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Abstract

Information retrieval models that aim to search001
for the documents relevant to the given query002
have shown many successes, which have been003
applied to diverse tasks. However, the query004
provided by the user is oftentimes very short,005
which challenges the retrievers to correctly006
fetch relevant documents. To tackle this, exist-007
ing studies have proposed expanding the query008
with a couple of additional (user-related) fea-009
tures related to the query. Yet, they may be010
suboptimal to effectively augment the query,011
though there is plenty of information available012
to augment it in a relational database. Moti-013
vated by this, we present a novel retrieval frame-014
work called Database-Augmented Query rep-015
resentation (DAQu), which augments the orig-016
inal query with various (query-related) meta-017
data across multiple tables. In addition, as the018
number of features in the metadata can be very019
large and there is no order among them, we en-020
code them with our graph-based set encoding021
strategy, which considers hierarchies of fea-022
tures in the database without order. We validate023
DAQu in diverse retrieval scenarios that can in-024
corporate metadata from the relational database,025
demonstrating that ours significantly enhances026
overall retrieval performance, compared to ex-027
isting query augmentation methods.028

1 Introduction029

Information Retrieval (IR) is the task of fetch-030

ing query-relevant documents from a large corpus.031

Traditional approaches have focused on sparse re-032

trieval, which searches for documents that yield the033

highest lexical match with the given query (Robert-034

son et al., 1994). Recently, advancements in neural035

language models have led to the introduction of036

dense retrieval models, which represent both the037

query and the document in a learnable latent space038

and then calculate their similarity on it (Karpukhin039

et al., 2020; Izacard et al., 2022). Notably, these040

IR systems have gained much attention in the era041

of Large Language Models (LLMs), due to their 042

ability to assist LLMs help generating accurate an- 043

swers with evolving knowledge from an external 044

source, which is particularly valuable as LLMs are 045

intrinsically vulnerable to problems of hallucina- 046

tion and maintaining up-to-date knowledge (Cho 047

et al., 2023; Ding et al., 2024; Jeong et al., 2024). 048

Despite such a huge advantage of IR in NLP, 049

it faces a critical challenge that information cap- 050

tured in a query itself is oftentimes not sufficient 051

to retrieve its relevant documents from the external 052

corpus, due to the scarcity of information within its 053

(shorter) text. To overcome this challenge, previ- 054

ous work has focused on enriching representations 055

of queries or documents by expanding them with 056

additional texts or augmenting their representation 057

spaces (Jeong et al., 2022; Jagerman et al., 2023; 058

Lin et al., 2023a). However, despite their improve- 059

ment, those previous approaches are still limited 060

in that they rely on the capability of models (e.g., 061

LLMs) used during augmentation, though there 062

can be external knowledge sources (for augmenta- 063

tion) that are associated with the user query (such 064

as the user’s purchase history for shopping-related 065

queries). While some other work has considered 066

these additional sources, enhancing the representa- 067

tion of queries with them, they leverage only a sin- 068

gle source of information stores, especially the one 069

specific to the user (who issues the query) (Gupta 070

et al., 2019; Zhang et al., 2020; Deng et al., 2021; 071

Buss et al., 2023). However, in the real world, 072

data (including queries) is usually mapped into the 073

database and linked to other data within it, which 074

means that plenty of information that can be poten- 075

tially used for query enrichment is available on the 076

relational database (Fey et al., 2023). 077

Therefore, in this work, we introduce a novel 078

IR paradigm, Data-Augmented Query representa- 079

tion (DAQu), which augments representations of 080

queries by searching for and connecting their asso- 081

ciated information across multiple relational tables 082
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Figure 1: A conceptual illustration of our proposed DAQu, which particularly denotes a link among multiple tables for the given
query (Left) and a graph-based set-encoding strategy that encodes metadata hierarchically (Right).

within the database. Specifically, as shown in Fig-083

ure 1, for the task of retrieving relevant answers to084

the given question for the Stack Exchange dataset,085

we represent the query with its own information but086

also its relevant information within and across the087

multiple tables, such as its title, body, and tags in088

the same table but also its poster’s previous posts,089

answers (that they like), bios, and badges (earned)090

spread over other tables. However, the volume of091

these metadata can be extremely large, and sim-092

ply expanding the query with additional terms in093

the metadata (as done in existing query expansion094

work (Gupta et al., 2019; Deng et al., 2021)) is095

not feasible due to the limited context length of096

LMs. Moreover, since there is no inherent order for097

the elements in the metadata, the query augmenta-098

tion approach should ensure order invariance when099

incorporating these diverse pieces of information.100

To this end, we further propose to encode vari-101

ous query-related metadata within and across mul-102

tiple tables over the relational database, based on a103

graph set encoding scheme. Specifically, there are104

multiple columns associated with the given query105

(within and across different tables), and each of106

these columns further has multiple query-related107

elements (such as previous posts made by the user108

who issues the query). Thus, to effectively repre-109

sent these relational metadata, we first aggregate110

query-related cells for each column into one rep-111

resentation, and then aggregate representations of112

all columns (aggregated from their corresponding113

cells) into another representation. Then, this fi-114

nal representation can be viewed as the representa-115

tion for query-related metadata, which can then be116

used for augmenting the representation of the query.117

It is worth noting that those two layer structures118

(aggregation on column- and query-level) can be119

viewed as a two-layer graph neural network (Kipf120

and Welling, 2017; Gilmer et al., 2017) since each121

layer captures the interactions between the nodes122

(in this case, cells and then columns) hierarchically.123

We validate our DAQu on retrieval tasks de- 124

signed with the Stack Exchange and the Amazon 125

Product Catalog databases from Fey et al. (2023). 126

The experimental results show significant improve- 127

ments of our DAQu in retrieval performance com- 128

pared to other query augmentation baselines across 129

diverse scenarios. Moreover, we demonstrate that 130

the graph set encoding technique operationalized 131

in our DAQu effectively represents metadata, en- 132

hancing the representations of queries for retrieval. 133

Our contributions and findings are threefold: 134

• We present a new query augmentation paradigm 135

for retrieval, which augments the query represen- 136

tation based on its relevant information linked to 137

multiple tables over the relational database. 138

• To represent a large number of elements in the 139

database with order invariance for query augmen- 140

tation, we propose a graph set encoding approach 141

that hierarchically represents them without order. 142

• We demonstrate the efficacy of DAQu on multi- 143

ple retrieval scenarios designed with real-world 144

databases against query augmentation baselines. 145

2 Related Work 146

Retrieval In response to a query from a user, the 147

retrieval task is to search for the most relevant docu- 148

ments from a large corpus (such as Wikipedia) (Zhu 149

et al., 2021). Typically, it can be performed with 150

two types of models: sparse and dense retrievers. 151

Specifically, sparse retrievers such as TF-IDF or 152

BM25 (Robertson et al., 1994) represent the query 153

and document based on their terms and frequencies 154

in a sparse vector space, whereas dense retrievers 155

use a trainable dense vector space to embed the 156

query and document usually with language mod- 157

els (Karpukhin et al., 2020; Izacard et al., 2022). 158

Recently, due to the limitation of sparse retriev- 159

ers that are vulnerable to the vocabulary mismatch 160

problem (where the retrieval fails when the lexical 161

terms within the query and document are differ- 162

ent), dense retrieval is widely selected as a default 163
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choice and many advancements have been made164

on it. For example, DPR (Karpukhin et al., 2020)165

is a supervised dense retriever with a dual-encoder166

architecture that is trained discriminatively on the167

labeled pair of a query and its relevant documents to168

achieve higher similarity scores than the pair of the169

query-irrelevant documents. Also, Contriever (Izac-170

ard et al., 2022) utilizes a self-supervised learning171

strategy, which generates its training samples by172

creating positive pairs from query-related contexts173

within and across documents, rather than relying174

on explicitly annotated data. Yet, using only the175

information within a query for retrieval can be sub-176

optimal, due to the scarcity of information on it.177

Query Augmentation for Retrieval Some stud-178

ies have proposed augmenting (or expanding) the179

original query with additional information to en-180

hance the retrieval performance (Carpineto and181

Romano, 2012; Azad and Deepak, 2019). To be182

specific, traditional query augmentation methods183

have focused on utilizing a lexical knowledge base184

such as the WordNet (Miller, 1992) to expand the185

original queries (Bhogal et al., 2007; Zhang et al.,186

2009). In addition, some other work has imple-187

mented statistical models such as RM3 (Jaleel et al.,188

2004a), which add new terms to the query extracted189

from the top documents in the initial search results190

and then adjust their weights based on their im-191

portance (Lavrenko and Croft, 2001; Jaleel et al.,192

2004b; Lv and Zhai, 2009). However, these meth-193

ods have been shown to be not very effective and,194

in some cases, even degraded the retrieval perfor-195

mance (Nogueira et al., 2019; Jeong et al., 2021).196

Therefore, recent work has turned to leveraging197

neural models to extract or generate query-relevant198

terms and then append such terms to the original199

query (Esposito et al., 2020; Zheng et al., 2020;200

Mao et al., 2021). Moreover, further advances have201

been made by incorporating recent LLMs to uti-202

lize their remarkable capabilities in generating such203

terms (Wang et al., 2023; Shao et al., 2023; Buss204

et al., 2023; Jagerman et al., 2023; Feng et al., 2024;205

Dhole and Agichtein, 2024). However, despite the206

fact that the query is represented and leveraged207

on the latent space with the recent dense retriev-208

ers, existing work focuses on explicitly expanding209

its text (instead of manipulating this query repre-210

sentation for augmentation). This approach may211

be problematic if there is a significant amount of212

data available to augment the query representation213

across multiple relational tables over the database.214

Retrieval with Database A natural way to store 215

a collection of data is to use a relational database, 216

that is designed to effectively manage, retrieve, and 217

manipulate (up-to-date) data for various applica- 218

tions (Johnson et al., 2016; Fey et al., 2023). Re- 219

cently, to utilize the data in the database for ques- 220

tion answering, the task of retrieving the tabular 221

structures and the information in them has increas- 222

ingly gained much attention. To be specific, some 223

studies have developed the approach to retrieve 224

the tables themselves (relevant to the given query) 225

from a large table corpus (Herzig et al., 2021; Wang 226

et al., 2022). In addition, some other work extends 227

this approach, extracting or generating the answer 228

for the query from the retrieved tables (Pan et al., 229

2021, 2022; Lin et al., 2023b). However, since 230

some real-world questions require multiple tables, 231

more recent studies have made further progress, 232

thus proposing to incorporate multiple tables dur- 233

ing retrieval (Kweon et al., 2023; Chen et al., 2024) 234

or reading the tables (Pal et al., 2023). However, 235

unlike all the aforementioned work that has focused 236

on retrieving the tables themselves and finding rel- 237

evant cells within them, our work is completely dif- 238

ferent, which aims to effectively handle the query 239

for document retrieval by using the query-related 240

information spread across multiple tables, to aug- 241

ment the representation of the query. 242

3 Method 243

In this section, we describe our method of augment- 244

ing the representation of the query for IR with the 245

information stored within the relational database. 246

3.1 Preliminaries 247

We begin with preliminaries, providing formal de- 248

scriptions of the retrieval and query reformulation 249

based on representation-level augmentation. 250

Dense Retrieval Let us define the given query 251

from a user as q and its relevant document as d ∈ D, 252

where D is an external document corpus. Then, 253

to operationalize retrieval, we should be able to 254

calculate the similarity between the query q and 255

the document d, as f(q, d), where f is a scoring 256

function. Following the bi-encoder architecture for 257

dense retrieval, in this work, we obtain the similar- 258

ity by representing the query and document with 259

encoders Encq and Encd parameterized by θq and 260

θd, respectively, formalized as follows: 261

f(q, d) = sim(q,d),

q = Encq(q; θq) and d = Encd(d; θd),
(1) 262
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where q is the query representation and d is the263

document representation on the latent space. In ad-264

dition, sim is a similarity metric, which is typically265

either cosine similarity or dot product.266

It is worth noting that the objective of the dense267

retrieval function f is to rank the pair of the query268

q and its relevant document d+ highest among all269

the other pairs with irrelevant documents {d−i }Ni=1.270

To reflect this and following recent dense retriev-271

ers (Karpukhin et al., 2020; Izacard et al., 2022),272

we formalize the training objective, as follows:273

l = − log
ef(q,d

+)

ef(q,d+) +
∑N

i=1 e
f(q,di

−)
. (2)274

Query Augmentation for Retrieval To improve275

the effectiveness of the dense retrieval (while tack-276

ling the limited contextual information within the277

query q), the textual query itself or its representa-278

tion q can be enriched by augmenting it with the279

information that is not present in the original q but280

is crucial for minimizing the retrieval loss l. In281

this work, to effectively incorporate diverse pieces282

of information into the query without their order283

variance, we turn to augmenting the query represen-284

tation q over the latent space, which is represented285

as follows:286

q̃ = λq + (1− λ)q′, (3)287

where q̃ is the reformulated query representation,288

q′ is the representation of the additional informa-289

tion helpful to enrich the query representation, and290

λ ∈ [0, 1] is for giving weight to it.291

3.2 Database-Augmented292

Query Representation293

We now introduce our database-augmented query294

representation framework for information retrieval.295

Relational Database It is noted that a vast296

amount of valuable information (in the real world)297

is typically stored in a relational database, and,298

inspired by this, we aim to augment the represen-299

tations of queries with the relevant information300

within this relational database. In this paragraph,301

we first provide its general description. Formally,302

the relational database is defined as a set of tables:303

T = {Ti}Ni=1, and each table is comprised of a304

collection of rows T = {rj}Kj=1, where N is the305

number of tables and K is the number of rows.306

We note that one of the valuable characteris-307

tics of the relational database is that some rows308

in tables are connected with others in other tables, 309

which facilitates relational linkages and ease of 310

data retrieval. Formally, each row ri in the table 311

consists of a primary key column that uniquely 312

identifies each row within the table, (potentially) 313

some foreign key columns that link to primary 314

keys in other tables, and other non-key attribute 315

columns providing additional information about 316

the row. In other words, the relationships between 317

primary and foreign keys connect rows across dif- 318

ferent tables, and other attribute columns store de- 319

scriptive information about the rows. Formally, 320

if a foreign key column f in table Ti references 321

a primary key column p in Tj , we can represent 322

their relationship as (fi, pj). In addition, all such 323

relationships between all different tables can be 324

denoted as L = {(fi, pj)}(i,j) where L ⊆ T × T . 325

For example, analogous to the Amazon database, 326

let’s assume that the table Treview includes the 327

primary key column REVIEWID, the foreign key 328

column PRODUCTID, and the attribute column 329

TEXT. Also, the table Tproduct has the primary 330

key column PRODUCTID and the attribute col- 331

umn DESCRIPTION. Lastly, the foreign key col- 332

umn PRODUCTID in Treview points to the pri- 333

mary key column in Tproduct. Then, the rela- 334

tionships between those two tables can be repre- 335

sented with a pair of primary and foreign keys: 336

(PRODUCTIDreview, PRODUCTIDproduct). 337

Query Augmentation with Relational Database 338

Recall that the equation to augment the represen- 339

tation of the given query is formalized as q̃ = 340

λq + (1 − λ)q′. We note that, in this work, q′ is 341

the representation that we obtain from the query- 342

related information within the relational database, 343

and we now turn to explain how to get q′. 344

Formally, each query that the user requests can 345

be considered as one row rj in a certain table Ti. 346

For example, in the Stack Exchange dataset, the 347

query that the user posts is stored in the table as 348

one row: r ∈ Tpost, where this row (query) r 349

consists of the primary key (POSTID), the foreign 350

key (USERID), and the multiple attributes (such as 351

BODY, TAGS, and TIMESTAMP). Then, based on 352

the following relational structure of this database: 353

L = {(USERIDuser, USERIDpost),

(USERIDvote, USERIDpost),

(POSTIDpost, POSTIDcomment), ...},
(4) 354

the row for the query in the post table can be linked 355

to other rows in different tables, for example, the 356
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user table, vote table, and comment table connected357

with USERID and POSTID columns (Figure 1).358

Note that this relational structure of the database359

allows us to utilize diverse pieces of information360

(within the same and across different tables) when361

enriching the query representation q. Specifically,362

to represent the embedding for query metadata q′363

(used for augmenting the original query representa-364

tion q), we can not only use the attributes within the365

columns of the row for the query (such as BODY366

and TAGS of the post table Tpost) but also the at-367

tributes of associated rows (to the query) from dif-368

ferent tables (such as ABOUTME of the user table369

Tuser associated with the column USERID).370

Formally, we represent all the attributes of the371

rows associated with the given query (q) as follows:372

A ={ri,j | ri = q} ∪
{ri,j | q ∈ T and ri ∈ T ′ and (T, T ′) ∈ L} ∪
{ri,j | ri ∈ T and q ∈ T ′ and (T, T ′) ∈ L},

(5)373

where ri,j is the value of the jth attribute column374

of the ith row. Then, based on these attributes (the375

metadata), we derive their representation q′ with376

the encoder: q′ = Enca(A; θa), described below.377

Graph-Structured Set Encoding We now turn378

to explain how to operationalize the encoding func-379

tion Enca(·), which should effectively represent the380

diverse attributes A (over the relational database)381

into q′, to enrich the original query representation382

q (as in Equation 3). To accomplish this objective,383

one possible strategy is to concatenate all the at-384

tribute values, and then encode the concatenated385

value with the encoder or append it to the origi-386

nal query (before encoding), following the existing387

query expansion work (Zheng et al., 2020; Deng388

et al., 2021; Dhole and Agichtein, 2024). However,389

despite their simplicity, these naïve expansion ap-390

proaches have a couple of critical limitations. First,391

due to the large volume of data in the database, the392

number of attributes related to the query could be393

quite large, and it might be infeasible to encode394

their concatenated text with the encoder (due to its395

limited context length). In addition, the attributes396

do not have an inherent order (i.e., permutation397

invariant), making it arbitrary to determine the se-398

quence in which they should be concatenated for399

encoding.400

To tackle these challenges, in this work, we pro-401

pose to consider attributes as the graph-structured402

set and subsequently encode them with the graph-403

structured set encoding strategy, which differs from404

and indeed extends the previous set encoding ap- 405

proach (Zaheer et al., 2017). Specifically, we first 406

encode every attribute value ri,j in A into ri,j with 407

an attribute encoder: ri,j = Encr(ri,j ; θr), and 408

then aggregate a group of encoded attributes ac- 409

cording to each column into the single representa- 410

tion with mean pooling as Rj = MEAN({ri,j}i=1), 411

which then captures the representation of each cat- 412

egory (or column) of the metadata. After that, we 413

aggregate all these categorical (column-wise) rep- 414

resentations into another representation, which rep- 415

resents the overall metadata for the given query as 416

q′ = MEAN({Rj}j=1). Note that this dual-layer 417

structure — aggregating at both the column and 418

query levels — resembles a two-layer graph neural 419

network (Kipf and Welling, 2017; Gilmer et al., 420

2017), where each layer functionally captures the 421

interactions between the attributes in the same col- 422

umn first and the columns over different tables next 423

in a hierarchical manner. 424

For example, consider the scenario illustrated 425

in Figure 1, where we aim to retrieve the an- 426

swer post that the user selected as the best from 427

the user query. Recall that, based on our formu- 428

lation in Equation 3, its description is used for 429

obtaining the query representation q and we en- 430

rich its representation with the representation from 431

its metadata q′, which we obtain from the pro- 432

posed graph-structured set encoding. Specifically, 433

the attributes A (metadata) include the comments 434

(COMMENT) that the user previously wrote, and we 435

encode them with the set encoding, formalized as 436

RCOMMENT = MEAN({Encr(ri,COMMENT)}i=1). Sim- 437

ilarly, by extending this approach to other meta- 438

data categories, such as the previous tags from the 439

posts the user wrote (TAGS) and the user profile 440

(ABOUTME), we obtain their category-level repre- 441

sentations as RTAGS and RABOUTME. After that, as 442

a last step, we aggregate all the category-level rep- 443

resentations into one single (comprehensive) query- 444

level representation, formalized as follows: q′ = 445

MEAN({RCOMMENT,RTAGS,RABOUTME}), which is 446

then used to augment the original query representa- 447

tion according to Equation 3. 448

Efficient Training Strategy with Metadata It 449

should be noted that the number of attributes col- 450

lected from the relational database is sometimes 451

very large for certain queries, and it may be largely 452

inefficient to consider all of them during training. 453

To address this, we introduce a two-stage sample 454

selection strategy to efficiently train a metadata 455
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encoder Encr and to efficiently obtain a metadata456

representation q′. Specifically, due to the constraint457

on the GPU memory, it may not be possible to use458

all the attributes in A for parameter updates; there-459

fore, during training, we randomly sample three at-460

tributes for each column and use only them to train461

the metadata encoder. In addition, while we can462

use all the remaining attributes (without gradients)463

to obtain the metadata representation along with464

the representations of three specific attributes for465

each column (with gradients), using all the remain-466

ing attributes may still be time-consuming and may467

yield the over-fitting issue; therefore, we randomly468

sample some of them and use only them to obtain469

the representation q′. Meanwhile, in the inference470

step, we can utilize all the metadata attributes.471

4 Experimental Setups472

In this section, we describe the experimental setup,473

leaving further details in Appendix A.474

4.1 Datasets475

Since this is the first work on retrieval that utilizes476

the relational database for augmenting query rep-477

resentations, we design three novel retrieval tasks.478

Specifically, we construct two tasks with the Stack479

Exchange database and one task with the Amazon480

Product Catalog database from Fey et al. (2023).481

Stack Exchange This dataset is collected from482

discussions in Stack Exchange1, an online website483

for question-and-answering. All the information in484

this dataset is organized into the relational database,485

which consists of seven different tables (such as486

posts, users, and votes). In this work, based on this487

dataset, we design two retrieval tasks, as follows:488

1) Answer Retrieval (Any Answer) involves re-489

trieving any answer posts made by other users in re-490

sponse to a specific question post. 2) Best Answer491

Retrieval (Best Answer) is a more challenging492

task that aims to retrieve a single answer post that493

has been selected by the owner of the question post.494

In addition to those two retrieval tasks, we further495

consider two different scenarios by dividing the en-496

tire dataset by users (SplitByUser) or timestamps497

(SplitByTime). Specifically, for the first setting,498

the training, validation, and test sets are divided by499

users; therefore, there are no overlaps about users500

across these three subsets. Similarly, the later set-501

ting splits the dataset according to the timestamp502

1https://stackexchange.com/

that the post was made. Note that, for each retrieval 503

instance, the information before the post timestamp 504

is used to augment the query representation. 505

Amazon Product Catalog This dataset is col- 506

lected from book reviews on the Amazon Product 507

Catalog, which consists of three tables (such as 508

users, products, and reviews) over the relational 509

database. For this dataset, we introduce 3) Fu- 510

ture Purchase Retrieval (Future Purchase) as 511

the retrieval task, which aims to predict any future 512

book purchases of customers based on their current 513

reviews as well as their previous purchases and re- 514

views. Also, we construct two different settings 515

for it, namely ReviewToProduct and ProductTo- 516

Product, where the first one uses the review text 517

as a query while the latter one uses the product de- 518

scription as a query for retrieving future products. 519

4.2 Models 520

We explain the backbone retrieval models and the 521

query augmentation baselines that we compare. 522

Retrieval Models We operationalize query aug- 523

mentation approaches with two widely used dense 524

retrieval models, namely DPR and Contriever, as 525

follows: DPR is a supervised dense retrieval model 526

that requires a pair of a query and its relevant doc- 527

ument for training (Karpukhin et al., 2020); Con- 528

triever is another widely used dense retriever, but 529

is trained in an unsupervised fashion (Izacard et al., 530

2022). In addition, as an indicator, we report the 531

performance of the sparse retriever (BM25). 532

Augmentation Models We compare our DAQu 533

against relevant query augmentation models as fol- 534

lows: 1) No Expansion (No Expan.): This model 535

directly uses the given query for retrieval without 536

expanding it. 2) Naïve Query Expansion (Naïve 537

Expan.): This baseline concatenates a given query 538

with all the textual terms of the associated meta- 539

data from the database. 3) Query Expansion w/ 540

BM25 (Expan. w/ BM25): Similar to Deng et al. 541

(2021), this model also appends the metadata terms 542

to the given query. However, before expanding the 543

query, it employs a BM25 model to select meta- 544

data terms that are most relevant to the query, and 545

only these selected terms are appended. 4) DAQu 546

(Ours): This is our model that augments the query 547

representation by incorporating the metadata repre- 548

sentation on a latent space, which is generated with 549

the graph-structured set encoding strategy. 550
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Table 1: Results on three retrieval tasks with two settings, using either Stack Exchange or Amazon Product Catalog databases.

StackExchange (Any Answer) StackExchange (Best Answer) Amazon (Future Purchase)

SplitByUser SplitByTime SplitByUser SplitByTime ReviewToProduct ProductToProduct

Method Recall@10 Acc@100 Recall@10 Acc@100 MRR Acc@100 MRR Acc@100 Acc@500 Recall@1000 Acc@500 Recall@1000

BM25-Anserini 11.45 28.33 15.79 32.64 9.64 29.49 11.68 34.79 5.71 3.51 15.09 7.48

D
PR

No Expan. 36.15 ± 0.05 68.09 ± 0.14 35.46 ± 0.55 64.48 ± 0.30 20.87 ± 0.29 56.11 ± 0.09 22.87 ± 0.33 58.25 ± 0.15 6.37 ± 0.49 2.74 ± 0.20 15.54 ± 0.94 7.77 ± 0.24

Naïve Expan. 38.76 ± 0.21 70.67 ± 0.21 38.75 ± 0.48 67.37 ± 0.45 20.03 ± 0.38 55.00 ± 0.31 21.88 ± 0.14 56.66 ± 0.33 11.04 ± 0.34 6.10 ± 0.24 14.67 ± 1.21 7.66 ± 0.27

Expan. w/ BM25 38.47 ± 0.34 70.37 ± 0.25 37.83 ± 0.26 66.70 ± 0.15 19.54 ± 0.18 54.08 ± 0.12 21.47 ± 0.26 56.14 ± 0.21 12.56 ± 0.36 5.89 ± 0.25 17.29 ± 0.42 8.42 ± 0.34

DAQu (Ours) 41.80 ± 0.27 74.11 ± 0.24 41.67 ± 0.39 71.72 ± 0.33 22.05 ± 0.24 57.81 ± 0.80 23.70 ± 0.18 59.24 ± 0.46 13.07 ± 0.19 5.97 ± 0.27 17.86 ± 0.39 9.15 ± 0.10

C
on

tr
ie

ve
r No Expan. 42.08 ± 0.28 73.21 ± 0.15 41.93 ± 0.07 70.08 ± 0.45 25.85 ± 0.15 64.16 ± 0.34 28.37 ± 0.08 64.95 ± 0.15 8.21 ± 0.32 4.63 ± 0.20 17.80 ± 0.45 9.27 ± 0.06

Naïve Expan. 45.25 ± 0.24 76.20 ± 0.17 44.43 ± 0.13 72.5 ± 0.18 26.01 ± 0.27 63.59 ± 0.23 28.21 ± 0.10 64.06 ± 0.36 17.23 ± 0.46 8.86 ± 0.22 17.02 ± 0.89 9.37 ± 0.53

Expan. w/ BM25 44.69 ± 0.25 75.52 ± 0.23 44.66 ± 0.27 72.24 ± 0.39 24.71 ± 0.18 62.15 ± 0.24 27.28 ± 0.25 63.52 ± 0.55 17.71 ± 0.22 7.18 ± 0.55 17.71 ± 0.22 9.40 ± 0.21

DAQu (Ours) 49.74 ± 0.26 80.27 ± 0.23 50.28 ± 0.49 78.06 ± 0.38 26.47 ± 0.26 65.16 ± 0.33 28.82 ± 0.07 65.47 ± 0.58 18.75 ± 0.91 9.86 ± 0.46 19.87 ± 0.44 10.42 ± 0.67
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Figure 2: Analysis of the effectiveness of the set encoding strategy used in DAQu compared to a naïve encoding strategy, which
simply aggregates all representations (Left), along with an investigation of our hyperparameters by varying the lambda value
(Center) and the number of metadata features within each category when training DAQu (Right).

4.3 Evaluation Metrics551

We report the retrieval performance with the fol-552

lowing metrics: 1) Accuracy@K (Acc@K) deter-553

mines the fraction of queries for which the top-k554

results include at least one relevant document. 2)555

Recall@K calculates the percentage of all relevant556

documents that are present within the top-k results.557

3) Mean Reciprocal Rank (MRR) computes the558

average of the inverse of the ranks at which the559

first relevant document is found across queries. 4)560

Mean Average Precision (MAP) measures the561

mean precision score calculated after each relevant562

document is retrieved, across all queries.563

4.4 Implementation Details564

We train all retrieval models with a batch size of 16,565

a learning rate of 2e-5, and an AdamW (Loshchilov566

and Hutter, 2019). In addition, we set λ as 0.7 and567

randomly sample 30 features for the no-gradient568

metadata features in our efficient training strategy569

(with 3 features for gradient updates). Lastly, we570

report the average of three different runs.571

5 Experimental Results and Analyses572

We now present the overall experimental results573

and provide detailed analyses of our method.574

Main Results We report the overall results across575

three different tasks with two different settings in576

Table 1. From this, we find that DAQu outperforms577

all baselines substantially, demonstrating the effec-578

tiveness of our approach that augments queries with 579

their corresponding metadata representations (ob- 580

tained from graph-based set encoding). We provide 581

the results with additional metrics in Appendix B.1. 582

To be specific, for the Answer Retrieval task 583

with Stack Exchange, while existing query ex- 584

pansion models achieve decent performance im- 585

provement over the no expansion baseline, our 586

DAQu further signifies the gaps, achieving the per- 587

formance improvements of 18.73% and 16.91% 588

on SplitByUser and SplitByTime settings, respec- 589

tively, against Recall@10. In addition to the An- 590

swer Retrieval task, our DAQu consistently shows 591

superior performance on the Best Answer Retrieval 592

task. Notably, this task is more complicated than 593

the previous one (since the model should retrieve 594

the post that the user mainly selects, requiring both 595

the query-specific and the user-specific informa- 596

tion), where query expansion baselines degrade the 597

performance over the vanilla no expansion model. 598

By contrast, our model is the only one that achieves 599

performance improvement over it by large margins. 600

Finally, the superior performance of our approach 601

on the Future Purchase Retrieval task further con- 602

firms that it can be applicable to diverse retrieval 603

tasks. Notably, all the aforementioned results im- 604

ply that the metadata in the relational database, 605

distributed across multiple tables, contains useful 606

information for retrieval and that ours effectively 607

utilizes it, unlike existing query expansion base- 608

lines that simply append the terms to the query. 609
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Table 2: Ablation studies involving the removal or addition of
each metadata category on Any Answer (SplitByTime).

Recall Accuracy

Metadata Category R@20 Increase. Acc@20 Increase.

DAQu (Ours) 49.93 54.44

w/o Comments in Q. 46.75 -6.38% 51.14 -6.06%
w/o Comments in A. 46.06 -7.74% 50.57 -7.11%
w/o Tags in Q. 49.61 -0.63% 54.29 -0.28%

No Expan. 42.22 46.39

w/ Comments in Q. 45.24 +7.14% 49.69 +7.10%
w/ Comments in A. 47.89 +13.41% 52.31 +12.76%
w/ Tags in Q. 43.60 +3.27% 47.93 +3.31%

Effectiveness of Set Encoding To see the effec-610

tiveness of the graph-based set encoding strategy611

when incorporating the metadata information into612

the query, we compare it with two types of base-613

lines: appending their textual terms into the query614

or encoding them without considering the graph615

structure. As Figure 2 shows, simply appending the616

query with additional terms or taking the average617

of all representations in the metadata without graph618

structure is not as effective as ours. This demon-619

strates the efficacy of our two-stage (column- and620

query-levels) set-based metadata encoding strategy.621

Analyses on Metadata Category To investigate622

how each category of the metadata contributes to623

overall performance, we conduct ablation studies624

by reporting the rate of performance increase when625

excluding or adding each category. As Figure 2626

shows, each category plays a crucial role in enhanc-627

ing overall performance. Furthermore, while each628

category does contribute to improved performance629

compared to the baseline without expansion, their630

performances are still not as high as when all cate-631

gories are combined in DAQu. This implies that the632

information from each category is complementary633

to each other. Interestingly, using the ‘tags’ cate-634

gory (the information within the same table as the635

query) provides a small improvement, compared to636

using the ‘comments’ category from another table,637

which corroborates our hypothesis that it is impor-638

tant to use knowledge from multiple tables within639

the relational database.640

Analyses on Hyperparameters We explore how641

varying the lambda value (λ) in Equation 3 (that642

balances the query representation with the metadata643

representation) impacts the overall performance in644

Figure 2. Specifically, when the lambda value is too645

low (λ = 0.1), the model fails to capture the origi-646

nal query’s intent. Conversely, a high lambda value647

(λ = 0.9) leads to the model overemphasizing the648

original query over the metadata, thereby under-649

Table 3: Results on efficiency, based on elapsed and relative
time per query, by varying the number of metadata features
for category during inference on Any Answer (SplitByTime).

Efficiency Effectiveness

# of Metadata Elpased Relative MAP Acc@100

No Expan. 0.062 1 22.94 64.15
Naïve Expan. 0.062 1.002 25.09 67.31

1 per Category 0.073 1.182 24.06 67.99
2 per Category 0.074 1.20 26.69 70.64
3 per Category 0.074 1.205 27.30 71.57
All per Category 0.075 1.218 27.53 71.98

utilizing the meaningful metadata representation, 650

which degrades the performance. Thus, selecting 651

an optimal lambda value is crucial for balancing 652

these aspects to enhance overall performance. 653

We further investigate the impact of varying the 654

number of no-gradient metadata features for each 655

category on overall performance, when training the 656

DAQu model. Figure 2 shows that a low count of 657

metadata features per category results in reduced 658

performance, indicating the importance of suffi- 659

cient features for enhanced results. Yet, using all 660

metadata features is not only inefficient but also 661

degrades performance. Therefore, it is essential to 662

select the appropriate number of metadata features 663

to optimize model efficiency and effectiveness. 664

Analyses on Inference Efficiency We extend our 665

investigation to the efficiency in inference, by vary- 666

ing the number of metadata features used for query 667

augmentation. As Table 3 shows, although using 668

all the metadata features during inference is effec- 669

tive, it requires more time compared to the model 670

without expansion. By contrast, employing a small 671

number of metadata features enhances efficiency 672

while sacrificing performance. The results indicate 673

that, at a certain point (3 features per category), 674

there is a region where we can achieve reasonable 675

performance alongside improved efficiency. 676

6 Conclusion 677

In this work, we presented a novel query augmenta- 678

tion framework, DAQu, which enhances the repre- 679

sentation of the query with its relevant information 680

within multiple tables over the database. To utilize 681

the metadata features at scale with order invariance, 682

we proposed graph-based set encoding, which hier- 683

archically aggregates column-level and query-level 684

information. We validated the proposed DAQu on 685

three retrieval tasks with two settings designed with 686

two databases, showcasing the effectiveness of our 687

database-augmented query representation approach 688

for information retrieval. 689
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Limitations690

While our DAQu framework effectively represents691

the diverse pieces of query-related metadata in-692

formation (over the relational database) through a693

graph-structured set encoding strategy, the process694

of encoding and aggregating metadata representa-695

tions at both the column and query levels may pose696

efficiency challenges in real-world applications. To697

address these concerns, we conducted a detailed698

analysis of the trade-off between the effectiveness699

and efficiency of DAQu in Table 3, and showcased700

that our approach can significantly enhance the ef-701

fectiveness only with a marginal compensation of702

the efficiency. On the other hand, this finding still703

suggests that investigating more advanced meth-704

ods to further increase run-time efficiency (with an705

approach, such as data pruning) would be a valu-706

able direction for future research. Furthermore,707

the database-augmented retrieval tasks that we de-708

signed seem to be quite challenging for the retrieval709

models. While our DAQu generally shows signifi-710

cantly improved performance, there is still a large711

room for further improving retrieval performance.712

Ethics Statement713

A retrieval system can enhance the factual ground-714

ing of recent LLMs when it is integrated with them,715

which helps prevent the generation of plausible but716

incorrect answers. We believe that, following this717

line of directions, our DAQu can play a crucial role718

in diverse retrieval-augmented generation applica-719

tions. Yet, it is important to note that as relational720

databases contain substantial amounts of knowl-721

edge, including personal information, some poten-722

tial privacy concerns must be carefully managed723

when utilizing this information. In other words, fur-724

ther development of filtering strategies that tag and725

mask personal information across multiple tables726

before delivery to users or integration with LLMs727

would be required for real-world applications.728
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Table 4: Data statistics for each task designed with StackEx-
change and Amazon Product Catalog databases.

Task Setting Training Valid Test

StackExchange

Any Answer SplitByUser 128,981 17,132 15,583
SplitByTime 130,398 15,861 15,437

Best Answer SplitByUser 43,889 6,106 5,252
SplitByTime 42,900 6,018 6,329

Amazon Product Catalog

Future Purchase ReviewToProduct 65,797 4,561 5,956ProductToProduct

A Implementation Details1024

A.1 Datasets1025

In this subsection, we provide the additional details1026

for three tasks (that we design) based on the Stack-1027

Exchange and Amazon Product Catalog datasets.1028

We first report the detailed statistics of the overall1029

datasets in Table 4. In addition to this, in Table 6,1030

we present more fine-grained statistics of each cate-1031

gory (column) of the metadata, used for each query.1032

Notably, in this table, we breakdown the metadata1033

features into two categories: ‘total query’ (that in-1034

cludes all the queries in the task) and ‘non-empty1035

query’ (that includes queries that have at least one1036

item for each specific metadata category).1037

Stack Exchange Recall that, for this database,1038

we design two tasks: 1) Answer Retrieval (Any1039

Answer) and 2) Best Answer Retrieval (Best An-1040

swer). In this paragraph, we describe which spe-1041

cific metadata categories that we use for query aug-1042

mentation. At first, for the Answer Retrieval task,1043

we utilize metadata from the post and comment ta-1044

bles. Specifically, we focus on the tags associated1045

with the current question post and the comments on1046

both the current question and the answer posts. For1047

the Best Answer Retrieval task, we utilize metadata1048

from the post, comment, vote, and user tables. The1049

reason why we utilize more categories for this task1050

is because this task is closely related to the person-1051

alized retrieval task (for the user who issues the1052

question post); therefore, we focus on constructing1053

the user-specific metadata. Specifically, we use the1054

total comments made by the user, the ‘aboutme’1055

information of the user, written question and an-1056

swer posts, and the voted answer posts by the user.1057

Additionally, we include tags from both the current1058

question post and previously asked question posts.1059

For both tasks, we split the queries with their cor-1060

responding metadata into training, validation, and1061

test sets, using a corpus of 3,281,834 documents1062

that contain all posts, according to two different1063

settings. In the SplitByUser setting, we randomly 1064

sample users in an 8:1:1 ratio from those who have 1065

posted questions with answers provided by others. 1066

On the other hand, for the SplitByTime setting, 1067

we split the datasets based on the creation times- 1068

tamp of the question posts. Specifically, we create 1069

a training set with question posts written before 1070

2019-01-01, a validation set with posts written af- 1071

ter 2019-01-01 but before 2020-01-01, and a test 1072

set with posts written after 2020-01-01. 1073

Amazon Product Catalog For this database, we 1074

design the 3) Future Purchase Retrieval (Future 1075

Purchase) task, where we utilize all the user, prod- 1076

uct, and review tables. Furthermore, we consider 1077

the book reviews written from 2013-01-01 to 2016- 1078

01-01 (due to the size of the entire corpus), con- 1079

structing a document corpus using each product’s 1080

description, Specifically, we use reviews written 1081

in 2013 for the training set, reviews in 2014 for 1082

the validation set, and reviews in 2015 for the test 1083

set. We then group the reviews written by each cus- 1084

tomer and randomly sample the customers (since 1085

the data before sampling is still very large), select- 1086

ing 5,000 for the training set, 500 for the validation 1087

set, and 500 for the test set. Among two different 1088

settings for this task, in the ReviewToProduct set- 1089

ting, each review text (input) is paired with future 1090

products (target) that the customer will purchase. 1091

For this setting, we incorporate metadata from the 1092

previous review text from the review table, and the 1093

category, title, and description of both the current 1094

and previous products from the product table. In 1095

the ProductToProduct setting, we pair the product 1096

description of the current review with future prod- 1097

ucts that the customer will buy. We utilize metadata 1098

from both the current and previous review texts 1099

from the user’s review table, along with the cate- 1100

gory and title of both current and previous products, 1101

and the description of the previous products. 1102

A.2 Models 1103

For DPR (Karpukhin et al., 2020), we follow the 1104

implementation by Thakur et al. (2021). For Con- 1105

triever (Izacard et al., 2022), we further train it 1106

from its available checkpoint, while using the same 1107

architecture as DPR. For a fair comparison, we 1108

fix the number of epochs across the same retrieval 1109

models for each task and report the average of the 1110

three different runs for every model. We use A100 1111

GPU clusters for conducting experiments. 1112
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B Experimental Results1113

B.1 Additional Results with Different Metrics1114

In addition to our main results in Table 1, we pro-1115

vide the results with other retrieval metrics in Ta-1116

ble B.1. From this, similar to the results in Table 1,1117

we also observe that our DAQu shows remarkable1118

performance improvements in diverse scenarios.1119

B.2 Case Study1120

We conduct a case study to qualitatively compare1121

the effectiveness of our DAQu against the base-1122

line query augmentation methods, provided in Ta-1123

ble 7. The first example from the Any Answer1124

retrieval task with the SplitByTime setting presents1125

retrieval results for a user query: selecting opti-1126

mal activation and loss functions when training an1127

autoencoder on the MNIST dataset. Notably, the1128

challenge here is several important keywords with1129

query-relevant information, such as BCE and MSE,1130

are missing from the original user query. While1131

the baseline expansion models can include such1132

keywords, which can lead to a higher rank of the1133

relevant document (Naïve Expansion), Expansion1134

with BM25 results in a lower rank than even No1135

Expansion, due to the exclusion of another essen-1136

tial term, ’Keras’. In contrast, our DAQu achieves1137

the highest rank among all baselines, indicating1138

that our method effectively augments all essential1139

information with the metadata representation, by1140

utilizing diverse useful information sources in a1141

relational database. Similarly, for the Best Answer1142

retrieval task with the SplitByTime setting, given a1143

query such as when normalization or standardiza-1144

tion is appropriate, the best answer post explains1145

such cases in terms of ‘transformation methods.’1146

Here, our DAQu, which can incorporate the rele-1147

vant term ‘log transformation’ from the metadata1148

into the query representation, achieves the highest1149

rank. Finally, for the Future Product retrieval task,1150

a user purchased the book ‘Kindergarten-Grade 3’1151

for their children. In addition, this user’s metadata1152

includes information on several previous purchases1153

tagged ‘Children’s Books.’ In this example, while1154

the No Expansion baseline effectively retrieves the1155

future product with a higher rank, Naïve Expan-1156

sion and Expansion with BM25 do not perform1157

well, suggesting that augmenting metadata with1158

text level adds noise to the retrieval process. Mean-1159

while, our proposed method effectively exploits1160

only the useful information on the latent space,1161

achieving the highest rank among all models.1162
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Table 5: Additional Results on three retrieval tasks with two settings on Stack Exchange and Amazon Product Catalog databases.

StackExchange (Any Answer) StackExchange (Best Answer) Amazon (Future Purchase)

SplitByUser SplitByTime SplitByUser SplitByTime ReviewToProduct ProductToProduct

Method MAP MRR MAP MRR Acc@10 Acc@50 Acc@10 Acc@50 Acc@1000 Recall@500 Acc@1000 Recall@500

D
PR

No Expan. 23.56 ± 0.03 27.86± 0.08 22.72 ± 0.22 25.22 ± 0.24 32.75 ± 0.23 48.63 ± 0.20 35.11 ± 0.60 50.96 ± 0.55 9.23 ± 0.19 1.78 ± 0.27 19.73 ± 0.85 5.98 ± 0.44

Naïve Expan. 25.63 ± 0.03 30.15 ± 0.07 25.16 ± 0.11 27.85 ± 0.14 31.44 ± 0.47 47.13 ± 0.41 33.81 ± 0.33 49.27 ± 0.27 16.10 ± 0.92 4.55 ± 0.24 20.74 ± 1.13 5.54 ± 0.37

Expan. w/ BM25 25.31 ± 0.04 29.79 ± 0.05 24.55 ± 0.05 27.19 ± 0.09 30.98 ± 0.07 46.60 ± 0.31 33.27 ± 0.15 48.72 ± 0.17 17.77 ± 0.36 4.13 ± 0.21 22.65 ± 0.74 6.50 ± 0.13

DAQu (Ours) 27.96 ± 0.23 32.86 ± 0.10 27.58 ± 0.31 30.37 ± 0.35 33.99 ± 0.25 50.05 ± 0.33 36.14 ± 0.42 52.20 ± 0.47 18.01 ± 0.29 4.23 ± 0.21 22.68 ± 1.08 7.06 ± 0.15

C
on

tr
ie

ve
r No Expan. 28.46 ± 0.23 33.23 ± 0.19 28.38 ± 0.28 31.22 ± 0.31 39.71 ± 0.42 56.13 ± 0.33 42.07 ± 0.43 57.90 ± 0.20 12.62 ± 0.73 3.14 ± 0.26 21.76 ± 0.37 7.65 ± 0.19

Naïve Expan. 31.06 ± 0.16 36.12 ± 0.12 30.12 ± 0.08 33.14 ± 0.08 39.28 ± 0.35 56.04 ± 0.43 41.32 ± 0.15 57.33 ± 0.53 22.65 ± 0.67 7.07 ± 0.14 23.60 ± 0.88 7.14 ± 0.36

Expan. w/ BM25 30.82 ± 0.19 35.76 ± 0.22 30.30 ± 0.32 33.24 ± 0.35 38.09 ± 0.50 54.56 ± 0.25 40.79 ± 0.45 56.42 ± 0.41 22.62 ± 0.22 5.42 ± 0.44 22.62 ± 0.22 7.44 ± 0.04

DAQu (Ours) 35.00 ± 0.33 40.55 ± 0.41 34.96 ± 0.53 38.07 ± 0.57 40.50 ± 0.16 57.59 ± 0.58 42.53 ± 0.06 58.48 ± 0.51 25.65 ± 0.44 7.10 ± 0.29 25.36 ± 0.50 8.31 ± 0.23

Table 6: Distribution of the metadata features per query for each metadata category for three retrieval tasks.

Total Query Non Empty Query

Setting Metadata Category Training Valid Test Training Valid Test

StackExchange - Any Answer

SplitByUser
comments_in_question 1.96 1.95 1.94 3.35 3.37 3.31
comments_in_answers 2.31 2.45 2.31 3.96 4.14 3.99
tags 3.00 3.04 3.01 3.00 3.04 3.01

SplitByTime
comments_in_question 2.03 1.69 1.63 3.38 3.19 3.26
comments_in_answers 2.43 1.89 2.08 4.09 3.46 3.71
tags 2.97 3.06 3.23 2.97 3.06 3.23

StackExchange - Best Answer

SplitByUser

question_posts 14.52 22.15 12.42 18.18 27.07 15.77
answer_posts 19.77 24.25 13.47 44.79 55.18 30.74
accepted_answers 7.41 13.41 6.25 10.91 18.68 9.41
comments 81.28 122.02 84.92 92.86 137.92 97.46
aboutme 0.33 0.31 0.33 1.00 1.00 1.00
current_tags 3.06 2.99 3.08 3.06 2.99 3.08
previous_tags 48.36 66.99 41.59 48.36 66.99 41.59

SplitByTime

question_posts 6.52 7.04 9.96 10.46 11.25 14.94
answer_posts 7.82 9.35 11.15 27.47 38.98 42.83
accepted_answers 3.82 3.67 5.36 7.29 7.21 9.77
comments 31.09 38.59 49.44 54.32 67.36 81.55
aboutme 0.34 0.29 0.28 1 1 1
current_tags 3.02 3.10 3.25 3.02 3.10 3.25
previous_tags 19.52 21.71 32.33 31.31 34.70 48.52

Amazon Product Catalog

ReviewToProduct

previous_review_text 8.22 6.97 15.05 11.22 8.94 17.52
current_product_category 2.90 2.91 2.86 2.99 3.00 2.99
current_product_title 1.00 1.00 1.00 1.00 1.00 1.00
current_product_description 1.00 1.00 1.00 1.00 1.00 1.00
previous_product_category 23.96 20.34 44.16 33.01 26.39 52.68
previous_product_category 8.22 6.97 15.05 11.22 8.94 17.52
previous_product_description 8.22 6.97 15.05 11.22 8.94 17.52

ProductToProduct

previous_review_text 8.22 6.97 15.05 11.22 8.94 17.52
current_product_category 2.90 2.91 2.86 2.99 3.00 2.99
current_product_title 1.00 1.00 1.00 1.00 1.00 1.00
current_product_description 1.00 1.00 1.00 1.00 1.00 1.00
previous_product_category 23.96 20.34 44.16 33.01 26.39 52.68
previous_product_category 8.22 6.97 15.05 11.22 8.94 17.52
previous_product_description 8.22 6.97 15.05 11.22 8.94 17.52
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Table 7: Case study on three retrieval tasks. In response to the query from the user, notable terms in the Metadata and Answer
Post are highlighted in red, which are not in the query but exist only in the metadata and answer posts. Additionally, among
those notable terms, some terms that are not covered by the query expansion approach are further highlighted in bold.

StackExchange-Any Answer w/ SplitByTime

Query [Title] Choosing activation and loss functions in autoencoder
[Text] I am following this keras tutorial to create an autoencoder using the MNIST dataset. Here is the tutorial: <URL>. However, I am confused
with the choice of activation and loss for the simple one-layer autoencoder (which is the first example in the link). Is there a specific reason sigmoid
activation was used for the decoder part as opposed to something such as relu? I am trying to understand whether this is a choice I can play around
with, or if it should indeed be sigmoid, and if so why? Similarily, I understand the loss is taken by comparing each of the original and predicted
digits on a pixel-by-pixel level, but I am unsure why the loss is binary crossentropy as opposed to something like mean squared error. I would love
clarification on this to help me move forward! Thank you!

MetaData [comments in answers by pid]: ["I wrote about it here, but it was ages ago so I cannot find it now; BCE’s properties as a function means
it’s not the best choice for image data, even in greyscale. Unlike MSE, it is asymmetrically biased against overconfidence, so it systematically
underestimates the values, needlessly dimming the output intensities. And, as this question shows, causes unnecessary confusion on top.",
"Hmm. I think you may be correct in general, but for this particular use case (an autoencoder), it’s been empirically and mathematically shown that
training on the BCE and MSE objective both yield the same optimal reconstruction function: <URL> — but that’s just a minor detail.",
"I cannot load the pdf for some reason, but I’m not surprised - the minima of both losses are the same if your goal is to autoencode a 1:1 match of
intensities. It’s just not always an optimal loss if your goal is to have a nice-looking image; e.g. MNIST would probably look best with most pixels
being either 1 or 0 (in/not in the set of pixels for the character, basically learning a topology)."],
[tags by pid]: [‘neural-networks’, ‘loss-functions’, ‘keras’, ‘autoencoders’]

Answer Post You are correct that MSE is often used as a loss in these situations. However, the Keras tutorial (and actually many guides that work with MNIST
datasets) normalizes all image inputs to the range [0, 1]. This occurs on the following two lines: x_train = x_train.astype(float32) / 255,
x_test = x_test.astype(float32) / 255. Note: as grayscale images, each pixel takes on an intensity between 0 and 255 inclusive. Therefore,
BCE loss is an appropriate function to use in this case. Similarly, a sigmoid activation, which squishes the inputs to values between 0 and 1, is also
appropriate. You’ll notice that under these conditions, when the decoded image is "close" to the encoded image, BCE loss will be small. I found
more information about this <URL>.

Retrieval Rank No Expan. : 26 Naïve Expan. : 15 Expan. w/ BM25 : 38 DAQu (Ours) : 6

StackExchange-Best Answer w/ SplitByTime

Query [Title] When to Normalization and Standardization?
[Text] I see pro-processing with Normalization, which aligns data between 0 and 1, and standardization makes zero mean and unit variance. And
multiple standardization techniques follow on.. Any clear definition at what cases what should be used? Thanks in Advance!!

MetaData [comments]: [‘hi @onestop, is it ok to take log transformation only to skewed columns?’]
[current tags]:[‘normalization’, ‘feature-scaling’]

Answer Post In unsupervised learning, the scaling of the features has a great influence on the result. If a feature has a variance that is many times greater, it can
dominate the target function of the algorithm. Therefore, it is of great importance to scale the input data in a way that their variability matches or at
least does not contradict the semantics. There are several transformation methods to put the features into a comparable form. These use different
forms of normalization or standardization according to their context. (...)

Retrieval Rank No Expan. : 244 Naïve Expan. : 178 Expan. w/ BM25 : 347 DAQu (Ours) : 105

Amazon-Future Purchase w/ ProductToProduct

Query Kindergarten-Grade 3. Fox has composed a simple refrain to celebrate human connections in this lovely picture book. “Little one, whoever you are,”
she explains, there are children all over the world who may look different, live in different homes and different climates, go to different schools, and
speak in different tongues but all children love, smile, laugh, and cry. Their joys, pain, and blood are the same, “whoever they are, wherever they are,
all over the world.” Staub’s oil paintings complement the simple text. She uses bright matte colors for the landscapes and portraits, placing them in
gold borders, set with jewels and molded from plaster and wood. These frames enclose the single- and double-page images and echo the rhythm of
the written phrases. Within the covers of the book, the artist has created an art gallery that represents in color, shape, and texture, the full range of
human experience.

MetaData [previous product description]:[ “Betsy Snyder’s first board book as an author-illustrator, <em>Haiku Baby</em> follows a tiny bluebird, the
book’s would-be protagonist, as it visits its various animal companions–from an elephant that shades the bird with a parasol to a fox in a meadow and
a whale in the ocean. The little bird’s story is told primarily in pictures, and through the book’s six haiku: rain, flower, sun, leaf, snow, and–of course,
it would not be a board book without–the moon, making it ideal for the bedtime line-up. Adorable collage-cut illustrations work nicely with the haiku
form to give the book a whimsical, yet serene, feel. And the haiku are light and fun without being too cutesy. Index tabs on the right margin, with
pictures that tie to each of the poems (leaf, raindrop, snowflake, etc.), create a unique look, and make it easy for toddlers to flip through the pages on
their own without having them stick together like they can with other board books. Snyder excels at visual storytelling and short forms, possibly a
talent she honed as a designer/illustrator in the kids’ greeting card business. In the world of board books, this slender little volume really stands out” ]
[previous product category]:[ “Books”, “Children’s Books”, “Early Learning” ]
[previous review text]:[ “My baby loves this book. It has been mouthed, pulled, and thrown many times and still looks new. No tears or running
on the pages. No words inside, but has the song on the back incase one does not know it. Can easily make your own story up. My sister washed her
book, which you should not do, and it got wrinkled and looks worn down. It did not tear or come apart though”,
‘Nice little book. Has all the seasons and some weather.’ ]

Future Product [Title] Ten Little Fingers and Ten Little Toes
[Text] “There was one little baby who was born far away. And another who was born on the very next day. And both of these babies, as everyone
knows, had ten little fingers and ten little toes." So opens this nearly perfect picture book. Fox’s simple text lists a variety of pairs of babies, all with
the refrain listing the requisite number of digits, and finally ending with the narrator’s baby, who is 11truly divine” and has fingers, toes, 11and three
little kisses/on the tip of its nose.” Oxenbury’s signature multicultural babies people the pages, gathering together and increasing by twos as each pair
is introduced. They are distinctive in dress and personality and appear on primarily white backgrounds. The single misstep appears in the picture of
the baby who was “born on the ice.” The child, who looks to be from Northern Asia or perhaps an Inuit, stands next to a penguin. However, this
minor jarring placement does not detract enough from the otherwise ideal marriage of text and artwork to prevent the book from being a first purchase.
Whether shared one-on-one or in storytimes, where the large trim size and big, clear images will carry perfectly, this selection is sure to be a hit.”

Retrieval Rank No Expan. : 29 Naïve Expan. : 162 Expan. w/ BM25 : 765 DAQu (Ours) : 27
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