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Abstract

Consider learning an imitation policy on the basis of demonstrated behavior from
multiple environments, with an eye towards deployment in an unseen environment.
Since the observable features from each setting may be different, directly learning
individual policies as mappings from features to actions is prone to spurious correla-
tions—and may not generalize well. However, the expert’s policy is often a function
of a shared latent structure underlying those observable features that is invariant
across settings. By leveraging data from multiple environments, we propose Invari-
ant Causal Imitation Learning (ICIL), a novel technique in which we learn a feature
representation that is invariant across domains, on the basis of which we learn an
imitation policy that matches expert behavior. To cope with transition dynamics
mismatch, ICIL learns a shared representation of causal features (for all training
environments), that is independent from the specific representations of noise vari-
ables (for each of those environments). Moreover, to ensure that the learned policy
matches the observation distribution of the expert’s policy, ICIL estimates the
energy of the expert’s observations and uses a regularization term that minimizes
the imitator policy’s next state energy. Experimentally, we compare our methods
against several benchmarks in control and healthcare tasks and show its effective-
ness in learning imitation policies capable of generalizing to unseen environments.

1 Introduction

Strictly batch imitation learning aims to learn a policy that directly mimics the behaviour of experts,
for which we only have access to a set of demonstrations: logged trajectories of observations and
actions following the expert’s policy [1–3]. We cannot interact online with the environment, let alone
query the expert any further, nor do we have reward signals for supervision. This setting is relevant in
real-world scenarios where live experimentation is risky or costly—such as healthcare and education.

Our aim is to learn an imitation policy in the strictly batch setting that faithfully matches the expert
behaviour, while at the same time is able to generalize to unseen environments. In healthcare, learning
a generalizable behaviour policy that could achieve expert performance in new environments is an
important goal: As a means of providing clinical decision support, it could serve as an “individualized”
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Figure 1: Causal diagram for the structure of environments. Expert demonstrations contain informa-
tion about observations xt and actions at. We assume that observations are decomposable into (1) state
representations st that consist of the causal parents of the actions, and (2) noise representations ⌘t that
encapsulate any spurious correlations with the actions. To allow for dynamics mismatch, the transi-
tions between the noise representations are specific to each environment. We want to recover the invari-
ant state representation st such that the learned policy ⇡(·|st) generalizes well to new environments.

clinical guideline for actions that can be taken for different patients—especially in a hospital, region, or
patient demographic from which we have no access to data during training. In this endeavor, a princi-
pal challenge is that the sets of expert demonstrations that we have access to may contain variables that
induce selection bias, or are otherwise spuriously correlated with the expert’s actions [4–7]. Directly
learning an imitation policy from such data may lead to learning those spurious associations, thereby
failing to generalize to unseen environments, and perpetuating any biases in the expert’s behaviour.

However, in general it is likely that the expert’s actions are only causally affected by a subset of the
observed variables or by a shared latent structure [8, 9]. For instance, when imitating ideal driving
behaviour, the background scenery might change, but the actions should only depend on car and road
features. Another example includes the case when the lightning conditions in a room are changing,
but physical dynamics of the environment are staying the same [7]. By leveraging expert trajectories
from multiple different environments, our aim is to uncover this shared latent structure that causally
determines expert actions, which allows us to eliminate the spurious associations and biases. In this
way, the learnt policy will better be able to generalize to any unseen environments that share the same
latent structure as those used for training.

As illustrated in Figure 1, we assume access to observations and actions from the expert’s policy in the
different environments e. The observations are functions of noise factors ⌘e (which may differ across
environments) and shared latent state representations s (which is invariant across environments)—
that encapsulate the causal parents of the expert’s actions. Note that the observed features for an
environment may simply be the union of ⌘e and s, but they may also be any non-linear transformation
of them. We shall operate in the setting where there are no hidden confounders, i.e. that we observe
all variables that are affecting the expert’s actions (and the next states that result from these actions).

In addition to spurious correlations, another difficulty stems from learning to imitate sequential
behavior in the strictly batch setting itself: While behaviour cloning [10] provides an intrinsically
batch solution, it ignores important information contained in the expert’s roll-out distribution, and the
learned policy may drift from the support of the distribution of states visited by the expert [11, 12].

Contributions: In this paper, we introduce Invariant Causal Imitation Learning (ICIL), a novel
method that learns a causal representation of the expert’s actions—which is used to build a gen-
eralizable imitation policy that matches the expert’s behaviour. ICIL operates in the strictly batch
setting and does not assume access to data from the target environments. By leveraging expert
demonstrations from multiple different training environments, ICIL learns an (shared) invariant
causal representation as well as an (environment-specific) noise representation. This accommodates
dynamics mismatch across environments, while allowing the imitation policy to be learned by condi-
tioning on the invariant causal representations. First, to satisfy the causal relationships in Figure 1,
ICIL learns dynamics preserving representations and ensures that the learnt causal and noise repre-
sentations are marginally independent by minimizing their mutual information. Second, to encourage
the learnt imitation policy to stay within the support of the distribution of states visited by the expert’s
policy, ICIL estimates the energy of the expert’s observations and uses a regularization term that
minimizes the imitator policy’s next state energy. Third, we evaluate ICIL against benchmarks for
batch imitation learning in control and healthcare environments. We also empirically investigate
directly using ideas from invariant risk minimization [6] to augment the loss function of existing batch
imitation learning methods, and benchmark against their ability to generalize across environments.
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Method Environment Offline Dynamics
mismatch

Sensory-shift
(hidden confounders)

State-distribution
matching

No access to
target trajectories

Temporal
aspect

Im
ita

tio
n

Le
ar

ni
ng

Pomerleau [10] Model-free Yes No No No N/A No
Ho & Ermon [15] Model-free No No No Model rollouts N/A Yes
Kostrikov et al. [2] Model-free Yes No No Adversarial off-policy matching N/A Yes
de Haan et al. [8] Model-free No No No No N/A Yes

G
en

er
al

iz
.

in
IL

Lu et al. [16] Model-free No Yes No Model rollouts No Yes
Kim et al. [17] Model-based No Yes No Model rollouts No Yes
Etsami et al. [18] Model-free Yes No Yes No No Yes

IRM Arjovsky et al. [6] Model-free Yes N/A N/A N/A Yes No

ICIL (Ours) Model-based Yes Yes No Energy-based Yes Yes

Table 1: Comparison of our proposed method with related works. ICIL operates in the strictly batch
setting, allows for dynamics mismatch, does not require access to target trajectories, and incentivizes
the imitation policy to stay in the support of the expert’s distribution via energy-based regularization.

2 Related Works

We tackle the problem of learning generalizable policies in an offline setting using ideas from causal
inference. As such, our work straddles the intersection of research in (1) strictly batch imitation, (2)
invariant representation learning, and—more broadly—(3) causality in sequential decision-making.

Strictly Batch Imitation Learning: The simplest approach to imitation learning in the batch setting
is behaviour cloning [10] which uses standard supervised learning techniques to learn an imitation
policy that minimizes the negative log-likelihood of the observed demonstrator actions. However,
behaviour cloning suffers from distributional shift as the learnt imitation policy cannot recover if
it reaches a state out-of the distribution of the expert demonstrations [11–14]. To overcome this
problem, [1, 14] propose incorporate dynamics-awareness by adding regularization to behaviour
cloning by using norm-based penalties on the sparsity of implied rewards. Alternatively, [2] uses a
distribution matching approach and propose an offline objective for estimating the distribution ratio
of the imitator policy and the expert policy, while [3] jointly learn a policy function together with an
energy-based model of the state distribution. However, none of the existing approaches consider the
problem of generalization across environments and learning policies robust to spurious correlations.

Invariant Risk Minimization: In the supervised learning setting, Invariant Risk Minimization
(IRM) [6] leverages data from multiple domains to learn a data representation that elicits an invariant
predictor across the different environments. The training data from each environment corresponds to
different interventions on the data generating process. Given data from several training environments,
the IRM objective aims to find a representation such that there exists a classifier that is optimal
across all training domains, i.e. that minimizes the empirical risk in each domain. This represents a
challenging, bi-level optimization, and [6] propose the IRM-v1 objective which is a practical version
to optimize. Through this optimization, the IRM objective should learn a predictor that only uses the
causal parents of the target variable and that is thus invariant across environments. However, directly
using IRM for our sequential problem setting is not desirable, since it does not take into account the
effect of each action on the subsequent states. Nonetheless, we empirically investigate augmenting
existing methods for batch imitation to use the IRM-v1 objective in conjunction with their defined
imitation risk, and verify whether they are able to generalize across environments. In our experiments
we observe that, in general, directly applying the IRM objective in this manner is not good enough.

Generalization in Imitation Learning: The problem of domain adaptation and transfer learning
for the imitation learning setting has been tackled by several works so far. However, while they
consider problems of dynamics-, embodiment-, and/or viewpoint-mismatch between the imitator and
expert, existing methods assume access to demonstrations from the target environment [17, 19, 20],
assume access to online interaction or simulators in the different environments [16], or focus on the
different problem of hidden confounding [18, 21]. Another line of work that is related is learning
from demonstrations and meta-learning. While works in meta-learning also aims to generalize learnt
policies to new-tasks, they require access to one or more expert trajectories from the new task [22–27].

Causality in Imitation Learning and Reinforcement Learning: Several ideas from causality have
been used to improve imitation learning and generalization in reinforcement learning. The idea of
conditioning the imitation policy on the causal parents has been employed by [8] to avoid the problem
of ‘causal confusion’ when learning a policy for the single environment setting. However, [8] requires
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queering the expert or being able to perform interventions in the environment this is not possible in the
batch setting. Similarly, [9, 28] also learn causal relationships between the observations, actions and
rewards by performing/simulating the effect of interventions in the environment. Alternatively, [29]
use ideas from Invariant Risk Minimization [6, 30] to learn optimal reinforcement learning policies
that generalize across domains. Perhaps the most similar setting to ours is the one in [7] which studies
the problem of generalization in reinforcement learning and also learn a representation that is shared
across the domains. However, unlike our imitation setting, they assume access to a known reward sig-
nal, and focus on learning the causal ancestors of that reward to improve reinforcement learning [31].

To the best of our knowledge, we are the first to tackle the problem of learning generalizable imitation
policies in the strictly batch setting. Table 1 summarizes main differences with relevant related works.

3 Problem Formalism

3.1 Imitation Learning

We work in the standard Markov decision process (MDP) setting: Let an environment be given by
e = (X , A, T, r, �), with observations x 2 X , actions a 2 A, transition function T 2 �(X )X⇥A,
reward function r 2 RX⇥A, and discount factor �. Let ⇡ 2 �(A)X be a policy with the induced
occupancy measure ⇢⇡(x, a) = (1 � �)

P
1

t=0 �
t
p(xt = x, at = a|xt⇠T (·|xt�1, at�1), at⇠⇡(·|xt))

of observations and actions, and let ⇢⇡(x) =
P

a2A
⇢⇡(x, a) be the observation occupancy measure.

Unlike in the reinforcement learning setting, where the aim is to learn a policy ⇡(· | x) that maximizes
the cumulative sum of some known reward signal, in imitation learning the reward is neither known nor
observed. Instead, we only have access to a dataset of trajectories D = {⌧i}

N
i=1 from a demonstrator

policy ⇡D, where each trajectory ⌧ ⇠ ⇡D = (xt, at, xt+1)t=0,... consists of a sequence of observation,
action, next observation tuples that are sampled as at ⇠ ⇡D(· | xt) and xt+1 ⇠ T (· | xt, at).

The goal of imitation learning is to seek an imitation policy ⇡ that minimizes the following risk:
R(⇡) = L(⇡,⇡D) (1)

where L is a choice of loss function. Now, if we were in the online setting, we would have access to
the environment (or a simulator), with which we can interactively perform distribution matching by
minimizing the divergence between the expert’s state occupancy ⇢D and the imitator’s state occupancy
⇢⇡ [15,32–34]. One example is to use the (forward) KL divergence: L(⇡,⇡D) = DKL(⇢D||⇢⇡) [34].
However, in the offline setting we have no further access to the environment. As noted above, the
simplest solution is behaviour cloning (BC) [10, 35, 36], which minimizes the negative log-likelihood
of the demonstrator’s actions. However, by disregarding the distribution of the expert’s observations,
imitation policies learnt by BC often result in compounding error when deployed in practice [11–14].

3.2 Imitation Learning from Multiple Environments

Consider a family of environments M = {(X e
, A, T

e
, r

e
, �) | e 2 E} with observations x

e
2 X

e,
actions a 2 A, transition function T

e
2 �(X )X⇥A, reward function r

e
2 RX⇥A, and discount factor

�. This is the primary setting that we shall operate in. Note that the action space and discount factor
do not change between environments. For notational simplicity, when considering the union over
environments, we shall drop the index e. We assume offline access to a dataset of recorded trajectories
from the expert policy ⇡D in a set of training environments Etrain⇢E , D = {{(⌧e

i }
Ne
i=1 | e 2 Etrain}.

Each trajectory ⌧e
⇠ ⇡D = (xe

t , at, x
e
t+1)t=0,... consists of a sequence of environment specific obser-

vations, expert actions and next observations sampled as at ⇠ ⇡D(· | x
e
t ) and x

e
t+1 ⇠ T

e(· | x
e
t , at).

In the presence of multiple environments, our goal is to learn a policy ⇡ 2 �(A)X that matches the
expert behaviour in all possible environments E that share a certain structure for the observations and
the transition dynamics. In particular, this involves finding a policy that generalizes well across these
related environments e 2 E—that is, the policy should ideally minimize the imitation risk across them:

max
e2E

R
e(⇡) = L

e(⇡,⇡D) (2)

where each L
e explicitly depends on the characteristics of the environment e. Note that since we

know nothing specific about E , it is difficult to optimize for this directly. That said, if we make mild
assumptions about the “relatedness” of these environments, we can learn policies that generalize well.

4



Structure of Observations: First, we assume there is a shared latent structure underlying the obser-
vations from different environments—on which the expert policy depends. Finding such a structure
would let us discard irrelevant factors as inputs to the learnt policy, improving generalization [6,7,37]:
Assumption 3.1. (Shared Latent Structure) Consider decomposing the observations x

e
2 X

e in
each environment e 2 E into two components: an invariant representation s 2 S and noise terms
⌘

e
2 Z

e (i.e. spurious correlations), such that x
e = q(s, ⌘e) for some invertible transformation

q : S ⇥ Z
e

! X
e. There exists some q such that ⇡D only depends on s, and space S is non-empty.

In other words, we assume that the demonstrator’s policy ⇡D depends only on information that
is shared across the environments, i.e. the state variables s are the causal parents of the expert
action a ⇠ ⇡D(· | s). As illustrated in Figure 1, the state variables and the noise terms are
responsible for generating the patient observations, but the policy depends only on the state vari-
ables. Thus, we allow different environments to have different p(x) marginals (as well as dif-
ferent p(a|x)). This allows environments to have different structure. The only requirement is
that the environments are the same as far as the task is concerned. This means that there exists
some S such that p(s) marginals should be the same (as well as p(a|s)). Learning such a repre-
sentation that is invariant satisfies the standard Environment Invariance Constraint [38]. While
this set-up is similar to the one in [7], a crucial difference is that we have no access to any re-
ward functions whatsoever, and that we must learn an imitation policy in a strictly batch setting.

Note that the latent structure induced by the state variables is shared across the different environments.
This means that the transition dynamics for the state representation p(st+1 | st, at) remain invariant
across the environments. On the other hand, as different environments may be characterized by
different types of spurious correlations, to allow for flexibility in their structure and evolution,
we consider that the transition dynamics of the noise terms p

e(⌘e
t+1 | ⌘

e
t , at) are specific to each

environment. Our goal, then, is to learn a generalizable policy ⇡—that is, one that depends only on s.

Structure of Environments: Second, to learn a policy that depends only on s, we must assume that
the available training environments are actually different, so that we can learn the invariant state
representation using the data from these environments and separate it from the noise representation:
Assumption 3.2. (Environment Interventions) Each available training environment e corresponds to
a hard [39] or soft [40] intervention on one or more dimensions of that environment’s observation
space (where these dimensions do not constitute any causal parents of the demonstrator’s actions).

To ensure that a generalizable policy actually exists, Assumption 3.1 requires that S be non-empty
across all environments. Here, to ensure that the space S can actually be learned, Assumption
3.2 requires that Z be non-empty across the training environments. Note that we require that the
interventions inducing the different environments not be on the causal parents of the action, such that
Assumption 3.1 is not violated.

Overall, in our setting p(x) and p(a | x) can differ between the multiple environments. How-
ever, Assumption 3.1 enforces that the environments and tasks are the same modulo noise,
i.e. that there exists some non-empty S such that p(s) and p(a | s) are the same between
them. In other words, we have a set of environments that are different (i.e. the dynam-
ics of xt are different), but the task being performed by the agent is the same (i.e. the dy-
namics of st are the same). This setting applies to the case when lightning conditions in
a room are changing, but physical dynamics of the environment are staying the same [7] or

at
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Figure 2: Causal diagram illustrating temporal depen-
dencies between causal parents of action {x

1
t , x

2
t } and

noise variables {x
3
t }. Different environments are in-

duced by different interventions on the noise variables.

when weather conditions are changing, but
driving behaviour and dynamics are stay-
ing the same. We provide additional ex-
planations and definitions of environment
interventions in Appendix A.

Figure 2 shows a simple example where
each observation xt represents a union of
the causal parents of the action (state vari-
ables) st = {x

1
t , x

2
t } and the spurious cor-

relations (noise variables) ⌘t = {x
3
t }. To

satisfy Assumption 3.2, the different envi-
ronments need to correspond to interven-
tions on x

3
t . And to satisfy Assumption 3.1,
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x
1
t and x

2
t must not be intervened on. Our aim is to find a representation s of the causal parents

{x
1
t , x

2
t } of the actions, as well as the mapping between them and the actions at, that mimics the

expert’s policy.

Finally, similarly to [7], we also assume that the observations xt at timestep t can only affect the
actions at and the observations at the next timestep t + 1:
Assumption 3.3. (Temporal Causal Mechanism) Let x

i and x
j be any two components of the

observation x at timestep t. Then:

x
i
t+1 ?? x

j
t+1 | xt, at (3)

Note that Assumption 3.3 simply serves to place us within the standard MDP setting: It ensures
Markovianity of the temporal transitions, that only the observations xt at time t will contain the causal
parents of the action at, and that xt and at are the only factors that determine the next observation xt+1.

4 Invariant Causal Imitation Learning for Domain Generalization

The goal of our Invariant Causal Imitation Learning (ICIL) algorithm is to learn a representation of the
state variables s that is invariant across domains, and an imitation policy ⇡ that depends on this causal
representation and matches the demonstrator’s behaviour. We operate in the strictly batch setting, and
our aim is for ⇡ to generalize to unseen environments e 2 E given the above structural assumptions.

4.1 Learning Invariant Causal Representations

To achieve our goal, we decompose the observations x
e
t in each environment e into a representation

st = �(xe
t ; ✓s) for the causal features of the action at, and another representation ⌘e

t = µ
e(xe

t ; ✓
e
⌘)

for the noise variables, where ✓s and ✓e
⌘ are the learnable parameters of � and ⌘. Since the causal

parents of the action are invariant across the environments, the state representation model � : X ! S

is the same across all environments. On the other hand, µ
e : X ! Z

e is environment-specific in
order to allow for dynamics mismatch of the noise variables between the different environments.

In order to satisfy the causal diagram in Figure 1 and to learn a minimal causal representation, we
need the following conditions to be satisfied: (1) st should be invariant across the environments, (2)
st and ⌘e

t should be dynamics-preserving, and (3) st and ⌘e
t should be independent from each other.

Firstly, to fulfill condition (1) we train an environment classifier on the shared state representation
cs : S ! |Etrain|, parameterized by ✓c using the cross-entropy loss. Similarly to [7], in order to build
a state representation that is invariant across domains, we use an adversarial loss [41] that maximizes
the entropy of the classifier: H(cs(�(xt; ✓s); ✓c)). This gives us the following practical loss function:

Linv(✓s) =
X

e2Etrain

Exe
t⇠⇢eD

� H(cs(�(xe
t ; ✓s); ✓c)) (4)

Out of all possible representations that are invariant, we specifically seek one that also preserves the
transition dynamics, fulfilling condition (2). To ensure that the state and noise representations are
dynamics-preserving, we also learn the transition dynamics for the state variables gs : S ⇥ A :! S ,
such that ŝt+1 = gs(st, at; ✓gs) and the environment specific transition dynamics for the noise
variables: g

e
⌘ : Z

e
⇥A ! Z

e, such that ⌘̂e
t+1 = g

e
⌘(⌘

e
t , at; ✓e

g⌘
). To reconstruct xt+1 we also learn  :

S ⇥ Z
e

! X such that x̂
e
t+1 =  (st+1, ⌘

e
t+1; ✓ ). This yields the following practical loss function:

Ldyn(✓s, ✓gs , {✓
e
⌘, ✓

e
g⌘

}e2Etrain , ✓ ) =
X

e2Etrain

Exe
t+1,at,xe

t+1⇠⇢eD
kx

e
t+1 � x̂

e
t+1k

2 (5)

Note that while an alternative approach could consider directly building an invertible mapping from
x

e to (s, ⌘e), the motivation for decoding st+1 and ⌘e
t+1 into x̂

e
t+1 is twofold. In addition to learning

dynamics-preserving representations, as we will see in Section 4.2, this also allows us to compute the
energy of the next state obtained by following the imitation policy and enforcing this to be similar to
the distribution of states visited by the expert’s policy.
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Figure 3: Block diagram of our model. ICIL decomposes the observations x
e
t into an invariant

causal representation st and an environment specific noise representation ⌘e. To obtain an invariant
representation, we maximize entropy of an environment classifier that receives as input st (Linv).
Moreover, the state and noise representations are learnt to be dynamics preserving by minimizing
the prediction error of the next observation (Ldyn) and independent by minimizing their mutual
information (Lmi). We learn a generalizable imitation policy that is conditioned on the invariant
causal representation (L⇡) and to ensure that the learnt policy matches the distribution of the expert’s
observations, we minimize the imitator’s policy next state energy (Lenergy).

Finally, to ensure that the state representation and the noise representation are marginally independent
per condition (3), we minimize the mutual information between them. We use the Mutual Informa-
tion Neural Estimation (MINE) framework [42], which provides a way for estimating the mutual
information using neural networks. In particular, MINE uses a neural information measure I(U, V )
to approximate the mutual information between random variables U and V . Let T✓m be a statistics
network parametrized by ✓m. MINE estimates I(U, V ) by ascending the gradient of the following:

I(U, V ) = sup
✓m

EP(n)
UV

[T✓m ] � log(EP(n)
U ⌦P(n)

V
[eT✓m ]) = sup

✓m

I(U, V ; ✓m) (6)

where PUV is the joint measure of (U, V ) and PU =
R

V
dPUV , PV =

R
U

dPUV are the marginal
distributions. P(n) denotes the empirical distribution associated with n i.i.d samples. As noted in [42],
the neural information measure I(U, V ) can approximate the mutual information with arbitrary
accuracy. We therefore add the following practical loss function to our optimization objective, which
seeks to minimize the mutual information between the state representation and noise representation:

Lmi(✓s, {✓
e
⌘}e2Etrain) =

X

e2Etrain

Exe
t⇠⇢eD

I(�(xe
t ; ✓s), µ(xe

t ; ✓
e
⌘); ✓m) (7)

Note that the parameters ✓m of the statistics network T✓m used for computing the mutual information
are updated through gradient ascent on I(U, V ; ✓m).

4.2 Matching Expert Behaviour in a Strictly Batch Setting

On the basis of the causal representation s, we shall learn a generalizable policy ⇡ (parameterized by
✓⇡) in the strictly batch setting, such that it matches the demonstrator’s behaviour. To begin, we first
condition ⇡ on the representation st and minimize the negative log-likelihood of the expert’s actions:

L⇡(✓⇡, ✓s) =
X

e2Etrain

�Exe
t ,at⇠⇢eD

log ⇡(at | �(xe
t ; ✓s); ✓⇡) (8)

However, having only this objective corresponds to performing behaviour cloning, which has well-
known limitations [11–14]. To mitigate compounding error, we want some form of added regulariza-
tion to incentivize the imitation policy to stay within the distribution of the expert’s observations.

In the online setting, a popular approach is to make sure that the rollout distribution of the imitating
policy matches the rollout distribution of the expert’s policy—for instance, by minimizing some form
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of divergence between their induced occupancy measures. However, this requires interactive access to
the real environment or simulator to perform rollouts of intermediate policies—which is not possible
in our setting. Instead, we propose a method that takes advantage of the learnt transition dynamics.
For any current observation xt ⇠ ⇢D, we shall encourage the next observation x̄t+1 obtained by
following the imitation policy āt ⇠ ⇡(· | xt) to remain within the occupancy measure of the expert.

Consider approximating the expert’s occupancy measure using an Energy Based Model (EBM)
such that ⇢D(x) = exp(�E✓̄(x))

Z(✓̄)
where the function E✓̄(x) : X ! R is the energy function and

Z(✓̄) =
R

x �E✓̄(x)dx is the partition function. We parameterize E✓̄ by a neural network. It is not
possible to train the EBM directly through maximum likelihood because Z(✓̄) involves integrating
over the entire input domain of x which is impractical. Instead, we use contrastive divergence to
pre-train the energy function E✓̄ [43,44]. Contrastive divergence lowers the energy of the observations
coming from the expert’s occupancy distribution and increases the energy of the observations outside
of the expert’s occupancy distribution. Refer to Appendix B for details on how we train the EBM.

To incentive the imitation policy to stay within the distribution of the expert’s observations, we train it
to minimize the energy of the next observation obtained by following ⇡ given the current observation:

Lenergy(✓⇡; ✓s, ✓gs , {✓
e
⌘, ✓

e
g⌘

}e2Etrain , ✓ ) =
X

e2Etrain

E xe
t⇠⇢eD

st=�(xe
t ),⌘

e
t =µe(xe

t )
āt⇠⇡(·|st)

x̄t+1= (gs(st,āt),g
e
⌘(⌘et ,āt))

E✓̄(x̄
e
t+1) (9)

This effectively assigns a high “reward” to the imitation policy for staying within high-density areas
of the expert’s occupancy measure, and a low “reward” for straying from it. This can be seen as an
adaptation of online imitation methods [45, 46] where the expectation would be instead over xt ⇠ ⇢⇡ .

We illustrate in Figure 3 all of the components of the our ICIL model. Further details and the full
algorithm for optimizing ICIL can be found in Appendix C.

5 Experiments

We perform experiments on OpenAI gym tasks [47] and on an ICU dataset from the MIMIC III
database [48]. In both cases, we generate data from multiple domains by augmenting the feature
space with noise variables (spurious correlations).

Benchmarks We compare ICIL1 against standard methods for strictly batch imitation learning: Be-
haviour Cloning (BC) [10]; Reward-regularized Classification for Apprenticeship Learning (RCAL),
which incorporates dynamics-awareness through a sparsity regularization on the implied rewards [14];
ValueDICE (VDICE) [2], which uses an off-policy objective to estimate distribution ratios needed
for distribution matching; as well as Energy-based Distribution Matching (EDM) [3], which jointly
learns the imitator policy with an energy model of its state distributions. These methods seek to
find a policy that approximately matches the expert’s behaviour from a single environment, and
were not designed with generalization in mind. Hence we augment these benchmark by using the
IRMv1 objective [6] in conjunction with their originally defined imitation risk to obtain the additional
benchmarks: BC-IRM, RCAL-IRM, VDICE-IRM, and EDM-IRM. More details about how we
used the invariance-based penalty from IRM [6] to augment these existing methods such that they
may learn generalizable policies can be found in Appendix D. Implementation details about all
benchmarks and the hyperparameter settings used can be found in Appendix F.3.

5.1 Evaluation on OpenAI Gym

We perform experiments on the following control tasks from OpenAI gym [47]: Acrobot [49],
Cartpole [50], LunarLander [47] and BeamRider [51]. For each task, we use pre-trained RL agents
from RL Baselines Zoo [52] and Stable OpenAI Baselines [53] to obtain expert policies. We then
follow an approach similar to the one in [7] to obtain datasets with demonstrations from the expert in
two different environments. In particular, for Acrobot [49], Cartpole [50] and LunarLander [47] we
add spurious correlations to the state space of each control task and an environment identifier. The

1The code for ICIL can be found at https://github.com/vanderschaarlab/mlforhealthlabpub and
at https://github.com/ioanabica/Invariant-Causal-Imitation-Learning.
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(a) Acrobot (b) Cartpole (c) LunarLander (d) BeamRider

Figure 4: Evaluation on OpenAI gym environments. x-axis indicates the number of trajectories
(in {1, 5, 10, 15, 20}) with expert demonstrations from each training environment given as input to
each benchmark and y-axis represents the average return of the learnt imitation policy on the test
environments, scaled between 1 (expert performance) and 0 (random policy performance).

spurious correlations in each environment are different multiplicative factors of a subset of variables
in the original state space. The invariant causal state is represented by the original variables in the
state space of each control task. We train the benchmarks on demonstrations from two environments
with 1⇥ and 2⇥ multiplicative factors for the spurious correlations and we test on an environments
with multiplicative factors sampled from U(�1, 1). For BeamRider [51], similarly to [7], different
camera angles are used for the training and testing environments. In particular, we use two training
environments where the game frames are rotated by 10 degrees to the left and to the right respectively,
while the test environment has no rotation. The rotation is applied to the entire frame for all trajectories
in each environment. However, note that, despite the rotation, the dynamics for the state variables
and how they influence the action stay the same. Further details about the train and test environments
can be found in Appendix F.3.

We vary the number of demonstrated trajectories from each environment that we give as input to each
benchmark and we evaluate them on the average return obtained by deploying the learnt imitation
policies on the test environment. Figure 4 shows the mean results and standard errors obtained
across 10 runs where for each run we train the benchmarks on different trajectories from the train
environments and we evaluate on a test environment with newly sampled multiplicative factors
for computing the spurious correlations. We notice that our method consistently outperforms the
benchmarks and is capable of generalizing better to the unseen target environments. Moreover, we
generally found that using the IRMv1 objective [6] together with existing methods for strictly batch
imitation learning did not improve performance and resulted in more unstable training. For additional
results, see Appendix F where we perform ablation studies to investigate the impact of the different
terms in the loss function used to train ICIL on overall performance, compare performance on train
vs. test environments and also evaluate robustness to increasing the size of the spurious correlations.

5.2 Evaluation on MIMIC-III

We also perform experiments on a healthcare dataset with Intensive Care Unit (ICU) patients extracted
from the Medical Information Mart for Intensive Care (MIMIC-III) database [48]. The dataset consists
of trajectories of clinical measurements (e.g. heart rate, respiratory rate) recorded every hour. The
aim is to learn a generalizable policy for the action of putting patients on the mechanical ventilator.

We define three environments, two for training and one for testing, each consisting of 2000 indepen-
dent patient trajectories from MIMIC-III. We augment the original feature space by adding spurious
correlations (noise variables) that are the same as the expert actions with probabilities p = 0.1 and
p = 0.2 in the training environments and with probability p = 0.8 in the testing environment.

In a real setting, such spurious correlations are commonplace. For instance, consider some hospitals
(i.e. training environments) where selection bias is present, such that patients with a certain otherwise
irrelevant comorbidity happen to receive a treatment more often [54–57]. However, learning an
imitation policy that takes into account such a comorbidity when assigning the patient’s treatment
would fail to generalize to hospitals where fewer patients suffer from this comorbidity but should still
receive the treatments. More details about the dataset can be found in Appendix F.3.
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Mechanical ventilator

Benchmark ACC AUC APR

BC 0.783 ± 0.001 0.762 ± 0.002 0.692 ± 0.001
RCAL 0.790 ± 0.002 0.771 ± 0.002 0.697 ± 0.002
VDICE 0.794 ± 0.001 0.784 ± 0.001 0.716 ± 0.001
EDM 0.786 ± 0.003 0.741 ± 0.011 0.682 ± 0.005

BC-IRM 0.791 ± 0.002 0.767 ± 0.003 0.696 ± 0.002
RCAL-IRM 0.789 ± 0.002 0.766 ± 0.003 0.694 ± 0.003
VDICE-IRM 0.766 ± 0.001 0.730 ± 0.001 0.694 ± 0.001
EDM-IRM 0.781 ± 0.004 0.717 ± 0.015 0.673 ± 0.007

ICIL 0.855± 0.003 0.856± 0.004 0.789± 0.004

Table 2: Evaluation on MIMIC-III in terms of action-matching. We compare the actions selected by
the benchmark imitation policies with the ones from the clinical expert policy in the test environment
and report the accuracy (ACC), the area under the receiving operator characteristic curve (AUC) and
the area under the the precision-recall curve (APR).

Since MIMIC-III is an entirely offline dataset, it is not possible to compute average returns for
running the policies in the test environment. Instead, we evaluate the benchmarks in terms of action
matching on the test environment. We report in table 2 the mean accuracy (ACC), the mean area
under the receiving operator characteristic curve (AUC), the mean area under the the precision-recall
curve (APR) and their standard deviations over 10 runs. We notice that ICIL learns a policy that best
discards the spurious correlations present in the training environment to learn a generalizable policy
for putting patients on the mechanical ventilator that best matches the expert’s actions on the test
environment.

6 Discussion

In this paper, we tackle the problem of learning generalizable imitation policies in the strictly batch
setting. Our ICIL model leverages ideas from causality and learns an invariant state representation
that minimizes the presence of spurious correlations. By conditioning the imitation policy on this
state representation, we obtain a policy that generalizes to environments with the same shared latent
structure, but with different noise distribution and dynamics. ICIL also matches expert behaviour by
incentivizing the learnt imitation policy to stay within the expert’s observations distribution.

In terms of limitations, we believe that future work should consider providing theoretical insights
and error bounds on the generalization error. In addition, to be able to learn an invariant state
representation, our method requires demonstrated trajectories from at least two training environments
with different interventions on the noise variables (spurious correlations), and the method cannot
be used if such data is not available in practice. Finally, we bear in mind that—as with any other
imitation learning method that aims to match the expert’s policy—ICIL can have potential negative
societal impacts if the expert’s policy is flawed in the first place. Thus, in sensitive applications such
as clinical decision support, care must be taken to prevent potentially negative feedback loops.
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