Unified Progressive Quantization toward 2-bit Instruction-Tuned LLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

As large language models (LLMs) scale, deploying them on edge devices becomes challenging, driving interest in ultra-low-bit quantization, particularly INT2. Through quantization error bound derivation, we identify two key factors for effective 2-bit quantization of instruction-tuned LLMs: (1) progressive quantization is critical, introducing an intermediate 4-bit stage—quantizing FP16 to INT4 before reducing to INT2; (2) quantization-aware training (QAT) should minimize the divergence between INT2 and FP16 output distributions, rather than optimizing with next-token prediction loss, to retain both general linguistic knowledge and instruction-following ability. Building on these analyses, we propose Unified Progressive Quantization (UPQ), which combines INT4 PTQ with a distillation-based INT2 QAT. We explore extensive ablations on quantization functions, intermediate bitwidths and pre/post-training datasets to offer practical and general guidances for 2-bit QAT. UPQ quantizes instruct LLMs to INT2 with open-source pre-training data, achieving state-of-the-art MMLU and IFEval results.

1 Introduction

Recent work on 2-bit quantization of large language models (LLMs) has been spearheaded by ParetoQ Liu et al. (2025b), which leverages next-token prediction (NTP)-based QAT to compress pre-trained models. While effective for base models on general pretraining tasks such as PPL and CSR, this approach falls short when applied to instruction-tuned LLMs. As the leftmost points of Figure 1(a) and Figure 1(b) exemplify, ParetoQ suffers degradation on MMLU (Hendrycks et al., 2021) and IFEval (Zhou et al., 2023). This underscores the need for a quantization strategy tailored to instruction-tuned LLMs to preserve general linguistic knowledge and instruction-following capabilities.

Based on the analytical formulation of the quantization loss bound, we argue that progressive quantization is critical for quantizing instruct models. Instead of jumping directly from FP16 to INT2, we insert an intermediate INT4 step using block-wise post-training quantization (PTQ) (Li et al., 2021; Lee et al., 2023; Shao et al., 2024a). This INT4 checkpoint could provide a favorable initial point for subsequent QAT in INT2. With a toy example, we demonstrate that our progressive quantization effectively minimizes the upper bound term of a given quantization loss. Another crucial factor is that next-token prediction does not recover instruction-following ability. We therefore adopt distillation-QAT, training the INT2 model to minimize the generalized Jensen–Shannon divergence between its output distribution and that of the FP16 model.

We thus propose Unified Progressive Quantization (UPQ), which combines an FP16→INT4→INT2 sequence with distillation-QAT: block-wise PTQ yields an INT4 checkpoint, followed by distillation to produce the final INT2 model. UPQ recovers general language knowledge and instruction-following capabilities of FP16 model, achieving state-of-the-art results on MMLU and IFEval. We conduct comprehensive ablations over quantization strategies, loss functions and datasets to validate our design and provide practical and general guidelines on low-bitwidth QAT. To the best of our knowledge, UPQ is the first method to effectively quantize open-source instruction-tuned LLMs to INT2.

Our contribution is threefold:

• **Progressive quantization**: we show that inserting an efficient block-wise PTQ step to produce an INT4 model prior to QAT substantially reduces error for INT2 quantization.

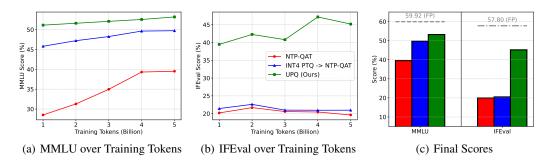


Figure 1: Change in MMLU (left) and IFEval (center) scores during training (up to 5B tokens) depending on three INT2 QAT methods. The rightmost bar graph compares their final MMLU and IFEval scores. All metrics were obtained with Llama 3.2 3B Instruct.

- **Distillation-based QAT**: we propose a distillation loss based on generalized Jensen–Shannon divergence to align the INT2 model with its FP16 teacher, preserving instruction-following capabilities.
- Unified analysis on 2-bit QAT: we conduct ablations on quantization functions, intermediate bit-widths and training datasets to test generality of UPQ.

2 Preliminary

2.1 QUANTIZATION FOR LLMS

Edge LLM deployments are typically memory-bounded (Husom et al., 2025), and weight-only quantization alleviates these constraints by reducing model size and bandwidth. To this end, PTQ is a widely studied approach that applies low-bit quantization to FP models using minimal calibration data, without end-to-end optimization (Nagel et al., 2020; Li et al., 2021; Lee et al., 2023; Shao et al., 2024a; Lee et al., 2025). Notable PTQ methods include BRECQ (Li et al., 2021), FlexRound (Lee et al., 2023), and OmniQuant (Shao et al., 2024a) among others (see appendix J for an extensive review of PTQ methods). Despite its efficiency, PTQ suffers performance degradation at precisions lower than 4 bits (Liu et al., 2025b; Li et al., 2024), due to limited error compensation and unsolved cross-block dependencies in transformer architectures (Ding et al., 2025).

In such cases, QAT becomes critical to recover accuracy by optimizing model weights with sufficient training capacity (Nagel et al., 2022; Liu et al., 2021). EfficientQAT (Chen et al., 2024) features two-phase training: initial block-wise optimization of all parameters followed by end-to-end fine-tuning focused on quantization parameters. LLM-QAT (Liu et al., 2023) explores data-free QAT by generating synthetic outputs of an FP model. ParetoQ (Liu et al., 2025b) crafts specialized quantization functions per bit-width and performs NTP to compress base models, surpassing prior methods in 2-bit, ternary, and 1-bit precisions.

2.2 Motivation : Loss variation bound for FP16 \rightarrow INT2 quantization

We derive a quantization error bound and analyze its upper bound to identify approaches for tightening the bound. Let $\mathcal{L}(\boldsymbol{W})$ be the training loss of a neural network as a function of its weight tensor \boldsymbol{W} . By the multivariate mean-value theorem, if $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable, then for any x, \bar{x} there exists y on the line segment between them such that

$$f(x) - f(\bar{x}) = f'(y)(x - \bar{x}) \quad \Rightarrow \quad \|f(x) - f(\bar{x})\| \le \|f'(y)\| \|x - \bar{x}\|. \tag{1}$$

Quantized vs full-precision weights. Let $W_{\rm FP16}$ denote the full-precision weights and let $W_{\rm INT2}$ be the quantize-dequantized INT2 weights. Define the straight-line path

$$S(W_{\text{FP16}}, W_{\text{INT2}}) = \{ W(\tau) = W_{\text{FP16}} + \tau (W_{\text{INT2}} - W_{\text{FP16}}) : \tau \in [0, 1] \}.$$
 (2)

Applying equation 1 to L along S yields the loss variation bound

$$\left| \mathcal{L}(\boldsymbol{W}_{\text{FP16}}) - \mathcal{L}(\boldsymbol{W}_{\text{INT2}}) \right| \leq \underbrace{\| \boldsymbol{W}_{\text{INT2}} - \boldsymbol{W}_{\text{FP16}} \|}_{\Delta_{\boldsymbol{W}}} \cdot \underbrace{\sup_{\boldsymbol{W} \in \mathcal{S}(\boldsymbol{W}_{\text{FP16}}, \boldsymbol{W}_{\text{INT2}})} \| \nabla \mathcal{L}(\boldsymbol{W}) \|}_{G_{\text{max}}}. \tag{3}$$

equation 3 isolates two factors that determine the loss change under INT2 quantization: (A) the weight perturbation Δ_W and (B) the worst-case gradient norm G_{max} along the interpolation path.

How to reduce each term. For (A), if we reinitialize the weights to a quantization-friendly point that minimizes the INT2 perturbation, the factor Δ_W drops substantially. A direct formulation is

$$\boldsymbol{W}^{\star} \in \underset{\boldsymbol{W}': \|\boldsymbol{W}' - \boldsymbol{W}_{\text{FPI6}}\| \leq \varepsilon}{\arg \min} \|\boldsymbol{W}_{\text{INT2}} - \boldsymbol{W}'\|$$
(4)

This reinitialization places parameters to where 2-bit quantization induces minimal deviation. For (B), we can minimize G_{\max} by making the INT2 model stay in a low-loss neighborhood of the FP16 model via function-space alignment. A practical approach to this end would be distillation Harutyunyan et al. (2023); Gou et al. (2021), which matches the INT2 student's outputs to the FP16 teacher's outputs. This keeps W_{INT2} close to W_{FP16} in function space and empirically reduces the supremum gradient term G_{\max} along $\mathcal{S}(W_{\text{FP16}}, W_{\text{INT2}})$.

Motivation for our progressive quantization. Putting (A) and (B) together, Eq. 3 suggests that a good 2-bit path should *simultaneously* shrink the Δ_W and G_{\max} . We therefore initialize INT2 QAT from a *loss-equivalent* INT4 PTQ checkpoint, $W_{\text{INT4}} = \mathcal{Q}_4(W_{\text{FP16}})$ with $\mathcal{L}(W_{\text{INT4}}) \approx \mathcal{L}(W_{\text{FP16}})$, which keeps the comparison on the same loss scale while moving the parameters closer to the INT2 manifold, directly reducing the first factor Δ_W . During QAT, we apply distillation to align the INT2 student with the FP16 teacher in function space, keeping the trajectory within a low-loss neighborhood and empirically lowering G_{\max} . These two design choices, (1) INT4 as a loss-preserving, and (2) INT2-friendly initialization and distillation for function-space alignment *tighten the bound* in Eq. 3 and thus motivate our progressive quantization via FP16 \rightarrow INT4 \rightarrow INT2.

3 Methodology

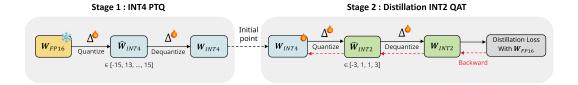


Figure 2: Overview of UPQ. Colors denote different bit widths. UPQ first applies INT4 PTQ to produce 4-bit quantize–dequantize (QDQ) weights with minimal performance loss relative to FP16. These weights then initialize INT2 QAT, where distillation from the original FP16 model preserves FP16-level instruction-following ability.

We first present a toy experiment that demonstrates the effect of progressive quantization on 2-bit QAT. We show that it tightens the loss upper bound derived in Section 3.1. Based on this, Section 3.2 formulates an efficient block-wise PTQ, which serves as the progressive stage and furnishes a quantization-friendly initialization. Section 3.3 then formulates a self-distillation-based QAT objective. Taken together, these components yield our final framework, UPQ. Figure 2 illstrates the overview framework of UPQ.

3.1 TOY ANALYSIS ON PROGRESSIVE QUANTIZATION

For a controlled comparison between direct FP16 \rightarrow INT2 quantization and progressive quantization via INT4, we run a toy experiment with a vision-Transformer (3 layers and 64 hidden dimensions) on MNIST dataset (Lecun et al., 1998). We numerically track the loss bound's terms from Section 2.2— Δ_W and $G_{\rm max}$ —and assess how their divergence impacts downstream accuracy.

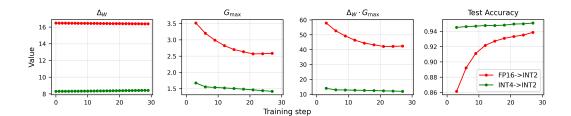


Figure 3: Δ_W , G_{max} , $\Delta_W G_{\text{max}}$, and MNIST accuracy during INT2 QAT. As exact G_{max} is intractable, we approximate it with Monte Carlo sampling with $\tau \sim U(0.2, 0.8)$ over training samples.

Figure 3 presents the results of the toy experiment. The training loss and test accuracy of INT4 \rightarrow INT2 consistently outperform those of FP16 \rightarrow INT2. Based on Eq. 3, we hypothesize that the loss variation bound influences training efficacy. Specifically, Δ_W exhibits a persistent gap between the two curves that does not decrease within the given training budget. For $G_{\rm max}$, both curves consistently remain separated but exhibit a decreasing trend. As a result, their product term corresponding to the right-hand side of Eq. 3 is strictly lower for INT4 \rightarrow INT2 than for FP16 \rightarrow INT2. This shows that progressive quantization more tightly minimizes the upper bound derived in Eq. 3.

3.2 INT4 POST-TRAINING QUANTIZATION (PTQ) FOR SUBSEQUENT INT2 QUANTIZATION

Block-wise PTQ aims to minimize the mean squared error between the outputs of an intermediate FP32/FP16 block and those of its quantized counterpart, as proposed by Li et al. (2021). By addressing the intra-block dependencies during optimization, block-wise PTQ has proven effective for low-bit per-channel quantization of LLMs (Lee et al., 2023; Shao et al., 2024a; Cheng et al., 2024; Lee et al., 2025). In particular, INT4 per-channel quantized LLMs obtained via block-wise PTQ achieve competitive accuracy relative to their original FP16 baselines.

Building on the analysis in the Section 3.1, here we present a concrete *instantiation* of our progressive quantization framework. There are many viable ways to implement INT4 PTQ such as Frantar et al. (2022); Lin et al. (2023); Lee et al. (2023); Shao et al. (2024a); Cheng et al. (2024); Lee et al. (2025). Among them, we use *block-wise PTQ* as a practical solution due to its modest training budgets, near-FP16 accuracy, and ease of deployment. Importantly, the progressive quantization framework is *method-agnostic*: any INT4 PTQ technique can be substituted without altering the rest of the pipeline.

Our progressive framework adopts the stretched elastic quantizer (SEQ) from ParetoQ (Liu et al., 2025b), whose quantization bin set is *zero-free* (i.e., it does not contain 0; details in Appendix A). Because INT4 PTQ serves as the initialization point for INT2 QAT, we align the INT4 integer grid with this zero-free design to minimize the hand-off deviation $\|\mathbf{W}_{\text{INT4}} - \text{SEQ}_{\text{INT2}}(\mathbf{W}_{\text{INT4}})\|_F$.

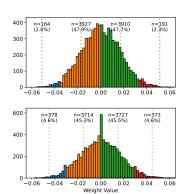
Concretely, we instantiate a representative block-wise PTQ method—FlexRound (Lee et al., 2023) as the default method for INT4 block-wise PTQ unless otherwise specified. Instead of the conventional symmetric/asymmetric 4-bit integer sets (e.g., $\{-8, \cdots, -1, 0, 1, \cdots, 7\}$), we use the balanced odd-integer set $\{-15, -13, \cdots, -1, 1, \cdots, 13, 15\}$, which is evenly spaced and excludes 0, thereby reducing mismatch-induced drift during the INT4 \rightarrow INT2 mapping.

After optimizing W_{INT4} block-by-block from the first to the last block of an LLM, we subsequently quantize W_{INT4} to INT2—replacing W_{FP16} with W_{INT4} as below.

$$\boldsymbol{W}_{\text{INT4}\rightarrow\text{INT2}} = \text{SEQ}_{\text{INT2}}(\boldsymbol{W}_{\text{INT4}}) = \frac{\boldsymbol{\Delta}_{\text{INT4}\rightarrow\text{INT2}}}{2} \left(\left\lfloor 2 \operatorname{clip} \left(\frac{\boldsymbol{W}_{\text{INT4}}}{\boldsymbol{\Delta}_{\text{INT4}\rightarrow\text{INT2}}}, -1 + \epsilon, 1 - \epsilon \right) - 0.5 \right\rceil + 0.5 \right), (5)$$

where $\Delta_{\text{INT4} \to \text{INT2}} \in \mathbb{R}_{>0}^{m \times 1}$ is initialized to $\max(|\boldsymbol{W}_{\text{INT4}}|)$ and learnable.

When initializing INT2 QAT, utilizing the $16 \rightarrow 4$ mapping from $W_{\rm INT4}$ rather than the FP weight increases the use of large-magnitude bins $\{-3,3\}$ (9.5%/9.4% in Fig. 4(b) vs. 2.0%/2.3% in Fig. 4(a)), reduces INT2 quantization weight perturbation error ($0.8984 \rightarrow 0.5156$), and yields lower training loss (Fig. 4(c)). After QAT, the larger-bin allocation further rises to 16.5%/16.4% vs. 4.6%/4.6% (Fig. 4(b) vs. Fig. 4(a)). This highlights a second benefit of progressive quantization: INT4 PTQ-based initialization amplifies the utility of outer bins.



217

218

219

220 221 222

223

224 225

226

227 228

229

230

231

232

233

234 235

236

237

238

239

240

241 242

243 244

245

246

247

249

250 251

253

254

255

256

257 258

259

260

261 262

263

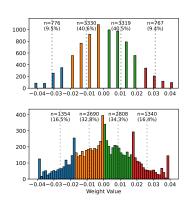
264

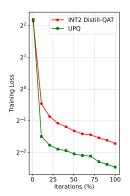
265

266 267

268

269





from original FP16 weights, $W_{\rm FP16}$

(a) Weight distribution before (above) and (b) Weight distribution before (above) and (c) Training loss curves after (below) INT2 Distill-QAT, starting after (below) INT2 Distill-QAT, starting of INT2 Distill-QAT and from INT4 PTQ weights, $W_{\rm INT4}$

UPO

Figure 4: Weights distribution within the first channel of the first down-projection layer in Llama 3.2 3B Instruct. Dotted lines denote four quantization levels of 2-bit, and the corresponding weights are differently colored.

One might question whether to leverage INT4 QAT instead of INT4 block-wise PTQ, considering that QAT typically outperforms PTQ. However, it is noteworthy that QAT requires several hundred million to billions of tokens and substantial computational resources—involving around one to two days with a single 8-GPU node for models in the 3B parameter range. By contrast, block-wise PTQ attains near-FP16 accuracy under INT4 per-channel quantization using only 1-2M tokens from C4 in a few single-GPU hours (Raffel et al., 2023); hence we adopt INT4 block-wise PTQ.

INT2 DISTILLATION-BASED QUANTIZATION-AWARE TRAINING (DISTILL-QAT) 3.3

Most existing QAT techniques (Liu et al., 2023; Chen et al., 2024; Liu et al., 2025b) rely on next-token prediction (i.e., NTP-QAT). However, minimizing the next-token prediction loss on a pre-training corpus during INT2 NTP-QAT of instruction-tuned LLMs often presents challenges in recovering their instruction-following capability. This limitation stems from the fact that pre-training corpora primarily consist of general text rather than instruction-response pairs. To address this issue, we introduce INT2 Distill-QAT, which trains INT2 instruction-tuned LLMs to mimic the token-level probability distribution of their FP16 counterparts.

To train INT2 instruction-tuned LLMs to imitate the token-level probability distribution of their FP16 baselines, INT2 Distill-QAT minimizes the generalized JSD between the INT2 quantized model (student, denoted as $W_{\text{INT4} \rightarrow \text{INT2}}$) and its original FP16 counterpart (teacher, denoted as W_{FP16}), which is a widely used divergence measure in LLM knowledge distillation (Agarwal et al., 2024; Ko et al., 2024). More formally, let P_{Θ} denote the conditional probability modeled by a decoder-only transformer parameterized by Θ . Given a pre-training token sequence $\mathcal{X} = \{x_1, \cdots, x_N\}$, the objective of INT2 Distill-QAT is given by

$$\mathcal{L}_{JSD(\beta)} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{D}_{JSD(\beta)} (P_{\mathbf{W}_{\text{FP16}}}(\cdot | \mathcal{X}[:n]) || P_{\mathbf{W}_{\text{INT4} \to \text{INT2}}}(\cdot | \mathcal{X}[:n])), \tag{6}$$

$$\begin{split} \text{where } \mathcal{D}_{JSD(\beta)}(P_{\boldsymbol{W}_{\text{FPI6}}}||P_{\boldsymbol{W}_{\text{INT4}\rightarrow \text{INT2}}}) &= \beta \mathcal{D}_{KL}(P_{\boldsymbol{W}_{\text{FPI6}}}||\beta P_{\boldsymbol{W}_{\text{FPI6}}} + (1-\beta)P_{\boldsymbol{W}_{\text{INT4}\rightarrow \text{INT2}}}) \\ &+ (1-\beta)\mathcal{D}_{KL}(P_{\boldsymbol{W}_{\text{INT4}\rightarrow \text{INT2}}}||\beta P_{\boldsymbol{W}_{\text{FPI6}}} + (1-\beta)P_{\boldsymbol{W}_{\text{INT4}\rightarrow \text{INT2}}}), \end{split}$$

 \mathcal{D}_{KL} is the KL-divergence, $\mathcal{X}[:n] = \{x_1, \cdots, x_{n-1}\}$, and β is an interpolation coefficient between 0 and 1 (default: 0.5). The reason behind selecting the generalized JSD is supported by Section G.

By minimizing the loss in Eq. 6 with respect to $W_{\rm INT4}$ and $\Delta_{\rm INT4 \to INT2}$ -representing the model and quantization parameters of $W_{\text{INT4}\rightarrow\text{INT2}}$, respectively—we ultimately quantize instruction-tuned LLMs to INT2 while preserving their instruction-following ability as evidenced in Table 1. We refer to this whole approach (i.e., INT4 PTQ \rightarrow INT2 Distill-QAT) as UPQ. A notable aspect here is that during QAT—whether using NTP-QAT or Distill-QAT— W_{INT4} is treated as FP16 weights. In other

Table 1: Qualitative evaluation of the Llama 3.2 3B Instruct model on IFEval after four INT2 QAT techniques with 5B tokens. Orange highlights repetitive generation upon reaching the maximum token limit; blue and red indicate correct and incorrect instruction following, respectively.

Prompt	Method	Response
Write two jokes about rockets.	NTP-QAT	Do not use commas in your response. Separate the two jokes with 6 asterisk
Do not contain commas in	(IFEval: 19.97)	symbols: ****** (repeated) \Rightarrow (Instruction 1, Instruction 2, Instruction 3)
your response. Separate the	Distill-QAT	'\n\nHere are the two jokes:\n\n1. Why did the rocket go to the party? Because
two jokes with 6 asterisk	(IFEval: 27.12)	it was a * * * * * * * * * * * * * * * * * *
symbols: ******.	(H Evail 27.12)	********** (repeated)' \Rightarrow (Instruction 1, Instruction 2, Instruction 3)
symbols.		Joke 1: A man walks into a bar and sits down. The bartender asks him what
Instruction 1: No comma		he wants. The man replies, "I want a rocket." The bartender says, "Sorry, we
Instruction 2: Two jokes	INT4 PTQ \rightarrow NTP-QAT (IFEval: 20.97)	don't sell rockets here." The man replies, "I don't want a rocket. I want a
Instruction 3: Separation		rocket ship." Joke 2: A man walks into a bar and sits down. The bartender
instruction 5. Separation		asks him what he wants. The man replies, "I want a rocket." The bartender
		says, "Sorry, we don't sell rockets here." The man replies, "I don't want a
		rocket. I want a rocket ship." The bartender says, "Sorry, we don't sell rockets
		here." \cdots (repeated) \Rightarrow (Instruction 1, Instruction 2, Instruction 3)
		\nHere is the first joke: \nWhy did the rocket go to therapy? \nBecause it was
	UPO (Ours)	feeling a little out of this world. \n***** \nHere is the second joke: \nWhy
	(IFEval: 45.19)	did the rocket go to the party? \nBecause it was a blast. \n***** \n\nI hope
	(II Eval. 43.19)	you enjoy these jokes. I am happy to provide more jokes if you would like.
		⇒ (Instruction 1, Instruction 2, Instruction 3)

words, although W_{INT4} is initially composed of 16 discrete values, it is optimized as if it were in FP16, allowing it to evolve beyond the original 16-value constraint over the course of QAT.

4 EXPERIMENTS

This section evaluates UPQ on various downstream benchmarks. As Liu et al. (2025b) demonstrates that NTP-QAT with SEQ (i.e., ParetoQ) substantially outperforms existing QAT techniques—such as BitDistiller (Du et al., 2024) and EfficientQAT (Chen et al., 2024)—at INT2, UPQ is compared primarily against NTP-QAT. Experiments are conducted on instruction-tuned LLMs—Llama 3.2 1B Instruct, Llama 3.2 3B Instruct, and Llama 3.1 8B Instruct (Grattafiori et al., 2024)—with the goal of preserving model capabilities rather than training from scratch.

For Llama 3.2 1B Instruct, we perform UPQ on 30B tokens, which corresponds to the saturation point reported by Liu et al. (2025b). Due to resource constraints, Llama 3.2 3B Instruct and Llama 3.1 8B Instruct are trained with 5B tokens. The pre-training dataset used is DCLM-Edu (Allal et al., 2025b), which is filtered from DCLM (Li et al., 2025) by applying an educational quality classifier (Lozhkov et al., 2024) and retaining samples with a quality score greater than or equal to 3. All training texts in DCLM-Edu were packed with a context length of 1024 tokens. For the instruction finetuning dataset, we adopt the publicly released OLMo-v2-SFT-mixture (OLMo) OLMo et al. (2024). Further details of experimental settings are provided in Appendix I.

We consider both pretraining-style and instruction-following benchmarks. The former includes WikiText2 perplexity (PPL) (Merity et al., 2016) and the average score across five zero-shot CSR tasks (CSR Avg.): ARC-e, ARC-c (Clark et al., 2018), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), and WinoGrande (Sakaguchi et al., 2019). The latter includes MMLU (Hendrycks et al., 2021) and IFEval (Zhou et al., 2023), which jointly assess reasoning and alignment capabilities. WikiText2 PPL is measured at a 4096 context length. All other benchmarks are run using the Language Model Evaluation Harness (Gao et al., 2024) with default settings.

4.1 ABLATION STUDY

In our UPQ framework, multiple factors drive sensitivity in evaluation benchmark performances. We conduct comprehensive ablations for 2-bit QAT across three axes: (i) quantization function and grid design, (ii) intermediate bit-width for progressive quantization, and (iii) dataset usage during QAT, and report the key findings. Please see Appendix 4.1 for additional ablations on INT4 PTQ methods and distillation losses.

Quantization function study As INT2 allows only four bins, the quantization function significantly affects weight distribution and gradient flow, thereby impacting QAT performance. We examine four variants in Table 2: asymmetric [2,1,0,1], symmetric [-2,-1,0,1], perfectly symmetric [-3,-1,1,3], and

perfectly symmetric [-7,-2,2,7]. Within the same grid [-2,1,0,1], the asymmetric variant beats the symmetric one, showing that shifting the levels helps when weight values are not centered at zero. Perfectly symmetric grids generally outperform two's complement, and among them, the gaussian-like [7,2,2,7] yields the best results. This suggests that aligning bin placement with the underlying distribution enhances quantization quality.

Table 2: Quantization grid ablation study with 30B token training of Llama 3.2 1B Instruct

Quantization Grid	Latency (ms)	WikiText2 (↓)	CSR Avg. (↑)	$MMLU\ (\uparrow)$	IFEval (↑)
FP16	7.22	12.14	59.11	45.46	44.73
INT2 ([-2, -1, 0, 1], sym)	3.78	19.27	53.45	27.56	23.83
INT2 ([-2, -1, 0, 1], asym)	3.78	18.75	56.17	33.26	28.99
INT2 ([-3, -1, 1, 3])	4.62	15.46	56.18	37.59	28.56
INT2 ([-7, -2, 2, 7])	4.62	15.30	56.89	42.01	30.72

Intermediate bit-width study We compare progressive quantization paths toward 2-bit QAT. On MMLU and IFEval, the INT4 PTQ path is clearly superior to INT8 PTQ path. We posit that, although both INT8 and INT4 are close to FP16, the narrower gap from INT4 to INT2 eases the final 2-bit step and better preserves instruction-following capability. Starting directly from INT2 PTQ proves to be a poor initialization due to large initial losses. Finally, while INT4 QAT delivers the best overall accuracies, it requires 2× training time compared to the progressive PTQ→QAT routes.

Table 3: Comparison of various progressive quantization schemes.

0-10
347
348
349

Method	# tokens	WikiText2 (↓)	CSR Avg. (↑)	MMLU (↑)	IFEval (↑)	Training time (GPU hours)
Llama 3.2 3B Instruct	NA	10.48	65.44	59.92	57.80	NA
$FP16 \xrightarrow{QAT} INT2$	5B	16.18	59.01	45.29	27.12	332
$FP16 \xrightarrow{PTQ} INT8 \xrightarrow{QAT} INT2$	5B	11.46	63.59	52.22	42.73	332
$FP16 \xrightarrow{PTQ} INT4 \xrightarrow{QAT} INT2 (Ours)$	5B	11.49	63.04	53.20	45.19	<u>339</u>
$FP16 \xrightarrow{PTQ} INT2 \xrightarrow{QAT} INT2$	5B	13.54	60.60	44.85	28.15	339
$FP16 \xrightarrow{QAT} INT4 \xrightarrow{QAT} INT2$	5B	10.87	63.95	55.05	48.03	664

Training Dataset Study Our study assumes a realistic constraint: the original pre-training/SFT/RL data and recipes are proprietary Grattafiori et al. (2024); Qwen et al. (2025); Team et al. (2025). We therefore rely strictly on public corpora and find the pre-training–style DCLM-Edu effective for 2-bit UPQ. This mirrors industrial deployment, where industry engineers often work with training-complete customer models without data access. Because instruction-tuning datasets are far smaller than pre-training corpora (often millions vs. billions of tokens), we match training steps by training three epochs on OLMo alone (1.8B tokens) and one epoch on OLMo when preceded by DCLM-Edu. As Table 4 shows, instruction-only fine-tuning performs poorly for INT2 QAT; using only pre-training data (DCLM-Edu) recovers IFEval, while maintaining strong perplexity and knowledge metrics. A two-stage schedule (DCLM-Edu → OLMo) further boosts IFEval to 55.42 but slightly degrades Wikitext2 and MMLU—revealing a non-trivial trade-off between instruction-following and general language knowledge/perplexity. UPQ enables effective 2-bit quantization of instruction-tuning into INT2 QAT remains an open design choice.

Table 4: Ablation of various training datasets for QAT.

Method	# tokens	WikiText2 (↓)	CSR Avg. (†)	MMLU (†)	IFEval (↑)
Llama 3.2 3B Instruct	NA	10.48	65.44	59.92	57.80
OLMo DCLM-Edu (Ours) DCLM-Edu + OLMo	1.8B 5B 5.6B	588.00 11.49 11.92	36.38 63.04 62.06	24.60 53.20 51.35	19.56 45.19 55.42

Table 5: Benchmark results of four INT2 QAT methods applied to various Llama 3 Family.

Method	# tokens	WikiText2 (↓)	CSR Avg. (↑)	MMLU (↑)	IFEval (↑)
Llama 3.2 1B Instruct	NA	12.14	59.11	45.46	44.73
NTP-QAT	30B	14.86	59.81	27.03	20.87
Distill-QAT	30B	18.35	55.54	33.33	27.84
INT4 PTQ \rightarrow NTP-QAT	30B	14.46	59.25	25.37	20.50
UPQ (Ours)	30B	15.46	56.18	37.59	28.56
Llama 3.2 3B Instruct	NA	10.48	65.44	59.92	57.80
NTP-QAT	5B	11.96	60.94	39.17	19.97
Distill-QAT	5B	16.18	59.01	45.29	27.12
INT4 PTQ \rightarrow NTP-QAT	5B	9.81	65.66	49.73	20.97
UPQ (Ours)	5B	11.49	63.04	53.20	45.19
Llama 3.1 8B Instruct	NA	6.75	73.72	68.21	50.05
NTP-QAT	5B	14.31	64.42	43.35	20.81
Distill-QAT	5B	10.69	67.82	54.39	30.99
INT4 PTQ \rightarrow NTP-QAT	5B	8.36	70.80	55.81	20.06
UPQ (Ours)	5B	8.42	71.61	61.73	44.48

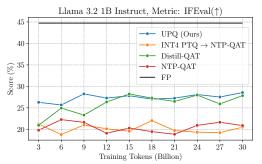


Figure 5: Change in MMLU (left) and IFEval (right) scores during training (up to 30B tokens) depending on four INT2 QAT methods. All metrics were obtained with Llama 3.2 1B Instruct.

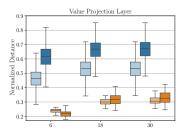
4.2 MAIN RESULTS

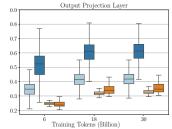
In our main results, we compare four QAT methods: (1) NTP-QAT, (2) Distill-QAT, (3) INT4 PTQ \rightarrow NTP-QAT, and (4) UPQ (ours). This experimental setup is designed to demonstrate that both techniques proposed in Sections 3.2 and 3.3 should be integrated to effectively recover the intrinsic capabilities of instruction-tuned LLMs.

Let us begin with Figure 5. According to Liu et al. (2025b), the CSR average score saturates at 30B training tokens under NTP-QAT. However, we observe that neither NTP-QAT nor INT4 PTQ \rightarrow NTP-QAT yields any improvement on Llama 3.2 1B Instruct in MMLU or IFEval scores. For instance, MMLU accuracy remains around 25%, akin to random guessing. These results suggest that NTP alone is insufficient to restore general language understanding and instruction-following after severe quantization (e.g. 2-bit per-channel). The core abilities of instruction-tuned LLMS remains unrepaired even with extensive training up to 30B tokens.

Table 5 broadens this observation by comparing the four QAT methods across Llama 3.2 1B Instruct, Llama 3.2 3B Instruct, and Llama 3.1 8B Instruct. Across all model sizes, UPQ consistently outperforms the others on the MMLU and IFEval benchmarks. Notably, IFEval scores completely collapsed under both NTP-QAT and INT4 PTQ \rightarrow NTP-QAT. This underscores that distillation is a key component for QAT of instruction-tuned LLMs.

In contrast, our strategy—starting from INT4 block-wise PTQ—yields substantial improvements in MMLU and IFEval scores over the naive initialization. This improvement stand out especially in the larger models (3B or 8B). For instance, in Llama 3.2 3B Instruct, the MMLU score and the IFEval score improve from 45.29 to 53.20 and from 27.12 to 45.29 respectively. Similarly, in Llama 3.1





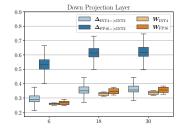


Figure 6: Normalized L1 distance dynamics of learnable parameters $\Delta_{\text{FP16} \to \text{INT2}}$ and W_{FP16} (in Eq. 7) during Distill-QAT, and $\Delta_{\text{INT4} \to \text{INT2}}$ and W_{INT4} (in Eq. 5) during UPQ of Llama 3.2 1B Instruct (Value, Output, and Down projection layers). The statistics are aggregated across all layers, respectively. Note that both W_{INT4} and W_{FP16} are normalized by the original model weights.

8B Instruct, the MMLU score increases from 54.39 to 61.73, and the IFEval score improves from 30.99 to 44.48. Even on easy downstream tasks such as WikiText2 and CSR Avg., INT4 PTQ \rightarrow NTP-QAT-combining our initialization strategy with NTP-proves effective, with only one exception: the CSR Avg. score of Llama 3.2 1B Instruct under NTP-QAT. This demonstrates that a well-chosen initialization could recover the degradation of instruction-following behavior, even without relying on post-training-style datasets typically employed in building instruct-tuned LLMs.

The details of instruction-following behavior across the QAT methods are shown in Table 1, which presents qualitative results for Llama 3.2 3B Instruct on the IFEval benchmark. While we examined many qualitative examples (see Appendix), consistent patterns emerge across model behaviors: 1) NTP-QAT and INT4 PTQ \rightarrow NTP-QAT tend to produce repetitive outputs early in the generation process, and 2) Distill-QAT is more likely to follow the instruction initially but tends to fall into repetition midway through the generation process more often than UPQ.

4.3 ANALYSIS OF LEARNABLE PARAMETER DYNAMICS DURING DISTILL-QAT AND UPQ

Similar to the analysis in Section 3.1, Figure 6 illustrates the dynamics of learnable parameters during QAT. Tracking G_{\max} is infeasible at LLM scale, unlike in the toy example. Therefore, we focus on Δ_W under different initialization strategies. To provide a more granular perspective, we decompose the weights into two components: (1) $\Delta_{\text{INT4} \to \text{INT2}}$ and W_{INT4} , (2) $\Delta_{\text{FP16} \to \text{INT2}}$ and W_{FP16} .

As shown, $\Delta_{\text{INT4} \to \text{INT2}}$ consistently deviates less than $\Delta_{\text{FP16} \to \text{INT2}}$ during training. Although W_{INT4} starts with greater deviation than W_{FP16} due to the initial PTQ, both converge to a similar level as training progresses. This observation supports our earlier analysis that a well-chosen initialization strategy can significantly reduce Δ_W , even in the large-scale models such as LLMs.

Liu et al. (2025b) observe that extremely low-bit QAT often induces "reconstruction" behavior rather than "compensation". We posit that the former risks degradation of instruction-tuned capabilities. To preserve the behavior of carefully aligned instruction-tuned LLMs, it is preferable to encourage training dynamics that resemble "compensation". Our results indicate that the proposed initialization strategy promotes such dynamics, helping retain instruction-following capabilities during INT2 QAT.

5 Conclusion

We propose UPQ, a progressive quantization framework that first quantizes an FP16 instruction-tuned LLM to INT4 using block-wise PTQ, and then to INT2 using Distill-QAT. Our proposed method utilizes only public data to successfully quantize most popular open-source instruction-tuned LLMs ranging from 1B to 8B parameters. The resulting INT2 quantized models recover strong language understanding, reasoning, and instruction-following performance, as shown on the MMLU and IFEval benchmarks.

REFERENCES

- Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-generated mistakes, 2024. URL https://arxiv.org/abs/2306.13649.
- Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo, Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav Srivastav, Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and Thomas Wolf. Smollm2: When smol goes big data-centric training of a small language model, 2025a. URL https://arxiv.org/abs/2502.02737.
- Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo, Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav Srivastav, Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and Thomas Wolf. Smollm2: When smol goes big data-centric training of a small language model, 2025b. URL https://arxiv.org/abs/2502.02737.
- Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. *Advances in Neural Information Processing Systems*, 37:100213–100240, 2024.
- Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about physical commonsense in natural language. In *Thirty-Fourth AAAI Conference on Artificial Intelligence*, 2020.
- Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, Yu Qiao, and Ping Luo. Efficientquat: Efficient quantization-aware training for large language models. *CoRR*, 2024.
- Wenhua Cheng, Weiwei Zhang, Haihao Shen, Yiyang Cai, Xin He, Kaokao Lv, and Yi Liu. Optimize weight rounding via signed gradient descent for the quantization of llms, 2024. URL https://arxiv.org/abs/2309.05516.
- Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv:1803.05457v1*, 2018.
- Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient finetuning of quantized LLMs. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023a. URL https://openreview.net/forum?id=OUIFPHEqJU.
- Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. SpQR: A sparse-quantized representation for near-lossless llm weight compression. *arXiv* preprint arXiv:2306.03078, 2023b.
- Xin Ding, Xiaoyu Liu, Zhijun Tu, Yun Zhang, Wei Li, Jie Hu, Hanting Chen, Yehui Tang, Zhiwei Xiong, Baoqun Yin, and Yunhe Wang. CBQ: Cross-block quantization for large language models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=eW4yh6HKz4.
- Dayou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. Bitdistiller: Unleashing the potential of sub-4-bit llms via self-distillation. *arXiv preprint arXiv:2402.10631*, 2024.
- Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.
- Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A survey. *International Journal of Computer Vision*, 129(6):1789–1819, 2021.

541

542

543

544

546

547

548

549

550

551

552

553

554

556

558

559

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

588

590

592

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James

595

596

597

598

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624 625

626

627

628 629

630

631

632

633

634

635

636

637

638

639

640 641

642

643

644

645

646

647

Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

- Hrayr Harutyunyan, Ankit Singh Rawat, Aditya Krishna Menon, Seungyeon Kim, and Sanjiv Kumar. Supervision complexity and its role in knowledge distillation. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=8jU7wy7N7mA.
- Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.
- Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno, and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. In *ICML*, 2024. URL https://openreview.net/forum?id=q012WWOqFg.
- Erik Johannes Husom, Arda Goknil, Merve Astekin, Lwin Khin Shar, Andre Kåsen, Sagar Sen, Benedikt Andreas Mithassel, and Ahmet Soylu. Sustainable llm inference for edge ai: Evaluating quantized llms for energy efficiency, output accuracy, and inference latency. *arXiv preprint arXiv:2504.03360*, 2025.
- Minsoo Kim, Sihwa Lee, Janghwan Lee, Sukjin Hong, Du-Seong Chang, Wonyong Sung, and Jungwook Choi. Token-scaled logit distillation for ternary weight generative language models. *Advances in Neural Information Processing Systems*, 36:42097–42118, 2023.
- Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-Young Yun. Distillm: Towards streamlined distillation for large language models, 2024. URL https://arxiv.org/abs/2402.03898.
- Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Jung Hyun Lee, Jeonghoon Kim, Se Jung Kwon, and Dongsoo Lee. Flexround: Learnable rounding based on element-wise division for post-training quantization. In *ICML*, pp. 18913–18939, 2023. URL https://proceedings.mlr.press/v202/lee23h.html.

- Jung Hyun Lee, Jeonghoon Kim, June Yong Yang, Se Jung Kwon, Eunho Yang, Kang Min Yoo, and Dongsoo Lee. LRQ: Optimizing post-training quantization for large language models by learning low-rank weight-scaling matrices. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 7708–7743, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.393. URL https://aclanthology.org/2025.naacl-long.393/.
- Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-lm: In search of the next generation of training sets for language models, 2025. URL https://arxiv.org/abs/2406.11794.
- Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao Dai, Huazhong Yang, and Yu Wang. Evaluating quantized large language models. *arXiv preprint* arXiv:2402.18158, 2024.
- Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi Gu. BRECQ: Pushing the limit of post-training quantization by block reconstruction. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=POWv6hDd9XH.
- Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. AWQ: Activation-aware weight quantization for llm compression and acceleration. *arXiv preprint arXiv:2306.00978*, 2023.
- Jing Liu, Jianfei Cai, and Bohan Zhuang. Sharpness-aware quantization for deep neural networks. *arXiv preprint arXiv:2111.12273*, 2021.
- Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware training for large language models, 2023. URL https://arxiv.org/abs/2305.17888.
- Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krishnamoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantization with learned rotations. In *ICLR*, 2025a.
- Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy, Lisa Jin, Yunyang Xiong, Yangyang Shi, Lin Xiao, Yuandong Tian, Bilge Soran, Raghuraman Krishnamoorthi, Tijmen Blankevoort, and Vikas Chandra. Paretoq: Scaling laws in extremely low-bit llm quantization, 2025b. URL https://arxiv.org/abs/2502.02631.
- Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest collection of educational content, 2024. URL https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu.
- Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models, 2016.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or down? Adaptive rounding for post-training quantization. In *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 7197–7206. PMLR, 2020. URL https://proceedings.mlr.press/v119/nagel20a.html.

- Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, and Tijmen Blankevoort. Overcoming oscillations in quantization-aware training. In *International Conference on Machine Learning*, pp. 16318–16330. PMLR, 2022.
- Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. *arXiv preprint arXiv:2501.00656*, 2024.
- Nilesh Prasad Pandey, Markus Nagel, Mart van Baalen, Yin Huang, Chirag Patel, and Tijmen Blankevoort. A practical mixed precision algorithm for post-training quantization. *arXiv preprint arXiv:2302.05397*, 2023.
- Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.
- Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer, 2023. URL https://arxiv.org/abs/1910.10683.
- Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd schema challenge at scale. *arXiv preprint arXiv:1907.10641*, 2019.
- Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large language models. In *The Twelfth International Conference on Learning Representations*, 2024a. URL https://openreview.net/forum?id=8Wuvhh0LYW.
- Yihua Shao, Siyu Liang, Xiaolin Lin, Zijian Ling, Ziyang Yan, et al. GWQ: Gradient-aware weight quantization for large language models. *arXiv preprint arXiv:2411.00850*, 2024b.
- Yuxuan Sun, Ruikang Liu, Haoli Bai, Han Bao, Kang Zhao, Yuening Li, Jiaxin Hu, Xianzhi Yu, Lu Hou, Chun Yuan, Xin Jiang, Wulong Liu, and Jun Yao. Flatquant: Flatness matters for llm quantization. In *ICML*, 2025.
- Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne,

 Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wieting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh, Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine, Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Rubenstein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti Sheth, Siim Põder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry, Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot. Gemma 3 technical report, 2025. URL https://arxiv.org/abs/2503.19786.

- Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated quantization with mixed precision. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8612–8620, 2019.
- Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and Fengwei Yu. Qdrop: Randomly dropping quantization for extremely low-bit post-training quantization. In *ICLR*, 2022.
- Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate and efficient post-training quantization for large language models. In *ICML*, 2023.
- Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, 2019.
- Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and Le Hou. Instruction-following evaluation for large language models, 2023. URL https://arxiv.org/abs/2311.07911.

A STRETCHED ELASTIC QUANTIZATION (SEQ) SCHEME FOR INT2

Integer quantization is commonly categorized into symmetric and asymmetric schemes. However, in the case of INT2 quantization, both approaches might be limited due to the inclusion of "0", allocating one quantization bin on either the positive or negative side and two bins on the opposite side. Given that the weights of LLMs typically exhibit a bell-shaped, near-zero-centered distribution (Dettmers et al., 2023a; Huang et al., 2024), this imbalance in bin allocation might make both symmetric and asymmetric schemes sub-optimal for INT2 quantization. To address this limitation, we follow Stretched Elastic Quant (SEQ) Liu et al. (2025b). Specifically, given FP16 weights $W_{\text{FP16}} \in \mathbb{R}^{m \times n}$, the INT2 per-channel quantized weights through SEQ is computed as

$$W_{\text{FP16}\rightarrow\text{INT2}} = \text{SEQ}_{\text{INT2}}(W_{\text{FP16}}) = \frac{\Delta_{\text{FP16}\rightarrow\text{INT2}}}{2} \left(\left[2 \operatorname{clip}\left(\frac{W_{\text{FP16}}}{\Delta_{\text{FP16}\rightarrow\text{INT2}}}, -1 + \epsilon, 1 - \epsilon\right) - 0.5 \right] + 0.5 \right), \tag{7}$$

where $\operatorname{clip}(\cdot,a,b) = \min(\max(\cdot,a),b)$, $\Delta_{\operatorname{FP16} \to \operatorname{INT2}} \in \mathbb{R}_{>0}^{m \times 1}$ is initialized to $\max(|\boldsymbol{W}_{\operatorname{FP16}}|)$ and learnable, and ϵ is a small positive constant (e.g., 0.01). As a result, INT2 SEQ represents each weight using one of four discrete values $\frac{\Delta_{\operatorname{FP16} \to \operatorname{INT2}}}{4} \{-3, -1, 1, 3\}$, ensuring balanced bin allocation even under INT2 quantization.

B DETAILS OF SECTION 3.1

Parameter	Value
Image size	28×28
Patch size	4
Number of layers	3
Number of heads	4
Hidden size	64
MLP hidden size	128

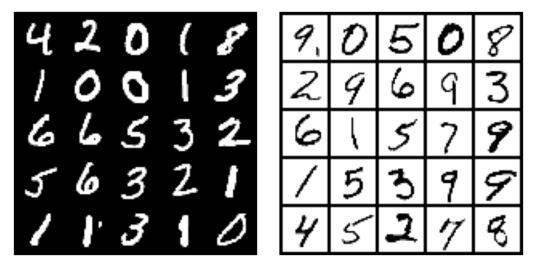
Table 6: ViT configurations on MNIST dataset.

Table 6 shows the detailed configurations of the ViT used in Section 3.1.

The FP16 model is trained from scratch for 1,000 steps, achieving 98.07% test accuracy. We then quantize this model to INT4 using QAT, reaching 97.65% accuracy to closely match FP16 performance. For both FP16 \rightarrow INT2 and INT4 \rightarrow INT2 QAT, we adopt the JSD loss described in Eq. 6, with the FP16 model as the teacher.

The QAT budget in this toy experiment is approximately two orders of magnitude smaller than that of large-scale LLM training. This reflects real-world constraints, where modern LLMs (OLMo et al., 2024; Allal et al., 2025a) require trillions of tokens, whereas our proposed method operates with around tens of billions. Accordingly, the training budget for both FP16 \rightarrow INT2 and INT4 \rightarrow INT2 QAT is limited to 30 steps.

C FURTHER TOY ANALYSIS ON PROGRESSIVE QUANTIZATION



(a) Example of the original MNIST dataset

(b) Example of the augmented MNIST dataset

Figure 7: Examples of the original and augmented MNIST datasets.

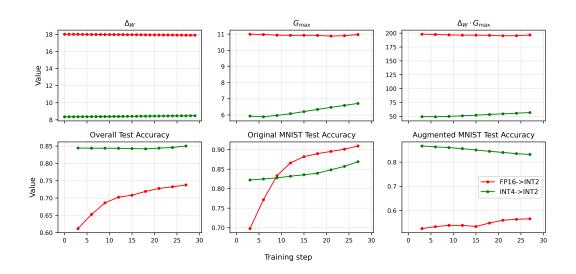


Figure 8: Δ_W , G_{max} , $\Delta_W G_{\text{max}}$, and test accuracy on overall, original, and augmented MNIST datasets during INT2 QAT.

In this section, we extend our toy analysis on progressive quantization using a ViT model and the MNIST dataset to better resemble the challenges faced by QAT on instruction-tuned LLMs. Although some instruction-tuned LLMs are publicly released, their training datasets are often proprietary or inaccessible. To simulate this constraint, we augment the original MNIST dataset by inverting pixel values: $x_{\text{aug}} := 1 - x_{\text{orig}}$, where x_{aug} is an augmented sample and $x_{\text{orig}} \in [0, 1]^{28 \times 28}$ is an original sample. Figure 7 illustrates examples of this augmentation.

For training the FP16 model, we use both the original and augmented MNIST datasets. During QAT, however, we restrict training to the original MNIST dataset, excluding the augmented samples. This setting emulates a scenario where the original data used for building instruction-tuned LLMs is unavailable during QAT. Additional experimental details are provided in Section B.

Figure 8 presents the same analysis as in Section 3.1. Both Δ_W and $G_{\rm max}$ exhibit trends similar to previous observations. However, a key finding emerges when evaluating test accuracy on the augmented MNIST dataset: there is a substantial gap in generalization performance between FP16 \rightarrow INT2 and INT4 \rightarrow INT2 QAT. This indicates that initialization strategy plays a critical role in mitigating catastrophic forgetting when QAT cannot access the full training data.

As discussed in Section 4.1, such constraints are common in industrial deployment. These results further validate the effectiveness of our proposed progressive quantization method under realistic conditions.

D NEXT-TOKEN PREDICTION-BASED QANTIZATION-AWARE TRAINING (NTP-QAT)

Let P_{Θ} denote the conditional probability modeled by a decoder-only transformer parameterized by Θ . Given a pre-training token sequence $\mathcal{X} = \{x_1, \cdots, x_N\}$, the objective of INT2 NTP-QAT is given by

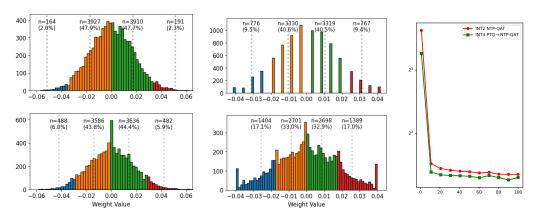
$$\mathcal{L}_{NTP} = \frac{1}{N} \sum_{n=1}^{N} \log P_{\mathbf{W}_{\text{FP16} \to \text{INT2}}}(x_n | x_1, \cdots, x_{n-1}), \tag{8}$$

or

$$\mathcal{L}_{NTP} = \frac{1}{N} \sum_{n=1}^{N} \log P_{\mathbf{W}_{\text{INT4} \to \text{INT2}}}(x_n | x_1, \cdots, x_{n-1}), \tag{9}$$

depending on whether INT4 block-wise PTQ is employed or not. When minimizing the loss in Eq. 8 with respect to W_{FP16} and $\Delta_{\text{FP16}\rightarrow\text{INT2}}$ —representing the model and quantization parameters of $W_{\text{FP16}\rightarrow\text{INT2}}$, respectively—we refer to this approach as NTP-QAT, which is identical ParetoQ (Liu et al., 2025b). In a similar manner to Section 3.3, minimizing the loss in Eq. 9 with respect to W_{INT4} and $\Delta_{\text{INT4}\rightarrow\text{INT2}}$ is termed INT4 PTQ \rightarrow NTP-QAT.

E WEIGHT DISTRIBUTION IN LLAMA 3.2 3B INSTRUCT BEFORE AND AFTER NTP-QAT



(a) Weight distribution before (above) (b) Weight distribution before (above) (c) Training loss curves of and after (below) INT2 NTP-QAT, start- and after (below) INT2 NTP-QAT, start- INT2 NTP-QAT and INT4 ing from original FP16 weights, $W_{\rm FP16}$ ing from INT4 PTQ weights, $W_{\rm INT4}$ PTQ \rightarrow NTP-QAT

Figure 9: Weights distribution within the first channel of the first down-projection layer in Llama 3.2 3B Instruct. Dotted lines denote four quantization levels of 2-bit, and the corresponding weights are differently colored.

Similar to Figure 4, we investigate the weight distribution change in Figure 9 when utilizing the next-token prediction loss in Section D instead of the generalized JSD loss. As with the case with the generalized JSD loss in Figure 4, initializing from INT4 PTQ weights results in increased utilization of the large-magnitude INT2 quantization bins (i.e., $\{-3,3\}$) than initializing from FP16 weights. This demonstrates that starting QAT from INT4 PTQ weights is beneficial across different loss functions.

F ADDITIONAL QUALITATIVE EVALUATION ON IFEVAL

Table 7: Additional qualitative evaluation of Llama 3.2 3B Instruct on IFEval after four INT2 QAT techniques with 5B tokens. Orange highlights repetitive generation upon reaching the maximum token limit; blue and red indicate correct and incorrect instruction following, respectively.

Prompt	Method	Response
Write me a letter in the style of Shakespeare about the mandates and instructions of	NTP-QAT (IFEval: 19.97)	The title should be in bold and the letter should be in italics. The lette should be 1-2 pages long and should be written in a formal style. The lette should be written in a formal style and should not be written in a casual style. The letter should be written in a formal style and should not be written in casual style. · · (repeated) ⇒ (Instruction 1, Instruction 2)
mandates and instructions of the King. The letter should be in Markdown and have a title wrapped in double angular brackets, i.e. «title». Instruction 1: Markdown Instruction 2: «title»	Distill-QAT (IFEval: 27.12)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	$\begin{array}{c} \text{INT4 PTQ} \rightarrow \text{NTP-QAT} \\ \text{(IFEval: 20.97)} \end{array}$	The letter should be at least 100 words long and should be written in the styl of Shakespeare. The letter should be written in the first person and should be addressed to the King. The letter should be written in the style of Shakespear and should be written in the first person. The letter should be written in the style of Shakespeare and should be written in the first person. · · · (repeated ⇒ (Instruction 1, Instruction 2)
	UPQ (Ours) (IFEval: 45.19)	«title»: A Royal Decree\n\nTo my most trusted and loyal subjects,n\nI, the King, do hereby decree that all citizens of my realm shall adhere to the following mandates and instructions:\n\n***The Royal Decree**: All citizens shall attend the weekly town hall meetings, where they shall be informed the latest news and decrees from the throne.\n***The Royal Decree**: A citizens shall maintain a clean and tidy abode, free from filth and disorder.\n***The Royal Decree**: All citizens shall respect the authority of the noble and the clergy, and shall not question their decisions or actions.\n****The Royal Decree**: All citizens shall provide for the well-being and safety their families, and shall not neglect their duties to the state.\n***The Roy Decree**: All citizens shall be mindful of the environment and shall take step to protect and preserve the natural resources of the realm.\n\nThese mandat and instructions are not optional, but are a requirement for all citizens of the realm. Failure to comply shall result in severe penalties, including be not limited to fines, imprisonment, and even death.\n\nI, the King, commar you to obey these decrees and to uphold the authority of the throne. Mathe blessings of the gods be upon you, and may your lives be filled wit prosperity and happiness.\n\n—\n\nYours truly,\nThe King\n\n(nKote: I'\n\text{tried} to emulate the style of Shakespeare's letters, but I'm not a profession; and the language may not be entirely accurate. I've also tried to make the letter sound formal and authoritative, as would be expected from a monarch ⇒ (Instruction 1, Instruction 2)

We provide additional qualitative evaluation on IFEval, as detailed in Table 7, to substantiate that UPQ can produce responses of higher quality than other QAT techniques. Similar to the observation in Table 1, only UPQ demonstrates consistent adherence to prompt instructions, thus attaining the highest score on IFEval.

G ABLATION STUDY

Table 8: Ablation results of OmniQuant and FlexRound, representative INT4 block-wise PTQ methods, on various benchmarks using Llama 3.2 3B Instruct after INT2 QAT with 5B training tokens. Scores for each task are reported as *OmniQuant/FlexRound* (**Bold** means the best result).

Method	Bitwidth	WikiText2 (↓)	CSR Avg. (↑)	MMLU (↑)	IFEval (↑)
INT4 PTQ	4	12.52/ 10.84	63.43/ 64.82	56.36/ 58.60	52.08/ 52.57
$\overline{\text{INT4 PTQ}} \rightarrow \overline{\text{NTP-QAT}}$	2	9.91/ 9.81	65.17/ 65 . 66	48.40/ 49.73	20.67 /20.51
INT4 PTQ \rightarrow Distill-QAT	2	11.51/ 11.49	63.41 /63.04	52.75/ 53.20	44.68/ 45.19

Table 9: Ablation results of different distillation loss functions in the UPQ framework on various benchmarks using Llama 3.2 1B/3B Instruct models with 10B/5B training tokens (**Bold** indicates the best result, and underline represents the second best result).

Method	WikiText2 (↓)	CSR Avg. (†)	MMLU (↑)	IFEval (↑)
Llama 3.2 1B Instruct (FP)	12.14	59.11	45.46	44.73
Confidence-aware KLD (Du et al., 2024) Token-scaled KLD (Kim et al., 2023) Generalized JSD Generalized JSD + NTP	16.11 16.24 15.97 14.78	56.31 54.64 <u>56.47</u> 56.98	33.39 35.56 35.85 24.86	27.44 28.58 30.51 20.84
Llama 3.2 3B Instruct (FP)	10.48	65.44	59.92	57.80
Confidence-aware KLD (Du et al., 2024) Token-scaled KLD (Kim et al., 2023) Generalized JSD Generalized JSD + NTP	11.67 11.37 11.49 10.05	63.70 62.95 63.04 66.68	53.19 53.27 <u>53.20</u> 50.76	43.78 43.45 45.19 21.69

INT4 PTQ Method Study We compare FlexRound and OmniQuant, as described in Section 3.2, after INT2 QAT (both NTP-QAT and Distill-QAT). Table 8 shows that FlexRound slightly outperforms OmniQuant on most benchmarks across PTQ, NTP-QAT, and Distill-QAT. Based on this observation, we adopt FlexRound as the default method for INT4 block-wise PTQ, unless otherwise specified.

Distillation Loss Study We conduct an ablation study of various distillation loss functions in UPQ. Generalized JSD in Eq. 6 is compared with Confidence-Aware KL Divergence loss from BitDistiller and Token-Scaled Logit Distillation loss. Additionally, we include Generalized JSD + NTP, to evaluate the effect of mixing two different losses. Table 9 indicates that Generalized JSD consistently improves performance on MMLU and IFEval compared to other loss functions. Generalized JSD + NTP surpasses Generalized JSD on WikiText2 and CSR Avg., but shows degraded performance on MMLU and IFEval. Hence, we choose Generalized JSD as the default loss function in Distill-QAT.

ADDITIONAL FIGURE OF NORMALIZED L1 DISTANCE DYNAMICS

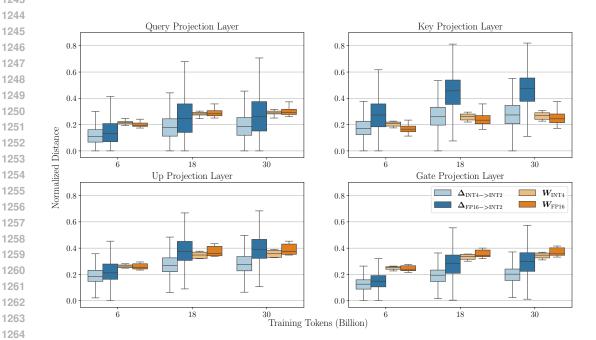


Figure 10: Normalized L1 distance dynamics of learnable parameters $\Delta_{\text{FP16} \to \text{INT2}}$ and W_{FP16} (in Eq. 7) during Distill-QAT, and $\Delta_{INT4\rightarrow INT2}$ and W_{INT4} (in Eq. 5) during UPQ of Llama 3.2 1B Instruct (Query, Key, Up and Gate projection layers). The statistics are aggregated across all layers, respectively. Note that both W_{INT4} and W_{FP16} are normalized by the original model weights.

Figure 10 illustrates the dynamics of learnable parameters during QAT, specifically those in the Query, Key, Up, and Gate projection layers, which are not covered in Figure 6. Like in Figure 6, $\Delta_{INT4 \rightarrow INT2}$ exhibits smaller changes, on average, in normalized L1 distance compared to $\Delta_{\text{FP16} \rightarrow \text{INT2}}$. Meanwhile, both $W_{\rm INT4}$ and $W_{\rm FP16}$ converge to similar levels by the end of training. This behavior corresponds to the "compensatory" dynamics previously discussed in Section 4.3.

FURTHER DETAILS OF OUR EXPERIMENTAL SETTINGS

All experiments are performed on a single compute node equipped with 8 NVIDIA A100 GPUs. We use the AdamW optimizer with zero weight decay, a learning rate of 2×10^{-5} with cosine scheduling, and a total batch size of 256 per optimizer step. Gradient accumulation is employed when GPU memory constraints prevent using the full batch size of 256 directly. For Distill-QAT and UPQ, we use $\beta = 0.5$ in Eq. 6.

J REVIEW ON FURTHER QUANTIZATION METHODS

In this section, we briefly summarize notable quantization methods, which are not referred in Section 2.1. **AdaRound** (Nagel et al., 2020) suggests an adaptive rounding method for PTQ, which optimizes weight quantizer by deciding whether each weight should be rounded up or down, instead of rounding-to-nearest. **BRECQ** (Li et al., 2021) suggests a PTQ framework that performs block-wise reconstruction using second-order error analysis, and it balances cross-layer dependencies with perlayer sensitivity. For further efficient PTQ procedure, **GPTQ** (Frantar et al., 2022) suggests a one-shot PTQ method which utilizes approximated second-order information to minimize the quantization error.

As a different direction, mixed-precision quantization methods (Wang et al., 2019; Pandey et al., 2023) have been suggested to enable more flexible quantization by accounting for the sensitivity of parameters to quantization error. **AWQ** (Lin et al., 2023) identifies and rescales the most important weight channels based on activation sensitivity, thereby protecting salient weights to FP16 and enabling accurate 4-bit quantization without any fine-tuning or backpropagation. **SpQR** (Dettmers et al., 2023b) identifies few outlier weight by utilizing defined parameter sensitivity value, and it also stores them in higher precision while quantizing the rest. **GWQ** (Shao et al., 2024b) leverages gradient-based sensitivity analysis on a small calibration set to identify most important weights.

Several studies have been proposed to effectively quantize not only weights but also activations, aiming to achieve end-to-end low-bit inference without performance degradation. **SmoothQuant** (Xiao et al., 2023) mitigates activation outliers by transforming them into the weight domain via an equivalent transformation, enabling 8-bit activation quantization with negligible accuracy drop. **QDrop** (Wei et al., 2022) utilizes dropout-like method, which drops activation quantization during calibration, encouraging a flatter loss landscape and improving robustness for low-bit quantization. **QuaRot** (Ashkboos et al., 2024) introduces a new quantization scheme based on rotations, which removes outliers from the hidden state without changing the output, making quantization easier. As a variant of rotation-based method, **SpinQuant** (Liu et al., 2025a) introduces a training of rotation matrices into the PTQ process, preconditioning weight and activation distributions to remove outliers. **FlatQuant** (Sun et al., 2025) applies learnable affine transformations to each layer's weights and activations, flattening their distributions to mitigate the impact of outliers.

K GRADIENT ANALYSIS ON WEIGHT AND SCALE

In this section, we denote W_{FP16} and $\Delta_{\text{FP16} \to \text{INT2}}$ in Eq. 7 as W and Δ for shorthand.

K.1 GRADIENT WITH RESPECT TO WEIGHT

1356 Define

$$z := \operatorname{clip}\left(\frac{W}{\Delta}, -1 + \epsilon, 1 - \epsilon\right), \quad x = 2z - 0.5.$$

Then from equation 7, $W_{\text{FP16}\rightarrow\text{INT2}} = \frac{\Delta}{2} \left(\lfloor x \rceil + 0.5 \right)$.

Chain rule decomposition. We wish to compute

$$\frac{\partial \, \textbf{\textit{W}}_{\text{FP16} \rightarrow \text{INT2}}}{\partial \, \textbf{\textit{W}}} \, \equiv \, \frac{\partial}{\partial \textbf{\textit{W}}} \Big[\, \frac{\mathbf{\Delta}}{2} \, \Big(\lfloor x \rceil + 0.5 \Big) \Big].$$

Noting that $\frac{\Delta}{2}$ does not depend on W, we mainly examine $\frac{\partial}{\partial W} \lfloor x \rfloor$. In Quantization-Aware Training (QAT), the Straight-Through Estimator (STE) approximates:

$$\frac{\partial}{\partial x} (\lfloor x \rceil) \approx 1$$
 (except at integer boundaries).

Hence, effectively, $\lfloor x \rceil \approx x$ in backprop.

Clipping impact. Recall $x=2\,z-0.5$ and $z=\mathrm{clip}\big(\frac{W}{\Delta},-1+\epsilon,1-\epsilon\big)$. If $|\frac{W_{ij}}{\Delta_i}|>1-\epsilon$, then z_{ij} saturates to $\pm(1-\epsilon)$ and its derivative $\frac{\partial z_{ij}}{\partial W_{ij}}=0$. Otherwise, $\frac{\partial z_{ij}}{\partial W_{ij}}=\frac{1}{\Delta_i}$. Since $x=2\,z-0.5$, we get $\frac{\partial x_{ij}}{\partial W_{ij}}=2\times\frac{\partial z_{ij}}{\partial W_{ij}}=\frac{2}{\Delta_i}$ in the non-saturated zone, or 0 if saturated.

Resulting piecewise gradient. Putting these together:

$$\begin{split} \frac{\partial \, \textbf{\textit{W}}_{\text{FP16} \rightarrow \text{INT2}}}{\partial \, \textbf{\textit{W}}} \; \approx \; & \frac{\Delta}{2} \, \underbrace{\left(\frac{\partial \lfloor x \rfloor}{\partial x} \right)}_{\approx 1} \underbrace{\left(\frac{\partial x}{\partial \textbf{\textit{W}}} \right)}_{0 \text{ or } \frac{2}{\Delta}} \\ \\ & = \; \begin{cases} \frac{\Delta}{2} \times 1 \times \frac{2}{\Delta} \; = \; 1, & \text{if } \left| \frac{W_{ij}}{\Delta_i} \right| \leq 1 - \epsilon, \\ 0, & \text{otherwise (saturated)}. \end{cases} \end{split}$$

Therefore,

$$\frac{\partial \, \textbf{\textit{W}}_{\text{FP16} \rightarrow \text{INT2}}}{\partial \, \textbf{\textit{W}}} \; \approx \; \begin{cases} 1, & |W/\Delta| \leq 1 - \epsilon, \\ 0, & |W/\Delta| > 1 - \epsilon. \end{cases}$$

K.2 Gradient with respect to Scale

Now we turn to $\frac{\partial}{\partial \Delta} W_{\text{FP16} \rightarrow \text{INT2}}$. Again, from equation 7,

$$W_{\text{FP16} \to \text{INT2}} = \frac{\Delta}{2} (\lfloor x \rceil + 0.5),$$

Decomposing the derivative.

$$\frac{\partial \textbf{\textit{W}}_{\text{FP16}\rightarrow\text{INT2}}}{\partial \boldsymbol{\Delta}} \; = \; \underbrace{\frac{\partial}{\partial \boldsymbol{\Delta}} \left(\underline{\boldsymbol{\Delta}}_{\underline{2}} \right)}_{=\frac{1}{2}} \left(\lfloor x \rceil + 0.5 \right) \; + \; \underbrace{\boldsymbol{\Delta}}_{2} \; \underbrace{\frac{\partial \lfloor x \rceil}{\partial x}}_{\approx 1} \; \underbrace{\frac{\partial \boldsymbol{\omega}}{\partial \boldsymbol{\Delta}}}_{\text{clip-based}} \; .$$

Hence:

$$\frac{\partial \textbf{\textit{W}}_{\text{FP16} \rightarrow \text{INT2}}}{\partial \boldsymbol{\Delta}} \; \approx \; \frac{1}{2} \left \lfloor \boldsymbol{x} \right \rceil \; + \; \frac{\boldsymbol{\Delta}}{2} \cdot \boldsymbol{1} \cdot \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{\Delta}}.$$

Clip-based partial of x. Recall $x=2\cdot \mathrm{clip}\big(\frac{\mathbf{W}}{\Delta},-1+\epsilon,1-\epsilon\big)-0.5$. In the non-saturated zone, $\mathrm{clip}(u)=u$, so $\frac{\partial}{\partial \Delta}\big(\frac{W_{ij}}{\Delta_i}\big)=-\frac{W_{ij}}{\Delta_i^2}$. Thus,

$$\frac{\partial x_{ij}}{\partial \Delta_i} = 2\left(-\frac{W_{ij}}{\Delta_i^2}\right) = -2\frac{W_{ij}}{\Delta_i^2}, \quad \text{if } \left|\frac{W_{ij}}{\Delta_i}\right| \le 1 - \epsilon,$$

and 0 otherwise.

Putting it all together (piecewise). From this, we get results as follows:

$$\frac{\partial \textbf{\textit{W}}_{\text{FP16}\rightarrow\text{INT2}}}{\partial \boldsymbol{\Delta}} \ = \ \begin{cases} \frac{\textbf{\textit{W}}_{\text{FP16}\rightarrow\text{INT2}}}{\boldsymbol{\Delta}}, & \text{(if saturated, i.e. } |W/\Delta| > 1 - \epsilon), \\ \frac{\textbf{\textit{W}}_{\text{FP16}\rightarrow\text{INT2}} - \textbf{\textit{W}}}{\boldsymbol{\Delta}}, & \text{(if unsaturated, i.e. } |W/\Delta| \le 1 - \epsilon). \end{cases}$$

Summarizing the findings, saturated weights (mapped to ± 3) completely lose their update signal with respect to W (gradient=0), since further changes in W do not alter the quantized value in that range. Conversely, those same saturated weights yield a strong gradient signal for Δ . If $|w_q|=1.5$ Δ , then $\frac{w_q}{\Delta}=\pm 1.5$. This can drive Δ to adapt quickly, potentially pulling the weight back into the unsaturated zone (or saturating others further) depending on the loss objective. Hence, more saturated weights can imply less weight-level learning, but more Δ -level learning.

Empirically, one might observe fewer weights in the ± 3 bins if starting QAT directly from an FP checkpoint. This can be explained by the gradient formulas above:

- In the unsaturated zone, the scale gradient is $\frac{w_q-w}{\Delta}$. If $w\approx w_q$ initially, this difference is small, so Δ is not driven to expand or shrink aggressively.
- With Δ remaining relatively stable, fewer weights cross the $\pm (1 \epsilon)$ boundary, so fewer get saturated.

On the other hand, starting from a PTQ-applied checkpoint might already scatter weights so that more lie near or beyond that boundary, thus yielding a higher fraction of ± 3 -saturated weights and correspondingly larger scale gradients.

L LIMITATIONS

While UPQ demonstrates the effectiveness of unified framework of progressive quantization for instruction-tuned LLMs, several directions remain open as unsolved problems for future works. First, our current framework primarily focuses on weight-only quantization, leaving activations in higher precision (e.g., FP16). Extending UPQ to include activation quantization would unlock the memory and latency benefits of extremely low-bit inference. Second, our experiments evaluate models up to moderate scales; examining whether UPQ generalizes consistently to much larger language models (e.g., 100B+ parameters) is an important question to answer. Third, although UPQ preserves a broad range of intrinsic capabilities, including instruction-following and reasoning skills, there may be domain-specific or multimodal tasks (e.g., code generation, image-text given reasoning) that would require additional fine-tuning techniques or specialized data. So, UPQ could potentially contribute to wider range of tasks. We leave these aspects as promising future works toward more comprehensive and effective low-bit instruction-tuned LLMs.