bandits. arXiv preprint arXiv:2110.08057.

[32] Zhou, J., Gaillard, P., Rahier, T., Zenati, H., and Arbel, J. (2024). Towards efficient and optimal
covariance-adaptive algorithms for combinatorial semi-bandits. Advances in Neural Information
Processing Systems, 37:30474–30521.

12

A Appendix

A.1 Details for Parallel Execution of Oracle Queries in the Scheduled Framework

This section provides further details on the parallel execution of oracle queries within the scheduled
framework. Specifically, we describe how our proposed algorithms (Algorithms 2, 4, and 7) support
parallel execution of oracle queries to reduce adaptivity complexity.

Worst-Case Linear Rewards. In Algorithm 2, at the beginning of each epoch, the oracle queries
in Line 3 can be executed in parallel. Moreover, although Line 4 depends on the result of Line 3,
the oracle queries in Lines 3 and 4 can still be executed in parallel, as they involve independent
computations. Specifically, evaluating maxa∈A rLCB

τ (a) in Line 4 requires only a single independent
oracle call that returns the maximizer a† = argmaxa∈A rLCB

τ (a), allowing us to directly retrieve the
maximum value rLCB

τ (a†).

Covariance-Dependent Linear Rewards. In Algorithm 4, the oracle queries in Lines 15, 16, and
17 can be executed in parallel, following the same principle as in the worst-case linear rewards setting.
In contrast, the query in Line 19 must be performed sequentially afterward since the oracle relies on
the updated set A′

τ resulting from the preceding computation.

General Rewards. In Algorithm 7, following the same principle as in the worst-case linear rewards
setting, the oracle queries in Lines 32 and 33 can be executed in parallel.

A.2 Proof of Theorem 1

Let τi(t) be the value of τi at time t in the algorithm. Then τi(T) represents the number of updates,
each update requiring oracle queries, up to T from arm i. Then, for the bound of the total oracle
queries up to T , by adopting the proof techniques in [11], we have the following lemma.

Lemma 1 (Oracle Queries Bound) We have

E

∑
i∈[d]

τi(T)

 = O(d log log(Tm/d)).

Proof. We first provide the following lemma.

Lemma 2 For M ≥ 0 and a sequence x0, x1, . . . such that xi ≥ 1 +
√
Mxi−1 for all i ≥ 1, we

have that xτ ≥M1−2−τ+1

for all τ ≥ 1.

Proof. For τ = 1, we have
x1 ≥ 1 +

√
Mx0 ≥ 1 = M0,

which satisfies the desired inequality. We now proceed by induction. Suppose that for some τ ≥ 1,
the inequality xτ ≥M1−2−τ+1

holds. Then, using the recurrence, we have

xτ+1 ≥ 1 +
√
Mxτ

≥ 1 +
√
M ·M1−2−τ+1

= 1 +M (2−2−τ+1)/2

= 1 +M1−2−τ

≥M1−2−τ

.

Thus, by induction, we conclude that

xτ ≥M1−2−τ+1

for all τ ≥ 1.

13

Let τ0 = log log(Tm/d). From Lemma 2, if τ ≥ τ0 + 1 and τ is not the last stage, for any i ∈ [d],
we have

nτ,i ≥ (Tm/d)1−2−τ+1

≥ (Tm/d)1−2− log log(Tm/d)

= Tm/2d.

Therefore, from the fact that
∑T

t=1 ∥at∥0 ≤ mT , there are at most 2d+ d (including the last stages
for all i ∈ [d]) pairs of (i, τ) for i ∈ [d] and τ ∈ [τi(T)] satisfying τ ≥ τ0 + 1. This implies that for
i ∈ [d] s.t. τi(T) ≥ τ0 + 1, we have

∑
i∈[d] 1(τi(T) ≥ τ0 + 1)τi(T) ≤ dτ0 + 3d. Therefore, we

have

E

∑
i∈[d]

τi(T)

 ≤ dτ0 + E

∑
i∈[d]

1(τi(T) ≥ τ0 + 1)τi(T)

 ≲ dτ0 = d log log(Tm/d),

which concludes the proof.

For the proof of regret bound, we utilize the Azuma-Hoeffding inequality provided in the following
lemma.

Lemma 3 (Azuma-Hoeffding Inequality) For a martingale difference sequence X1, . . . , Xn with
support of size 1 for all Xi, for γ > 0 we have

P

(
n∑

i=1

Xi ≥ γn

)
≤ 2 exp(−2γ2n).

From Lemma 3, we can show that the event Et = {|µi − µ̂s,i| ≤
√

1.5 log s
ns,i

∀1 ≤ s ≤ t ∀i ∈ [d]}
holds with probability of at least 1−O(d

t2). For ease of presentation, we define auxiliary variables
n′
t,i and µ̂′

t,i for each i ∈ [d] and time step t ∈ [T] for the analysis on the rare updated indexes as
follows: If the selected action at time t is newly updated in the algorithm (i.e., Update = True), then

n′
t,i = nt,i, µ̂′

t,i = µ̂t,i.

Otherwise, if the previously selected action is maintained (i.e., Update = False), then

n′
t,i = n′

t−1,i, µ̂′
t,i = µ̂′

t−1,i.

Using these adjusted statistics, we define the UCB-based optimistic reward estimate for any action a
as

r̃UCB
t (a) =

∑
i∈a

(
µ̂′
t,i +

√
C log t

n′
t,i

)
.

Now we provide a bound for the regret as follows:

R(T) = E

∑
t∈[T]

(r̄(a∗)− r̄(at))1(Et)

+ E

∑
t∈[T]

(r̄(a∗)− r̄(at))1(Ect)


≤ E

∑
t∈[T]

(r̄(a∗)− r̄(at))1(Et)

+O(dm)

≲ E

∑
t∈[T]

(r̃UCB
t (a∗)− r̄(at))1(Et)


≤ E

∑
t∈[T]

(r̃UCB
t (at)− r̄(at))1(Et)


≲ E

∑
t∈[T]

∑
i∈at

√
log T

n′
t,i

 ,

14

where the second and last inequalities are obtained from Et. For bounding the last term, we have

E

∑
t∈[T]

∑
i∈at

√
log T

n′
t,i

 = E

∑
i∈[d]

∑
τ∈[τi(T)]

∑
t∈Ti(τ)

√
log T

n′
t,i


≤ E

∑
i∈[d]

∑
τ∈[τi(T)]

∑
t∈Ti(τ)

√
log T

|Ti(τ − 1)|


= E

∑
i∈[d]

∑
τ∈[τi(T)]

|Ti(τ)|

√
log T

|Ti(τ − 1)|


≲ E

∑
i∈[d]

∑
τ∈[τi(T)]

√
Tm · |Ti(τ − 1)|

d

√
log T

|Ti(τ − 1)|


= E

∑
i∈[d]

τi(T)

√Tm log T

d

≲ log log(Tm/d)
√

dmT log T ,

where the first inequality is obtained from n′
t,i ≥ |Ti(τ − 1)| for t ∈ Ti(τ), the second equality is

obtained from the condition of updates in the algorithm, and the last inequality is obtained from
Lemma 1.

Oracle Complexity Bounds. Based on Lemma 1, we can show that the oracle query complexity
is bounded by O(d log log(Tm/d)). Since the epochs for each base arm are updated separately, the
adaptivity complexity is also bounded by O(d log log(Tm/d)).

A.3 α-Approximation Oracle

In this section, we provide a detailed explanation for α-approximation oracle. We focus on the
adaptive rare oracle query framework, noting that similar results can be derived for the scheduled
framework, which we omit to avoid redundancy. Instead of obtaining the exact solution, the α-
approximation oracle, denoted by Oα

t , outputs action aαt ∈ A satisfying

rUCB
t (aαt) ≥ αmax

a∈A
rUCB
t (a)

for α > 0. We investigate the α-regret, which is defined as

Rα(T) = E

∑
t∈[T]

αr̄(a∗)− r̄(at)

 .

Algorithm 5 α-approximated Adaptive Rare Oracle Queries for Combinatorial MAB (α-AROQ-CMAB)
Initialize: τi = 1 for all i ∈ [N]
for t = 1, 2..., T do

at ← at−1

for i ∈ [d] s.t. |Ti(τi)| ≥ 1 +
√

Tm · |Ti(τi − 1)|/d do
τi ← τi + 1, Ti(τi)← ∅
Update← True

if Update = True then
at ← Oα

t
Update← False

Play at and observe feedback yt,i for i ∈ at
Ti(τi)← Ti(τi) ∪ {t} for all i ∈ at

15

Theorem 7 With oracle adaptivity and query complexities of O(d log log(Tm/d)), respectively,
Algorithm 5 achieves a α-regret bound of

Rα(T) = O
(√

mdT log T log log(Tm/d)
)
.

Proof. Here we provide the part that is different from the proof of Theorem 1. We provide a bound
for the regret as follows:

Rα(T) = E

∑
t∈[T]

(αr̄(a∗)− r̄(at))1(Et)

+ E

∑
t∈[T]

(αr̄(a∗)− r̄(at))1(Ect)


≤ E

∑
t∈[T]

(αr̄(a∗)− r̄(at))1(Et)

+O(md)

≲ E

∑
t∈[T]

(αr̃UCB
t (a∗)− r̄(at))1(Et)


≤ E

∑
t∈[T]

(r̃UCB
t (at)− r̄(at))1(Et)


≲ E

∑
t∈[T]

∑
i∈at

√
log T

n′
t,i

 ,

where the second last inequality is obtained from Oα
t . The other parts of the proof are the same as

those of Theorem 1.

A.4 Proof of Theorem 2

From Lemma 3, we can show that the event E = {|µi − µ̂i(τ)| ≤
√

1.5 log T
nτ,i

∀τ ∈ [M],∀i ∈ [d]}
holds with probability of at least 1 − d

T 2 . Then by adopting the proof technique in [7], under the
event E , we show that Aτ , activated arm set for τ -th epoch, always contains optimal arm a∗ in the
following lemma.

Lemma 4 Under E , we can show that for all τ ∈ [M], a∗ ∈ Aτ .

Proof. This can be shown by induction. Suppose a∗ ∈ Aτ for fixed τ ∈ [M]. Under E , we have
r̄(a) ≤ rUCB

τ+1 (a) and r̄(a) ≥ rLCB
τ+1 (a) for any a ∈ Aτ . Then for any fixed i ∈ a∗, for any a ∈ Aτ ,

we can show that

rUCB
τ+1 (a

(i)
τ+1) ≥ rUCB

τ+1 (a∗) ≥ r̄(a∗) ≥ rLCB(a),

where the first inequality is obtained from the definition of a(i)τ+1 with a∗ ∈ Aτ . This implies that

rUCB
τ+1 (a

(i)
τ+1) ≥ max

a∈Aτ

rLCB
τ+1 (a),

which implies that i ∈ a∗ is not eliminated from the elimination condition at the τ +1-th epoch. This
holds for all i ∈ a∗ so that a∗ ∈ Aτ+1. With a∗ ∈ A0 = A, we can conclude the induction.

16

Under E , we have

R(a∗)− r̄(a(i)τ) ≤ rLCB
τ (a∗) + 2

∑
j∈a∗

√
1.5 log tτ

nτ,j
− rUCB

τ (a(i)τ) + 2
∑

j∈a
(i)
τ

√
1.5 log tτ

nτ,j

≲
∑
j∈a∗

√
log tτ
nτ,j

+
∑

j∈a
(i)
τ

√
log tτ
nτ,j

≲
∑
j∈a∗

√
d log tτ
|Tτ−1|

+
∑

j∈a
(i)
τ

√
d log tτ
|Tτ−1|

≲ m

√
d log tτ
|Tτ−1|

,

where the first inequality is obtained from E , the second inequality comes from the fact that a∗ ∈ Aτ−1

from Lemma 4, and maxa∈Aτ−1
rLCB
τ (a) ≤ rUCB

τ (a
(i)
τ) from the algorithm, and the third inequality

is obtained from nτ,i ≥
∑

t∈Tτ−1
1(i ∈ at) ≳ |Tτ−1|/d from the exploration in the algorithm at the

τ − 1-th epoch.

Finally, we can show that

R(T) ≤ E

[
M∑
τ=1

∑
t∈Tτ

r̄(a∗)− r̄(at) | E

]
P(E) + E

[
M∑
τ=1

∑
t∈Tτ

r̄(a∗)− r̄(at) | Ec
]
P(Ec)

≲ E

[
M∑
τ=1

∑
t∈Tτ

r̄(a∗)− r̄(at) | E

]
+

md

T 2

≲
M∑
τ=1

|Tτ |m

√
d log T

|Tτ−1|

≤
M∑
τ=1

ηm
√
d|Tτ−1| log T

= mη
√
dMT log T

≲ m
√
dT log(T) log log(T),

which concludes the proof for the regret bound.

Oracle Complexity Bounds. Based on the oracle calls in Lines 3 and 4 of Algorithm 2, we observe
that each epoch involves at most d independent oracle queries (Line 3) and one sequential oracle query
(Line 4). Since the total number of epochs is M = Θ(log log T), the overall adaptivity complexity is
bounded by Θ(log log T), and the query complexity is bounded by O(d log log T).

A.5 Proof of Theorem 3

Let τi,j(t) be the value of τi,j at time t in the algorithm. Then τi,j(T) represents the number of
updates, each update requiring Oracle queries, up to T from a pair of arms i, j. For the bound of the
Oracle queries up to T for each arm, we have the following lemma.

Lemma 5 (Oracle Queries Bound for Each Arm) For (i, j) ∈ [d]× [d], we always have

τi,j(T) = O(log(Tm)).

Proof. For i, j ∈ [d]× [d], if τi,j is not the last stage for i, j, it holds that |Ti,j(τi,j)| ≥ 2τi,j−1. This
can be derived from the update condition in the algorithm so that |Ti,j(τi,j)| ≥ 2|Ti,j(τi,j − 1)|. Let
τ0 = log(Tm). If τ ≥ τ0 + 1, for any i, j ∈ [d]× [d], we have

|Ti,j(τ)| ≥ 2τ−1 ≥ 2log(Tm) = Tm.

17

Therefore, given the fact that the total number of selected bases over T is at most mT , if τ0 + 1 ≤
τi,j(T), there is always at most 1 pair of ((i, j), τ) for the fixed (i, j) ∈ [d] × [d] and for all
τ ∈ [τ0 + 1, τi,j(T)]. This implies that for (i, j) ∈ [d] × [d] s.t. τi,j(T) ≥ τ0 + 1, we have
τi,j(T) ≤ τ0 + 2, which concludes the proof.

From the above lemma, we can show that the oracle adaptivity complexity and query complexity are
bounded by ∑

(i,j)∈[d]2

τi,j(T) = O(d2 log(Tm)).

Let Gt =
∑t−1

s=1 Das
ΣDas

+DΣNt + I . For the regret bound, we first provide lemmas to define a
favorable event of concentration bounds.

Lemma 6 (Proposition 1 in [32]) Let t ≥ d(d + 1) log3(T)/2. With probability at least 1 −
1/(t log(t))2, for all a ∈ A,

|⟨a, µ̂t − µ⟩| ≤ ft∥D−1
nt

a∥Gt
.

From lemma 6, we define event Et,1 = {|⟨a, µ̂s − µ⟩| ≤ fs∥D−1
ns

a∥Zs
∀s ∈ [⌈d(d +

1) log3(T)/2⌉, t] ∀a ∈ A}, which holds with probability of at least 1− 1/t log2(t).

Lemma 7 (Proposition 5 in [32]) Let t ≥ d(d + 1) log3(T)/2. With probability at least 1 −
1/(t log(t))2, for all (i, j) ∈ [d]× [d], we have

|Σ̂t,(i,j) − Σi,j | ≤
1

4

(
5ht√
nt,(i,j)

+
h2
t

nt,(i,j)
+

1

n2
t,(i,j)

)
.

From the above lemma, we define event Et,2 = {|Σ̂s,(i,j) − Σi,j | ≤ 1
4 (

5hs√
ns,(i,j)

+
h2
s

ns,(i,j)
+

1
n2
s,(i,j)

),∀s ∈ [⌈d(d + 1) log3(T)/2⌉, t] ∀(i, j) ∈ [d]2}, which holds with probability of at least

1− 1/t log2(t).

Recall Σt,(i,j) = Σ̂t,(i,j) +
1
4

(
5ht√
nt,(i,j)

+
h2
t

nt,(i,j)
+ 1

n2
t,(i,j)

)
. Under Et,2, we have Σt,(i,j) ≥ Σi,j

for all (i, j) ∈ [d]2. This implies that Gt ⪰ Gt(⪰ 0) so that ∥D−1
nt

a∥Gt ≤ ∥D−1
nt

a∥Gt
. Therefore,

under Et := Et,1 ∩ Et,2, we have |⟨a, µ̂t − µ⟩| ≤ ft∥D−1
nt

a∥Gt
, which implies

rUCB
t (a) ≥ r̄(a).

Under Et, we can show that

∥D−1
nt

a∥2
Gt

= a⊤D−1
nt

GtD
−1
nt

a

=
∑

(i,j)∈a×a

Gt,(i,j)

nt,int,j

≲
∑

(i,j)∈a×a

nt,(i,j)Σi,j

nt,int,j
+

∑
(i,j)∈a×a

h2
t

n2
t,(i,j)

+
ht

n
3/2
t,(i,j)

+
1

n3
t,(i,j)

≤
∑
i∈a

∑
j∈a

nt,jΣi,j

nt,int,j
+

∑
(i,j)∈a×a

h2
t

n2
t,(i,j)

+
ht

n
3/2
t,(i,j)

+
1

n3
t,(i,j)

≤
∑
i∈a

σ2
i (a)

nt,i
+

∑
(i,j)∈a×a

h2
t

n2
t,(i,j)

+
ht

n
3/2
t,(i,j)

+
1

n3
t,(i,j)

,

where the first inequality is obtained from Σ̂t,(i,j) ≤ Σi,j +
1
4 (

5ht√
nt,(i,j)

+
h2
t

nt,(i,j)
+ 1

n2
t,(i,j)

) under

Et,2 and the second inequality is obtained from nt,(i,j) ≤ nt,j .

18

For ease of presentation, we define auxiliary variables n′
t,(i,j), µ̂

′
t,(i), G

′
t, and f ′

t for each i ∈ [d]

and time step t ∈ [T] as follows: If the selected action at time t is newly updated in the algorithm
(Update = True), then

n′
t,(i,j) = nt,(i,j), µ̂′

t,i = µ̂t,i, G
′
t = Gt, f ′

t = ft.

Otherwise, if the previously selected action is maintained (Update = False), then

n′
t,i = n′

t−1,i, µ̂′
t,i = µ̂′

t−1,i, G
′
t = G

′
t−1 f ′

t = f ′
t−1.

Using these adjusted statistics, we define the UCB-based optimistic reward estimate for any action a
as

r̃UCB
t (a) = ⟨a, µ̂′

t⟩+ f ′
t∥D−1

n′
t
a∥G′

t
.

Now we provide a bound for the regret as follows:

R(T)

= E

 ∑
t∈[d(d+1) log3(T)/2,T]

(r̄(a∗)− r̄(at))1(Et)


+ E

 ∑
t∈[d(d+1) log3(T)/2,T]

(r̄(a∗)− r̄(at))1(Ect)

+ Õ(d2)

≤ E

 ∑
t∈[d(d+1) log3(T)/2,T]

(r̄(a∗)− r̄(at))1(Et)

+ Õ(d2)

≲ E

 ∑
t∈[d(d+1) log3(T)/2,T]

(r̃UCB
t (a∗)− r̄(at))1(Et)

+ Õ(d2)

≤ E

 ∑
t∈[d(d+1) log3(T)/2,T]

(r̃UCB
t (at)− r̄(at))1(Et)

+ Õ(d2)

≲ E

fT ∑
t∈[d(d+1) log3(T)/2,T]

∥D−1
n′
t
at∥G′

t


≲ E

fT
√√√√√T

∑
t∈[T]

∑
i∈at

σ2
i (at)

n′
t,i

+
∑

(i,j)∈at×at

h2
t

n′2
t,(i,j)

+
ht

n
′3/2
t,(i,j)

+
1

n′3
t,(i,j)




≲ E

fThT

√√√√√T

∑
i∈[d]

∑
τ∈[τi,i(T)]

∑
t∈Ti,i(τ)

max
a∈A:i∈a

σ2
i (a)

n′
t,i

+
∑

(i,j)∈[d]2

∑
τ∈[τi,j(T)]

∑
t∈Ti,j(τ)

1

n
′3/2
t,(i,j)


 .

19

For bounding the last term, we have

E

fThT

√√√√√T

∑
i∈[d]

∑
τ∈[τi,i(T)]

∑
t∈Ti,i(τ)

max
a∈A:i∈a

σ2
i (at)

n′
t,i

+
∑

(i,j)∈[d]2

∑
τ∈[τi,j(T)]

∑
t∈Ti,j(τ)

1

n
′3/2
t,(i,j)




≤ E

fThT

√√√√√T

∑
i∈[d]

∑
τ∈[τi,i(T)]

∑
t∈Ti,i(τ)

max
a∈A:i∈a

2σ2
i (a)

|Ti,i(τ − 1)|
+

∑
(i,j)∈[d]2

∑
τ∈[τi,j(T)]

∑
t∈Ti,j(τ)

1

|Ti,j(τ − 1)|3/2




≤ E

fThT

√√√√√T

∑
i∈[d]

∑
τ∈[τi,i(T)]

|Ti,i(τ)| max
a∈A:i∈a

2σ2
i (a)

|Ti,i(τ − 1)|
+

∑
(i,j)∈[d]2

∑
τ∈[τi,j(T)]

|Ti,j(τ)|
1

|Ti,j(τ − 1)|3/2




≤ E

fThT

√√√√√T

∑
i∈[d]

∑
τ∈[τi,i(T)]

4|Ti,i(τ − 1)|maxa∈A:i∈a σ2
i (a)

|Ti(τ − 1)|
+

∑
(i,j)∈[d]2

∑
τ∈[τi,j(T)]

2|Ti,j(τ − 1)| 1

|Ti,j(τ − 1)|3/2




≲ E

fThT

√√√√√T

∑
i∈[d]

τi,i(T)max
a∈A

σ2
i (a) +

∑
(i,j)∈[d]2

τi,j(T)
1√

|Ti,j(τ − 1)|




≲ fThT

√
T
∑
i∈[d]

max
a∈A

σ2
i (a) log(Tm),

where the first inequality is obtained from n′
t,i ≥ |Ti(τ − 1)|, the third inequality is obtained

from the condition of updates in the algorithm, and the last inequality is obtained from Lemma 5,
|Ti,j(τ − 1)| ≥ log3(T) from warm-up stage in the algorithm, and large enough T . This concludes
the proof with the fact that fT = O(log(T)) when T is large enough.

Oracle Complexity Bounds. Based on Lemma 5, we can show that the oracle query complexity
is bounded by O(d2 log(Tm/d)). Since the epochs for each base arm are updated separately, the
adaptivity complexity is also bounded by O(d2 log(Tm/d)).

A.6 Proof of Theorem 4

From lemma 6, we define event E1 = {|⟨a, µ̂τ − µ⟩| ≤ fT ∥D−1
nτ

a∥Zτ∀a ∈ A,∀τ ∈ [T]}, which
holds with probability of at least 1 − 1/(T log2(T)). From Lemma 7, we define event E2 =

{|Σ̂τ,(i,j) − Σi,j | ≤ 1
4 (

5hT√
nτ,(i,j)

+
h2
T

nτ,(i,j)
+ 1

n2
τ,(i,j)

),∀(i, j) ∈ [d]2,∀τ ∈ [T]}, which holds with

probability of at least 1− 1/(T log2(T)).

Under E2, we have Στ,(i,j) ≥ Σi,j for all (i, j) ∈ [d]2. This implies that Gτ ⪰ Gτ (⪰ 0) so that
∥D−1

nτ
a∥Gτ ≤ ∥D−1

nτ
a∥Gτ

. Therefore, under E := E1 ∩ E2, we have |⟨a, µ̂τ − µ⟩| ≤ fτ∥D−1
nτ

a∥Gτ
,

which implies
rUCB
τ (a) ≥ r̄(a) ≥ rLCB

τ (a).

Similar to Lemma 4, we then have the following lemma.

Lemma 8 Under E , we can show that for all τ ∈ [M], a∗ ∈ Aτ .

Proof. This can be shown by induction. Suppose a∗ ∈ Aτ for fixed τ ∈ [M]. Under E , we have
r̄(a) ≤ rUCB

τ+1 (a) and r̄(a) ≥ rLCB
τ+1 (a) for any a ∈ Aτ . Then for any fixed i ∈ a∗, for any a ∈ Aτ ,

we can show that
rUCB
τ+1 (a

(i)
τ+1) ≥ rUCB

τ+1 (a∗) ≥ r̄(a∗) ≥ rLCB(a),

where the first inequality is obtained from the definition of a(i)τ+1 with a∗ ∈ Aτ . This implies that

rUCB
τ+1 (a

(i)
τ+1) ≥ max

a∈Aτ

rLCB
τ+1 (a),

20

which implies that i ∈ a∗ is not eliminated from the elimination condition at the τ +1-th epoch. This
holds for all i ∈ a∗ so that a∗ ∈ A′

τ+1.

Then for any fixed i ∈ a∗ and j ∈ a∗/{i}, for any a ∈ A′
τ+1, we can show that

rUCB
τ+1 (a

(i,j)
τ+1) ≥ rUCB

τ+1 (a∗) ≥ r̄(a∗) ≥ rLCB(a),

where the first inequality is obtained from the definition of a(i,j)τ+1 with a∗ ∈ A′
τ+1. This implies that

rUCB
τ+1 (a

(i,j)
τ+1) ≥ max

a∈A′
τ+1

rLCB
τ+1 (a),

which implies that i ∈ a∗ and j ∈ a∗/{i} are not eliminated from the elimination condition at the
τ + 1-th epoch. This holds for all i ∈ a∗ and j ∈ a∗/{i} so that a∗ ∈ Aτ+1. With a∗ ∈ A0 = A,
we can conclude the induction.

Under E , we can show that

∥D−1
nτ

a∥2
Gτ

= a⊤D−1
nτ

GτD
−1
nτ

a

=
∑

(i,j)∈a×a

Gτ,(i,j)

nτ,(i,i)nτ,(j,j)

≲
∑

(i,j)∈a×a

nτ,(i,j)Σi,j

nτ,(i,i)nτ,(j,j)
+

∑
(i,j)∈a×a

h2
T

n2
τ,(i,j)

+
hT

n
3/2
τ,(i,j)

+
1

n3
τ,(i,j)

≤
∑
i∈a

∑
j∈a

nτ,(j,j)Σi,j

nτ,(i,i)nτ,(j,j)
+

∑
(i,j)∈a×a

h2
T

n2
τ,(i,j)

+
hT

n
3/2
τ,(i,j)

+
1

n3
τ,(i,j)

≤
∑
i∈a

σ2
i (a)

nτ,(i,i)
+

∑
(i,j)∈a×a

h2
T

n2
τ,(i,j)

+
hT

n
3/2
τ,(i,j)

+
1

n3
τ,(i,j)

, (5)

where the first inequality is obtained from Σ̂τ,(i,j) ≤ Σi,j +
1
4 (

5hT√
nτ,(i,j)

+
h2
T

nτ,(i,j)
+ 1

n2
τ,(i,j)

) under

E2 and the second inequality is obtained from nτ,(i,j) ≤ nτ,(j,j).

Then, under E , for t ∈ T (1)
τ ∪ T (2)

τ we have

r̄(a∗)− r̄(at) ≲ rLCB
τ (a∗) + fT

√√√√∑
i∈a∗

σ2
i (a

∗)

nτ,(i,i)
+

∑
(i,j)∈a∗×a∗

h2
T

n2
τ,(i,j)

+
hT

n
3/2
τ,(i,j)

+
1

n3
τ,(i,j)

− rUCB
τ (at) + fT

√√√√∑
i∈at

σ2
i (at)

nτ,(i,i)
+

∑
(i,j)∈at×at

h2
T

n2
τ,(i,j)

+
hT

n
3/2
τ,(i,j)

+
1

n3
τ,(i,j)

≲ fT

√√√√√max
a∈Aτ

∑
i∈a

σ2
i (a)

nτ,(i,i)
+

∑
(i,j)∈a×a

h2
T

n
3/2
τ,(i,j)


≲ fT

√√√√max
a∈Aτ

(∑
i∈a

dσ2
i (a)

Tτ−1 − (dm2Tτ−1 log(T))2/3
+

dh2
T

Tτ−1 log(T)

)

≲ fThT

√
d max
a∈Aτ

∑
i∈a

σ2
i (a)

Tτ−1
,

where the first inequality is obtained from E , the second inequality comes from the fact that a∗ ∈ Aτ−1

from Lemma 8 and elimination conditions from the algorithm, and the third inequality is obtained from
nτ,(i,i) ≥

∑
t∈T (1)

τ−1
1(i ∈ at) ≳ (Tτ−1 − (dm2Tτ−1 log(T))

2/3)/d and nτ,(i,j) ≥
∑

t∈T (2)
τ−1

1(i ∈
at)1(j ∈ at) ≳ (dm2Tτ−1 log(T))

2/3/d2 for i ̸= j from the exploration in the algorithm at the
τ − 1-th epoch, and the last inequality is obtained from large enough T .

21

Finally, we can show that

R(T) ≤ E

[
M∑
τ=1

∑
t∈Tτ

r̄(a∗)− r̄(at) | E

]
P(E) + E

[
M∑
τ=1

∑
t∈Tτ

r̄(a∗)− r̄(at) | Ec
]
P(Ec) +O(d2)

≲ E

[
M∑
τ=1

∑
t∈Tτ

r̄(a∗)− r̄(at) | E

]
+

md

T
+O(d2)

≲
M∑
τ=1

TτfThT

√√√√d

(
max
a∈A

(∑
i∈a

σ2
i (a)

Tτ−1

)
+

1

Tτ−1

)

≤
M∑
τ=1

ηfThT

√
dmax

a∈A

∑
i∈a

σ2
i (a)

≤ ηMfThT

√
dmax

a∈A

∑
i∈a

σ2
i (a)

≲ fThT log log(T)

√
dmax

a∈A

∑
i∈a

σ2
i (a)T ,

which concludes the proof with the fact that fT = O(log(T)) when T is large enough.

Oracle Complexity Bounds. Based on the oracle calls in Lines 15,16, 17, and 19 of Algorithm 4,
we observe that each epoch involves at most d+ d2 independent oracle queries (Lines 15,16) and
two sequential oracle queries (Lines 17,19). Since the total number of epochs is M = Θ(log log T),
the overall adaptivity complexity is bounded by Θ(log log T), and the query complexity is bounded
by O(d2 log log T).

A.7 Rare Oracle Queries for General-Reward CMAB

A.7.1 Adaptive Rare Oracle Queries for General Reward CMAB

We first propose an algorithm (Algorithm 6) for rare oracle queries for general reward CMAB using
the adaptive framework as in Algorithm 1. For i ∈ [d], let F̂τ,i(x) be the fraction of the observed
feedback from arm i that is no longer than 0 ≤ x ≤ 1 before time t. By inspired by [5], for i ∈ [d],
we define Dt,i to be the distribution whose CDF is, for some constant C > 0,

F t,i(x) =

{
max{F̂t,i(x)−

√
C ln t
nt,i

, 0} if 0 ≤ x < 1

1 if x = 1.

Then we construct UCB for each action based on Dt as follows:

rUCB
t (a) = Ex∼Dt

= [r̄(x, a)] (6)

A.7.2 Scheduled Rare Oracle Queries for General Reward CMAB

For i ∈ [d], let F̂τ,i(x) be the fraction of the observed feedback from arm i that is no longer than
0 ≤ x ≤ 1 before epoch τ . Then, for some constant C > 0, we define Dτ,i to be the distribution
whose CDF is

F τ,i(x) =

{
max{F̂τ,i(x)−

√
C lnT
nτ,i

, 0} if 0 ≤ x < 1

1 if x = 1,

and define Dτ,i to be the distribution whose CDF is

F τ,i(x) =

{
min{F̂τ,i(x) +

√
C lnT
nτ,i

, 1} if 0 ≤ x < 1

1 if x = 1.

22

Algorithm 6 Adaptive Rare Oracle Queries for General-Reward CMAB (AROQ-GR-CMAB)
Init: τi = 1 for all i ∈ [d]
for t = 1, 2..., T do

for i ∈ [d] s.t. |Ti(τi)| ≥ 1 +
√

Tm · |Ti(τi − 1)|/d do
τi ← τi + 1, Ti(τi)← ∅
Update← True

if Update = True then
at ← argmaxa∈A rUCB

t (a) with (6) // Oracle Query
Update← False

else
at ← at−1

Play at and observe feedback yt,i for i ∈ at
Ti(τi)← Ti(τi) ∪ {t} for all i ∈ at

We construct UCB and LCB for each action based on Dτ and Dτ , respectively, as follows:

rUCB
τ (a) = Ex∼Dτ

= [r̄(x, a)] and rLCB
τ (a) = Ex∼Dτ

= [r̄(x, a)] (7)

Let grid T = {t1(= 1), . . . , tM (= T)}, where tτ = η
√
tτ−1 and η = T

1

2−21−M for M > 0. We set
M = Θ(log log(T)).

Algorithm 7 Scheduled Rare Oracle Queries for General-Reward CMAB (SROQ-GR-CMAB)
Input: T

30 for τ = 1, 2, . . . ,M do
31 Update F̂τ (x)

32 a
(i)
τ := argmaxa∈Aτ−1:i∈a r

UCB
τ (a) for all i ∈ Nτ−1 with (7) // Oracle Queries

33 Nτ ← {i ∈ Nτ−1 | rUCB
τ (a

(i)
τ) ≥ maxa∈Aτ−1 r

LCB
τ (a)} with (7) // Oracle Query

34 Aτ ← {a ∈ Aτ−1 | ai = 0 for all i ∈ [d]/Nτ}
35 Tτ ← [tτ , tτ+1 − 1]
36 for t ∈ Tτ do
37 i← (t mod |Nτ |)-th element in Nτ

38 Play at = a
(i)
τ and observe feedback yt,i for i ∈ at

A.8 Proof of Theorem 5

Let τi(t) be the value of τi at time t in the algorithm. Then τi(T) represents the number of updates,
each update requiring Oracle queries, up to T from arm i. For a slight abuse of notation, we use
Ti(τi) for the set Ti(τi) in the algorithm at the last time step T . For the bound of the total Oracle
queries up to T , from Lemma 1, we have

E

∑
i∈[d]

τi(T)

 = O(d log log(Tm/d)). (8)

For ease of presentation, we use r̄D(a) = EX∼D[r(a,X)].

Lemma 9 (Lemma 3 in [5]) Let P = P1 × · · · × Pd and P′ = P′
1 × · · · × P′

d be two probability
distributionsD andD′, respectively, over [0, 1]d. Let Fi and F ′

i be the CDFs of Pi and P′
i, respectively

for i ∈ [d]. Suppose each Pi is a discrete distribution with finite support.

(a) If we have F ′
i (x) ≤ Fi(x) for any i ∈ [d], x ∈ [0, 1], then for any a ∈ A, we have

r̄D′(a) ≥ r̄D(a).

23

(b) If we have Fi(x)− F ′
i (x) ≤ zi with zi > 0 for any i ∈ [d], x ∈ [0, 1], then for any a ∈ A,

we have r̄D′(a)− r̄D(a) ≤ 2L
∑

i∈a zi.

Lemma 10 (Dvoretzky-Kiefer-Wolfowitz inequality) For i.i.d. samples of X1, . . . , Xn drawn
from a distribution D, let empirical CDF F̂n(x) = 1

n

∑n
i=1 1(Xi ≤ x). Then, for any ϵ > 0

and any n ∈ N, we have

P
[
sup
x∈R
|F̂n(x)− F (x)| ≥ ϵ

]
≤ 2 exp−2nϵ2 .

From the above lemma, we define favorable event Et = {supx∈[0,1] |F̂i,ns,i(x) − Fi(x)| ≤√
3 ln s
2ns,i

∀s ∈ [1, t] ∀i ∈ [d]}, which holds with probability at least 1 − O(d/t2). Recall that

rUCB
t (a) = Ey∼Dt

[r̄(y, a)].

For ease of presentation, we define auxiliary variables D′
t and n′

t,i for i ∈ [d] and time step t ∈ [T]
as follows: If the selected action at time t is newly updated in the algorithm (Update = True), then
D′

t = Dt and n′
t,i = nt,i. Otherwise, if the previously selected action is maintained (Update =

False), thenD′
t = D

′
t−1 and n′

t,i = n′
t−1,i. Using these adjusted statistics, we define the UCB-based

optimistic reward estimate for any action a as

r̃UCB
t (a) = Ex∼D′

t
[r̄(x, a)].

Now we provide a bound for the regret as follows:

R(T) = E

∑
t∈[T]

(r̄(a∗)− r̄(at))1(Et)

+ E

∑
t∈[T]

(r̄(a∗)− r̄(at))1(Ect)


≤ E

∑
t∈[T]

(r̄(a∗)− r̄(at))1(Et)

+ L
∑
t∈[T]

t−1∑
l=1

∑
i∈[d]

P

(
sup

x∈[0,1]

|F̂i,l(x)− Fi(x)| ≥
√

3 ln t

2l

)

≲ E

∑
t∈[T]

(r̃UCB
t (a∗)− r̄(at))1(Et)

+ Ld

≲ E

∑
t∈[T]

(r̃UCB
t (at)− r̄(at))1(Et)


≲ E

L ∑
t∈[T]

∑
i∈at

√
log T

n′
t,i

 ,

24

where the second inequality is obtained from (a) in Lemma 9 and the last inequality comes from Et
and (b) in Lemma 9. For bounding the last term, we have

E

L ∑
t∈[T]

∑
i∈at

√
log T

n′
t,i


= E

L∑
i∈[d]

∑
τ∈[τi(T)]

∑
t∈Ti(τ)

√
log T

n′
t,i


≤ E

L∑
i∈[d]

∑
τ∈[τi(T)]

∑
t∈Ti(τ)

√
log T

|Ti(τ − 1)|


= E

L∑
i∈[d]

∑
τ∈[τi(T)]

|Ti(τ)|

√
log T

|Ti(τ − 1)|


= E

L∑
i∈[d]

∑
τ∈[τi(T)]

√
Tm · |Ti(τ − 1)|

d

√
log T

|Ti(τ − 1)|


= E

L∑
i∈[d]

τi(T)

√Tm log T

d

≲ L log log(Tm/d)
√

dmT log T ,

where the first inequality is obtained from n′
t,i ≥ |Ti(τ − 1)| for t ∈ Ti(τ), the second equality is

obtained from the condition of updates in the algorithm, and the last inequality is obtained from (8).

Oracle Complexity Bounds. Based on (8), we can show that the oracle query complexity is
bounded by O(d log log(Tm/d)). Since the epochs for each base arm are updated separately, the
adaptivity complexity is also bounded by O(d log log(Tm/d)).

A.9 Proof of Theorem 6

From Lemma 10, we define the event E = {supx∈[0,1] |F̂τ,i(x)− Fi(x)| ≤
√

3 lnT
2nτ,i

∀τ ∈ [M],∀i ∈
[d]}. Then, similar to Lemma 4, under the event E , we show that Aτ , activated arm set for τ -th epoch,
always contains the optimal arm a∗.

Lemma 11 Under E , we can show that for all τ ∈ [M], a∗ ∈ Aτ .

Proof. The proof is the same as that of Lemma 4. This can be shown by induction. Suppose a∗ ∈ Aτ

for fixed τ ∈ [M]. Under E , we have r̄(a) ≤ rUCB
τ+1 (a) and r̄(a) ≥ rLCB

τ+1 (a) for any a ∈ Aτ . Then
for any fixed i ∈ a∗, for any a ∈ Aτ , we can show that

rUCB
τ+1 (a

(i)
τ+1) ≥ rUCB

τ+1 (a∗) ≥ r̄(a∗) ≥ rLCB(a),

where the first inequality is obtained from the definition of a(i)τ+1 with a∗ ∈ Aτ . This implies that

rUCB
τ+1 (a

(i)
τ+1) ≥ max

a∈Aτ

rLCB
τ+1 (a),

which implies that i ∈ a∗ is not eliminated from the elimination condition at the τ +1-th epoch. This
holds for all i ∈ a∗ so that a∗ ∈ Aτ+1. With a∗ ∈ A0 = A, we can conclude the induction.

25

Under E , we have

r̄(a∗)− r̄(a(i)τ) ≤ rLCB
τ (a∗) + 2L

∑
j∈a∗

√
1.5 log T

nτ,j
− rUCB

τ (a(i)τ) + 2L
∑

j∈a
(i)
τ

√
1.5 log T

nτ,j

≲ L
∑
j∈a∗

√
log T

nτ,j
+ L

∑
j∈a

(i)
τ

√
log T

nτ,j

≲ L
∑
j∈a∗

√
d log T

|Tτ−1|
+ L

∑
j∈a

(i)
τ

√
d log T

|Tτ−1|

≲ Lm

√
d log T

|Tτ−1|
,

where the first inequality is obtained from E , the second inequality comes from the fact that a∗ ∈
Aτ−1 from Lemma 11, and maxa∈Aτ−1

rLCB
τ (a) ≤ rUCB

τ (a
(i)
τ) from the algorithm, and the third

inequality is obtained from nτ,i ≥
∑

t∈Tτ−1
1(i ∈ at) ≳ |Tτ−1|/d from the exploration in the

algorithm at the τ − 1-th epoch.

Finally, we can show that

R(T) ≤ E

[
M∑
τ=1

∑
t∈Tτ

r̄(a∗)− r̄(at) | E

]
P(E) + E

[
M∑
τ=1

∑
t∈Tτ

r̄(a∗)− r̄(at) | Ec
]
P(Ec)

≲ E

[
M∑
τ=1

∑
t∈Tτ

r̄(a∗)− r̄(at) | E

]
+ L

∑
t∈[T]

t−1∑
l=1

∑
i∈[d]

P

(
sup

x∈[0,1]

|F̂i,l(x)− Fi(x)| ≥ L

√
3 ln t

2l

)

≲
M∑
τ=1

|Tτ |Lm

√
d log T

|Tτ−1|

≤
M∑
τ=1

ηLm
√
d|Tτ−1| log T

= Lmη
√
dMT log T

≲ Lm
√
dT log(T) log log(T),

which concludes the proof.

Oracle Complexity Bounds. Based on the oracle calls in Lines 32 and 33 of Algorithm 7, we
observe that each epoch involves at most d independent oracle queries (Line 32) and one sequential
oracle query (Line 33). Since the total number of epochs is M = Θ(log log T), the overall adaptivity
complexity is bounded by Θ(log log T), and the query complexity is bounded by O(d log log T).

A.10 Extension to Continuous Distributions for General Reward Functions

We now consider the setting where each yt,i ∈ [0, 1] is drawn from a continuous distribution D.
In this case, we impose the additional Lipschitz-continuity assumption on the reward function as
follows.

Assumption 2 There exists C > 0 such that for any a ∈ A and any y, y′ ∈ [0, 1]m, we have
|r(a, y)− r(a, y′)| ≤ C

∑
i∈a |yi − y′i|.

Here we provide a regret bound for the discretization of Algorithm 6, and that of Algorithm 7 is
omitted due to its redundancy.

Theorem 8 Algorithm 8 with Algorithm 6 achieves a regret bound ofR(T) = Õ(L
√
mdT)

26

Algorithm 8 Discretizations [5]

Set the number of intervals s← ⌈C
√
mT ⌉

for j = 1 to s do

Define interval Ij ←
{
[0, 1

s], if j = 1(
j−1
s , j

s

]
, if j = 2, . . . , s

Invoke Algorithm 6 or Algorithm 7 for T rounds with the following modification:
for i ∈ at do

Upon observing an outcome yt,i ∈ [0, 1], identify j ∈ [s] such that yt,i ∈ Ij
Treat the observation as j

s

Proof. We define D̃ to be the discretized distribution of D. For ease of presentation, we use
r̄D(a) = EX∼D[r(a,X)].

Lemma 12 (Lemma 7 in [5]) For any a ∈ A, we have |r̄D(a)− r̄D̃(a)| ≤
√

m
T .

Then, from the above lemma, we have

R(T) = E

∑
t∈[T]

r̄D(a
∗)− r̄D(at)

 ≤ E

∑
t∈[T]

r̄D̃(a
∗)− r̄D̃(at)

+
∑
t∈[T]

√
m

T

= E

∑
t∈[T]

r̄D̃(a
∗)− r̄D̃(at)

+
√
mT. (9)

For the regret bound of the first term in the above, we treat D̃ as the true distribution. By following
the proof steps in Theorem 5, we provide a bound for the regret as follows:

E

∑
t∈[T]

r̄D̃(a
∗)− r̄D̃(at)


= E

∑
t∈[T]

(r̄D̃(a
∗)− r̄D̃(at))1(Et)

+ E

∑
t∈[T]

(r̄D̃(a
∗)− r̄D̃(at))1(E

c
t)


≤ E

∑
t∈[T]

(r̄D̃(a
∗)− r̄D̃(at))1(Et)

+ L
∑
t∈[T]

t−1∑
l=1

∑
i∈[d]

P

(
sup

x∈[0,1]

|F̂i,l(x)− Fi(x)| ≥
√

3 ln t

2l

)

≲ E

∑
t∈[T]

(r̃UCB
t (a∗)− r̄D̃(at))1(Et)

+ Ld

≲ E

∑
t∈[T]

(r̃UCB
t (at)− r̄D̃(at))1(Et)


≲ E

L ∑
t∈[T]

∑
i∈at

√
log T

n′
t,i

 ,

27

where the second inequality is obtained from (a) in Lemma 9 and the last inequality comes from Et
and (b) in Lemma 9. For bounding the last term, we have

E

L ∑
t∈[T]

∑
i∈at

√
log T

n′
t,i


= E

L∑
i∈[d]

∑
τ∈[τi(T)]

∑
t∈Ti(τ)

√
log T

n′
t,i


≤ E

L∑
i∈[d]

∑
τ∈[τi(T)]

∑
t∈Ti(τ)

√
log T

|Ti(τ − 1)|


= E

L∑
i∈[d]

∑
τ∈[τi(T)]

|Ti(τ)|

√
log T

|Ti(τ − 1)|


= E

L∑
i∈[d]

∑
τ∈[τi(T)]

√
Tm · |Ti(τ − 1)|

d

√
log T

|Ti(τ − 1)|


= E

L∑
i∈[d]

τi(T)

√Tm log T

d

≲ L log log(Tm/d)
√

dmT log T ,

where the first inequality is obtained from n′
t,i ≥ |Ti(τ − 1)| for t ∈ Ti(τ), the second equality is

obtained from the condition of updates in the algorithm, and the last inequality is obtained from (8).
This concludes the proof with (9).

A.11 Additional Experiments

Here, we present additional experimental results for the covariance-adaptive algorithms and for the
setting with a general reward function. The following results confirm that, consistent with the observa-
tions in the worst-case linear reward setting (Section 6), our algorithms achieve significantly reduced
oracle usage and improved computational efficiency, while maintaining tight regret performance.

A.11.1 Covariance-adaptive

Here, we present experiments (Figure 3) on covariance-adaptive frameworks under linear reward
settings. The mean reward of each base arm is independently sampled from a uniform distribution
over [0, 1], with d = 10 base arms and cardinality constraint m = 3. The reward noise is correlated
according to a d × d positive semi-definite covariance matrix Σ, constructed as AA⊤ + Id with
normalization, where A ∈ Rd×d is a randomly generated matrix. The stochastic rewards are then
sampled from a multivariate Gaussian distribution with the specified mean vector and covariance
matrix Σ.

A.11.2 General Reward

Next, we present experiments (Figure 4) on general (non-linear) reward settings with d = 5 and
m = 2. For each arm i ∈ [d], the reward is sampled from a discrete distribution supported on the
finite set {0.2, 0.4, 0.6, 0.8, 1}. The probability distribution for each arm is generated as follows: one
value is randomly assigned to each arm. Then the value is assigned a large probability mass of 0.99,
while the remaining values share the remaining 0.01 probability mass equally. The reward for an
action is defined as the square root of the sum of the sampled rewards from the selected arms.

28

0 2000 4000 6000 8000 10000
Time t

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Ad
ap

tiv
ity

 C
om

pl
ex

ity

1e4
Cumulative Oracle Adaptivity Complexity over Time

OLS-UCB-C
AROQ-C-CMAB (Alg3)
SROQ-C-CMAB (Alg4)

0 2000 4000 6000 8000 10000
Time t

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Qu
er

y
Co

m
pl

ex
ity

1e4
Cumulative Oracle Query Complexity over Time

OLS-UCB-C
AROQ-C-CMAB (Alg3)
SROQ-C-CMAB (Alg4)

0 2000 4000 6000 8000 10000
Time t

0
1
2
3
4
5
6

(t)

1e3 Cumulative Regret over Time

OLS-UCB-C
AROG-C-CMAB (Alg3)
SROQ-C-CMAB (Alg4)

(a) (b) (c)

2350
2400
2450

Runtime Comparison

AROQ-C-CMAB
(Alg3)

SROQ-C-CMAB
(Alg4)

OLS-UCB-C

Algorithms

0

100

Ru
nt

im
e

(s
ec

on
ds

)

9500

10000 Total Oracle Adaptivity Complexity up to T

AROQ-C-CMAB
(Alg3)

SROQ-C-CMAB
(Alg4)

OLS-UCB-C

Algorithms

0

500
To

ta
l

Ad
ap

tiv
ity

 C
om

pl
ex

ity

9500

10000 Total Oracle Query Complexity up to T

AROQ-C-CMAB
(Alg3)

SROQ-C-CMAB
(Alg4)

OLS-UCB-C

Algorithms

0

500

To
ta

l
Qu

er
y

Co
m

pl
ex

ity

(d) (e) (f)

Figure 3: Experimental results for covariance-adaptivity under linear reward with d = 10 and m = 3:
(a) cumulative oracle adaptivity complexity, (b) cumulative oracle query complexity, (c) regret,
(d) runtime, (e) overall oracle adaptivity complexity, and (f) overall oracle query complexity of
algorithms.

0 500 1000 1500 2000
Time t

0.0

0.5

1.0

1.5

2.0

Cu
m

ul
at

iv
e

Ad
ap

tiv
ity

 C
om

pl
ex

ity

1e3
Cumulative Oracle Adaptivity Complexity over Time

SDCB
AROQ-GR-CMAB (Alg6)
SROQ-GR-CMAB (Alg7)

0 500 1000 1500 2000
Time t

0.0

0.5

1.0

1.5

2.0

Cu
m

ul
at

iv
e

Qu
er

y
Co

m
pl

ex
ity

1e3
Cumulative Oracle Query Complexity over Time

SDCB
AROQ-GR-CMAB(Alg6)
SROQ-GR-CMAB(Alg7)

0 500 1000 1500 2000
Time t

0.0

0.5

1.0

1.5

(t)

1e2 Cumulative Regret over Time

SDCB
AROG-GR-CMAB (Alg6)
SROQ-GR-CMAB (Alg7)

(a) (b) (c)

50

60

Runtime Comparison

AROQ-GR-CMAB
(Alg6)

SROQ-GR-CMAB
(Alg7)

SDCB

Algorithms

0

10

Ru
nt

im
e

(s
ec

on
ds

)

1800

2000 Total Oracle Adaptivity Complexity up to T

AROQ-GR-CMAB
(Alg6)

SROQ-GR-CMAB
(Alg7)

SDCB

Algorithms

0

100

To
ta

l
Ad

ap
tiv

ity
 C

om
pl

ex
ity

1800

2000 Total Oracle Query Complexity up to T

AROQ-GR-CMAB
(Alg6)

SROQ-GR-CMAB
(Alg7)

SDCB

Algorithms

0

100

To
ta

l
Qu

er
y

Co
m

pl
ex

ity

(d) (e) (f)

Figure 4: Experimental results for non-linear reward with d = 5 and m = 2: (a) cumulative oracle
adaptivity complexity, (b) cumulative oracle query complexity, (c) regret, (d) runtime, (e) overall
oracle adaptivity complexity, and (f) overall oracle query complexity of algorithms.

29

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We explain our contributions and scope in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We compare our algorithms to the previous methods. Please see Table 1, lines
141 ∼ 145, 217 ∼ 223, and 262 ∼ 265.

Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

30

Justification: All assumptions are clearly stated, and complete proofs are provided in the
main text and appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper includes details to reproduce the experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

31

Answer: [Yes]
Justification: The paper provides a link to the source code in the experimental section.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides details to understand and reproduce the experimental
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The experimental results include appropriate error bars to indicate statistical
variation across repeated trials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: The experiments are simple and do not require significant computational
resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research does not involve human subjects, sensitive data, or applications
with foreseeable negative societal impact.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see Section 7.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

33

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work is primarily theoretical.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This work is primarily theoretical.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

34

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work is primarily theoretical.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work is primarily theoretical.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work is primarily theoretical.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

35

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used in the development of core methods; they were used only
for improving writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

36

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Problem Formulation
	Oracle-Efficient Algorithms and Regret Analysis
	Adaptive Rare Oracle Queries
	Scheduled Rare Oracle Queries

	Extension to Covariance-dependent CMAB
	Adaptive Rare Oracle Queries for Covariance-adaptive Approach
	Scheduled Rare Oracle Queries for Covariance-adaptive Approach

	Extension to General-Reward CMAB
	Experiments
	Conclusion
	Appendix
	Details for Parallel Execution of Oracle Queries in the Scheduled Framework
	Proof of Theorem 1
	-Approximation Oracle
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Rare Oracle Queries for General-Reward CMAB
	Adaptive Rare Oracle Queries for General Reward CMAB
	Scheduled Rare Oracle Queries for General Reward CMAB

	Proof of Theorem 5
	Proof of Theorem 6
	Extension to Continuous Distributions for General Reward Functions
	Additional Experiments
	Covariance-adaptive
	General Reward

