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ABSTRACT

The incorporation of memory into agents is essential for numerous tasks within the
domain of Reinforcement Learning (RL). In particular, memory is paramount for
tasks that require the utilization of past information, adaptation to novel environ-
ments, and improved sample efficiency. However, the term “memory” encompasses
a wide range of concepts, which, coupled with the lack of a unified methodology
for validating an agent’s memory, leads to erroneous judgments about agents’ mem-
ory capabilities and prevents objective comparison with other memory-enhanced
agents. This paper aims to streamline the concept of memory by providing precise
definitions of agent memory types, such as long-term versus short-term memory
and declarative versus procedural memory, inspired by cognitive science. Using
these definitions, we categorize different classes of agent memory, propose a robust
experimental methodology for evaluating the memory capabilities of RL agents,
and standardize evaluations. Furthermore, we empirically demonstrate the impor-
tance of adhering to the proposed methodology when evaluating different types of
agent memory by conducting experiments with different RL agents and what its
violation leads to.

1 INTRODUCTION

Reinforcement Learning (RL) effectively addresses various problems within the Markov Decision
Process (MDP) framework, where agents make decisions based on immediately available informa-
tion (Mnih et al., 2015; Badia et al., 2020). However, there are still challenges in applying RL to
more complex tasks with partial observability.

To successfully address such challenges, it is essential that an agent is able to efficiently store and
process the history of its interactions with the environment (Ni et al., 2021). Sequence processing
methods originally developed for natural language processing (NLP) can be effectively applied
to these tasks because the history of interactions with the environment can be represented as a
sequence (Hausknecht & Stone, 2015; Esslinger et al., 2022; Samsami et al., 2024).

However, in many tasks, due to the complexity or noisiness of observations, the sparsity of events, the
difficulty of designing the reward function, and the long duration of episodes, storing and retrieving
important information becomes extremely challenging, and the need for memory mechanisms
arises (Graves et al., 2016; Wayne et al., 2018; Goyal et al., 2022). Nevertheless, in the existing
literature on RL, where the concept of “memory” is discussed, the definitions of memory are only
defined in terms of the specific problem under consideration.

For example, in some works, memory is defined as the ability of an agent to effectively establish
and use dependencies between events within a fixed-size sequence of tokens (context) in decision
making (Esslinger et al., 2022; Ni et al., 2023; Grigsby et al., 2024). In other works, the term
“memory” refers to the agent’s ability to use out-of-context information through the use of various
memory mechanisms (Parisotto et al., 2020; Lampinen et al., 2021; Cherepanov et al., 2024). In
the context of Meta-Reinforcement Learning (Meta-RL), however, the term “memory” is used to
describe an agent’s ability to use experience from other tasks or episodes to adapt to a new, previously
unknown environment (Team et al., 2023; Kang et al., 2024a; Grigsby et al., 2024).
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To avoid possible cases of ambiguous interpretation of the concept of memory in RL and, as a
consequence, the conduct of incorrect experiments, we introduce a formal definition of agent memory
in RL, distinguish classes of tasks that require an agent to have memory, and introduce a classification
of agent memory types. Furthermore, we propose a formal methodology that can be used to
unambiguously test different agent memory capabilities according to our proposed classification.

In summary, our contribution can be described as follows:

1. We formalize the definition of “memory” depending on the problem to be solved: long-term
memory and short-term memory, declarative memory and procedural memory (section 5).

2. We introduce a decoupling of tasks that require an agent to have memory into two classes:
Memory Decision-Making (Memory DM) and Meta-Reinforcement Learning (Meta-RL)
(section 5).

3. We propose a generic experimental methodology for testing the memory capabilities of
agents in Memory DM tasks (subsection 5.2).

4. We show that if the proposed experimental methodology is not followed, judgments about
the agent’s memory type can become extremely incorrect (section 6).

2 PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

The Partially Observable Markov Decision Process (POMDP) is a generalization of the Markov
Decision Process (MDP) that models sequential decision-making problems where the agent has
incomplete information about the environment’s state. POMDP can be represented as a tuple
MP = ⟨S,A,O,P,R,Z⟩, where S denotes the set of states, A is the set of actions, O is the set of
observations and Z = P(ot+1 | st+1, at) is an observation function such that ot+1 ∼ Z(st+1, at).
An agent takes an action at ∈ A based on the observed history h0:t−1 = {(oi, ai, ri)}t−1

i=0 and
receives a reward rt = R(st, at). It is important to note that state st is not available to the agent at
time t. In the case of POMDPs, a policy is a function π(at | ot, h0:t−1) that uses the agent history
h0:t−1 to obtain the probability of the action at. Thus, in order to operate effectively in a POMDPs,
an agent must have memory mechanisms to retrieve a history h0:t−1. Partial observability arises in a
variety of real-world situations, including robotic navigation and manipulation tasks, autonomous
vehicle tasks, and complex decision-making problems.

3 RELATED WORKS

Researchers’ interest in memory-enhanced RL agents is evident in the abundance of works proposing
architectures with memory mechanisms and benchmarks (Osband et al., 2019; Morad et al., 2023;
Pleines et al., 2023) for their validation (see Appendix B and Appendix D for details). However,
despite the rather large number of works devoted to this topic, the term “memory” has multiple senses,
and the selection of benchmarks and experiments is not always done correctly.

Thus, for instance, in Oh et al. (2016), memory is understood as the ability of an agent to store
recent observations into an external buffer and then retrieve relevant information based on temporal
context. In Lampinen et al. (2021), memory is the ability to store and recall desired information at
long intervals. In Fortunato et al. (2020), memory refers to working and episodic memory (with
short-term and long-term nature, respectively) from cognitive psychology and neuroscience, which
allows an intelligent agent to use information from past events to make decisions in the present and
future. Ni et al. (2023) describes two distinct forms of temporal reasoning: (working) memory and
(temporal) credit assignment, where memory refers to the ability to recall a distant past event at the
current time. In Kang et al. (2024b) authors use the concept of reconstructive memory Bartlett &
Kintsch (1995) discovered in psychology, which establishes a reflection process based on interaction.

4 MEMORY OF HUMANS AND AGENTS

Most works related to the concept of memory in RL use various principles from cognitive psychology
and neuroscience such as long-term memory (Lampinen et al., 2021; Ni et al., 2023; Grigsby et al.,
2024), working memory (Graves et al., 2014; Fortunato et al., 2020), episodic memory (Pritzel et al.,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2017; Fortunato et al., 2020), associative memory (Parisotto & Salakhutdinov, 2017; Zhu et al.,
2020), and others to introduce it. Despite the fundamental differences in these concepts, works on
memory in RL often simplify these concepts to their inherent temporal scales (short-term memory
and long-term memory). Regardless, the temporal scales are often presented qualitatively without
clearly defining the boundaries between them. For example, many studies assume that remembering
a few steps within an environment represents short-term memory, while remembering hundreds of
steps represents long-term memory, without considering the relative nature of these concepts. This
ambiguity between short-term and long-term memory can lead to a misattribution of an agent’s
memory capabilities and to an incorrect estimation of them when conducting experiments. To address
this ambiguity, in this section we introduce formal definitions of agent memory in RL and its types,
and propose an algorithm for designing an experiment to test agent memory in a correct way.

4.1 MEMORY IN COGNITIVE SCIENCE

Human cognitive abilities that ensure adaptive survival depend largely on memory, which determines
the accumulation, preservation, and reproduction of knowledge and skills (Parr et al., 2020; 2022).
Memory exists in many forms, each of which relies on different neural mechanisms. Neuroscience
and cognitive psychology distinguish memory by the temporal scales at which information is stored
and accessed, and by the type of information that is stored. Abstracting from this distinction, a
high-level definition of human memory is as follows: “memory – is the ability to retain information
and recall it at a later time”.

The definition aligns with the common understanding of memory in RL. Thus, we will use it to create
terminology for various types of agent memory. In neuroscience, memory is categorized by temporal
scale and behavioral manifestation. Typically, this leads to a distinction between short-term memory,
which retains information for seconds, and long-term memory, which can last a lifetime (Davis &
Squire, 1984). Additionally, memory is divided by behavioral manifestations into declarative memory
(explicit) and procedural memory (implicit) (Graf & Schacter, 1985). Declarative memories can be
consciously recalled, encompassing events and facts, while procedural memories are unconscious
and relate to skills like skiing or driving.

In the following section, we introduce formal definitions of the above types of memory from
neuroscience for RL tasks. Using these definitions, which are written in quantitative terms, we can
uniquely classify the type of memory an agent has when using past information in decision making.

4.2 MEMORY IN RL

The interpretation of memory in RL varies across studies. In some POMDPs, agents need to retain
crucial information to make future decisions within a single environment. Here, memory typically
encompasses two aspects: 1) the efficiency of establishing dependencies between events within a
fixed time interval (e.g., transformer context (Esslinger et al., 2022; Ni et al., 2023)); and 2) the
efficiency of establishing dependencies between events outside a fixed time interval (Parisotto et al.,
2020; Cherepanov et al., 2024).

Based on the neuroscience definitions outlined in subsection 4.1, the first interpretation aligns with
short-term memory, while the second corresponds to long-term memory. Both interpretations are also
closely related to declarative memory. In Meta-RL, memory typically refers to an agent’s ability to
leverage skills from different environments/episodes Team et al. (2023); Kang et al. (2024a), akin to
procedural memory.

However, many studies fail to differentiate between agents with declarative and procedural memory,
often treating Meta-RL tasks as a whole rather than focusing on decision-making based on past
information. For instance, when a paper asserts that an agent possesses long-term memory, it may
only be tested on Meta-RL tasks based on MDPs. To clarify the concept of agent memory in RL, we
provide formal definitions in this section.

In this paper, we primarily study an agent’s memory, which is used to make current decisions based
on past information within the same environment. Accordingly, our focus will be on declarative
memory, specifically its short-term and long-term forms.
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Memory and Credit Assignment. Papers exploring agent memory, particularly declarative mem-
ory, often distinguish between two concepts based on the temporal dependencies the agent must
handle: memory and credit assignment (Osband et al., 2019; Mesnard et al., 2020; Ni et al., 2023).
In Ni et al. (2023), the authors formally differentiate between two forms of temporal reasoning in
RL: (working) memory and (temporal) credit assignment: “memory refers to the ability to recall a
distant past event at the current time, while credit assignment refers to the ability to determine when
the actions that merit current credit occurred” (Ni et al., 2023).

While distinct, these concepts both establish different temporal dependencies between related events.
In this work, we focus on the agent’s ability to form these dependencies, treating “memory” and
“credit assignment” as a single entity. We will use the definition from subsection 4.1 to define memory
generally. Notably, the definitions for “memory” also apply to “credit assignment”, as they pertain
solely to temporal dependencies rather than their essence.

5 MEMORY DECISION MAKING

POMDP tasks that use agent memory can be divided into two main classes: Meta Reinforcement
Learning (Meta-RL), which involves skill transfer across tasks, and Memory Decision-Making
(Memory DM), which focuses on storing and retrieving information for future decisions.

This distinction is crucial: agents in Meta-RL use something like the procedural memory of subsec-
tion 4.1 to facilitate rapid learning and generalization, while those in Memory DM rely on something
like declarative memory for current decision-making within the same environment. Despite these
differences, many studies overlook behavioral manifestations and focus solely on temporal scales.

To introduce a definition for Memory DM tasks, we first need to introduce the definition of agent
context length:
Definition 1. Agent context length (K ∈ N) – is the maximum number of previous steps (triplets of
(o, a, r)) that the agent can process at time t.

For example, an MLP-based agent processes one step at a time (K = 1), while a transformer-based
agent can process a sequence of up to K = Kattn triplets, where Kattn is determined by attention.
Using the introduced Definition 1 for agent context length, we can introduce a formal definition for
the Memory DM framework we focus on in this paper:
Definition 2. Memory Decision-Making (Memory DM) – is a class of POMDPs in which the
agents decision-making process at time t is based on the history h0:t−1 = {(oi, ai, ri)}t−1

i=0 if t > 0
otherwise h = ∅. The objective is to determine an optimal policy π∗(at | ot, h0:t−1) that maps
the current observation ot and history h0:t−1 of length t to an action at, maximizing the expected

cumulative reward within a single POMDP environment MP : Jπ = Eπ

[
T−1∑
t=0

γtrt

]
, where T –

episode duration, γ ∈ [0, 1] – discount factor.

In the Memory DM framework (Definition 2), memory refers to the agent’s ability to recall informa-
tion from the past within a single environment and episode. In contrast, in the Meta-RL framework
(see Appendix, Definition 7), memory involves recalling information about the agent’s behavior from
other environments or previous episodes. To distinguish these concepts, we adopt the definitions of

“Declarative memory” and “Procedural memory” from subsection 4.1:
Definition 3 (Declarative and Procedural memory in RL). Let nenvs be the number of training
environments and neps the number of episodes per environment. Then,

1. Declarative Memory – a type of agent memory when an agent transfers its knowledge
within a single environment and across a single episode within that environment:

Declarative Memory ⇐⇒ nenvs × neps = 1 (1)

2. Procedural Memory – a type of agent memory when an agent transfers its skills across
multiple environments or multiple episodes within a single environment:

Procedural Memory ⇐⇒ nenvs × neps ≥ 1 (2)

4
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Figure 1: Declarative and procedural
memory scheme. Red arrows show the
information transfer for memorization,
blue arrows show the direction of recall
to the required information.

Here, “knowledge” refers to observable information like
facts, locations, and events. In contrast, “skills” are pre-
learned policies that an agent can apply across various
tasks. Thus, the Memory DM framework validates the
agent’s declarative memory, while the Meta-RL framework
validates its procedural memory (see Figure 1).

In subsection 4.2, we distinguished two classes of
POMDPs: Memory DM, which requires declarative mem-
ory, and Meta-RL, which requires procedural memory.
Within the Memory DM tasks, which are our primary fo-
cus, agent memory is categorized into long-term memory
and short-term memory:
Definition 4 (Memory DM types of memory). Let K
be the agent context length, α∆t

te = {oi, ai, ri}te+∆t
i=te

– an
event of duration ∆t that begins at t = te and ends at
t = te +∆t, and βtr (α

∆t
te ) = at | (ot, α∆t

te ) – a decision-
making point (recall) at time t = tr based on the current
observation ot and information about the event α∆t

te . Let also ξ = tr − te −∆t+1 be the correlation
horizon, i.e. the minimal time delay between the event α∆t

te that supports the decision-making and
the moment of recall of this event βtr . Then,

1. Short-term memory (STM) – an agent ability to utilize information about local correlations
from the past within the agent context of length K at the time of decision making:

Short-term memory ⇐⇒ βtr (α
∆t
te ) = at | (ot, α∆t

te ) ∀ ξ = tr − te −∆t+ 1 ≤ K

2. Long-term memory (LTM) – an agent ability to utilize information about global correla-
tions from the past outside of the agent context of length K, during decision-making:

Long-term memory ⇐⇒ βtr (α
∆t
te ) = at | (ot, α∆t

te ) ∀ ξ = tr − te −∆t+ 1 > K

An illustration for the definitions of classifying Memory DM tasks into LTM and STM from Defini-
tion 4 is shown in Figure 2.

Figure 2: Long-term memory and short-
term memory scheme. te – event used
for decision-making start time, ∆t –
event duration, tr – agent’s recall time,
K – agent’s context length, ξ – correla-
tion horizon. If an event is outside the
context, long-term memory is needed for
decision-making; if within the context,
short-term memory suffices.

The two definitions of declarative memory encompass
all work related to Memory DM tasks, where decisions
are based on past information. Meta-RL consists of an
inner-loop, where the agent interacts with the environment
M ∼ p(M), and an outer-loop for transferring knowledge
between tasks. Typically, M is an MDP that doesn’t
require memory, serving only the outer-loop, which is
what “memory” refers to in Meta-RL studies.

The tasks in which the agent makes decisions based on
interaction histories in the inner-loop are not named sep-
arately, since the classification of Meta-RL task types
(multi-task, multi-task 0-shot, and single-task) is based
solely on outer-loop parameters (nenvs and neps) and does
not consider inner-loop task types. However, we can clas-
sify the agent’s memory for these tasks as declarative
short-term or long-term memory (see Figure 3).

We introduce an additional decoupling of Meta-RL task
types into green (with POMDP inner-loop tasks) and blue
(with MDP inner-loop tasks). In the green case, the agent’s
memory is required for both skill transfer in the outer-loop
and decision-making based on interaction histories in the inner-loop, and therefore within the inner-
loop can be considered as a Memory DM. In the blue case, memory is needed only for skill transfer.
While this paper focuses on Memory DM tasks, the terminology allows for further classification of

5
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various Meta-RL tasks, with POMDP sub-classes highlighted in green. The proposed classification
of tasks requiring agent memory is presented in Table 1.

Table 1: Classification of tasks requiring agent memory based on our definitions: green indicates
tasks described by the proposed definitions, while blue indicates those that are not. Meta-RL tasks
with a POMDP inner-loop are marked green as they can be classified as Memory DM tasks. POMDP†

indicates a Memory DM task considered as an inner-loop task without an outer-loop.

Envs. num. Runs num. POMDP Inner-
loop task

Memory Tasks that require agent memory

Memory DM
Long-term memory (ξ > K) Short-term memory (ξ ≤ K)

nenvs = 1 neps = 1 Memory DM POMDP† Declarative Long-term memory task Short-term memory task
Meta-RL: Outer-loop and inner-loop memory

Long-term memory (ξ > K) Short-term memory (ξ ≤ K)
nenvs = 1 neps > 1 Meta-RL POMDP Procedural Single-task Meta-RL Single-task Meta-RL
nenvs > 1 neps = 1 Meta-RL POMDP Procedural Multi-task 0-shot Meta-RL Multi-task 0-shot Meta-RL
nenvs > 1 neps > 1 Meta-RL POMDP Procedural Multi-task Meta-RL Multi-task Meta-RL

Meta-RL: Outer-loop memory only
No memory (ξ = 1) No memory (ξ = 1)

nenvs = 1 neps > 1 Meta-RL MDP Procedural Single-task Meta-RL Single-task Meta-RL
nenvs > 1 neps = 1 Meta-RL MDP Procedural Multi-task 0-shot Meta-RL Multi-task 0-shot Meta-RL
nenvs > 1 neps > 1 Meta-RL MDP Procedural Multi-task Meta-RL Multi-task Meta-RL

5.1 MEMORY-INTENSIVE ENVIRONMENTS

To effectively test a Memory DM agent’s use of short-term and long-term memory, it is crucial to
design appropriate experiments. Not all environments are suitable for assessing agent memory; for
example, Atari games (Bellemare et al., 2013) with frame stacking or MuJoCo control tasks (Fu et al.,
2021) may yield unrepresentative results. To facilitate the evaluation of agent memory capabilities,
we formalize the definition of memory-intensive environments:
Definition 5 (Memory-intensive environments). Let MP be POMDP and Ξ =

{
ξn
}
=

{
(tr −

te − ∆t + 1)n
}
n

– set of correlation horizons ξ between for all event-recall pairs. Then M̃P −
memory-intensive environment ⇐⇒ min

n
Ξ > 1.

Figure 3: Classification of memory types
of RL agents. While the Memory DM
framework contrasts with Meta-RL, its
formalism can also describe inner-loop
tasks when they are POMDPs.

Corollary: max
n

Ξ = 1 ⇐⇒ M− MDP.

Using the definitions of memory-intensive environments
(Definition 5) and agent memory types (Definition 4), we
can configure experiments to test short-term and long-
term memory in the Memory DM framework. Notably,
the same memory-intensive environment can validate both
types of memory, as outlined in Theorem 1:

Theorem 1 (On the context memory border). Let M̃P

be a memory-intensive environment and K be an agents
context length. Then there exists context memory border
K ≥ 1 such that if K ≤ K then the environment M̃P is
used to validate exclusively long-term memory in Memory
DM framework:

∃K ≥ 1 : ∀ K ∈ [1,K] : K < min
n

Ξ (3)

Proof. Let K = minΞ − 1. Then ∀ K ≤ K is guaranteed that no correlation horizon ξ is in
the agent history ht−K+1:t, hence the context length K ≤ minΞ − 1 generates the long-term
memory problem exclusively. Since context length cannot be negative or zero, it turns out that
1 ≤ K ≤ K = minΞ− 1, which was required to prove. ■

According to Theorem 1, in a memory-intensive environment M̃P , the value of the context memory
border K can be found as

K = minΞ− 1 = min
n

{
(tr − te −∆t+ 1)n

}
n
− 1 (4)
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Using Theorem 1, we can establish the necessary conditions for validating short-term memory:

Weak condition to validate short-term memory: if K < K < maxΞ, then the environment M̃P is
used to validate both short-term and long-term memory.

Strong condition to validate short-term memory: if maxΞ < K, then the environment M̃P is
used to validate exclusively short-term memory.

According to Theorem 1, if K ∈ [1,K], none of the correlation horizons ξ will be in the agent’s
context, validating only long-term memory. When K < K < maxΞ ≤ T − 1, long-term memory
can still be tested, but some correlation horizons ξ will fall within the agent’s context and won’t be
used for long-term memory validation. In such a case it is not possible to estimate long-term memory
explicitly. When K ≥ maxΞ, all correlation horizons ξ are within the agent’s context, validating
only short-term memory. Summarizing the obtained results, the final division of the required agent
context lengths for short-term memory and long-term memory validation is as follows:

1. K ∈ [1,K] ⇒ validating long-term memory only.

2. K ∈ (K,maxΞ) ⇒ validating both short-term memory and long-term memory.

3. K ∈ [maxΞ,∞) ⇒ validating short-term memory only.

5.2 LONG-TERM MEMORY IN MEMORY DM

As defined in Definition 4, Memory DM tasks with short-term memory occur when event-recall
pairs in the memory-intensive environment M̃P are within the agent’s context (ξ ≤ K). Here,
memory involves the agent’s ability to connect information within a context, regardless of how large
K is. Examples include works like Esslinger et al. (2022); Ni et al. (2023); Grigsby et al. (2024).
Validating short-term memory is straightforward by simply setting a sufficiently large context length
K. However, validating long-term memory capabilities is more complex and of greater interest.

Memory DM tasks requiring long-term memory occur when event-recall pairs in the memory-
intensive environment M̃P are outside the agent’s context (ξ > K). In this case, memory involves
the agent’s ability to connect information beyond its context, necessitating memory mechanisms
(Definition 6) that can manage interaction histories h longer than the agent’s base model can handle.
Definition 6 (Memory mechanisms). Let the agent process histories ht−K+1:t of length K at the
current time t, where K ∈ N is agents context length. Then, a memory mechanism µ(K) : N → N
is defined as a function that, for a fixed K, allows the agent to process sequences of length Keff ≥ K,
i.e., to establish global correlations out of context, where Keff is the effective context.

µ(K) = Keff ≥ K (5)

Memory mechanisms are essential for addressing long-term memory challenges (processing out-of-
context information) in the Memory DM framework.

Example of memory mechanism. Consider an agent based on an RNN architecture that can
process K = 1 triplets of tokens (observations, actions, and rewards) at all times t. By using memory
mechanisms µ(K) (e.g., as in Hausknecht & Stone (2015)), the agent can increase the number
of tokens processed in a single step without expanding the context size of its RNN architecture.
Therefore, if initially in a memory-intensive environment M̃P : ξ > K = 1, it can now be
represented as M̃P : ξ ≤ Keff = µ(K). Here, the memory mechanism µ(K) refers to the RNNs
recurrent updates to its hidden state.

Thus, validating an agent’s ability to solve long-term memory problems in the Memory DM framework
reduces to validating the agent’s memory mechanisms µ(K). To design correct experiments in such
a case, the following condition must be met:

M̃P : K ≤ K < ξ ≤ Keff = µ(K) (6)

According to our definitions, agents with memory mechanisms within the Memory DM framework
that can solve long-term memory tasks can also handle short-term memory tasks, but not vice versa.
The algorithm for setting up experiments to test an agent’s short-term or long-term memory is outlined
in Algorithm 1.

7
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Algorithm 1 Algorithm for setting up an experiment to test long-term and short-term memory in
Memory DM framework.

Require: M̃P – memory-intensive environment; µ(K) – memory mechanism.
1. Estimate the number of n event-recall pairs in the environment (Definition 5).

1. n = 0 → Environment is not suitable for testing long-term and short-term memory.

2. n ≥ 1 → Environment is suitable for testing long-term and short-term memory.

2. Estimate context memory borderK (Equation 4).
1. ∀ event-recall pair (β(α), α)i find corresponding ξi, i ∈ [1..n].

2. Determine K as K = minΞ− 1 = min
n

{ξn}n − 1 = min
n

{
(tr − te −∆t+ 1)n

}
n
− 1

3. Conduct an appropriate experiment (Definition 4).
1. To test short-term memory set K > K.

2. To test long-term memory set K ≤ K ≤ Keff = µ(K).

4. Analyze the results.

5.3 EXAMPLES OF SETTING UP AN EXPERIMENT TO TEST MEMORY IN MEMORY DM
FRAMEWORK

Passive T-Maze. Consider the Passive T-Maze environment (Ni et al., 2023), where the agent starts
at the beginning of a T-shaped corridor and observes a clue that is only available at that location. To
complete the episode, the agent must walk straight to the junction and turn based on the initial clue.
This environment is defined by the corridor length L, with episode duration T = L + 1. We will
analyze this environment using the Algorithm 1:

1. There is only one event-recall pair in the environment (observing a clue – turning at the
junction), so n = 1, making it suitable for testing both long-term and short-term memory.

2. The duration of this event is ∆t = 0 (the clue available only at one timestep), and the
correlation horizon ξ = T − 1 − 0 + 1 = T (clue at t = te = 0 and decision-making at
t = tr = T − 1). Thus, K = min

n
{ξn}n − 1 = T − 1.

3. By varying the environment parameter T = L + 1 or the agent’s context size K, we can
assess the agent’s long-term or short-term memory. For instance, if T is fixed, setting
K > K = T − 1 tests short-term memory. To evaluate long-term memory, we must use
memory mechanisms µ(K) and set context length K ≤ K = T − 1 ≤ Keff = µ(K).

Figure 4: Memory-intensive
environments for testing short–
term memory and long-term
memory in Memory DM.

Theoretically, this estimate K = K is sufficient to test the long-term
memory of an agent, but in practice it is better to choose a value K
closer to the left boundary of the interval [1,K], as this allows us to
track the effect of the memory mechanism µ(K) more explicitly.

6 EXPERIMENTS

To illustrate the importance of following a consistent methodology
(Algorithm 1) when evaluating an agent’s long-term and short-term
memory capabilities, as well as to highlight the ambiguity in results
that can arise from experimental misconfigurations, we conducted a series of experiments with
memory-enhanced agents in memory-intensive environments using the Memory DM framework.

For our experiments, we chose two memory-intensive environments: 1) Passive-T-Maze (Ni et al.,
2023) and 2) Minigrid-Memory (Chevalier-Boisvert et al., 2023) (see Figure 4). In the Passive-T-
Maze, the agent starts at the beginning of a T-shaped maze and observes a clue, which it must use
to make a turn at a junction at the end of the maze. The Minigrid-Memory environment presents a
similar challenge to the Passive-T-Maze; however, the agent must first reach a room containing a clue
before walking down a corridor and making a turn. A detailed description of these environments can
be found in Appendix E.
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As baselines, we chose transformer-based (Deep Transformer Q-Networks (DTQN) (Esslinger et al.,
2022), Gated Transformer-XL (GTrXL) (Parisotto et al., 2020), and GPT-2-DQN (Ni et al., 2023))
and RNN-based (Long Short-Term Memory (LSTM) Hochreiter & Schmidhuber (1997)) agents with
different memory types according to our classification (see Table 3 and Figure 3).

6.1 IMPACT OF EXPERIMENT CONFIGURATION ON MEMORY TYPE TESTED

In this section, we highlight the significance of specifying experiment configurations for testing long-
term and short-term memory in memory-intensive environments based on quantitative parameters.
We utilized a GTrXL memory-enhanced agent with a long-term memory mechanism in the Minigrid-
Memory environment. The configurations included a 31x31 grid with variable corridor lengths
(corresponding to ξ ∈ [1,maxΞ]) and a constant corridor length (ξ = maxΞ = minΞ). In the
first configuration, the agent was trained with ξ < Keff over multiple episodes, achieving an
average reward of 0.95± 0.02. Here, we tested both short-term memory on a specific set of episodes
and long-term memory on the remaining ones, as per the corollary to Theorem 1. In contrast, the
second configuration involved training exclusively on episodes where Keff < ξ = maxΞ = minΞ,
focusing solely on long-term memory, resulting in an average reward of 0.53± 0.04.

While the GTrXL agent demonstrated some ability to recall events beyond the effective context in
the first experiment, the second experiment’s results indicated random guessing behavior, suggesting
a failure to utilize information outside the effective context. This ambiguity arose because the first
experiment did not follow our proposed methodology, inadvertently testing both memory types. In
contrast, the second experiment adhered to our methodology (Keff < maxΞ = minΞ), allowing
for a clear evaluation of the agent’s long-term memory capabilities (see Algorithm 1).

6.2 TESTING LTM AND STM MEMORY

Method Passive-T-Maze

short-term (K = 15, ξ = 15) long-term (K = 5, ξ = 15) short-term (K = 5, ξ = 5)

GPT-2 DQN 0.9 ± 0.1 0.5 ± 0.2 1.0 ± 0.0
DTQN 1.0 ± 0.0 0.5 ± 0.1 1.0 ± 0.0

Table 2: Performance of models in short-term and long-term memory settings on the Passive-T-Maze

To test the agent’s short-term and long-term memory abilities separately, we conducted experiments
in two settings according to our proposed methodology. According to the proposed algorithm 1, for
Passive T-Maze, we determined a context memory boundary value K = ξ−1 and chose agent context
length values K such that when testing short-term memory K > K and when testing long-term
memory K ≤ K.

In the first experiment setting we train model with K = 15, ξ = 15 and evaluate them on environment
with K = 5, ξ = 15. As can be seen from the validation results Table 2, both DTQN (Esslinger
et al., 2022) and GPT-2 DQN (Ni et al., 2023) demonstrate short-term memory capabilities and learn
perfectly when K > ξ − 1. However, when K ≤ ξ − 1, the models failed to utilize the initial cue
provided at the beginning of the game, choosing directions randomly at the end of the maze. This
indicates a lack of long-term memory in these models. On the other hand, (GTrXL) (Parisotto et al.,
2020) and LSTM DQN (Ni et al., 2023), by definition 1, have a context of K = 1, and possess
only long-term memory. As seen from the validation results in this setting, this models demonstrate
good performance due to the memory mechanisms they incorporate. (GTrXL) (Parisotto et al.,
2020) archives mean reward of 1.0± 0.0 on long-term it uses KV-cache, which allows the model to
significantly extend the effective context. The primary memory mechanism in LSTM DQN (Ni et al.,
2023) is the recurrent layers, which enable the model to achieve mean reward of 0.9 ± 0.1.

Similar to the previous experiment, the agent’s long-term and short-term memory can be evaluated in
another way: by fixing the model context K and varying the environment parameters. In the second
experiment setting, we fixed the context K = 5 and trained the models in an environment with ξ = 5,
followed by validation with ξ = 15. The results show a pattern similar to the first experiment (see
Table 2, the middle and right columns).
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These experiments demonstrates how our Algorithm 1 helps distinguish both short-term and long-term
memory capabilities in RL agents.

6.3 EXTRAPOLATION TO LARGER CORRELATION HORIZON

Figure 5: Results of extrapolation abilities for baselines.

In this experiment, we evaluated the ability of models previously trained on the Passive T-Maze to
extrapolate to larger correlation horizon. For this, we took checkpoints trained with ξ = 15 and
conducted inference on longer correlation horizon. The results are shown in Figure 5. As seen from
the graph, models that were previously classified as long-term demonstrate the ability to extrapolate to
larger contexts, while models with short-term memory experience a significant drop in performance
when inferring on contexts longer than those seen during training. This experiment aligns with
previous findings and confirms the validity of memory classification in baseline models using the
algorithm presented in this paper.

7 CONCLUSION

In this study, we propose formal definitions of memory tasks arising in the RL domain, inspired by
neuroscience: long-term memory (LTM) vs. short-term memory (STM), declarative memory vs. pro-
cedural memory. We also distinguish explicitly two classes of POMDPs: Memory Decision-Making
(Memory DM) and Meta-Reinforcement Learning (Meta-RL), survey the main memory mechanisms
used in such tasks, partition existing Memory DM algorithms according to our classification, and
propose an algorithm for setting up an experiment to test explicitly and correctly an agent LTM and
STM capabilities within the Memory DM framework. We have also shown that without following
the proposed methodology for conducting an experiment to test LTM and STM, one can obtain
ambiguous results that do not allow us to separate these types of agent’s memory. We hope that our
work will bring clarity to the understanding of the concept of memory in RL and advance progress in
the field.
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A APPENDIX – GLOSSARY

In this section, we provide a comprehensive glossary of key terms and concepts used throughout this
paper. The definitions are intended to clarify the terminology proposed in our research and to ensure
that readers have a clear understanding of the main elements underpinning our work.

1. M – MDP environment

2. MP – POMDP environment

3. M̃P – memory-intensive environment

4. h0:t−1 = {(oi, ai, ri)}t−1
i=0 – agent history of interactions with environment

5. K – agent base model context length

6. K – context memory border of the agent, such that when K ∈ [1,K] → strictly LTM
problem

7. µ(K) – memory mechanism that increases number of steps available to the agent to process

8. Keff = µ(K) – the agent effective context after applying the memory mechanism

9. α∆t
te = {(oi, ai, ri)}te+∆t

i=te
– an event starting at time te and lasting ∆t, which the agent

should recall when making a decision in the future

10. βtr = βtr (α
∆t
te ) = at | (ot, α∆t

te ) – the moment of decision making at time tr according to
the event α∆t

te

11. ξ = tr − ta −∆t+ 1 – an event’s correlation horizon

B APPENDIX – MEMORY MECHANISMS

In RL, memory has several meanings, each of which is related to a specific class of different tasks. To
solve these tasks, the authors use various memory mechanisms. The most prevalent approach to incor-
porating memory into an agent is through the use of Recurrent Neural Networks (RNNs) (Rumelhart
et al., 1986), which are capable of handling sequential dependencies by maintaining a hidden state
that captures information about previous time steps (Wierstra et al., 2010; Hausknecht & Stone, 2015;
Sorokin et al., 2015; Duan et al., 2016; Song et al., 2018; Zintgraf et al., 2020). Another popular
way to implement memory is to use Transformers (Vaswani et al., 2017), which use self-attention
mechanisms to capture dependencies inside the context window (Parisotto et al., 2020; Lampinen
et al., 2021; Esslinger et al., 2022; Melo, 2022b; Team et al., 2023; Pramanik et al., 2023; Robine
et al., 2023; Ni et al., 2023; Grigsby et al., 2024; Shala et al., 2024). State-space models (SSMs) (Gu
et al., 2021; Smith et al., 2023; Gu & Dao, 2023) combine the strengths of RNNs and Transformers
and can also serve to implement memory through preservation of system state (Hafner et al., 2019;
Lu et al., 2023; Becker et al., 2024; Samsami et al., 2024). Temporal convolutions may be regarded
as an effective memory mechanism, whereby information is stored implicitly through the application
of learnable filters across the time axis (YuXuan Liu & Hsieh, 2016; Mishra et al., 2018). A world
model (Ha & Schmidhuber, 2018) which builds an internal environment representation can also be
considered as a form of memory. One method for organizing this internal representation is through
the use of a graph, where nodes represent observations within the environment and edges represent
actions (Morad et al., 2021; Zhu et al., 2023; Kang et al., 2024b).

A distinct natural realization of memory is the utilization of an external memory buffer, which enables
the agent to retrieve pertinent information. This approach can be classified into two categories:
read-only (writeless) (Oh et al., 2016; Lampinen et al., 2021; Goyal et al., 2022; Cherepanov
et al., 2024) and read/write access (Graves et al., 2016; Zaremba & Sutskever, 2016; Parisotto &
Salakhutdinov, 2017). Detailed information about each memory mechanism can be found in the
Appendix, Appendix B.

Using these memory mechanisms, both decision-making tasks based on information from the past
within a single episode and tasks of fast adaptation to new tasks are solved. However, even in works
using the same underlying base architectures to solve the same class of problems, the concepts of
memory may differ.
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B.1 RECURRENT NEURAL NETWORKS

Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986) are a class of neural networks designed
to process sequential data by maintaining a hidden state that captures information from previous
time steps. This hidden state, which is essentially a form of internal memory, allows RNNs to
model temporal dependencies and long-range relationships within the input sequence. Variations of
RNNs, such as Gated Recurrent Units (GRUs) (Chung et al., 2014) and Long Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997) networks, have been developed to address the vanishing
gradient problem and improve the ability to retain long-term information. LSTMs introduce an
additional cell state and output gate to better manage the flow of information through time, while
GRUs combine the update and reset gates to simplify the LSTM architecture. These enhancements
enable RNNs and their variants to effectively handle complex sequential tasks in RL.

RNNs are able to maintain and utilize information from previous states or experiences, which is
especially valuable in POMDPs. This capacity is integral for tasks where the current state does not
provide sufficient information to make optimal decisions. Prominent RL models that incorporate
RNNs include Deep Recurrent Q-Networks (DRQN) (Hausknecht & Stone, 2015) and Deep Attention
Recurrent Q-Networks (DARQN) (Sorokin et al., 2015), which extend the capabilities of Deep Q-
Networks (DQN) (Mnih et al., 2013) by integrating LSTM layers, and Recurrent Policy Gradient
(RPG) (Wierstra et al., 2010) methods, which adapt policy gradient techniques to sequential data.
Additionally, Asynchronous Advantage Actor-Critic (A3C) (Mnih et al., 2016) with RNNs and
Recurrent Deterministic Policy Gradient (RDPG) (Song et al., 2018) further illustrate the effectiveness
of RNNs in complex RL tasks.

In the context of Meta-RL, RNNs are integral to enhancing an agent ability to learn and adapt
from temporally correlated data. By maintaining a hidden state that evolves over time, RNNs can
effectively encode information about past experiences, which is critical for Meta-RL tasks that
require fast adaptation to new environments. The Fast RL via Slow RL (RL2) (Duan et al., 2016)
algorithm exemplifies this, utilizing an LSTM network to embed the history of interactions, thereby
enabling the agent to quickly infer the optimal policy for a new task. Additionally, the Variational
Bayes-Adaptive Deep RL (VariBAD) (Zintgraf et al., 2020) algorithm employs a RNN to maintain
a latent representation of the task, which is updated as new information becomes available, thus
facilitating rapid adaptation.

B.2 TRANSFORMERS

Transformers (Vaswani et al., 2017) are a type of neural network architecture designed to process
sequential data. Unlike RNNs, which process input sequences sequentially and use recurrence to
capture long-range dependencies, Transformers process input sequences in parallel and use self-
attention mechanisms to capture dependencies inside the context window. This parallelization allows
Transformers to be much faster and more efficient than RNNs, especially for longer sequences.

Transformers have found application in various areas of RL (Li et al., 2023; Agarwal et al., 2023):
Online RL (Parisotto et al., 2020; Lampinen et al., 2021; Esslinger et al., 2022; Zheng et al., 2022;
Melo, 2022a; Team et al., 2023; Pramanik et al., 2023), Offline RL (Cherepanov et al., 2024;
Janner et al., 2021; Lee et al., 2022; Jiang et al., 2023), and model-based RL (Chen et al., 2022;
Micheli et al., 2023; Robine et al., 2023), including for solving credit assignment problems and
working in memory-intensive environments (Chen et al., 2021; Ni et al., 2023; Grigsby et al.,
2024), provided that the entire trajectory fits within the model context. Transformers for Meta-
Reinforcement Learning (TrMRL) (Melo, 2022b) is a Meta-RL agent that mimics the memory
reinstatement mechanism using the transformer architecture. Hierarchical Transformers for Meta-
Reinforcement Learning (HTrMRL) (Shala et al., 2024) encode the same intra-episodic memory as
proposed in TrMRL and allow us to understand the transition dynamics within episodes and accesses
the intra-episodic memories to encode how the transition dynamics across episodes relate to each
other. Gated Transfrormer-XL (GTrXL) (Parisotto et al., 2020) uses Transformer-XL (Dai et al.,
2019) with GRU-like (Chung et al., 2014) gating mechanism to solve Meta-RL problems.
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B.3 STATE-SPACE MODELS

State-Space Models (SSMs) are a fundamental concept in control theory, used to describe and analyze
dynamic systems by representing the system’s behavior through a set of state variables. In the
context of deep learning, a subset of SSMs, specifically Linear-Time Invariant (LTI) systems, has
gained significant attention due to their remarkable performance and potential as an alternative to
traditional transformer-based models. These LTI-based SSMs, exemplified by models like Structured
State Space sequence model (S4) (Gu et al., 2021) and implified Structured State Space Sequence
Models (S5) (Smith et al., 2023), as well as SSMd with input-dependent matricesMamba (Gu &
Dao, 2023), have showcased not only remarkable performance but also computational efficiency,
making them a compelling alternative to transformers. To deal with the vanishing/exploding gradients
problem (Pascanu et al., 2013) and improve memorization ability these models use high-order
polynomial projection operators (HiPPO) theory (Gu et al., 2020) of continuous-time memorization.
Their high inference speed and parallelizable training making them potentially useful in RL.

Deep Planning Network (PlaNet) (Hafner et al., 2019) is a Recurrent State Space Model (RSSM)
model-based agent that learns the environment dynamics from images and chooses actions through
fast online planning in latent space. Modified S5 model (Lu et al., 2023) enables us to initialize and
reset the hidden state in parallels used for modeling long-term decision-making tasks and solving
Meta-RL problems. KalMamba (Becker et al., 2024) leverages Mamba to learn the dynamics
parameters of a linear Gaussian SSM in a latent space. Recall to Image (R2I) (Samsami et al., 2024)
combines S5 and Dreamer (Hafner et al., 2020) models.

B.4 GRAPHS

A world model is a learned internal representation that captures the agent understanding of the
environment. This model acts as a form of memory, enabling the agent to recall past experiences. One
way to structure this internal representation is through a graph, where nodes represent observations in
the environment and edges represent actions.

In the Graph-Based Memory Reconstruction (GBMR) (Kang et al., 2024b) the memory is imple-
mented as a graph storing states, connections between states, and policy. This graph imitates Bartlett’s
reconstruction mechanism of human memory. Value Memory Graph (VMG) (Zhu et al., 2023) is a
graph-structured world model in Offline-RL setting that represents the original environments as a
graph-based MDP. Graph actions are sampled via Value Iteration and then converted to environment
actions via the actions translator. Graph Convolutional Memory (GCM) (Morad et al., 2021) receives
an observation as input and places it in a graph, determines the neighbors of that vertex and adds
edges, and then through graph neural network receives belief state and forms a policy

B.5 TEMPORAL CONVOLUTIONS

In the context of neural networks, temporal convolutions function as an efficient memory mechanism
for handling sequential data. Unlike RNNs, which use explicit memory cells, Temporal Convolutions
implicitly remember information by applying learnable filters across the time axis. This approach
enables the network to capture both short-term and long-term dependencies in the data. The con-
volution operation aggregates features from previous time steps, effectively summarizing historical
context and using it to inform predictions about future time steps.

Simple Neural Attentive Meta-Learner (SNAIL) (Mishra et al., 2018) combines Temporal Convolu-
tions to aggregate information from past experience and soft attention to focus on specific pieces of
information. A3CTConv is a A3C model (Mnih et al., 2016) augmented with a Temporal Convolution
layer after the last convolution layer and A3CTConvRNN is a A3CTConv modification with the
recurrent layer (YuXuan Liu & Hsieh, 2016).

B.6 EXTERNAL STORAGE WITH READ / WRITE OPERATORS

Another promising approach to enhancing an agent’s memory is to utilize an external information
storage with read-only or read/write access, as is common in computer architectures (tapes, RAMs,
GPUs, etc.).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

External storage with read-only access allows information to be stored sequentially in a buffer,
enabling the agent to read data without the ability to modify it. Models employing this type of
memory include MemNNs, such as Memory Q-Network (MQN), Recurrent Memory Q-Network
(RMQN), and Feedback Recurrent Memory Q-Network (FRMQN) (Oh et al., 2016). Additionally,
Retrieval-Augmented Agent (R2A) (Goyal et al., 2022), Hierarchical Chunk Attention Memory
(HCAM) (Lampinen et al., 2021), and Episodic Memory Deep Q-Networks (EMDQN) (Lin et al.,
2018) exemplify systems that leverage read-only external storage.

In contrast, external storage with read/write access prevents the loss of important information from
the buffer and allows for the addition of new data in an addressable manner. This capability enables
models to dynamically update their memory based on ongoing experiences. Notable examples of
models utilizing this type of memory include Neural Map (Parisotto & Salakhutdinov, 2017), which
is designed for structured memory in RL, and Differentiable Neural Computer (DNC) (Graves et al.,
2016), which mimics the functionality of traditional computers by separating memory from computa-
tion. Reinforcement Learning Neural Turing Machines (RL-NTM) (Zaremba & Sutskever, 2016)
also exemplify this approach by incorporating neural networks with external memory capabilities.

Moreover, replay buffers and their variations can also be classified under this type of memory
mechanism. Replay buffers are crucial in RL as they store past experiences, allowing agents to learn
from a diverse set of previously encountered states. This mechanism helps stabilize learning by
breaking the correlation between consecutive experiences, which can lead to more robust training
outcomes.

B.7 MEMORY IN PARAMETERS

When RL agents are parameterized by neural networks, the optimization process itself can be seen
as a form of memorization process. the simplest example is, feedforward networks that learn to
associate outputs with their corresponding inputs. This process updates parameters (or “weights”) of
neural networks so that each input-output pair is memorized. This type of memory is often reffered
to as in-weight memory as a counterpart of in-context memory studied in this work.

From the optimization perspective, certain phenomena or best practices in training neural networks
may favour or harm memory when RL agents are implemented by neural networks. These include:
the loss of plasticity, exponentially moving average (EMA) teacher in RL, catastrophic forgetting.
Loss of plasticity is a phenomenon observed in continual learning when neural network lose their
learnability over the sequence of tasks. Catastrophic forgetting is a vulnerability of all modern deep
learning models - when faced with a new task, neural network might forget the first task, while it can
remember both if it had to solve them simultaneously. Exponentially moving average is a technique,
initially proposed to stabilize deep q-networks. It can also be seen as a form of memory since the
neural network becomes an average of multiple past versions of it.

Unfortunately, the in-weight memory (as opposed to in-context memory studied in this work) is much
less reliable. When agents are tasked to be trained continually, catastrophic forgetting might erase
past knowledge and skills learned by RL agent in the series on RL tasks.

B.8 MEMORY AS WORLD MODEL

Model-based reinforcement learning (MBRL) is another framework which is related to Memory DM.
The central idea of MBRL is to train a world model, i.e. the distribution of the form pθ(st+1 | st, at)
parameterized by trainable parameters θ. In POMDPs , real states are unknown, therefore, world
model must learn it from the sequences of actions and observations in an unsupervised or self-
supervised fashion. This typically happens through learning of latent states and modelling them
sequentially (Hafner et al., 2020; 2022; 2023; Bruce et al., 2024). This mechanism can also be seen
as a form of memory – since the world model learns a compressed representation of the environment,
it needs to remember events that are relevant for decision making.

C APPENDIX – META REINFORCEMENT LEARNING

In this section, we explore the concept of Meta-Reinforcement Learning (Meta-RL), a specialized
domain within POMDPs that focuses on equipping agents with the ability to learn from their past
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experiences across multiple tasks. This capability is particularly crucial in dynamic environments
where agents must adapt quickly to new challenges. By recognizing and memorizing common patterns
and structures from previous interactions, agents can enhance their efficiency and effectiveness when
facing unseen tasks.

Meta-RL is characterized by the principle of “learning to learn”, where agents are trained not only to
excel at specific tasks but also to generalize their knowledge and rapidly adjust to new tasks with
minimal additional training. This adaptability is achieved through a structured approach that involves
mapping data collected from various tasks to policies that guide the agent’s behavior.

Meta-RL algorithm is a function fθ parameterized with meta-parameters that maps the data D,
obtained during the process of training of RL agent in MDPs (tasks) Mi ∼ p(M), to a policy
πϕ : ϕ = fθ(D). The process of learning the function f is typically referred to as the outer-loop,
while the resulting function f is called the inner-loop. In this context, the parameters θ are associated
with the outer-loop, while the parameters ϕ are associated with the inner-loop. Meta-training proceeds
by sampling a task from the task distribution, running the inner-loop on it, and optimizing the inner-
loop to improve the policies it produces. The interaction of the inner-loop with the task, during which
the adaptation happens, is called a lifetime or a trial. In Meta-RL, it is common for S and A to
be shared between all of the tasks and the tasks to only differ in the reward R(s, a) function, the
dynamics P(s

′ | s, a), and initial state distributions P0(s0) (Beck et al., 2024). The formal definition
of Meta-RL framework is presented in Definition 7.
Definition 7 (Meta-RL). Meta-RL – is a class of POMDPs where the agent learns to learn from
its past experiences across multiple tasks and memorize the common patterns and structures to
facilitate efficient adaptation to new tasks. Let D = {τMi

j }H−1
j=0 is all of the data of H episodes

of length T collected in the MDP Mi ∼ p(M). A Meta-RL algorithm is a function fθ that
maps the data D to a policy πϕ, where ϕ = fθ(D). The objective to determine an optimal fθ:

Jθ = EMi∼p(M)

[
ED

[ ∑
τ∈DI:H

Gi(τ)

∣∣∣∣fθ,Mi

]]
, where Gi(τ) – discounted return in the MDP Mi,

I – index of the first episode during the trial in which return counts towards the objective (Beck et al.,
2024).

D APPENDIX – SURVEY ON MEMORY-AUGMENTED AGENTS IN MEMORY DM
FRAMEWORK

To demonstrate the variety of existing approaches for implementing agent memory mechanisms in
the Memory DM framework, we have compiled a Table 3 including the main models with each of
the considered agent memory types. We also categorized the types of problems into LTM and STM
according to our proposed terminology. It is important to note that some of the algorithms presented
in Table 3 are designed to use agent memory to solve Meta-RL problems, however, we have included
them in the table because these works also performed experiments in the setting we categorized as
Memory DM.

In addition to Table 3, Table 4 summarizes the main memory-intensive environments from the related
works. As can be seen in Table 4, there are very few environments that have overlap with several
different models. This indicates that there is no common set of benchmarks (as, for example, in NLP
or CV domains) for Memory DM framework tasks, which makes it difficult to compare the developed
algorithms with other baselines.

According subsection 4.2, Meta-RL is a POMDPs class with implicit memory that produce a policy
based on the entire agent-environment interaction history. The Definition 4 introduces the concepts
of short-term memory and long-term memory in the Memory DM framework. Nevertheless, these
concepts can be used to describe the Meta-RL framework when considering POMDP inner-loop
tasks. Thus, existing Meta-RL algorithms can be divided into two subclasses: those that use memory
mechanisms to transfer skills between tasks and knowledge within tasks (POMDP inner-loop), and
those that use memory mechanisms only to transfer skills between tasks (MDP inner-loop).

This work focuses mainly on the Memory DM framework, and therefore we do not provide a survey
of Meta-RL algorithms and environments and the algorithm to conduct the experiment to test agent
memory. Nevertheless, the terminological framework proposed in this paper allows us to categorize
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existing Meta-RL algorithms by memory type and memory mechanisms, which is useful for further
research in this area.

Table 3: Classification of RL models with memory in Memory DM framework. Ktested
eff – the order

of the effective context realized in the corresponding work, “Type” – type of tested agent memory,
according to our terminology.

Model Base model Online Memory mechanism µ(K) Ktested
eff Type

DRQN (Hausknecht & Stone, 2015) LSTM ✓ RNN 100..101 LTM
DTQN (Esslinger et al., 2022) Transformer ✓ Attention 101 STM
DARQN (Sorokin et al., 2015) LSTM ✓ RNN 100 LTM
HCAM (Lampinen et al., 2021) Transformer ✓ Ext. memory w/o write op. 102 LTM
AMAGO (Grigsby et al., 2024) Transformer ✓ Attention 102..104 STM
RATE (Cherepanov et al., 2024) Transformer X Ext. memory w/o write op. 101..102 LTM
GTrXL (Parisotto et al., 2020) Transformer ✓ Ext. memory w/o write op. 102 LTM
R2I (Samsami et al., 2024) SSM ✓ SSM + model-based 102..103 LTM
MERLIN (Wayne et al., 2018) LSTM ✓ RNN MBRL + Ext. memory with write op. 101..102 LTM
Modified S5 (Lu et al., 2023) SSM ✓ SSM 101..102 LTM
Neurl Map (Parisotto & Salakhutdinov, 2017) GRU ✓ Ext. memory with write op. 101..102 LTM
GBMR (Kang et al., 2024b) CNN + FC ✓ Graph + model-based 102 LTM
EMDQN (Lin et al., 2018) CNN + FC ✓ Ext. memory w/o write op. 100 LTM
MRA (Fortunato et al., 2020) LSTM ✓ RNN 101..103 LTM
FMRQN (Oh et al., 2016) LSTM + FC ✓ RNN + Ext. memory w/o write op. 100..101 LTM

Table 4: The main memory-intensive environments used in the reviewed works suitable for testing
agent LTM in Memory DM framework. Atari Bellemare et al. (2013) environment is included to
demonstrate that many memory-augmented agents are tested exclusively in MDP environments.
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Atari (Bellemare et al., 2013) ✓ ✓ ✓ ✓ ✓ ✓
T-Maze (Ni et al., 2023) ✓ ✓
ViZDoom-Two-Colors (Sorokin et al., 2022) ✓
Minigrid.Memory (Chevalier-Boisvert et al., 2023) ✓
Memory Maze (Pasukonis et al., 2022) ✓ ✓
HeavenHell (Geffner & Bonet, 1998) ✓
Hallway (Littman et al., 1995) ✓
Car Flag (Nguyen, 2021) ✓
Gym-Gridverse (Baisero & Katt, 2021) ✓
DMLab-30 (Beattie et al., 2016) ✓ ✓
POPGym (Morad et al., 2023) ✓ ✓ ✓
BSuite (Osband et al., 2019) ✓
Ballet (Lampinen et al., 2021) ✓
Object permanence (Lampinen et al., 2021) ✓
Memory Game (Wayne et al., 2018) ✓
Goal-Search (Parisotto & Salakhutdinov, 2017) ✓
PsychLab (Leibo et al., 2018) ✓
Spot the Difference (Fortunato et al., 2020) ✓
Navigate to Goal (Fortunato et al., 2020) ✓
I-Maze (Oh et al., 2016) ✓
Pattern Matching (Oh et al., 2016) ✓

E APPENDIX – ENVIRONMENTS DESCRIPTION

This section provides an extended description of the environments used in this work.

Passive-T-Maze (Ni et al., 2023). In this T-shaped maze environment, the agent’s goal is to move
from the starting point to the junction and make the correct turn based on an initial signal. The
agent can select from four possible actions: a ∈ left, up, right, down. The signal, denoted by the
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variable clue, is provided only at the beginning of the trajectory and indicates whether the agent
should turn up (clue = 1) or down (clue = −1). The episode duration is constrained to T = L+ 1,
where L is the length of the corridor leading to the junction, which adds complexity to the task.
To facilitate navigation, a binary variable called flag is included in the observation vector. This
variable equals 1 one step before reaching the junction and 0 at all other times, indicating the agent’s
proximity to the junction. Additionally, a noise channel introduces random integer values from the
set −1, 0,+1 into the observation vector, further complicating the task. The observation vector is
defined as o = [y, clue, flag, noise], where y represents the vertical coordinate.

The agent receives a reward only at the end of the episode, which depends on whether it makes a
correct turn at the junction. A correct turn yields a reward of 1, while an incorrect turn results in a
reward of 0. This configuration differs from the conventional Passive T-Maze environment (Ni et al.,
2023) by featuring distinct observations and reward structures, thereby presenting a more intricate set
of conditions for the agent to navigate and learn within a defined time constraint. To transition from a
sparse reward function to a dense reward function, the environment is parameterized using a penalty
defined as penalty = − 1

T−1 , which imposes a penalty on the agent for each step taken within the
environment. Thus, this environment has a 1D vector space of observations, a discrete action space,
and sparse and dense configurations of the reward function.

Minigrid-Memory (Chevalier-Boisvert et al., 2023). Minigrid-Memory is a two-dimensional
grid-based environment specifically crafted to evaluate an agent’s long-term memory and credit
assignment capabilities. The layout consists of a T-shaped maze featuring a small room at the
corridor’s outset, which contains an object. The agent is instantiated at a random position within the
corridor. Its objective is to navigate to the chamber, observe and memorize the object, then proceed to
the junction at the maze’s terminus and turn towards the direction where the object, identical to that
in the initial chamber, is situated. A reward function defined as r = 1− 0.9× t

T is awarded upon
successful completion, while failure results in a reward of zero. The episode concludes when the
agent either makes a turn at a junction or exhausts a predefined time limit of 95 steps. To implement
partial observability, observational constraints are imposed on the agent, limiting its view to a 3× 3
frame size. Thus, this environment has a 2D space of image observations, a discrete action space, and
sparse reward function.
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