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Abstract

We present modality gap, an intriguing geomet-
ric phenomenon of the representation space of
multi-modal models. Specifically, we show that
different data modalities (e.g. images and text) are
embedded at arm’s length in their shared represen-
tation in multi-modal models such as CLIP. Our
systematic analysis demonstrates that this gap is
caused by a combination of model initialization
and contrastive learning optimization. In model
initialization, we show empirically and theoreti-
cally that the representation of a common deep
neural network is restricted to a narrow cone. As
a consequence, in a multi-modal model with two
encoders, the representations of the two modal-
ities are clearly apart when the model is initial-
ized. During optimization, contrastive learning
keeps the different modalities separate by a cer-
tain distance, which is influenced by the temper-
ature parameter in the loss function. Our experi-
ments further demonstrate that varying the modal-
ity gap distance has a significant impact in im-
proving the model’s downstream zero-shot classi-
fication performance and fairness. Our code and
data are available at https://modalitygap.
readthedocs.io/

1. Introduction
In this work, we present the modality gap phenomenon: As
shown in Figure 1 (b), OpenAI’s CLIP’s (Radford et al.,
2021) image embeddings and text embeddings are located
in two completely separate regions of the embedding space.
We find this phenomenon consistently across various multi-
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modal models, covering texts, natural images, videos, med-
ical images, and amino-acid sequences. Interestingly, this
phenomenon still holds even when we embed using multi-
modal models with random weights (Figure 1 (c)). While it
might seem reasonable to attribute the gap to differences in
data distributions or to the different encoder architectures,
we showed that these factors are not the fundamental cause.

This paper provides a three-part explanation for the modality
gap phenomenon. (1) The general inductive bias of deep
neural architecture creates a cone effect: The effective em-
bedding space is restricted to a narrow cone for pre-trained
models or models with random weights. (2) Different ran-
dom initializations create different embedding cones. Since
a multi-modal model consists of two encoders, which create
different cones at random initialization, this explains how
the modality gap is present at initialization. (3) The con-
trastive learning objective commonly used by multi-modal
models preserves the gap. We support our explanations with
theory and experiments. Our theoretical analysis shows
that under mild assumptions, each neural network layer
shrinks the angle between any pair of embedding vectors
with high probability, thereby creating more narrow cones in
deeper architectures. We further prove that different random
initializations of model weights result in different cones.
Interestingly, increasing the modality gap in models like
CLIP can improve its downstream performance on several
zero-shot learning and fairness tasks. The main objective of
our paper is to i) empirically demonstrate the modality gap
phenomenon across different data modalities and NN archi-
tectures; ii) explain how the gap arises and iii) show that the
size of the gap can affect downstream applications. It is not
our goal to propose a method to close the gap, since it’s not
clear that it’s desirable to have no modality gap. Together,
this paper makes the following contributions:

1. To the best of our knowledge, we demonstrate a gen-
eral modality gap phenomenon for the first time. We
show that this phenomenon holds across a wide spectrum
of multi-modal models, covering texts, natural images,
videos, medical images, and amino-acid sequences.

2. We demonstrate the significant implications of modi-
fying the gap in downstream applications. By simply
modifying the gap’s distance, we can improve CLIP’s
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(xk 2 Modal1, yk 2 Modal2) ⇠ D

xk = Normalize(Enc1(xk))

yk = Normalize(Enc2(yk))

si,j = xi · yj

Figure 1. The pervasive modality gap in multi-modal contrastive representation learning. (b) Embeddings of paired inputs extracted
from pre-trained models (lines indicate pairs). We observe a clear modality gap for various models trained on different modalities. (c)
This phenomenon still holds even when we embed using multi-modal models with random weights.

zero-shot performance and fairness.
3. To explain modality gap, we provide a three-part expla-

nation supported by extensive theoretical and empirical
analyses. Our analyses also provide new insights on the
cone effect, which we show is a general phenomenon for
deep neural networks. Existing work focuses on trained
language models and attributes the cone effect to the
optimization under unbalanced word frequencies distri-
bution. We demonstrate that this effect holds not only
across various modalities and network architectures, but
also on random noise inputs and random weights, which
is not captured in previous work.

4. We mathematically characterize the contraction mapping
induced by linear layers with ReLU non-linearities to
explain the cone effect. Our theory matches well with
experiments and provides insights for understanding the
general inductive biases of deep neural networks.

2. The Cone Effect Induces A Modality Gap
2.1. The Narrow Cone of Embeddings

In order for modality gap to exist, the embeddings from a
encoder should be concentrated around a subregion of the
full embedding space—otherwise, the embeddings from dif-
ferent encoders would overlap. Motivated by this, we begin
our investigation by showing that the modality gap already
arises at random model initialization due to the cone effect:
The effective embedding space is restricted to a narrow cone
for trained models and models with random weights. To

demonstrate this, we extract 5,000 image embeddings from
ResNet and Vision Transformer, and 5,000 text embeddings
from Text Transformer. We found that the cosine similarity
between all possible pairs of the 5,000 embeddings within
each model (Figure 2 (a)) are all positive. These results
indicate that the embedding space is a narrow cone.

In the literature, the cone effect has been observed in the
language representations from language models. A com-
mon explanation is that the unbalanced distribution of word
frequencies biased the optimization (Gao et al., 2019). How-
ever, we found that the cone effect still exists in models with
random weights (Figure 2 (c)). In fact, the average cosine
similarity there is even higher than in trained models. For
example, any two embeddings from a randomly initialized
ResNet have on average an almost perfect (0.99) cosine
similarity. Interestingly, the cone effect still holds when the
input data is random noise, indicating that unbalanced data
distribution suggested in previous works is not necessary for
the cone effect. Together these experiments suggest that the
cone effect reflects a more general inductive bias of deep
networks than might be previously appreciated.

2.2. The effects of non-linear activation on cone effect

To study the effects of non-linear activation functions on the
cone effect, we randomly initialized various MLPs with dif-
ferent non-linearities or without non-linearities. As shown
in Figure 2 (b), MLPs without non-linear activation shows
little cone effect. However, with non-linearity, the aver-
age cosine similarity increases rapidly as the number of
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Figure 2. The cone effect phenomenon. (a) Histograms of the cosine similarity between all pairs of embeddings across various
settings. The average cosine similarity is substantially larger than 0, indicating that the embedding space is a narrow cone. The cone
effect also holds on randomly initialized models, and on random noise inputs. (b) Effects of nonlinear activation and depth. Inputs are
512-dim standard normal random vector. MLP weights and biases are randomly drawn from N (0, 1

512
). (c) UMAP visualization of

embeddings of 25 models with random weights on real data. Each random initialization forms a distinctively different cone.

layers increases. These results indicate that the non-linear
activation functions play a crucial role in the cone effect.

2.3. Different random initializations create different cones

Next, we study the effect of different random initialization
on the cone effect. In Figure 2 (c), we randomly initialized
each model 25 times, and plotted its extracted embeddings
on the same real data. We found that each random initializa-
tion forms a distinctively different cone. While it might seem
reasonable to attribute the modality gap to differences in
data modalities, Figure 2 (c) shows the gap still exists even
if the two encoders operate on the exact same data in the
exact same modality. Therefore, the gap can exist without
different modalities, and we emphasize that the modality
gap phenomenon is non-trivial to understand.

3. Theoretical analysis
We theoretically investigate the cone effect phenomenon.
We show that (i) the cosine similarity increases as the layer

gets deeper and (ii) the variance of an intermediate output
mostly come from the model’s random initialization.

We first define some notations. We denote the ReLU ac-
tivation by ϕ(x) := max(x, 0) for x ∈ R, and we ex-
tend it by considering element-wise operation ϕ(x) :=
(ϕ(x1), . . . , ϕ(xk))

T = (max(x1, 0), . . . ,max(xk, 0))
T

for a multivariate input x = (x1, . . . , xk)
T ∈ Rk and

k ∈ N. Lastly, we set [k] := {1, . . . , k} for k ∈ N.

Each network layer increases cosine similarity. We
study how the cosine similarity between two intermediate
layer outputs changes when weight and bias terms in an
MLP are fixed.

Theorem 1 (Informal; Monotonicity of cosine similarity).
Let u, v ∈ Rdin be two fixed vectors and W ∈ Rdout×din

and b ∈ Rdout be a random weight matrix and a random
bias vector, respectively. Under mild conditions, then the
following holds with a high probability.

cos(ϕ(Wu+ b), ϕ(Wv + b)) > cos(u, v).
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Figure 3. Contrastive learning preserves modality gap. (a) Embedding shift experiment. To probe the loss landscape of CLIP,
we manually shift the image embeddings and text embeddings towards closing the gap. (b-d) The loss landscapes under different
temperatures. Y axis indicates the contrastive loss. X axis indicates the Euclidean distance between the centers of image embeddings
and text embeddings. The dash line ∥∆⃗gap∥ = 0.82 is CLIP’s original distance between image and text embeddings. (i.e., without
any shifting). (e-g) Simulation analysis for the loss landscape. Six simulated image-text embedding pairs on a 3D sphere, with two
mismatched pairs. Text embeddings are shifted towards closing the modality gap (i.e., modifying θ).

Theorem 1 shows that the cosine similarity between two vec-
tors increases with a high probability after one feedforward
computation consisting of a linear transformation and ReLU
computation. This matches well with the result in Figure 2
(b) where the cosine similarity between samples increases
as the intermediate layer gets farther from the input.

Effect of random initialization We now examine the vari-
ance of an intermediate output and explain that the variance
is mainly due to random initializations as in Figure 2 (c). To
be more specific, we denote an intermediate layer output by
hΘ(U) ∈ R for some input datum U . Here, Θ denotes all
the random weights and biases that are used in hΘ(U). The
variance of hΘ(U) can be decomposed as

Var[hΘ(U)] = E[Var[hΘ(U) | Θ]]︸ ︷︷ ︸
Due to the randomness of data

+ Var[E[hΘ(U) | Θ]].︸ ︷︷ ︸
Due to random initializations

Here, the inner and outer expectations are over the data U
and the random weights Θ, respectively. The first term on
the right hand side explains the within variance after fixing
one random initialization, quantifying the randomness of
data. In contrast, the second term explains the variance due
to different random initializations. The following theorem
considers the ratio of the second term to the total variance
and shows that the ratio can be very close to one when a
deep neural network model is used.

Theorem 2 (Informal; Variance due to different random
initializations). Let hΘ(U) be an intermediate layer output
with an input data U with∥U∥ = 1. Under mild assump-
tions on Θ, the set of all the random weights and biases, the
following inequality holds.

Var[E[hΘ(U) | Θ]]

Var[hΘ(U)]
≥ β,

where β is a constant that captures the average cosine
similarity of previous layer outputs.

Theorem 2 shows that the ratio of the variance due to differ-
ent random initializations to the total variance is bounded
below by the average cosine similarity of previous layer
outputs. As Figure 2 (b) illustrated, the average cosine sim-
ilarity of an intermediate layer output often approaches to
one as the layer gets deeper. Accordingly, the lower bound
β, which captures the average cosine similarity, is close to
one when a neural network is deep enough.

4. Contrastive learning preserves modality gap
4.1. Embedding Shift Experiment

We hypothesize that the contrastive learning objective pre-
serves the modality gap. To testify this hypothesis, we
manually shift every text embedding and image embedding
towards closing the modality gap to probe the loss landscape
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(Figure 3 (a)). We shift along the direction of ∆⃗gap, i.e., the
difference between the centers of image embeddings and
text embeddings. We found that the default gap distance
∥∆⃗gap∥ = 0.82 actually achieves the global minimum, and
shifting toward closing the gap increases the contrastive loss.
However, when the temperature increases (Figure 3(c,d)),
the repulsive structure and the local minimum gradually dis-
appear, and closing the gap becomes more optimal. More-
over, we also confirm that fine-tuning with high temper-
ature significantly reduces the gap (Supp. Figure 8). Fi-
nally, we also show that, even if we fix the modality gap
during initialization (Appendix B.4), contrastive learning
would still create a gap, but the gap is 43% smaller. This
demonstrates that the gap is caused by both model initial-
ization and contrastive learning optimization.

4.2. Simulating mismatched data

Design We designed a simple simulation to distill the em-
pirical phenomena in the embedding shift experiment. We
consider six simulated image-text embedding pairs on a 3D
unit sphere (Figure 3 (e)), with two mismatched image-text
pairs (I0, T0), (I1, T1). Here ”mismatched” means correct
pairs are (I0, T0) and (I1, T1) but I0 is closer to T1 and I1
is closer to T0. We fix the image embeddings while shift-
ing the text embeddings downwards to close the gap (i.e.,
modifying θ, see more details in Appendix).

Results With mismatched data, our simulation model suc-
cessfully reproduces the temperature-dependent repulsive
structure in the optimization landscape. When we remove
the mismatch, the repulsive structure disappears (Supp. Fig-
ure 9). This indicates that the presence of mismatched data
is an important forming factor of modality gap under low
temperatures. Although the mismatch here is simulated,
in practice mismatched data are common (e.g., hard-to-
differentiate images/captions or annotation errors).

5. Modality Gap Implications
We found that, changing the gap by shifting the text and
image embeddings along the direction of ∆⃗gap can affect the
zero-shot performance of different downstream tasks (Ta-
ble 1). Interestingly, the default gap distance ∆⃗gap = 0.82
is close to, but not exactly at the optimal distance (Supp.
Figure 10). Metric and prompt for each task are shown
in Supp. Table 3. Moreover, we also found that increas-
ing the gap reduces the denigration harms on FairFace
dataset (Kärkkäinen & Joo, 2021), following the exact bias
evaluation setup in CLIP (Radford et al., 2021, Sec. 7.1).

Dataset Original gap Modified gap Direction

Coarse-grained Classification
CIFAR10 0.9013 0.9081 ↑

CIFAR100 0.6658 0.6737 ↓
Fine-grained Classification

EuroSAT 0.5410 0.5645 ↓
Optical Character Recognition

SVHN 0.5389 0.5396 ↑
HatefulMemes 0.5800 0.5811 ↑

Table 1. Modifying the modality gap can improve zero-shot
performances for downstream tasks. Number indicates top-
1 accuracy. Direction indicates that whether increasing (↑) or
decreasing (↓) the gap leads to optimal performance.

Denigration Biases Original gap Modified gap
Crime
related

Non
human Sum Crime

related
Non

human Sum

Black 1.0% 0.1% 1.1% 0.8% 0.1% 1.0%
White 15.5% 0.2% 15.7% 13.2% 0.4% 13.7%
Indian 1.2% 0.0% 1.2% 1.1% 0.0% 1.1%
Latino 2.8% 0.1% 2.8% 1.9% 0.1% 2.0%

Middle Eastern 6.3% 0.0% 6.3% 5.2% 0.0% 5.2%
Southeast Asian 0.5% 0.0% 0.5% 0.3% 0.0% 0.3%

East Asian 0.7% 0.0% 0.7% 0.6% 0.0% 0.6%

Table 2. Modifying the modality gap reduces biases for all
races. Number indicates the fraction FairFace images whose top-1
prediction is offensive. Larger values indicate more denigration
bias as defined in the original CLIP paper. Increasing the gap from
0.82 to 0.97 reduces denigration harms consistently for all races.

6. Discussion
In this work, we investigated an interesting phenomenon
in multi-modal contrastive learning — modality gap. We
analyzed why the gap exists, i.e., the joint effect of model
initialization and optimization, and why studying the gap
is important, i.e., it can affect the downstream task perfor-
mance and fairness. Interestingly, having larger gap can
help some fairness and zero-shot learning applications. The
main objective of our paper is to demonstrate the modal-
ity gap phenomenon and explain contraction mapping con-
tribute to this. Systematic analysis of the impact of the gap
on applications is an important direction of future work. Our
work also significantly broadens the scope of the cone effect.
As prior research in NLP has shown that alleviating the cone
effect improves downstream performance, methods for alle-
viating the cone effect in other modalities to improve ML
performance is an interesting direction of future research.
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Kärkkäinen, K. and Joo, J. Fairface: Face attribute dataset
for balanced race, gender, and age for bias measurement
and mitigation. In WACV, 2021.

Kiela, D., Firooz, H., Mohan, A., Goswami, V., Singh, A.,
Ringshia, P., and Testuggine, D. The hateful memes
challenge: Detecting hate speech in multimodal memes.
In NeurIPS, 2020.

Lample, G., Conneau, A., Ranzato, M., Denoyer, L., and
Jégou, H. Word translation without parallel data. In ICLR,
2018.

Li, A., Jabri, A., Joulin, A., and van der Maaten, L. Learning
visual n-grams from web data. In ICCV, 2017.

Li, B., Zhou, H., He, J., Wang, M., Yang, Y., and Li, L.
On the sentence embeddings from pre-trained language
models. In EMNLP, 2020.

Li, J., Selvaraju, R. R., Gotmare, A. D., Joty, S. R., Xiong,
C., and Hoi, S. C. H. Align before fuse: Vision and
language representation learning with momentum distil-
lation. CoRR, abs/2107.07651, 2021.

Mu, J. and Viswanath, P. All-but-the-top: Simple and ef-
fective postprocessing for word representations. In ICLR,
2018.

Qiu, J., Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding, M.,
Wang, K., and Tang, J. Gcc: Graph contrastive coding
for graph neural network pre-training. In KDD, 2020.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision. In
ICML, 2021.

Reimers, N., Gurevych, I., Reimers, N., Gurevych, I.,
Thakur, N., Reimers, N., Daxenberger, J., Gurevych, I.,
Reimers, N., Gurevych, I., et al. Sentence-bert: Sentence
embeddings using siamese bert-networks. In EMNLP,
2019.

Socher, R. and Fei-Fei, L. Connecting modalities: Semi-
supervised segmentation and annotation of images using
unaligned text corpora. In CVPR, 2010.

Su, J., Cao, J., Liu, W., and Ou, Y. Whitening sentence
representations for better semantics and faster retrieval.
CoRR, abs/2103.15316, 2021.

https://github.com/MicPie/clasp
https://github.com/MicPie/clasp


Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning

van den Oord, A., Li, Y., and Vinyals, O. Representa-
tion learning with contrastive predictive coding. CoRR,
abs/1807.03748, 2018.

Wang, F. and Liu, H. Understanding the behaviour of con-
trastive loss. In CVPR, 2021.

Wang, L., Huang, J., Huang, K., Hu, Z., Wang, G., and Gu,
Q. Improving neural language generation with spectrum
control. In ICLR, 2020.

Wang, T. and Isola, P. Understanding contrastive represen-
tation learning through alignment and uniformity on the
hypersphere. In ICML, 2020.

Weston, J., Bengio, S., and Usunier, N. Large scale im-
age annotation: learning to rank with joint word-image
embeddings. Machine learning, 2010.

Xu, H., Ghosh, G., Huang, P., Okhonko, D., Aghajanyan, A.,
Metze, F., Zettlemoyer, L., and Feichtenhofer, C. Video-
clip: Contrastive pre-training for zero-shot video-text
understanding. In EMNLP, 2021.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen,
Y. Graph contrastive learning with augmentations. In
NeurIPS, 2020.

Zhang, Y., Jiang, H., Miura, Y., Manning, C. D., and
Langlotz, C. P. Contrastive learning of medical visual
representations from paired images and text. CoRR,
abs/2010.00747, 2020.



Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning

Reproducibility Statement
We provide open-source implementation of our work at https://modalitygap.readthedocs.io. The implemen-
tations will enable researchers to reproduce the modality gap described here as well as run their own analyses on additional
cross-modal models. The implementation also includes scripts for generating the figures shown in this paper.

A. Related Work
Contrastive Representation Learning Contrastive representation learning learns an embedding space where similar
objects are closer than dissimilar ones, and has achieved great success in vision (Chen et al., 2020; Grill et al., 2020; Caron
et al., 2020; Chen & He, 2021), language (Reimers et al., 2019; Gao et al., 2021), and graph (You et al., 2020; Qiu et al.,
2020). However, as contrastive learning is still an emerging representation learning technique, we still lack comprehensive
theoretical and empirical understandings about why contrastive learning works. (Wang & Isola, 2020) proposed two ideal
objectives for contrastive representation space: alignment (similar samples have similar features) and uniformity (features
are uniformly distributed on the hypersphere), and demonstrated these two objectives are highly correlated with downstream
task performances. (Wang & Liu, 2021) show that low temperatures increase the model’s penalty on hard negative examples,
and thus increase uniformity and decrease tolerance (the closeness of semantically similar samples). These analyses mostly
focus on unsupervised contrastive learning on a single modality. Orthogonal to their work, we show that multi-modal
contrastive learning with low temperatures and mismatched data encourages the modality gap.

Multi-modal Contrastive Representation Learning Multi-modal models map inputs from different data modalities
(e.g. image and text) into a shared representation space (Zhang et al., 2020; Xu et al., 2021; Li et al., 2021; Jia et al., 2021;
EleutherAI). It has garnered tremendous interest and excitement as a framework for data integration. These models are
often pre-trained with contrastive loss (van den Oord et al., 2018), as (Radford et al., 2021) showed that the contrastive
learning is 12× more efficient than the generative approaches. We demonstrate an intriguing geometric phenomenon
of the representation space of these multi-modal models, and provide a three-part explanation supported by theory and
experiments. The idea of mapping images and text into a shared embedding space has been explored in earlier works (Socher
& Fei-Fei, 2010; Weston et al., 2010). There have been recent efforts in formulating images and text embeddings as metric
learning (Frome et al., 2013), multilabel classification (Joulin et al., 2016), n-gram language learning (Li et al., 2017), and
captioning (Desai & Johnson, 2021). Research into how the modality gap phenomenon generalizes to the multi-modal
representations obtained by these alternative methods is an interesting direction for future work.

Cone Effect Our analyses also provide new insights on the cone effect, which we show is a general phenomenon for deep
neural networks. Existing work focuses on the language representations of trained language models such as BERT and GPT-
2 (Ethayarajh, 2019; Gao et al., 2019; Li et al., 2020). Given that isotropy has both theoretical and empirical benefits for static
embeddings (Mu & Viswanath, 2018), the extent of anisotropy in contextualized representations is surprising (Ethayarajh,
2019). It has been shown that the cone effect limits the expressiveness of the language representations. Post-processing
methods (Li et al., 2020; Su et al., 2021; Arora et al., 2017; Mu & Viswanath, 2018) or modified training objective (Gao
et al., 2019; Wang et al., 2020; Gao et al., 2021) alleviate the cone effect and improve downstream performance. Existing
work attributes the cone effect to the optimization under unbalanced word frequencies distribution (Gao et al., 2019; Li et al.,
2020). We significantly broaden the scope of the cone effect, by demonstrating this effect holds not only across various
modalities and network architectures, but also on random noise inputs and random weights, which has not been captured in
previous work. We mathematically characterize the contraction mapping induced by linear layers with ReLU non-linearities
to explain the cone effect. Our theory matches well with experiments and provides insights for understanding the general
inductive biases of deep neural networks.

B. Extended Descriptions: Contrastive learning preserves modality gap
B.1. Background: Contrastive Loss

Given that the modality gap is present at initialization, we investigate why our optimization procedure fails to close the gap.
We begin by reviewing contrastive learning, which is a commonly used training strategy for multi-modal models (Zhang
et al., 2020; Xu et al., 2021; Li et al., 2021). We illustrate with CLIP due to its wide usage.

Given a batch of N (image, text) pairs, CLIP learns to predict which of the N ×N possible (image, text) pairs are aligned.

https://modalitygap.readthedocs.io
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In other words, CLIP learns to maximize the cosine similarity of the image and text embeddings of the N real pairs in the
batch while minimizing the cosine similarity of the embeddings of the N2 −N incorrect pairs. Formally, the optimization
objective is the average of two losses: one for image-to-text classification:

LI→T = − 1

N

N∑

i=1

log
exp(xi · yi/τ)∑N
j=1 exp(xi · yj/τ)

and the other for text-to-image classification:

LT →I = − 1

N

N∑

i=1

log
exp(xi · yi/τ)∑N
j=1 exp(xj · yi/τ)

Here, xi and yj are the L2-normalized embedding of image in the i-th pair and that of text in the j-th pair, respectively. τ
is a learned temperature parameter to scale the logits. The final learned temperature is τ = 1

100 in CLIP. See additional
illustration in Figure 1(a) and Supp. Figure 12.

B.2. Embedding Shift Experiment

Design We hypothesize that the contrastive learning objective encourages the existence of the modality gap. To testify this
hypothesis, we design a loss landscape probing experiment on n = 5, 000 image-caption pairs1 from the validation set of
MSCOCO Caption dataset. We first define the modality gap as the difference between the center of image embeddings and
text embeddings:

∆⃗gap =
1

n

n∑

i=1

xi −
1

n

n∑

i=1

yi

where xi and yi are the L2-normalized image embedding and text embedding. We then manually shift every text embedding
and image embedding towards closing the modality gap (Figure 3 (a)). After shifting, we re-normalize each embedding to
the unit hypersphere:

xshift
i = Normalize(xi − λ∆⃗gap), yshift

i = Normalize(yi + λ∆⃗gap).

We vary the scalar λ to produce different amounts of shifts. After the embedding shift, we quantify the remaining gap as the
difference between the center of shifted image embeddings and shifted text embeddings. The gap distance before shifting is
∥∆⃗gap∥ = 0.82.

Results Figure 3(b) shows the contrastive loss landscape on different amount of modality gap under temperature τ = 1
100

(i.e., CLIP’s learned final temperature). We found that the default gap distance ∥∆⃗gap∥ = 0.82 actually achieves the global
minimum, and shifting toward closing the gap increases the contrastive loss. Interestingly, there is a local minimum when
we shift the text embeddings to the opposite side in a “back-to-back position.” Together, these results show that there is
a repulsive structure in the contrastive loss landscape that preserves the modality gap. However, when the temperature
increases (Figure 3(c,d)), the repulsive structure and the local minimum gradually disappear, and closing the gap becomes
more optimal. This indicates that the repulsive structure and the optimal gap are temperature-dependent.

Additional Evidence from Fine-tuning To further investigate the impact of temperature on modality gap, we fine-tune
CLIP under 6 different temperatures τ ∈ { 1

100 ,
1
50 ,

1
30 ,

1
20 ,

1
10 , 1} respectively, on MSCOCO Caption training set with batch

size 64. We found that a high temperature (τ ∈ { 1
10 , 1}) in fine-tuning significantly reduces or closes the gap, while a low

temperature does not. The gap distance ∥∆⃗gap∥ decreases monotonically with increasing temperature (Supp. Figure 8).

B.3. Simulating mismatched data

Design We designed a simple simulation to distill the empirical phenomena in the embedding shift experiment. We
consider six simulated image-text embedding pairs on a 3D unit sphere (Figure 9 (a)), with two mismatched image-text pairs
(I0, T0), (I1, T1). Here ”mismatched” means correct pairs are (I0, T0) and (I1, T1) but I0 is closer to T1 and I1 is closer to
T0. We fix the image embeddings while shifting the text embeddings downwards to close the gap (i.e., modifying θ).

1Here we evaluated CLIP with batch size 50.
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Results With mismatched data, our simulation model successfully reproduces the temperature-dependent repulsive struc-
ture in the optimization landscape. When we remove the mismatch, the repulsive structure disappears (Supp. Figure 9). This
indicates that the presence of mismatched data is an important forming factor of modality gap under low temperatures. Al-
though the mismatch here is simulated, in practice mismatched data are common (e.g., hard-to-differentiate images/captions
or annotation errors).

Additional Simulation Study We designed a simple simulation to distill the empirical phenomena in the embedding shift
experiment. We found that with mismatched data, our simulation model successfully reproduces the temperature-dependent
repulsive structure in the optimization landscape (Supp. Figure 9). Here we present another simulation where we remove the
mismatch (Supp. Figure 9). We found that when we remove the mismatch, the repulsive structure disappears. This indicates
that the presence of mismatched data is an important forming factor of modality gap under low temperatures.

For Supp. Figure 9, all embeddings are on the 3D unit sphere (i.e., r = 1). The spacing between adjacent image-text pairs is
∆ϕ = 15◦. All image vectors are fixed, and located on the equator (i.e., θ = 90◦). We fix the image embeddings while
shifting the text embeddings towards closing the gap (i.e., modifying θ). Together, our theoretical modeling indicates that
both the low temperature and the existence of hard samples or annotation errors are important forming factors of modality
gap.

B.4. Initialization vs Optimization

Design So far, we have shown that (1) modality gap is born at random initialization, and (2) contrastive learning objective
encourages the gap. To explore how the final modality gap is affected by a combination of both factors, we train two CLIP
models from scratch: one model uses random initialization, where the gap is large ∥∆⃗gap∥ = 1.1891 ± 0.0017 because
of the cone effect discuss in Sec. 2; another model amends the gap at the initialization by transforming text embeddings
to be close to the image embeddings, where the gap is almost zero ∥∆⃗gap∥ = 0.0388 ± 0.0351. Numbers are mean
and 95% confidence interval over three runs with different random seeds. The transformation we applied is a common
method to align multilingual word embeddings (Lample et al., 2018). More specifically, given image embedding x and text
embedding y, we apply an orthogonal matrix to text embedding y′ = Wy and compute the multi-modal contrastive loss
on x and y′. The orthogonal matrix minimizes the distance between image embeddings and transformed text embeddings:
W = argminW∈OD

∥X − YW∥ where X,Y ∈ RN×D are image embeddings and text embeddings generated from N
image-caption pairs, and OD is the set of D-dimensional orthogonal matrix.

Results We train both models on the MSCOCO Caption training set with batch size 64 and temperature τ = 1
100 (i.e.,

CLIP’s learned temperature). After training, the original model gap changes from 1.1891 ± 0.0017 to 1.2991 ± 0.0389,
while the amended model gap changes from 0.0388± 0.0351 to 0.7457± 0.0633. Numbers are 95% confidence interval
over three runs with different random seeds. We clearly observe the same domain gap phenomenon as shown in Figure 1
using PCA or UMAP. This experiment shows that the final domain gap is caused by both initialization and optimization.
When we ablate the domain gap at the initialization, the loss will still encourage the gap, but the gap distance is only 57%
compared to the model without amending the gap.

C. Extended Description on Implication Experiments
C.1. Zero-shot performance

Design One of the most interesting capabilities for CLIP is its strong zero-shot transferability to a variety of downstream
tasks without any supervision. We study whether changing the gap will affect CLIP (ViT-B/16)’s performances on
various downstream tasks, including coarse-grained classification (CIFAR10 and CIFAR100), fine-grained classification
(EuroSAT (Helber et al., 2019)), and optical character recognition (SVHN, HatefulMemes (Kiela et al., 2020)). Metric
and prompt for each task are shown in Supp. Table 3. Here we use the simple method to change the gap by shifting the
embeddings introduced in Sec 4. The main objective of our paper is to understand the modality gap phenomenon, a general
inductive bias that holds across various data modalities and NN architectures. The goal of our paper is not to propose a
method to close the gap and to improve downstream performance.

Results Modifying the gap by shifting the embeddings can improve different downstream tasks compared to the original
gap without shifting embeddings (Table 1). Details of performance vs gap distance curves are shown in Supp. Figure 10.
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We leave more methods to change the gap and more analysis of the relation between gap distance and downstream task
performance to future work.

We demonstrated that increasing the modality gap in CLIP can improve its downstream performance on several zero-shot
learning tasks. The downstream tasks we evaluated include coarse-grained classification (CIFAR10 and CIFAR100),
fine-grained classification (EuroSAT (Helber et al., 2019)), and optical character recognition (SVHN, HatefulMemes (Kiela
et al., 2020)). Metric and prompt for each task are shown in Appendix Table 3. Details of performance vs gap distance curve
are shown in Appendix Figure 10. A modality gap vector is calculated for each task following the methods in Sec B.2.

C.2. Fairness

Design We follow the bias evaluation setup in the CLIP paper to evaluate denigration harms (Radford et al., 2021, Sec. 7.1).
We performed zero-shot evaluations on CLIP (ViT-B/32) on the evaluation set of the FairFace dataset (Kärkkäinen & Joo,
2021), which has 10,954 images. In addition to the 14 FairFace classes (e.g., ‘white male’, ‘black female’), we added 4
non-human classes (‘animal’, ‘gorilla’, ‘chimpanzee’ and ‘orangutan’) and 3 crime-related classes (‘thief’, ‘criminal’ and
‘suspicious person’). The text prompts are attached in Appendix (Supp. Figure 11). We shift the embeddings based on the
modality gap vector calculated on MSCOCO (Sec. 4). We report the fraction FairFace images whose top-1 prediction is
offensive.

Results We found that increasing the gap from 0.82 to 0.97 reduces denigration harms consistently for all races (Table 2).
Meanwhile, we only observe a minor 0.0008 top-1 accuracy drop. It is encouraging that a simple gap offsetting approach
can lead to a consistent bias reduction across all races on such a complex model (i.e., CLIP)2. Interestingly, making the gap
too small or too large exacerbates two different types of biases: crime-related biases and non-human biases respectively
(Supp. Table 4).

We showed an encouraging result that a simple gap offsetting approach can lead to a consistent bias reduction for CLIP
across all races. Meanwhile, we only observe a minor 0.0008 top-1 accuracy drop, from 0.5817 to 0.5739. We show text
prompts we used in Supp. Figure 11. Furthermore, making the gap too small or too large exacerbates two different types
of biases: crime-related biases and non-human biases respectively (Supp. Table 4). Making the gap too small (d = 0.07)
exacerbates crime-related biases consistently for all races, and the accuracy drops to 0.5599. Making the gap too large
(d = 1.29) exacerbates non-human biases consistently for all races, and the accuracy also drops to 0.4083.

2(Radford et al., 2021) evaluated a private version of CLIP, and thus their numbers deviate from ours. This is a known issue in the
community: https://github.com/openai/CLIP/issues/157

https://github.com/openai/CLIP/issues/157
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Figure 4. SVD visualization of extracted embeddings from pre-trained cross-modal models. Paired inputs are fed into the pre-trained
models and visualized in 2D using SVD (lines indicate pairs). Top: We observe a clear modality gap for various models trained on
different modalities. This is the SVD visualization version of Figure 1 (b). Bottom: Modality gap exists in the initialization stage without
any training. This is the SVD visualization version of Figure 1 (c).

(b) PCA Visualization

ResNet Text 
Transformer

Vision 
Transformer

(a) UMAP Visualization

ResNet Text 
Transformer

Vision 
Transformer

Figure 5. Visualization of extracted embeddings from 25 randomly initialized models on random noise inputs. Color indicates
random seed. Inputs for ResNet and image transformer: Gaussian noise. Inputs for text transformers: random integer sequences. Input
data are generated with the same random seed across different different experiments.
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Figure 6. Statistics for the average cosine similarity between all pairs of embeddings in Figure 2(a). Data: 5,000 images and texts
from the validation set of COCO-Captions. The average cosine similarity is substantially larger than 0, indicating that the embedding
space is a narrow cone. Also note that in many cases, the minimum cosine similarity across 24.995 million random pairs is positive. These
results indicates that the effective embedding space is restricted to a narrow cone for pre-trained models or models with random weights.

ResNet Text 
Transformer

Vision 
Transformer

Figure 7. PCA visualization of extracted embeddings from 25 randomly initialized models on real data. Each random initialization
forms a distinctively different cone. This is the PCA visualization version of Figure 2(c).

① Why gap exists? 
(Sec X)

Research 
Questions:

② Why gap cannot be 
closed? (Sec X)③ How to close gap? 

(Sec X)
④ Why close gap? (Sec 

X)

Original

Downstream: 
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Fine-tuning: 
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Original T=1T=1/10T=1/50T=1/100 Gap-Temperature

Figure 8. Reduce the gap by fine-tuning with high temperature. We fine-tune the pre-trained CLIP on MSCOCO Caption training set
with different temperatures with batch size 64, and evaluated on MSCOCO Caption validation set. We found that a high temperature
(τ ∈ { 1

10
, 1}) in fine-tuning significantly reduces or closes the gap, while a low temperature does not. The gap distance ∥∆⃗gap∥ decreases

monotonically with increasing temperature. The dashed line shows the original gap without fine-tuning.
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(a) with mismatch pairs

Additional Simulation Experiments

(b) no mismatch

(c) Loss landscape with misalignment

(d) Loss landscape without misalignment

Figure 9. Additional simulation experiments: with and without mismatched data. (a,b) Simulation setup: Six simulated image-text
embedding pairs on a 3D sphere. Text embeddings are shifted towards closing the modality gap (i.e., modifying θ). Note that the first two
image-text pairs are mismatched in (a) while matched in (b). (c-d) Results: The repulsive structure in the loss landscape occurs when
there are mismatched pairs, but disappears when we fixed the mismatched pairs.

Dataset Metric Prompt

Coarse-grained Classification
CIFAR10 Accuracy a photo of [class].

CIFAR100 Accuracy a photo of [class].

Fine-grained Classification
EuroSAT Accuracy a centered satellite photo of [class].

Optical Character Recognition
SVHN Accuracy a street sign of the number: ”[class]”.

HatefulMemes ROC-AUC a meme. / a hatespeech meme.

Table 3. Evaluation metric and text prompts for the
zero-shot classification tasks in Sec. C.1 . We found
that modifying the modality gap can improve zero-shot
performances for downstream tasks. Results shown in
Table 1.

Denigration Biases Gap too small Gap too large

Crime
related

Non
human Sum Crime

related
Non

human Sum

Black 2.3% 0.0% 2.3% 1.9% 40.5% 42.4%
White 23.0% 0.7% 23.7% 5.4% 42.4% 47.8%
Indian 3.2% 0.0% 3.2% 0.5% 5.1% 5.5%
Latino 11.8% 0.1% 11.9% 0.9% 10.7% 11.6%

Middle Eastern 16.7% 0.2% 16.9% 2.1% 18.9% 21.0%
Southeast Asian 3.7% 0.0% 3.7% 0.0% 2.2% 2.2%

East Asian 5.5% 0.1% 5.6% 0.0% 2.5% 2.5%

Table 4. Making the modality gap too small or too
large exacerbates different biases. Making the modal-
ity gap too small (d = 0.07) exacerbates crime-related
biases consistently for all races. Making the modality
gap too large (d = 1.29) exacerbates non-human biases
consistently for all races. Larger values indicate more
denigration bias as defined in the original CLIP paper.
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Figure 10. Modifying the modality gap can improve zero-shot performances for downstream tasks. Different downstream tasks show
different performance trends by shifting embeddings towards the direction of the center between image embeddings and text embeddings.
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denigration_bias_evaluation_prompts = {
'White_Male': 'a photo of a white man',
'White_Female': 'a photo of a white woman',
'Black_Male': 'a photo of a black man',
'Black_Female': 'a photo of a black woman',
'Latino_Hispanic_Male': 'a photo of a latino man',
'Latino_Hispanic_Female': 'a photo of a latino woman',
'East Asian_Male': 'a photo of an east asian man',
'East Asian_Female': 'a photo of an east asian woman',
'Southeast Asian_Male': 'a photo of a southeast asian man',
'Southeast Asian_Female': 'a photo of a southeast asian woman',
'Indian_Male': 'a photo of an indian man',
'Indian_Female': 'a photo of an indian woman',
'Middle Eastern_Male': 'a photo of a middle eastern man',
'Middle Eastern_Female': 'a photo of a middle eastern woman',
'animal': 'a photo of an animal', # Non-human
'gorilla': 'a photo of a gorilla', # Non-human
'chimpanzee': 'a photo of a chimpanzee', # Non-human
'orangutan': 'a photo of an orangutan', # Non-human
'thief': 'a photo of a thief', # Crime-related
'criminal': 'a photo of a criminal', # Crime-related
'suspicious person': 'a photo of a suspicious person', # Crime-related

}

Figure 11. The text prompts used to evaluate denigration biases of CLIP. We follow the CLIP paper to perform zero-shot evaluations
on CLIP ViT-B/32 on the evaluation set of the FairFace dataset (Kärkkäinen & Joo, 2021), which has 10,954 images. In addition to the 14
FairFace classes (e.g., ‘white male’, ‘black female’), we added 4 non-human classes (‘animal’, ‘gorilla’, ‘chimpanzee’ and ‘orangutan’)
and 3 crime-related classes (‘thief’, ‘criminal’ and ‘suspicious person’).

# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, l] - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
# t - learned temperature parameter
# extract embedding representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) #[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = l2_normalize(np.dot(I_f, W_i), axis=1)
T_e = l2_normalize(np.dot(T_f, W_t), axis=1)
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2

Figure 12. CLIP’s contrastive loss in Numpy-like pseudo-code. Adopted from (Radford et al., 2021).
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Figure 13. Visualization of extracted embeddings from 25 ImegeNet-pretrained models. We first trained 11 ResNet models from
scratch on ImageNet, which differ only in the initial random seeds. We then plotted the features extracted from the 11 ImageNet pre-trained
ResNet models. The cones remain distinctively different cif randomly initialized models are fully trained on ImageNet.
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D. Proofs
We first provide a useful lemma that compares the inner product between two intermediate layer outputs.

Lemma 3. Suppose W ∈ Rdout×din is a random matrix whose (k, l)-th element Wk,l is independently and identically
distributed from some symmetric distribution with variance 1/dout for k ∈ [dout], l ∈ [din]. Similarly, we assume each
element in b ∈ Rdout follows some symmetric distribution with variance 1/dout. For fixed vectors u, v ∈ Rdin , we have

1 + uT v ≤ E
[
(Wu+ b)T (Wv + b)

]

≤ 2E
[
ϕ(Wu+ b)Tϕ(Wv + b)

]
. (1)

Proof of Lemma 3. The first inequality of (1) is from

E
[
(Wu+ b)T (Wv + b)

]
= uTE

[
WTW

]
v + E[bTb]

= uT v + 1.

Here, the first equality due to the Independence between W and b. We now show the second inequality of (1). For
k ∈ [dout], we decompose (Wu+ b)k(Wv + b)k as follows.

(Wu+ b)k(Wv + b)k

=max((Wu+ b)k, 0)max((Wv + b)k, 0)

+ max((Wu+ b)k, 0)min((Wv + b)k, 0)

+ min((Wu+ b)k, 0)max((Wv + b)k, 0)

+ min((Wu+ b)k, 0)min((Wv + b)k, 0)

≤max((Wu+ b)k, 0)max((Wv + b)k, 0)

+ min((Wu+ b)k, 0)min((Wv + b)k, 0).

Here, the inequality is because max((Wu + b)k, 0)min((Wv + b)k, 0) and min((Wu + b)k, 0)max((Wv + b)k, 0)

are always less than or equal to zero. Since every element of W and b is symmetric (i.e., Wk,l
d
= −Wk,l and bk

d
= −bk

for k ∈ [dout], l ∈ [din]), we have

max((Wu+ b)k, 0)max((Wv + b)k, 0)

d
= min((Wu+ b)k, 0)min((Wv + b)k, 0),

and thus

E
[
(Wu+ b)T (Wv + b)

]

=

dout∑

k=1

E
[
(Wu+ b)k(Wv + b)k

]

≤
dout∑

k=1

E
[
max((Wu+ b)k, 0)max((Wv + b)k, 0)

+ min((Wu+ b)k, 0)min((Wv + b)k, 0)
]

=2

dout∑

k=1

E
[
max((Wu+ b)k, 0)max((Wv + b)k, 0)

]

=2E
[
ϕ(Wu+ b)Tϕ(Wv + b)

]
.
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A detailed statement of Theorem 1
Theorem 4 (Monotonicity of cosine similarity). Suppose u, v ∈ Rdin are any two fixed vectors such that∥u∥ = r∥v∥ for
some r > 0, W ∈ Rdout×din is a random weight matrix where each element Wk,l ∼ N (0, d−1

out) for k ∈ [dout], l ∈ [din],

and b ∈ Rdout is a random bias vector such that bk ∼ N (0, d−1
out) for k ∈ [dout]. If cos(u, v) <

(
1
2

(
r + 1

r

))−1

, then the

following holds with probability at least 1−O(1/dout).

cos(ϕ(Wu+ b), ϕ(Wv + b)) > cos(u, v).

Proof of Theorem 4. When uT v ≤ 0, the result is trivial because cos(ϕ(Wu+ b), ϕ(Wv + b)) is positive almost surely.
Therefore, we only consider the case where uT v > 0.

The main idea of this proof is to use the fact that each element in Wu+ b can be seen as an independently and identically
distributed (i.i.d.) copy of some distribution. To be more specific, we first note that for k ∈ [dout], due to the Gaussian
assumption on W and b, we have

√
dout(Wu+ b)k ∼ N

(
0, 1 + uTu

)
. Then from the definition of a rectified Gaussian

distribution3, we have ϕ(
√
dout(Wu+b)k) ∼ NR

(
0, 1 + uTu

)
. This implies E[{ϕ(

√
dout(Wu+b)k)}2] = (1+uTu)/2

and E[{ϕ(
√
dout(Wu + b)k)}4] ≤ E[{

√
dout(Wu + b)k}4] = 3(1 + uTu)2 < ∞. The last inequality is from the fact

that the fourth moment of a rectified Gaussian distribution is bounded by the fourth moment of a Gaussian distribution.

[Step 1] For k ∈ [dout], we now define Tk as follows

Tk :=
2

1 + uTu
{ϕ(
√
dout(Wu+ b)k)}2.

Note that T1, . . . , Tdout are i.i.d. whose mean is one and variance is less than 12. Therefore, by Chebyshev’s inequality, for
any ϵ1 > 0

P




∣∣∣∣∣∣∣∣

1

dout

dout∑

k=1

2
{
ϕ(
√
dout(Wu+ b)k)

}2

1 + uTu
− 1

∣∣∣∣∣∣∣∣
≥ ϵ1




≤ 12

doutϵ21
= O

(
1

doutϵ21

)
.

It is noteworthy that 1
dout

∑dout

k=1

{
ϕ(
√
dout(Wu+ b)k)

}2

=
∥∥ϕ(Wu+ b)

∥∥2. That is, with probability at least 1 −
O(1/(doutϵ

2
1)), we have

∣∣∣∣∣∣
2
∥∥ϕ(Wu+ b)

∥∥2

1 + uTu
− 1

∣∣∣∣∣∣
< ϵ1,

which implies that with probability at least 1−O(1/(doutϵ
2
1)) the following holds.

1∥∥ϕ(Wu+ b)
∥∥ >

√
2

1 + uTu

(
1− ϵ1

2

)
. (2)

Similarly, since

ϕ(Wu+ b)Tϕ(Wv + b)

3For X ∼ N (µ, σ2), a distribution of a random variable Y := max(X, 0) is defined as a rectified Gaussian distribution

NR(µ, σ2), and it is well known that E[Y ] = µ
(
1−Ψ

(
−µ

σ

))
+ σψ

(
−µ

σ

)
and Var[Y ] = µ2Ψ

(
−µ

σ

) (
1−Ψ

(
−µ

σ

))
+

µσψ
(
−µ

σ

) (
2Ψ

(
−µ

σ

)
− 1

)
+ σ2

(
1−Ψ

(
−µ

σ

)
− ψ

(
−µ

σ
2
))

. Here ψ and Ψ denote a probability density function and a cumulative

density function of a standard Gaussian distribution, respectively.
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=
1

dout

dout∑

k=1

ϕ(
√
dout(Wu+ b)k)ϕ(

√
dout(Wv + b)k),

we obtain the following result: for any ϵ2 > 0, with probability at least 1−O(1/(doutϵ
2
2)), we have

∣∣∣∣∣
ϕ(Wu+ b)Tϕ(Wv + b)

E[ϕ(Wu+ b)Tϕ(Wv + b)]
− 1

∣∣∣∣∣ < ϵ2,

which implies

ϕ(Wu+ b)Tϕ(Wv + b)

> E[ϕ(Wu+ b)Tϕ(Wv + b)](1− ϵ2). (3)

[Step 2] Combining the findings in Equations (2) and (3), for any ϵ1, ϵ2 > 0, with probability at least 1−O(1/(doutϵ
2
1)−

O(1/(doutϵ
2
2)), we have

cos(ϕ(Wu+ b), ϕ(Wv + b))

=
ϕ(Wu+ b)Tϕ(Wv + b)∥∥ϕ(Wu+ b)

∥∥∥∥ϕ(Wv + b)
∥∥

>E[ϕ(Wu+ b)Tϕ(Wv + b)]

√
2

1 + uTu

√
2

1 + vT v

×
(
1− ϵ1

2

)2

(1− ϵ2)

≥ 1 + uT v√
1 + uTu

√
1 + vT v

(
1− ϵ1

2

)2

(1− ϵ2) .

Using the condition 0 < cos(u, v) <
(

1
2

(
r + 1

r

))−1

= 2r
1+r2 , we have

1− cos2(u, v)

2r cos(u, v)∥u∥2
> 0 >

(1 + r2)

2r
cos(u, v)− 1

=⇒1− cos2(u, v)

> (∥u∥2 +∥v∥2) cos2(u, v)− 2∥u∥∥v∥ cos(u, v)
=⇒(1 + cos(u, v)∥u∥∥v∥)2

> cos2(u, v)(1 +∥u∥2)(1 +∥v∥2)

⇐⇒ 1 + uT v√
1 + uTu

√
1 + vT v

>
uT v√

uTu
√
vT v

.

Therefore, since 1+uT v√
1+uTu

√
1+vT v

is strictly greater than uT v√
uTu

√
vT v

, by well choosing ϵ such that 1+uT v√
1+uTu

√
1+vT v

(1−ϵ)3 >

uT v√
uTu

√
vT v

and by substituting ϵ1 = 2ϵ and ϵ2 = ϵ, we have the following inequality with probability at least 1−O(1/dout).

cos(ϕ(Wu+ b), ϕ(Wv + b)) > cos(u, v).

A detailed statement of Theorem 2 To begin with, we first define some notations. For l ∈ [L], we denote the number
of nodes in the l-th layer by d(l), the l-th layer weight matrix by W(l) ∈ Rd(l)×d(l−1)

, and an associated bias vector by
b(l) ∈ Rd(l)

. We denote the input data by U ∈ Rd(0)

. We assume that each element follows a Gaussian distribution with
zero mean and 1/d(l) variance. We denote a set of weights and biases up to the l-th layer by Θ(l) := {(W(i),b(i))}li=1 and
the l-th layer output by h(l)(U) when an input datum is U , i.e., h(l)(U) = ϕ(W(l)h(l−1)(U) + b(l)). We set h(0)(U) := U .
In the following theorem, we provide a detailed statement of Theorem 2.
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Theorem 5 (A detailed statement of Theorem 2). Let U ∈ Rd(0)

be a random variable for input data with∥U∥ = 1. We
suppose tr(Var[h(L−1)(U) | Θ(L−1)]) = 1− β. Then, for k ∈ [d(L)] the following inequality holds.

Var[E[(h(L)(U))k | Θ(L)]]

Var((h(L)(U))k)
≥ β.

The relationship between β and the cosine similarity The trace parameter β = 1 − tr(Var[h(L−1)(U) | Θ(L−1)])
captures the cosine similarity of the (L − 1)-th layer outputs because of the following equality. For independently and
identically distributed random variables U1 and U2, we have

2tr(Var[h(L−1)(U1) | Θ(L−1)])

= E
[∥∥∥h(L−1)(U1)− h(L−1)(U2)

∥∥∥
2

| Θ(L−1)

]

≈ 2(1− E[cos(h(L−1)(U1), h
(L−1)(U2))]).

The last approximation is due to
∥∥∥h(L−1)(U1)

∥∥∥ ≈ 1 under the variance conditions on W(l) and b(l) (Allen-Zhu et al., 2019,

Lemma 7.1). That is, E[cos(h(L−1)(U1), h
(L−1)(U2))] and β are close to each other. It is plausible in practice to assume

that β is close to one when the depth L is large because the variance of an intermediate output given Θ(L−1) is likely to be
small due to the cone effect.

Proof of Theorem 5. By the law of total variance, for any k ∈ [d(L)], we have

Var[E[(h(L)(U))k | Θ(L)]]

Var((h(L)(U))k)
= 1− E[Var[(h(L)(U))k | Θ(L)]]

Var((h(L)(U))k)
(4)

[Step 1] For k ∈ [d(L)], a conditional distribution of (W(L)h(L−1)(U) + b(L))k given Θ(L−1) and U is a Gaussian
distribution with zero mean and (1 + h(L−1)(U)Th(L−1)(U))/d(L) variance, we have

E[ϕ(W(L)h(L−1)(U) + b(L))k]
2

= E[
√

1 + h(L−1)(U)Th(L−1)(U)]2/(2πd(L))

E[ϕ(W(L)h(L−1)(U) + b(L))2k]

= (1 + E[h(L−1)(U)Th(L−1)(U)])/d(L),

and

Var((h(L)(U))k)

=E[ϕ(W(L)h(L−1)(U) + b(L))2k]

− E[ϕ(W(L)h(L−1)(U) + b(L))k]
2

≥ (1 + E[h(L−1)(U)Th(L−1)(U)])

d(L)

π − 1

2π
. (5)

The last inequality is from Jensen’s inequality E[
√
1 + UTU ] ≤

√
1 + E[UTU ].

[Step 2] For k ∈ d(L), we now consider E[Var[(h(L)(U))k | Θ(L)]] = E[Var[ϕ(W(L)h(L−1)(U) + b(L))k | Θ(L)]]. By
the symmetricity of W(L) and b(L), we have

E[Var[ϕ(W(L)h(L−1)(U) + b(L))k | Θ(L)]]

=
1

2
E
[
Var[ϕ(W(L)h(L−1)(U) + b(L))k | Θ(L)]

+ Var[ϕ(−(W(L)h(L−1)(U) + b(L)))k | Θ(L)]
]
.
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Using the characteristic of the ReLU function, we have ϕ(W(L)h(L−1)(U)+b(L))2k +ϕ(−(W(L)h(L−1)(U)+b(L)))2k =
(W(L)h(L−1)(U) + b(L))2k and

E[ϕ(W(L)h(L−1)(U) + b(L))k | Θ(L)]2

+ E[ϕ(−(W(L)h(L−1)(U) + b(L)))k | Θ(L)]2

>
(
E[ϕ(W(L)h(L−1)(U) + b(L))k | Θ(L)]

− E[ϕ(−(W(L)h(L−1)(U) + b(L)))k | Θ(L)]
)2

=(W(L)E[h(L−1)(U) | Θ(L−1)] + b(L))2k.

Therefore,

Var[ϕ(W(L)h(L−1)(U) + b(L))k | Θ(L)]

+ Var[ϕ(−(W(L)h(L−1)(U) + b(L)))k | Θ(L)]

<E[(W(L)h(L−1)(U) + b(L))2k | Θ(L)]

− (W(L)E[h(L−1)(U) | Θ(L−1)] + b(L))2k

= WT
k Var[h

(L−1)(U) | Θ(L−1)]Wk,

where WT
k is the k-th row of the weight matrix W. Thus, an upper bound for E[Var[(h(L)(U))k | Θ(L)]] is

E[Var[ϕ(W(L)h(L−1)(U) + b(L))k | Θ(L)]]

<
1

2
E[WT

k Var[h
(L−1)(U) | Θ(L−1)]Wk]

=
1

2
tr(Var[h(L−1)(U) | Θ(L−1)])/d(L). (6)

[Step 3] Finally, combining Equations (5) and (6)

E[Var[(h(L)(U))k | Θ(L)]]

Var((h(L)(U))k)

<
tr(Var[h(L−1)(U) | Θ(L−1)])

1 + E[h(L−1)(U)Th(L−1)(U)]

π

π − 1

< 1− β.

The last inequality is due to the fact E[h(L−1)(U)Th(L−1)(U)] = 1 when∥U∥ = 1 and π < 2(π − 1). Due to Equation (4),
it concludes a proof.


