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ABSTRACT

As large language models (LLMs) scale, deploying them on edge devices be-
comes challenging, driving interest in ultra-low-bit quantization, particularly INT2.
Through quantization error bound derivation, we identify two key factors for effec-
tive 2-bit quantization of instruction-tuned LLMs: (1) progressive quantization is
critical, introducing an intermediate 4-bit stage—quantizing FP16 to INT4 before
reducing to INT2; (2) quantization-aware training (QAT) should minimize the
divergence between INT2 and FP16 output distributions, rather than optimizing
with next-token prediction loss, to retain both general linguistic knowledge and
instruction-following ability. Building on these analyses, we propose Unified Pro-
gressive Quantization (UPQ), which combines INT4 PTQ with a distillation-based
INT2 QAT. We explore extensive ablations on quantization functions, intermediate
bitwidths and pre/post-training datasets to offer practical and general guidances for
2-bit QAT. UPQ quantizes instruct LLMs to INT2 with open-source pre-training
data, achieving state-of-the-art MMLU and IFEval results.

1 INTRODUCTION

Recent work on 2-bit quantization of large language models (LLMs) has been spearheaded by ParetoQ
Liu et al. (2025b), which leverages next-token prediction (NTP)-based QAT to compress pre-trained
models. While effective for base models on general pretraining tasks such as PPL and CSR, this
approach falls short when applied to instruction-tuned LLMs. As the leftmost points of Figure 1(a)
and Figure 1(b) exemplify, ParetoQ suffers degradation on MMLU (Hendrycks et al., 2021) and
IFEval (Zhou et al., 2023). This underscores the need for a quantization strategy tailored to instruction-
tuned LLMs to preserve general linguistic knowledge and instruction-following capabilities.

Based on the analytical formulation of the quantization loss bound, we argue that progressive
quantization is critical for quantizing instruct models. Instead of jumping directly from FP16 to
INT2, we insert an intermediate INT4 step using block-wise post-training quantization (PTQ) (Li
et al., 2021; Lee et al., 2023; Shao et al., 2024a). This INT4 checkpoint could provide a favorable
initial point for subsequent QAT in INT2. With a toy example, we demonstrate that our progressive
quantization effectively minimizes the upper bound term of a given quantization loss. Another crucial
factor is that next-token prediction does not recover instruction-following ability. We therefore adopt
distillation-QAT, training the INT2 model to minimize the generalized Jensen–Shannon divergence
between its output distribution and that of the FP16 model.

We thus propose Unified Progressive Quantization (UPQ), which combines an FP16→INT4→INT2
sequence with distillation-QAT: block-wise PTQ yields an INT4 checkpoint, followed by distillation
to produce the final INT2 model. UPQ recovers general language knowledge and instruction-following
capabilities of FP16 model, achieving state-of-the-art results on MMLU and IFEval. We conduct
comprehensive ablations over quantization strategies, loss functions and datasets to validate our design
and provide practical and general guidelines on low-bitwidth QAT. To the best of our knowledge,
UPQ is the first method to effectively quantize open-source instruction-tuned LLMs to INT2.

Our contribution is threefold:

• Progressive quantization: we show that inserting an efficient block-wise PTQ step to
produce an INT4 model prior to QAT substantially reduces error for INT2 quantization.
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Figure 1: Change in MMLU (left) and IFEval (center) scores during training (up to 5B tokens)
depending on three INT2 QAT methods. The rightmost bar graph compares their final MMLU and
IFEval scores. All metrics were obtained with Llama 3.2 3B Instruct.

• Distillation-based QAT: we propose a distillation loss based on generalized
Jensen–Shannon divergence to align the INT2 model with its FP16 teacher, preserving
instruction-following capabilities.

• Unified analysis on 2-bit QAT: we conduct ablations on quantization functions, intermedi-
ate bit-widths and training datasets to test generality of UPQ.

2 PRELIMINARY

2.1 QUANTIZATION FOR LLMS

Edge LLM deployments are typically memory-bounded (Husom et al., 2025), and weight-only
quantization alleviates these constraints by reducing model size and bandwidth. To this end, PTQ is a
widely studied approach that applies low-bit quantization to FP models using minimal calibration
data, without end-to-end optimization (Nagel et al., 2020; Li et al., 2021; Lee et al., 2023; Shao et al.,
2024a; Lee et al., 2025). Notable PTQ methods include BRECQ (Li et al., 2021), FlexRound (Lee
et al., 2023), and OmniQuant (Shao et al., 2024a) among others (see appendix J for an extensive
review of PTQ methods). Despite its efficiency, PTQ suffers performance degradation at precisions
lower than 4 bits (Liu et al., 2025b; Li et al., 2024), due to limited error compensation and unsolved
cross-block dependencies in transformer architectures (Ding et al., 2025).

In such cases, QAT becomes critical to recover accuracy by optimizing model weights with sufficient
training capacity (Nagel et al., 2022; Liu et al., 2021). EfficientQAT (Chen et al., 2024) features
two-phase training: initial block-wise optimization of all parameters followed by end-to-end fine-
tuning focused on quantization parameters. LLM-QAT (Liu et al., 2023) explores data-free QAT
by generating synthetic outputs of an FP model. ParetoQ (Liu et al., 2025b) crafts specialized
quantization functions per bit-width and performs NTP to compress base models, surpassing prior
methods in 2-bit, ternary, and 1-bit precisions.

2.2 MOTIVATION : LOSS VARIATION BOUND FOR FP16 → INT2 QUANTIZATION

We derive a quantization error bound and analyze its upper bound to identify approaches for tightening
the bound. Let L(W ) be the training loss of a neural network as a function of its weight tensor W .
By the multivariate mean-value theorem, if f : Rn→Rm is differentiable, then for any x, x̄ there
exists y on the line segment between them such that

f(x)− f(x̄) = f ′(y) (x− x̄) ⇒ ∥f(x)− f(x̄)∥ ≤ ∥f ′(y)∥ ∥x− x̄∥. (1)

Quantized vs full-precision weights. Let WFP16 denote the full-precision weights and let WINT2 be
the quantize-dequantized INT2 weights. Define the straight-line path

S(WFP16,WINT2) =
{
W (τ) = WFP16 + τ (WINT2 −WFP16) : τ ∈ [0, 1]

}
. (2)
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Applying equation 1 to L along S yields the loss variation bound∣∣L(WFP16)− L(WINT2)
∣∣ ≤ ∥WINT2 −WFP16∥︸ ︷︷ ︸

∆W

· sup
W∈S(WFP16,WINT2)

∥∇L(W )∥︸ ︷︷ ︸
Gmax

. (3)

equation 3 isolates two factors that determine the loss change under INT2 quantization: (A) the
weight perturbation ∆W and (B) the worst-case gradient norm Gmax along the interpolation path.

How to reduce each term. For (A), if we reinitialize the weights to a quantization-friendly point that
minimizes the INT2 perturbation, the factor ∆W drops substantially. A direct formulation is

W ⋆ ∈ argmin
W ′: ∥W ′−WFP16∥≤ε

∥∥WINT2 −W ′∥∥ (4)

This reinitialization places parameters to where 2–bit quantization induces minimal deviation. For
(B), we can minimize Gmax by making the INT2 model stay in a low–loss neighborhood of the
FP16 model via function–space alignment. A practical approach to this end would be distillation
Harutyunyan et al. (2023); Gou et al. (2021), which matches the INT2 student’s outputs to the FP16
teacher’s outputs. This keeps WINT2 close to WFP16 in function space and empirically reduces the
supremum gradient term Gmax along S(WFP16,WINT2).

Motivation for our progressive quantization. Putting (A) and (B) together, Eq. 3 suggests that a
good 2-bit path should simultaneously shrink the ∆W and Gmax. We therefore initialize INT2 QAT
from a loss–equivalent INT4 PTQ checkpoint, WINT4 = Q4(WFP16) with L(WINT4) ≈ L(WFP16),
which keeps the comparison on the same loss scale while moving the parameters closer to the INT2
manifold, directly reducing the first factor ∆W . During QAT, we apply distillation to align the INT2
student with the FP16 teacher in function space, keeping the trajectory within a low–loss neighborhood
and empirically lowering Gmax. These two design choices, (1) INT4 as a loss–preserving, and (2)
INT2–friendly initialization and distillation for function–space alignment tighten the bound in Eq. 3
and thus motivate our progressive quantization via FP16 → INT4 → INT2.

3 METHODOLOGY

Figure 2: Overview of UPQ. Colors denote different bit widths. UPQ first applies INT4 PTQ to
produce 4-bit quantize–dequantize (QDQ) weights with minimal performance loss relative to FP16.
These weights then initialize INT2 QAT, where distillation from the original FP16 model preserves
FP16-level instruction-following ability.

We first present a toy experiment that demonstrates the effect of progressive quantization on 2-
bit QAT. We show that it tightens the loss upper bound derived in Section 3.1. Based on this,
Section 3.2 formulates an efficient block-wise PTQ, which serves as the progressive stage and
furnishes a quantization-friendly initialization. Section 3.3 then formulates a self-distillation-based
QAT objective. Taken together, these components yield our final framework, UPQ. Figure 2 illstrates
the overview framework of UPQ.

3.1 TOY ANALYSIS ON PROGRESSIVE QUANTIZATION

For a controlled comparison between direct FP16→INT2 quantization and progressive quantization
via INT4, we run a toy experiment with a vision-Transformer (3 layers and 64 hidden dimensions)
on MNIST dataset (Lecun et al., 1998). We numerically track the loss bound’s terms from Section
2.2—∆W and Gmax—and assess how their divergence impacts downstream accuracy.
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Figure 3: ∆W , Gmax, ∆WGmax, and MNIST accuracy during INT2 QAT. As exact Gmax is in-
tractable, we approximate it with Monte Carlo sampling with τ ∼ U(0.2, 0.8) over training samples.

Figure 3 presents the results of the toy experiment. The training loss and test accuracy of INT4→INT2
consistently outperform those of FP16→INT2. Based on Eq. 3, we hypothesize that the loss variation
bound influences training efficacy. Specifically, ∆W exhibits a persistent gap between the two curves
that does not decrease within the given training budget. For Gmax, both curves consistently remain
separated but exhibit a decreasing trend. As a result, their product term corresponding to the right-hand
side of Eq. 3 is strictly lower for INT4→INT2 than for FP16→INT2. This shows that progressive
quantization more tightly minimizes the upper bound derived in Eq. 3.

3.2 INT4 POST-TRAINING QUANTIZATION (PTQ) FOR SUBSEQUENT INT2 QUANTIZATION

Block-wise PTQ aims to minimize the mean squared error between the outputs of an intermediate
FP32/FP16 block and those of its quantized counterpart, as proposed by Li et al. (2021). By addressing
the intra-block dependencies during optimization, block-wise PTQ has proven effective for low-bit
per-channel quantization of LLMs (Lee et al., 2023; Shao et al., 2024a; Cheng et al., 2024; Lee
et al., 2025). In particular, INT4 per-channel quantized LLMs obtained via block-wise PTQ achieve
competitive accuracy relative to their original FP16 baselines.

Building on the analysis in the Section 3.1, here we present a concrete instantiation of our progressive
quantization framework. There are many viable ways to implement INT4 PTQ such as Frantar et al.
(2022); Lin et al. (2023); Lee et al. (2023); Shao et al. (2024a); Cheng et al. (2024); Lee et al. (2025).
Among them, we use block-wise PTQ as a practical solution due to its modest training budgets,
near-FP16 accuracy, and ease of deployment. Importantly, the progressive quantization framework is
method-agnostic: any INT4 PTQ technique can be substituted without altering the rest of the pipeline.

Our progressive framework adopts the stretched elastic quantizer (SEQ) from ParetoQ (Liu et al.,
2025b), whose quantization bin set is zero-free (i.e., it does not contain 0; details in Appendix A).
Because INT4 PTQ serves as the initialization point for INT2 QAT, we align the INT4 integer grid
with this zero-free design to minimize the hand-off deviation ∥WINT4 − SEQINT2(WINT4)∥F .

Concretely, we instantiate a representative block-wise PTQ method—FlexRound (Lee et al., 2023) as
the default method for INT4 block-wise PTQ unless otherwise specified. Instead of the conventional
symmetric/asymmetric 4-bit integer sets (e.g., {−8, · · · ,−1, 0, 1, · · · , 7}), we use the balanced
odd-integer set {−15,−13, · · · ,−1, 1, · · · , 13, 15}, which is evenly spaced and excludes 0, thereby
reducing mismatch-induced drift during the INT4→INT2 mapping.

After optimizing WINT4 block-by-block from the first to the last block of an LLM, we subsequently
quantize WINT4 to INT2−replacing WFP16 with WINT4 as below.

WINT4→INT2 = SEQINT2(WINT4) =
∆INT4→INT2

2

(⌊
2 clip

(
WINT4

∆INT4→INT2
,−1 + ϵ, 1− ϵ

)
− 0.5

⌉
+ 0.5

)
, (5)

where ∆INT4→INT2 ∈ Rm×1
>0 is initialized to max(|WINT4|) and learnable.

When initializing INT2 QAT, utilizing the 16→4 mapping from WINT4 rather than the FP weight
increases the use of large-magnitude bins {−3, 3} (9.5%/9.4% in Fig. 4(b) vs. 2.0%/2.3% in
Fig. 4(a)), reduces INT2 quantization weight perturbation error (0.8984 → 0.5156), and yields
lower training loss (Fig. 4(c)). After QAT, the larger-bin allocation further rises to 16.5%/16.4% vs.
4.6%/4.6% (Fig. 4(b) vs. Fig. 4(a)). This highlights a second benefit of progressive quantization:
INT4 PTQ-based initialization amplifies the utility of outer bins.

4
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Figure 4: Weights distribution within the first channel of the first down-projection layer in Llama 3.2
3B Instruct. Dotted lines denote four quantization levels of 2-bit, and the corresponding weights are
differently colored.

One might question whether to leverage INT4 QAT instead of INT4 block-wise PTQ, considering
that QAT typically outperforms PTQ. However, it is noteworthy that QAT requires several hundred
million to billions of tokens and substantial computational resources−involving around one to two
days with a single 8-GPU node for models in the 3B parameter range. By contrast, block-wise PTQ
attains near-FP16 accuracy under INT4 per-channel quantization using only 1–2M tokens from C4 in
a few single-GPU hours (Raffel et al., 2023); hence we adopt INT4 block-wise PTQ.

3.3 INT2 DISTILLATION-BASED QUANTIZATION-AWARE TRAINING (DISTILL-QAT)

Most existing QAT techniques (Liu et al., 2023; Chen et al., 2024; Liu et al., 2025b) rely on next-token
prediction (i.e., NTP-QAT). However, minimizing the next-token prediction loss on a pre-training
corpus during INT2 NTP-QAT of instruction-tuned LLMs often presents challenges in recovering
their instruction-following capability. This limitation stems from the fact that pre-training corpora
primarily consist of general text rather than instruction-response pairs. To address this issue, we
introduce INT2 Distill-QAT, which trains INT2 instruction-tuned LLMs to mimic the token-level
probability distribution of their FP16 counterparts.

To train INT2 instruction-tuned LLMs to imitate the token-level probability distribution of their FP16
baselines, INT2 Distill-QAT minimizes the generalized JSD between the INT2 quantized model
(student, denoted as WINT4→INT2) and its original FP16 counterpart (teacher, denoted as WFP16),
which is a widely used divergence measure in LLM knowledge distillation (Agarwal et al., 2024; Ko
et al., 2024). More formally, let PΘ denote the conditional probability modeled by a decoder-only
transformer parameterized by Θ. Given a pre-training token sequence X = {x1, · · · , xN}, the
objective of INT2 Distill-QAT is given by

LJSD(β) =
1

N

N∑
n=1

DJSD(β)(PWFP16(·|X [:n])||PWINT4→INT2(·|X [:n])), (6)

where DJSD(β)(PWFP16 ||PWINT4→INT2) = βDKL(PWFP16 ||βPWFP16 + (1− β)PWINT4→INT2)

+ (1− β)DKL(PWINT4→INT2 ||βPWFP16 + (1− β)PWINT4→INT2),

DKL is the KL-divergence, X [:n] = {x1, · · · , xn−1}, and β is an interpolation coefficient between
0 and 1 (default: 0.5). The reason behind selecting the generalized JSD is supported by Section G.

By minimizing the loss in Eq. 6 with respect to WINT4 and ∆INT4→INT2−representing the model
and quantization parameters of WINT4→INT2, respectively−we ultimately quantize instruction-tuned
LLMs to INT2 while preserving their instruction-following ability as evidenced in Table 1. We refer
to this whole approach (i.e., INT4 PTQ → INT2 Distill-QAT) as UPQ. A notable aspect here is that
during QAT−whether using NTP-QAT or Distill-QAT−WINT4 is treated as FP16 weights. In other
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Table 1: Qualitative evaluation of the Llama 3.2 3B Instruct model on IFEval after four INT2 QAT
techniques with 5B tokens. Orange highlights repetitive generation upon reaching the maximum
token limit; blue and red indicate correct and incorrect instruction following, respectively.

Prompt Method Response
Write two jokes about rockets.
Do not contain commas in
your response. Separate the
two jokes with 6 asterisk
symbols: ******.

Instruction 1: No comma
Instruction 2: Two jokes
Instruction 3: Separation

NTP-QAT
(IFEval: 19.97)

Do not use commas in your response. Separate the two jokes with 6 asterisk
symbols: ******.· · · (repeated) ⇒ (Instruction 1, Instruction 2, Instruction 3)

Distill-QAT
(IFEval: 27.12)

‘\n\nHere are the two jokes:\n\n1. Why did the rocket go to the party? Because
it was a * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * *· · · (repeated)’ ⇒ (Instruction 1, Instruction 2, Instruction 3)

INT4 PTQ → NTP-QAT
(IFEval: 20.97)

Joke 1: A man walks into a bar and sits down. The bartender asks him what
he wants. The man replies, "I want a rocket." The bartender says, "Sorry, we
don’t sell rockets here." The man replies, "I don’t want a rocket. I want a
rocket ship." Joke 2: A man walks into a bar and sits down. The bartender
asks him what he wants. The man replies, "I want a rocket." The bartender
says, "Sorry, we don’t sell rockets here." The man replies, "I don’t want a
rocket. I want a rocket ship." The bartender says, "Sorry, we don’t sell rockets
here."· · · (repeated) ⇒ (Instruction 1, Instruction 2, Instruction 3)

UPQ (Ours)
(IFEval: 45.19)

\nHere is the first joke: \nWhy did the rocket go to therapy? \nBecause it was
feeling a little out of this world. \n****** \nHere is the second joke: \nWhy
did the rocket go to the party? \nBecause it was a blast. \n****** \n\nI hope
you enjoy these jokes. I am happy to provide more jokes if you would like.
⇒ (Instruction 1, Instruction 2, Instruction 3)

words, although WINT4 is initially composed of 16 discrete values, it is optimized as if it were in
FP16, allowing it to evolve beyond the original 16-value constraint over the course of QAT.

4 EXPERIMENTS

This section evaluates UPQ on various downstream benchmarks. As Liu et al. (2025b) demonstrates
that NTP-QAT with SEQ (i.e., ParetoQ) substantially outperforms existing QAT techniques−such
as BitDistiller (Du et al., 2024) and EfficientQAT (Chen et al., 2024)−at INT2, UPQ is compared
primarily against NTP-QAT. Experiments are conducted on instruction-tuned LLMs−Llama 3.2 1B
Instruct, Llama 3.2 3B Instruct, and Llama 3.1 8B Instruct (Grattafiori et al., 2024)−with the goal of
preserving model capabilities rather than training from scratch.

For Llama 3.2 1B Instruct, we perform UPQ on 30B tokens, which corresponds to the saturation point
reported by Liu et al. (2025b). Due to resource constraints, Llama 3.2 3B Instruct and Llama 3.1 8B
Instruct are trained with 5B tokens. The pre-training dataset used is DCLM-Edu (Allal et al., 2025b),
which is filtered from DCLM (Li et al., 2025) by applying an educational quality classifier (Lozhkov
et al., 2024) and retaining samples with a quality score greater than or equal to 3. All training texts in
DCLM-Edu were packed with a context length of 1024 tokens. For the instruction finetuning dataset,
we adopt the publicly released OLMo-v2-SFT-mixture (OLMo) OLMo et al. (2024). Further details
of experimental settings are provided in Appendix I.

We consider both pretraining-style and instruction-following benchmarks. The former includes
WikiText2 perplexity (PPL) (Merity et al., 2016) and the average score across five zero-shot CSR
tasks (CSR Avg.): ARC-e, ARC-c (Clark et al., 2018), PIQA (Bisk et al., 2020), HellaSwag (Zellers
et al., 2019), and WinoGrande (Sakaguchi et al., 2019). The latter includes MMLU (Hendrycks et al.,
2021) and IFEval (Zhou et al., 2023), which jointly assess reasoning and alignment capabilities.
WikiText2 PPL is measured at a 4096 context length. All other benchmarks are run using the Language
Model Evaluation Harness (Gao et al., 2024) with default settings.

4.1 ABLATION STUDY

In our UPQ framework, multiple factors drive sensitivity in evaluation benchmark performances. We
conduct comprehensive ablations for 2-bit QAT across three axes: (i) quantization function and grid
design, (ii) intermediate bit-width for progressive quantization, and (iii) dataset usage during QAT,
and report the key findings. Please see Appendix 4.1 for additional ablations on INT4 PTQ methods
and distillation losses.

Quantization function study As INT2 allows only four bins, the quantization function significantly
affects weight distribution and gradient flow, thereby impacting QAT performance. We examine four
variants in Table 2: asymmetric [2,1,0,1], symmetric [-2,-1,0,1], perfectly symmetric [-3,-1,1,3], and
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perfectly symmetric [-7,-2,2,7]. Within the same grid [-2,1,0,1], the asymmetric variant beats the
symmetric one, showing that shifting the levels helps when weight values are not centered at zero.
Perfectly symmetric grids generally outperform two’s complement, and among them, the gaussian-
like [7,2,2,7] yields the best results. This suggests that aligning bin placement with the underlying
distribution enhances quantization quality.

Table 2: Quantization grid ablation study with 30B token training of Llama 3.2 1B Instruct

Quantization Grid Latency (ms) WikiText2 (↓) CSR Avg. (↑) MMLU (↑) IFEval (↑)
FP16 7.22 12.14 59.11 45.46 44.73

INT2 ([-2, -1, 0, 1], sym) 3.78 19.27 53.45 27.56 23.83
INT2 ([-2, -1, 0, 1], asym) 3.78 18.75 56.17 33.26 28.99
INT2 ([-3, -1, 1, 3]) 4.62 15.46 56.18 37.59 28.56
INT2 ([-7, -2, 2, 7]) 4.62 15.30 56.89 42.01 30.72

Intermediate bit-width study We compare progressive quantization paths toward 2-bit QAT. On
MMLU and IFEval, the INT4 PTQ path is clearly superior to INT8 PTQ path. We posit that, although
both INT8 and INT4 are close to FP16, the narrower gap from INT4 to INT2 eases the final 2-bit
step and better preserves instruction-following capability. Starting directly from INT2 PTQ proves to
be a poor initialization due to large initial losses. Finally, while INT4 QAT delivers the best overall
accuracies, it requires 2× training time compared to the progressive PTQ→QAT routes.

Table 3: Comparison of various progressive quantization schemes.

Method # tokens WikiText2 (↓) CSR Avg. (↑) MMLU (↑) IFEval (↑) Training time (GPU hours)

Llama 3.2 3B Instruct NA 10.48 65.44 59.92 57.80 NA

FP16
QAT−−→ INT2 5B 16.18 59.01 45.29 27.12 332

FP16
PTQ−−→ INT8

QAT−−→ INT2 5B 11.46 63.59 52.22 42.73 332

FP16
PTQ−−→ INT4

QAT−−→ INT2 (Ours) 5B 11.49 63.04 53.20 45.19 339

FP16
PTQ−−→ INT2

QAT−−→ INT2 5B 13.54 60.60 44.85 28.15 339

FP16
QAT−−→ INT4

QAT−−→ INT2 5B 10.87 63.95 55.05 48.03 664

Training Dataset Study Our study assumes a realistic constraint: the original pre-training/SFT/RL
data and recipes are proprietary Grattafiori et al. (2024); Qwen et al. (2025); Team et al. (2025).
We therefore rely strictly on public corpora and find the pre-training–style DCLM-Edu effective for
2-bit UPQ. This mirrors industrial deployment, where industry engineers often work with training-
complete customer models without data access. Because instruction-tuning datasets are far smaller
than pre-training corpora (often millions vs. billions of tokens), we match training steps by training
three epochs on OLMo alone (1.8B tokens) and one epoch on OLMo when preceded by DCLM-Edu.
As Table 4 shows, instruction-only fine-tuning performs poorly for INT2 QAT; using only pre-training
data (DCLM-Edu) recovers IFEval, while maintaining strong perplexity and knowledge metrics. A
two-stage schedule (DCLM-Edu → OLMo) further boosts IFEval to 55.42 but slightly degrades
Wikitext2 and MMLU—revealing a non-trivial trade-off between instruction-following and general
language knowledge/perplexity. UPQ enables effective 2-bit quantization of instruction-tuned models
without requiring extra instruction-tuning data. The best way to incorporate instruction-tuning into
INT2 QAT remains an open design choice.

Table 4: Ablation of various training datasets for QAT.

Method # tokens WikiText2 (↓) CSR Avg. (↑) MMLU (↑) IFEval (↑)
Llama 3.2 3B Instruct NA 10.48 65.44 59.92 57.80

OLMo 1.8B 588.00 36.38 24.60 19.56
DCLM-Edu (Ours) 5B 11.49 63.04 53.20 45.19
DCLM-Edu + OLMo 5.6B 11.92 62.06 51.35 55.42
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Table 5: Benchmark results of four INT2 QAT methods applied to various Llama 3 Family.

Method # tokens WikiText2 (↓) CSR Avg. (↑) MMLU (↑) IFEval (↑)
Llama 3.2 1B Instruct NA 12.14 59.11 45.46 44.73

NTP-QAT 30B 14.86 59.81 27.03 20.87
Distill-QAT 30B 18.35 55.54 33.33 27.84
INT4 PTQ → NTP-QAT 30B 14.46 59.25 25.37 20.50
UPQ (Ours) 30B 15.46 56.18 37.59 28.56

Llama 3.2 3B Instruct NA 10.48 65.44 59.92 57.80

NTP-QAT 5B 11.96 60.94 39.17 19.97
Distill-QAT 5B 16.18 59.01 45.29 27.12
INT4 PTQ → NTP-QAT 5B 9.81 65.66 49.73 20.97
UPQ (Ours) 5B 11.49 63.04 53.20 45.19

Llama 3.1 8B Instruct NA 6.75 73.72 68.21 50.05

NTP-QAT 5B 14.31 64.42 43.35 20.81
Distill-QAT 5B 10.69 67.82 54.39 30.99
INT4 PTQ → NTP-QAT 5B 8.36 70.80 55.81 20.06
UPQ (Ours) 5B 8.42 71.61 61.73 44.48
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Figure 5: Change in MMLU (left) and IFEval (right) scores during training (up to 30B tokens)
depending on four INT2 QAT methods. All metrics were obtained with Llama 3.2 1B Instruct.

4.2 MAIN RESULTS

In our main results, we compare four QAT methods: (1) NTP-QAT, (2) Distill-QAT, (3) INT4 PTQ
→ NTP-QAT, and (4) UPQ (ours). This experimental setup is designed to demonstrate that both
techniques proposed in Sections 3.2 and 3.3 should be integrated to effectively recover the intrinsic
capabilities of instruction-tuned LLMs.

Let us begin with Figure 5. According to Liu et al. (2025b), the CSR average score saturates at
30B training tokens under NTP-QAT. However, we observe that neither NTP-QAT nor INT4 PTQ
→ NTP-QAT yields any improvement on Llama 3.2 1B Instruct in MMLU or IFEval scores. For
instance, MMLU accuracy remains around 25%, akin to random guessing. These results suggest that
NTP alone is insufficient to restore general language understanding and instruction-following after
severe quantization (e.g. 2-bit per-channel). The core abilities of instruction-tuned LLMS remains
unrepaired even with extensive training up to 30B tokens.

Table 5 broadens this observation by comparing the four QAT methods across Llama 3.2 1B In-
struct, Llama 3.2 3B Instruct, and Llama 3.1 8B Instruct. Across all model sizes, UPQ consistently
outperforms the others on the MMLU and IFEval benchmarks. Notably, IFEval scores completely
collapsed under both NTP-QAT and INT4 PTQ → NTP-QAT. This underscores that distillation is a
key component for QAT of instruction-tuned LLMs.

In contrast, our strategy−starting from INT4 block-wise PTQ−yields substantial improvements in
MMLU and IFEval scores over the naive initialization. This improvement stand out especially in the
larger models (3B or 8B). For instance, in Llama 3.2 3B Instruct, the MMLU score and the IFEval
score improve from 45.29 to 53.20 and from 27.12 to 45.29 respectively. Similary, in Llama 3.1
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Figure 6: Normalized L1 distance dynamics of learnable parameters ∆FP16→INT2 and WFP16 (in
Eq. 7) during Distill-QAT, and ∆INT4→INT2 and WINT4 (in Eq. 5) during UPQ of Llama 3.2 1B
Instruct (Value, Output, and Down projection layers). The statistics are aggregated across all layers,
respectively. Note that both WINT4 and WFP16 are normalized by the original model weights.

8B Instruct, the MMLU score increases from 54.39 to 61.73, and the IFEval score improves from
30.99 to 44.48. Even on easy downstream tasks such as WikiText2 and CSR Avg., INT4 PTQ →
NTP-QAT-combining our initialization strategy with NTP-proves effective, with only one exception:
the CSR Avg. score of Llama 3.2 1B Instruct under NTP-QAT. This demonstrates that a well-chosen
initialization could recover the degradation of instruction-following behavior, even without relying
on post-training-style datasets typically employed in building instruct-tuned LLMs.

The details of instruction-following behavior across the QAT methods are shown in Table 1, which
presents qualitative results for Llama 3.2 3B Instruct on the IFEval benchmark. While we examined
many qualitative examples (see Appendix), consistent patterns emerge across model behaviors: 1)
NTP-QAT and INT4 PTQ → NTP-QAT tend to produce repetitive outputs early in the generation
process, and 2) Distill-QAT is more likely to follow the instruction initially but tends to fall into
repetition midway through the generation process more often than UPQ.

4.3 ANALYSIS OF LEARNABLE PARAMETER DYNAMICS DURING DISTILL-QAT AND UPQ

Similar to the analysis in Section 3.1, Figure 6 illustrates the dynamics of learnable parameters during
QAT. Tracking Gmax is infeasible at LLM scale, unlike in the toy example. Therefore, we focus on
∆W under different initialization strategies. To provide a more granular perspective, we decompose
the weights into two components: (1) ∆INT4→INT2 and WINT4, (2) ∆FP16→INT2 and WFP16.

As shown, ∆INT4→INT2 consistently deviates less than ∆FP16→INT2 during training. Although WINT4
starts with greater deviation than WFP16 due to the initial PTQ, both converge to a similar level as
training progresses. This observation supports our earlier analysis that a well-chosen initialization
strategy can significantly reduce ∆W , even in the large-scale models such as LLMs.

Liu et al. (2025b) observe that extremely low-bit QAT often induces "reconstruction" behavior rather
than "compensation". We posit that the former risks degradation of instruction-tuned capabilities.
To preserve the behavior of carefully aligned instruction-tuned LLMs, it is preferable to encourage
training dynamics that resemble "compensation". Our results indicate that the proposed initialization
strategy promotes such dynamics, helping retain instruction-following capabilities during INT2 QAT.

5 CONCLUSION

We propose UPQ, a progressive quantization framework that first quantizes an FP16 instruction-tuned
LLM to INT4 using block-wise PTQ, and then to INT2 using Distill-QAT. Our proposed method
utilizes only public data to successfully quantize most popular open-source instruction-tuned LLMs
ranging from 1B to 8B parameters. The resulting INT2 quantized models recover strong language
understanding, reasoning, and instruction-following performance, as shown on the MMLU and IFEval
benchmarks.
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A STRETCHED ELASTIC QUANTIZATION (SEQ) SCHEME FOR INT2

Integer quantization is commonly categorized into symmetric and asymmetric schemes. However, in
the case of INT2 quantization, both approaches might be limited due to the inclusion of “0", allocating
one quantization bin on either the positive or negative side and two bins on the opposite side. Given
that the weights of LLMs typically exhibit a bell-shaped, near-zero-centered distribution (Dettmers
et al., 2023a; Huang et al., 2024), this imbalance in bin allocation might make both symmetric
and asymmetric schemes sub-optimal for INT2 quantization. To address this limitation, we follow
Stretched Elastic Quant (SEQ) Liu et al. (2025b). Specifically, given FP16 weights WFP16 ∈ Rm×n,
the INT2 per-channel quantized weights through SEQ is computed as

WFP16→INT2 = SEQINT2(WFP16) =
∆FP16→INT2

2

(⌊
2 clip

(
WFP16

∆FP16→INT2
,−1 + ϵ, 1− ϵ

)
− 0.5

⌉
+ 0.5

)
,

(7)

where clip(·, a, b) = min(max(·, a), b), ∆FP16→INT2 ∈ Rm×1
>0 is initialized to max(|WFP16|) and

learnable, and ϵ is a small positive constant (e.g., 0.01). As a result, INT2 SEQ represents each weight
using one of four discrete values ∆FP16→INT2

4 {−3,−1, 1, 3}, ensuring balanced bin allocation even
under INT2 quantization.
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B DETAILS OF SECTION 3.1

Parameter Value
Image size 28×28
Patch size 4
Number of layers 3
Number of heads 4
Hidden size 64
MLP hidden size 128

Table 6: ViT configurations on MNIST dataset.

Table 6 shows the detailed configurations of the ViT used in Section 3.1.

The FP16 model is trained from scratch for 1,000 steps, achieving 98.07% test accuracy. We then
quantize this model to INT4 using QAT, reaching 97.65% accuracy to closely match FP16 perfor-
mance. For both FP16→INT2 and INT4→INT2 QAT, we adopt the JSD loss described in Eq. 6, with
the FP16 model as the teacher.

The QAT budget in this toy experiment is approximately two orders of magnitude smaller than that of
large-scale LLM training. This reflects real-world constraints, where modern LLMs (OLMo et al.,
2024; Allal et al., 2025a) require trillions of tokens, whereas our proposed method operates with
around tens of billions. Accordingly, the training budget for both FP16→INT2 and INT4→INT2
QAT is limited to 30 steps.
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C FURTHER TOY ANALYSIS ON PROGRESSIVE QUANTIZATION

(a) Example of the original MNIST dataset (b) Example of the augmented MNIST dataset

Figure 7: Examples of the original and augmented MNIST datasets.

Figure 8: ∆W , Gmax, ∆WGmax, and test accuracy on overall, original, and augmented MNIST
datasets during INT2 QAT.

In this section, we extend our toy analysis on progressive quantization using a ViT model and the
MNIST dataset to better resemble the challenges faced by QAT on instruction-tuned LLMs. Although
some instruction-tuned LLMs are publicly released, their training datasets are often proprietary or
inaccessible. To simulate this constraint, we augment the original MNIST dataset by inverting pixel
values: xaug := 1− xorig, where xaug is an augmented sample and xorig ∈ [0, 1]28×28 is an original
sample. Figure 7 illustrates examples of this augmentation.

For training the FP16 model, we use both the original and augmented MNIST datasets. During QAT,
however, we restrict training to the original MNIST dataset, excluding the augmented samples. This
setting emulates a scenario where the original data used for building instruction-tuned LLMs is
unavailable during QAT. Additional experimental details are provided in Section B.
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Figure 8 presents the same analysis as in Section 3.1. Both ∆W and Gmax exhibit trends simi-
lar to previous observations. However, a key finding emerges when evaluating test accuracy on
the augmented MNIST dataset: there is a substantial gap in generalization performance between
FP16→INT2 and INT4→INT2 QAT. This indicates that initialization strategy plays a critical role in
mitigating catastrophic forgetting when QAT cannot access the full training data.

As discussed in Section 4.1, such constraints are common in industrial deployment. These results
further validate the effectiveness of our proposed progressive quantization method under realistic
conditions.
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D NEXT-TOKEN PREDICTION-BASED QANTIZATION-AWARE TRAINING
(NTP-QAT)

Let PΘ denote the conditional probability modeled by a decoder-only transformer parameterized
by Θ. Given a pre-training token sequence X = {x1, · · · , xN}, the objective of INT2 NTP-QAT is
given by

LNTP =
1

N

N∑
n=1

logPWFP16→INT2(xn|x1, · · · , xn−1), (8)

or

LNTP =
1

N

N∑
n=1

logPWINT4→INT2(xn|x1, · · · , xn−1), (9)

depending on whether INT4 block-wise PTQ is employed or not. When minimizing the loss in
Eq. 8 with respect to WFP16 and ∆FP16→INT2−representing the model and quantization parameters of
WFP16→INT2, respectively−we refer to this approach as NTP-QAT, which is identical ParetoQ (Liu
et al., 2025b). In a similar manner to Section 3.3, minimizing the loss in Eq. 9 with respect to WINT4
and ∆INT4→INT2 is termed INT4 PTQ → NTP-QAT.
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E WEIGHT DISTRIBUTION IN LLAMA 3.2 3B INSTRUCT BEFORE AND AFTER
NTP-QAT

(a) Weight distribution before (above)
and after (below) INT2 NTP-QAT, start-
ing from original FP16 weights, WFP16

(b) Weight distribution before (above)
and after (below) INT2 NTP-QAT, start-
ing from INT4 PTQ weights, WINT4

0 20 40 60 80 100

22

23

INT2 NTP-QAT
INT4 PTQ NTP-QAT

(c) Training loss curves of
INT2 NTP-QAT and INT4
PTQ → NTP-QAT

Figure 9: Weights distribution within the first channel of the first down-projection layer in Llama 3.2
3B Instruct. Dotted lines denote four quantization levels of 2-bit, and the corresponding weights are
differently colored.

Similar to Figure 4, we investigate the weight distribution change in Figure 9 when utilizing the
next-token prediction loss in Section D instead of the generalized JSD loss. As with the case with the
generalized JSD loss in Figure 4, initializing from INT4 PTQ weights results in increased utilization
of the large-magnitude INT2 quantization bins (i.e., {−3, 3}) than initializing from FP16 weights.
This demonstrates that starting QAT from INT4 PTQ weights is beneficial across different loss
functions.
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F ADDITIONAL QUALITATIVE EVALUATION ON IFEVAL

Table 7: Additional qualitative evaluation of Llama 3.2 3B Instruct on IFEval after four INT2 QAT
techniques with 5B tokens. Orange highlights repetitive generation upon reaching the maximum
token limit; blue and red indicate correct and incorrect instruction following, respectively.

Prompt Method Response

Write me a letter in the style
of Shakespeare about the
mandates and instructions of
the King. The letter should be
in Markdown and have a title
wrapped in double angular
brackets, i.e. «title».

Instruction 1: Markdown
Instruction 2: «title»

NTP-QAT
(IFEval: 19.97)

The title should be in bold and the letter should be in italics. The letter
should be 1-2 pages long and should be written in a formal style. The letter
should be written in a formal style and should not be written in a casual style.
The letter should be written in a formal style and should not be written in a
casual style.· · · (repeated) ⇒ (Instruction 1, Instruction 2)

Distill-QAT
(IFEval: 27.12)

\n\nHere is the letter:\n\n“‘\n## Letter from King Henry to his sub-
jects\n\nDear my dear subjects,\n\nI, King Henry, have been entrusted with
the great responsibility of governing our kingdom. As such, I have been tasked
with the duty of ensuring the well-being and prosperity of my people.\n\nIn
this letter, I shall outline the mandates and instructions that I have been given
by the King of England. I shall also provide guidance on how to fulfill these
tasks and responsibilities.\n\n**Mandates and Instructions**\n\n1. **The
Royal Writ**: The Royal Writ is a sacred document that holds the power
to grant or deny royal favors. It is a powerful tool that should be used with
great care and caution.\n2. **The Royal Seal**: The Royal Seal is a symbol
of the King’s authority and power. It should be used sparingly and only in
situations where it is absolutely necessary.\n3. **The Royal Writs**: The
Royal Writs are a series of documents that are issued by the King to grant
or deny royal favors. They should be used sparingly and only in situations
where it is absolutely necessary. · · · ⇒ (Instruction 1, Instruction 2)

INT4 PTQ → NTP-QAT
(IFEval: 20.97)

The letter should be at least 100 words long and should be written in the style
of Shakespeare. The letter should be written in the first person and should be
addressed to the King. The letter should be written in the style of Shakespeare
and should be written in the first person. The letter should be written in the
style of Shakespeare and should be written in the first person.· · · (repeated)
⇒ (Instruction 1, Instruction 2)

UPQ (Ours)
(IFEval: 45.19)

«title»: A Royal Decree\n\nTo my most trusted and loyal subjects,n\nI, the
King, do hereby decree that all citizens of my realm shall adhere to the
following mandates and instructions:\n\n* **The Royal Decree**: All citizens
shall attend the weekly town hall meetings, where they shall be informed of
the latest news and decrees from the throne.\n* **The Royal Decree**: All
citizens shall maintain a clean and tidy abode, free from filth and disorder.\n*
**The Royal Decree**: All citizens shall respect the authority of the nobles
and the clergy, and shall not question their decisions or actions.\n* **The
Royal Decree**: All citizens shall provide for the well-being and safety of
their families, and shall not neglect their duties to the state.\n* **The Royal
Decree**: All citizens shall be mindful of the environment and shall take steps
to protect and preserve the natural resources of the realm.\n\nThese mandates
and instructions are not optional, but are a requirement for all citizens of
the realm. Failure to comply shall result in severe penalties, including but
not limited to fines, imprisonment, and even death.\n\nI, the King, command
you to obey these decrees and to uphold the authority of the throne. May
the blessings of the gods be upon you, and may your lives be filled with
prosperity and happiness.\n\n—\n\nYours truly,\nThe King\n\n(Note: I’ve
tried to emulate the style of Shakespeare’s letters, but I’m not a professional,
and the language may not be entirely accurate. I’ve also tried to make the
letter sound formal and authoritative, as would be expected from a monarch.)
⇒ (Instruction 1, Instruction 2)

We provide additional qualitative evaluation on IFEval, as detailed in Table 7, to substantiate that
UPQ can produce responses of higher quality than other QAT techniques. Similar to the observation
in Table 1, only UPQ demonstrates consistent adherence to prompt instructions, thus attaining the
highest score on IFEval.
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G ABLATION STUDY

Table 8: Ablation results of OmniQuant and FlexRound, representative INT4 block-wise PTQ
methods, on various benchmarks using Llama 3.2 3B Instruct after INT2 QAT with 5B training
tokens. Scores for each task are reported as OmniQuant/FlexRound (Bold means the best result).

Method Bitwidth WikiText2 (↓) CSR Avg. (↑) MMLU (↑) IFEval (↑)
INT4 PTQ 4 12.52/10.84 63.43/64.82 56.36/58.60 52.08/52.57

INT4 PTQ → NTP-QAT 2 9.91/9.81 65.17/65.66 48.40/49.73 20.67/20.51

INT4 PTQ → Distill-QAT 2 11.51/11.49 63.41/63.04 52.75/53.20 44.68/45.19

Table 9: Ablation results of different distillation loss functions in the UPQ framework on various
benchmarks using Llama 3.2 1B/3B Instruct models with 10B/5B training tokens (Bold indicates the
best result, and underline represents the second best result).

Method WikiText2 (↓) CSR Avg. (↑) MMLU (↑) IFEval (↑)
Llama 3.2 1B Instruct (FP) 12.14 59.11 45.46 44.73

Confidence-aware KLD (Du et al., 2024) 16.11 56.31 33.39 27.44
Token-scaled KLD (Kim et al., 2023) 16.24 54.64 35.56 28.58
Generalized JSD 15.97 56.47 35.85 30.51
Generalized JSD + NTP 14.78 56.98 24.86 20.84

Llama 3.2 3B Instruct (FP) 10.48 65.44 59.92 57.80

Confidence-aware KLD (Du et al., 2024) 11.67 63.70 53.19 43.78
Token-scaled KLD (Kim et al., 2023) 11.37 62.95 53.27 43.45
Generalized JSD 11.49 63.04 53.20 45.19
Generalized JSD + NTP 10.05 66.68 50.76 21.69

INT4 PTQ Method Study We compare FlexRound and OmniQuant, as described in Section 3.2,
after INT2 QAT (both NTP-QAT and Distill-QAT). Table 8 shows that FlexRound slightly outperforms
OmniQuant on most benchmarks across PTQ, NTP-QAT, and Distill-QAT. Based on this observation,
we adopt FlexRound as the default method for INT4 block-wise PTQ, unless otherwise specified.

Distillation Loss Study We conduct an ablation study of various distillation loss functions in UPQ.
Generalized JSD in Eq. 6 is compared with Confidence-Aware KL Divergence loss from BitDistiller
and Token-Scaled Logit Distillation loss. Additionally, we include Generalized JSD + NTP, to
evaluate the effect of mixing two different losses. Table 9 indicates that Generalized JSD consistently
improves performance on MMLU and IFEval compared to other loss functions. Generalized JSD +
NTP surpasses Generalized JSD on WikiText2 and CSR Avg., but shows degraded performance on
MMLU and IFEval. Hence, we choose Generalized JSD as the default loss function in Distill-QAT.
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H ADDITIONAL FIGURE OF NORMALIZED L1 DISTANCE DYNAMICS
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Figure 10: Normalized L1 distance dynamics of learnable parameters ∆FP16→INT2 and WFP16 (in
Eq. 7) during Distill-QAT, and ∆INT4→INT2 and WINT4 (in Eq. 5) during UPQ of Llama 3.2 1B
Instruct (Query, Key, Up and Gate projection layers). The statistics are aggregated across all layers,
respectively. Note that both WINT4 and WFP16 are normalized by the original model weights.

Figure 10 illustrates the dynamics of learnable parameters during QAT, specifically those in the Query,
Key, Up, and Gate projection layers, which are not covered in Figure 6. Like in Figure 6, ∆INT4→INT2
exhibits smaller changes, on average, in normalized L1 distance compared to ∆FP16→INT2. Meanwhile,
both WINT4 and WFP16 converge to similar levels by the end of training. This behavior corresponds
to the "compensatory" dynamics previously discussed in Section 4.3.

I FURTHER DETAILS OF OUR EXPERIMENTAL SETTINGS

All experiments are performed on a single compute node equipped with 8 NVIDIA A100 GPUs. We
use the AdamW optimizer with zero weight decay, a learning rate of 2×10−5 with cosine scheduling,
and a total batch size of 256 per optimizer step. Gradient accumulation is employed when GPU
memory constraints prevent using the full batch size of 256 directly. For Distill-QAT and UPQ, we
use β = 0.5 in Eq. 6.
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J REVIEW ON FURTHER QUANTIZATION METHODS

In this section, we briefly summarize notable quantization methods, which are not referred in
Section 2.1. AdaRound (Nagel et al., 2020) suggests an adaptive rounding method for PTQ, which
optimizes weight quantizer by deciding whether each weight should be rounded up or down, instead
of rounding-to-nearest. BRECQ (Li et al., 2021) suggests a PTQ framework that performs block-wise
reconstruction using second-order error analysis, and it balances cross-layer dependencies with per-
layer sensitivity. For further efficient PTQ procedure, GPTQ (Frantar et al., 2022) suggests a one-shot
PTQ method which utilizes approximated second-order information to minimize the quantization
error.

As a different direction, mixed-precision quantization methods (Wang et al., 2019; Pandey et al.,
2023) have been suggested to enable more flexible quantization by accounting for the sensitivity of
parameters to quantization error. AWQ (Lin et al., 2023) identifies and rescales the most important
weight channels based on activation sensitivity, thereby protecting salient weights to FP16 and
enabling accurate 4-bit quantization without any fine-tuning or backpropagation. SpQR (Dettmers
et al., 2023b) identifies few outlier weight by utilizing defined parameter sensitivity value, and it
also stores them in higher precision while quantizing the rest. GWQ (Shao et al., 2024b) leverages
gradient-based sensitivity analysis on a small calibration set to identify most important weights.

Several studies have been proposed to effectively quantize not only weights but also activations,
aiming to achieve end-to-end low-bit inference without performance degradation. SmoothQuant
(Xiao et al., 2023) mitigates activation outliers by transforming them into the weight domain via
an equivalent transformation, enabling 8-bit activation quantization with negligible accuracy drop.
QDrop (Wei et al., 2022) utilizes dropout-like method, which drops activation quantization during
calibration, encouraging a flatter loss landscape and improving robustness for low-bit quantization.
QuaRot (Ashkboos et al., 2024) introduces a new quantization scheme based on rotations, which
removes outliers from the hidden state without changing the output, making quantization easier. As
a variant of rotation-based method, SpinQuant (Liu et al., 2025a) introduces a training of rotation
matrices into the PTQ process, preconditioning weight and activation distributions to remove outliers.
FlatQuant (Sun et al., 2025) applies learnable affine transformations to each layer’s weights and
activations, flattening their distributions to mitigate the impact of outliers.
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K GRADIENT ANALYSIS ON WEIGHT AND SCALE

In this section, we denote WFP16 and ∆FP16→INT2 in Eq. 7 as W and ∆ for shorthand.

K.1 GRADIENT WITH RESPECT TO WEIGHT

Define
z := clip

(
W
∆ , −1 + ϵ, 1− ϵ

)
, x = 2 z − 0.5.

Then from equation 7, WFP16→INT2 = ∆
2

(
⌊x⌉+ 0.5

)
.

Chain rule decomposition. We wish to compute

∂WFP16→INT2

∂W
≡ ∂

∂W

[
∆
2

(
⌊x⌉+ 0.5

)]
.

Noting that ∆
2 does not depend on W , we mainly examine ∂

∂W ⌊x⌉. In Quantization-Aware Training
(QAT), the Straight-Through Estimator (STE) approximates:

∂

∂x

(
⌊x⌉

)
≈ 1 (except at integer boundaries).

Hence, effectively, ⌊x⌉ ≈ x in backprop.

Clipping impact. Recall x = 2 z − 0.5 and z = clip
(
W
∆ ,−1 + ϵ, 1− ϵ

)
. If | Wij

∆i
| > 1− ϵ, then

zij saturates to ±(1− ϵ) and its derivative ∂zij
∂Wij

= 0. Otherwise, ∂zij
∂Wij

= 1
∆i

. Since x = 2 z − 0.5,

we get ∂xij

∂Wij
= 2× ∂zij

∂Wij
= 2

∆i
in the non-saturated zone, or 0 if saturated.

Resulting piecewise gradient. Putting these together:

∂WFP16→INT2

∂W
≈ ∆

2

(
∂⌊x⌉
∂x

)
︸ ︷︷ ︸

≈1

(
∂x
∂W

)
︸ ︷︷ ︸

0 or 2
∆

=

{
∆
2 × 1× 2

∆ = 1, if
∣∣Wij

∆i

∣∣ ≤ 1− ϵ,

0, otherwise (saturated).

Therefore,
∂WFP16→INT2

∂W
≈

{
1, |W/∆| ≤ 1− ϵ,

0, |W/∆| > 1− ϵ.

K.2 GRADIENT WITH RESPECT TO SCALE

Now we turn to ∂
∂∆ WFP16→INT2. Again, from equation 7,

WFP16→INT2 = ∆
2

(
⌊x⌉+ 0.5

)
,

Decomposing the derivative.

∂WFP16→INT2

∂∆
=

∂

∂∆

(
∆
2

)
︸ ︷︷ ︸

=
1
2

(
⌊x⌉+ 0.5

)
+ ∆

2

∂⌊x⌉
∂x︸ ︷︷ ︸
≈1

∂x

∂∆︸︷︷︸
clip-based

.

Hence:
∂WFP16→INT2

∂∆
≈ 1

2 ⌊x⌉ + ∆
2 · 1 · ∂x

∂∆ .
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Clip-based partial of x. Recall x = 2 · clip
(
W
∆ ,−1 + ϵ, 1− ϵ

)
− 0.5. In the non-saturated zone,

clip(u) = u, so ∂
∂∆

(Wij

∆i

)
= −Wij

∆2
i

. Thus,

∂xij

∂∆i
= 2

(
−Wij

∆2
i

)
= −2

Wij

∆2
i

, if
∣∣Wij

∆i

∣∣ ≤ 1− ϵ,

and 0 otherwise.

Putting it all together (piecewise). From this, we get results as follows:

∂WFP16→INT2

∂∆
=


WFP16→INT2

∆
, (if saturated, i.e. |W/∆| > 1− ϵ),

WFP16→INT2 −W

∆
, (if unsaturated, i.e. |W/∆| ≤ 1− ϵ).

Summarizing the findings, saturated weights (mapped to ±3) completely lose their update signal
with respect to W (gradient=0), since further changes in W do not alter the quantized value in that
range. Conversely, those same saturated weights yield a strong gradient signal for ∆. If |wq| = 1.5∆,
then wq

∆ = ±1.5. This can drive ∆ to adapt quickly, potentially pulling the weight back into the
unsaturated zone (or saturating others further) depending on the loss objective. Hence, more saturated
weights can imply less weight-level learning, but more ∆-level learning.

Empirically, one might observe fewer weights in the ±3 bins if starting QAT directly from an FP
checkpoint. This can be explained by the gradient formulas above:

• In the unsaturated zone, the scale gradient is wq−w
∆ . If w ≈ wq initially, this difference is

small, so ∆ is not driven to expand or shrink aggressively.
• With ∆ remaining relatively stable, fewer weights cross the ±(1− ϵ) boundary, so fewer

get saturated.

On the other hand, starting from a PTQ-applied checkpoint might already scatter weights so that
more lie near or beyond that boundary, thus yielding a higher fraction of ±3-saturated weights and
correspondingly larger scale gradients.
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L LIMITATIONS

While UPQ demonstrates the effectiveness of unified framework of progressive quantization for
instruction-tuned LLMs, several directions remain open as unsolved problems for future works. First,
our current framework primarily focuses on weight-only quantization, leaving activations in higher
precision (e.g., FP16). Extending UPQ to include activation quantization would unlock the memory
and latency benefits of extremely low-bit inference. Second, our experiments evaluate models up to
moderate scales; examining whether UPQ generalizes consistently to much larger language models
(e.g., 100B+ parameters) is an important question to answer. Third, although UPQ preserves a broad
range of intrinsic capabilities, including instruction-following and reasoning skills, there may be
domain-specific or multimodal tasks (e.g., code generation, image-text given reasoning) that would
require additional fine-tuning techniques or specialized data. So, UPQ could potentially contribute to
wider range of tasks. We leave these aspects as promising future works toward more comprehensive
and effective low-bit instruction-tuned LLMs.
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