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ABSTRACT

Modeling dynamic temporal dependencies is a critical challenge in time series
pre-training, which evolve due to distribution shifts and multi-scale patterns. This
temporal variability severely impairs the generalization of pre-trained models to
downstream tasks. Existing frameworks fail to capture the complex interactions
of short- and long-term dependencies, making them susceptible to spurious cor-
relations that degrade generalization. To address these limitations, we propose
DeCoP, a Dependency Controlled Pre-training framework that explicitly mod-
els dynamic, multi-scale dependencies by simulating evolving inter-patch depen-
dencies. At the input level, DeCoP introduces Instance-wise Patch Normaliza-
tion (IPN) to mitigate distributional shifts while preserving the unique charac-
teristics of each patch, creating a robust foundation for representation learning.
At the latent level, a hierarchical Dependency Controlled Learning (DCL) strat-
egy explicitly models inter-patch dependencies across multiple temporal scales,
with an Instance-level Contrastive Module (ICM) enhances global generalization
by learning instance-discriminative representations from time-invariant positive
pairs. DeCoP achieves state-of-the-art results on ten datasets with lower comput-
ing resources, improving MSE by 3% on ETTh1 over PatchTST using only 37%
of the FLOPs. The source code is available athttps://anonymous . 4open.

science/r/DeCop—62A7.

1 INTRODUCTION

Time series analysis plays a critical role in ap- * S DeCoP @ Time-MAE
phcat10n§ like weather forecasting (Wu et al., 9% @ PatchTST o TS2Vec
2023bj [Liu et al., 2022)), fault detection (Deng @ @ SimMTM B TST

& Hooil 2021} [Zhang et al., 2022b)), and sales %0 " TE-C V¥ CoST
prediction (Wu et al.,|2023a;|[Ekambaram et al., « LaST
2020). With abundant unlabeled time series ™ 20

data across domains, pre-training approaches . L 2
for representation learning without extensive

annotation are increasingly popular. Recent re- 60

search has focused on pretrained models to ad-

dress tasks like forecasting and classification in 50 = Vv

a general-purpose backbone (Goswami et al., 102 FLOPs 10° 104

2024; Jin et al.| 2023; Liu et al., 2024; 'Woo
et al.,[2024; Rasul et al.,|2023).

Despite these efforts, time series data pose fun-
damental challenges for self-supervised learn-
ing. First, the non-stationary nature of time se-
ries induces temporal distribution shifts, caus-

Figure 1: DeCoP consistently outperforms state-
of-the-art pretraining frameworks on classifica-
tion tasks across datasets with lower FLOPs
(Floating Point Operations).

ing the underlying dependency patterns between patches to evolve over time. Second, time series
inherently exhibit multi-scale temporal structures, encompassing both short-term fluctuations and
long-term trends. Models that operate at a single scale consequently fail to capture these rich, hi-
erarchical dependencies. These challenges highlight the need for a framework that can perform
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controllable, multi-scale dependency modeling in the presence of distribution shifts, enabling repre-
sentations that capture both fine-grained local semantics and broader contextual patterns.

However, existing time series pre-training frameworks such as Masked Time series Modeling
(MTM) (Nie et al} 2022 Dong et al., |2024; [Lee et al., | 2023) predominantly rely on single-scale
architectures such as Transformers (Vaswani et al., 2017). This architectural choice limits their abil-
ity to capture multi-scale temporal dependencies and renders them insensitive to relative positional
information. Such limitations can lead to spurious correlations, particularly in long-term depen-
dency modeling, and result in entangled representations that blur local variations and dilute global
consistency. Moreover, to mitigate distribution shifts, these approaches often operate at the instance
level and apply uniform normalization statistics across all patches, ignoring their distinct local struc-
tures (Kim et al.,|2021). This coarse-grained normalization results in over-smoothing, suppressing
informative temporal patterns such as peaks and abrupt transitions at the patch level.

In this paper, we propose DeCoP, a Dependency Controlled Pre-training MTM framework that
explicitly models dynamic, multi-scale dependencies across time. This controllable learning frame-
work enhances the generalization of time series pretrained models while requiring significantly
lower computational cost (FLOPs) in Figure Specifically, at the input level, DeCoP applies
Instance-wise Patch Normalization (IPN), which incorporate patch-level and instance-level statis-
tics. This enables the model to preserve local semantic variation while stabilizing distribution shifts
across time, establishing a more reliable basis for subsequent dependency modeling.

At the latent representation level, DeCoP introduces a hierarchical Dependency Controlled Learning
(DCL) method to model inter-patch dependencies by dynamically adjusting the temporal receptive
field, capturing both short-term and long-range patterns. Concurrently, we introduce an Instance-
level Contrastive Module (ICM) that operates on the representations generated by DCL, promoting
global alignment for time-invariant positive pairs to improve performance on high-level downstream
tasks such as classification. Extensive experiments demonstrate that DeCoP achieves state-of-the-art
performance across ten benchmark datasets. The main contributions of this work are as follows:

* We propose DeCoP, an efficient dependency controlled pre-training framework that en-
hances time series representation by explicitly modeling dynamic temporal dependencies
under distribution shifts.

* We introduce Instance-wise Patch Normalization, which integrates patch-level statistical
information into normalization. This mitigates distributional shifts and preserves local se-
mantic features captured by patch information, providing a stable foundation for modeling
dynamic temporal dependencies.

* We develop a hierarchical Dependency Controlled Learning strategy that adaptively cap-
tures both short- and long-term dependencies across temporal scales, with a Instance-level
Contrastive Module aligning high-level semantic information between time-invariant posi-
tive sample pairs, enhancing global semantic learning for high-level downstream tasks.

* DeCoP outperforms existing pretrained models on ten datasets with significantly lower
FLOPs, achieving 3% lower MSE than PatchTST on ETTh1 using only 37% of the FLOPs.

2 METHOD

Problem Setting. Given a univariate time series # € R” with look-back length L, the output is
masked time series patch & and the model is optimized by reconstructing the randomly masked
patches by MSE = ||z — &||3.

Most existing time series pretraining frameworks follow the transformer structure in Natural Lan-
guage Processing (Devlin et al., [2019) as shown in Figure . However, this framework overlooks
the inherent multi-scale characteristics of time series data and tends to capture spurious dependency
correlation due to the dynamical modeling challenge. To overcome this, we present DeCoP, a
Dependency-Controlled Pre-training framework that improves self-supervised time series represen-
tation by modeling dynamic and non-uniform temporal dependencies (Figure [2h). DeCoP integrates
modules at both the input and latent levels. At the input level, instance-wise Patch Normalization
stabilizes representations by combining local and instance-level statistics. At the latent level, a
hierarchical Dependency Controlled Learning method adaptively models inter-patch dependencies
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Figure 2: (a) The proposed DeCoP framework addresses dynamic and multi-scale temporal depen-
dencies through a controllable pipeline. IPN incorporates patch-level statistics to stabilize distribu-
tion while preserving local semantics. ICM generate time-invariant positive pairs and a contrastive
loss to support the hierarchical DCL for multi-scale modeling. DeCoP is optimized with reconstruc-
tion 1oss Liecon and contrastive loss L. (b) In contrast, traditional frameworks neglect finer-scale
statistics and fail to capture the complex interactions of multiscale dependencies.

across multiple temporal scales, and an Instance-level Contrastive module generates time-invariant
positive samples to enhance global representation modeling. Together, these components enable
robust temporal modeling under varying dependencies.

2.1 INSTANCE-WISE PATCH NORMALIZATION FOR STABILIZING INPUT DISTRIBUTIONS

At the input layer, to address the challenges of distribution shift in time series data for time series
dependency modeling, we propose Instance-wise Patch Normalization (IPN) in Figure 2h. By inte-
grating patch-level variation with global instance-level distribution information, IPN preserves local
semantic features, which are critical for capturing short-term patterns and providing a stable foun-
dation for controlled dependency modeling. Specifically, given a univariate time series = € R, we
divide it into patches X, = {1, 2, ...,zn} With patch size P and stride S. The total number of

patches NV is given by:
L—-P
N=|—F 2. 1
{ . J " M

Each patch z,, € R” is an independent unit that captures localized temporal patterns. To quantify
the fine-grained variations within each patch, we first compute the patch-wise mean, Ep|x,], by
averaging over its P time points:

1 P
Eplza] = 5> @i 2)
=1

Subsequently, we compute the patch-wise variance, Varp|x,], which measures the dispersion of
these points around the mean:

1 P
Varp ] = 5 > (@i — By lwal)?. 3)
1=1

To exploit instance statistics, we leverage distribution information at the instance scale to incorporate
global distribution information by calculating mean and variance of x:

1 & 1 &
E;rfz] = I Z@J/arl [z] = ZZ (x; — Er [;c])2 4)
j=1 j=1

where j is the relative index of time series x. For each time series, the mean and variance are
calculated along the L dimension. After obtaining instance and patch-wise distribution information,
a learnable parameter a € R is introduced to balance local and global information, controlling their
influence as follows:

Elzp,)=(1—a)x Er+a x Ep, 5)
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Figure 3: (a) The ICM filters time-variant low-amplitude components in the frequency domain to
generate denoised positive samples (X),, X},), which serve as stable semantic patterns to facilitate
global dependency modeling. (b) The DCL module performs controlled dependency learning across
multiple temporal scales, enabling adaptive modeling of inter-patch dependencies under varying
temporal dynamics. Inter-patch dep.: inter-patch dependency.

where E; and E'p are the global mean and local mean of z,,, respectively. The calculation of final
variations is given by:

Var |z, =(1—a) x Var; + a x Varp. (6)

Finally, each patch z,, is transformed into Z,, using the computed mean and variance for instance-
wise patch normalization:

Fp = x”_—EM (7)

VVar e, + €

This results in a normalized sequence X, = {Z1, Z2, ..., Zp, ..., Zn }. During the pretraining stage
stage, we reconstruct the normalized time series X},. During the finetuning stage, we return the
mean and variance back through denormalization. This process establishes a stable foundation for
dependency modeling, effectively overcoming the distribution shift problems.

2.2 HIERARCHICAL DEPENDENCY CONTROLLED LEARNING FOR DYNAMIC DEPENDENCIES

To address the dynamic and multiscale temporal dependencies, we propose a Dependency Con-
trolled Learning (DCL) module that adaptively controls the receptive field at the latent representation
(Figure Bp). Temporal dependencies vary in temporal range, which requires the model to capture
both short- and long-range patterns. Our multi-scale design enables the model to flexibly adjust the
dependency range and effectively capture multi-scale patterns across varying temporal structures.

Specifically, given the denoised positive pair (X, X~p) (discussed in next section), we omit the mod-

eling of X, as both inputs share the same encoder backbone. The input patches X, € RY*¥ are
first projected into a latent space via a linear transformation:
Z, = X,Wp + Bias, 2, =2, + Wpes, (8)

where Wp € RP*P | Bias € RP and D is the model dimension. To retain the temporal structure,
we incorporate a learnable relative positional encoding W, € RN XD into the latent representation
Zp. To capture dependencies across different temporal scales, we define a set of window sizes

{Wk},iil for hierarchical modeling. For each window size, we reshape the Z, into a windowed
form and flatten the local window dimensions.
Z, = Flatten(Reshape(Padding(Z,))). )

Specifically, Z,, is first padded and reshaped into the defined window size W}, converting from
RV*D o RN/Wi,Wi,D , and then flatten the last two dimensions into R /Wie,WiexD Thig enables
the encoder to operate over local windows of varying sizes. Then, the resulting representation within
each window is passed to a temporal learner Ey:

Z. = ReshapeBack(Eene(Z,)), (10)
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Figure 4: The ICM module filters time-variant noise while preserving time-invariant frequencies.
(a) Anchor sample, filtered noise, and generated positive on ETTh1 (sequence length = 100), where
the filtered noise (orange) resembles zero-mean white noise. (b) Amplitude spectrum with green
dots for retained frequencies and orange dots for those removed by FMask. (c) Green-highlighted
frequencies remain prominent, confirming their stability and importance for capturing patterns.

where &, is based on a Linear or MLP structure in our experiment. After that, we reshape the
input Z, to its original size RV *? and leverage residual connections to ensure training stability:

Zi, = Z. + Dropout(Z,). (11

The window size W, increases across encoder blocks, enabling a global receptive view through
careful design. This scale-aware structure empowers DCL to adaptively learn temporal dependen-
cies from both local and global perspectives, making it suitable for handling varying and evolving
temporal structures in time series.

2.3 INSTANCE-LEVEL CONTRASTIVE MODULE (ICM) FOR GLOBAL SEMANTICS

We introduce ICM to enhance DCL for global semantic modeling, as MTM paradigm may be sub-
optimal for high-level downstream tasks such as classification compared to CL paradigm (Figure 3a
and Figure ). To construct positive sample pairs for DCL’s high-level semantic modeling, we
incorporate a controllable time-variant low-amplitude filtering to generate noise-less views. Specif-
ically, we first apply a Discrete Fourier Transform F to the batched input A, = [XI?, X[}, e
XpM | € RB-M.N \where B denotes batch size, M denotes channel size, resulting in the corre-
sponding spectrum: S, = F(Xp). where the generated S;, has shape [B, M, L%J] To identify
stable global frequency components, Spean across the batch and channel dimensions, we compute
the average amplitude:

Smean = AVG(AVG(AMP(S,), dim = 0), dim = 0), (12)

where AMP denotes the calculation of amplitude, and AVG represents the average operation. We
then apply a top K filter to extract global high-amplitude frequencies, forming the time- and channel-
invariant set Sinyvar. Next, a topM filter selects instance-specific low-amplitude frequencies to gener-
ate the time-variant set Sy,.. The selection process is defined as:

Sinvar = Filter (topK, Smean) » Svar = Filter (topM, AMP(Sp)) , (13)

where topK = 8 x | L/2], 8 is a hyperparameter that controls the filtering intensity, and topM =
(1 = B) x |L/2]. To prevent information loss, the final time-variant filtered Sy, is defined as:

Svar - var — Svar m Sinvar- (14)
We construct a binary frequency mask FMask € {0, 1} 5> LL/2] to suppress time-variant com-
ponents. Specifically, each element FMasky ,, . is set to 0 if ¢ € Sya, and 1 otherwise, where

k € 10,|L/2]),b € [1,B], and m € [1, M]. FMask is applied to obtain a filtered spectrum. The
denoised signal X is then recovered by applying the inverse Fourier transform F—!:

X, = F L{(FMask © Sp), (15)

where © denotes the Hadamard product. Once the batched positive pairs (X}, /'?b) are obtained,
where A, preserves reliable temporal structures, we apply random masking m to each pair (X}, X))
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Table 1: Forecasting results for predicting F' future time points based on the past 512 points in
an in-domain setting. Results are averaged over F' € {96,192, 336,720}, with lower MSE and
MAE indicating better performance. The best and second-best results are highlighted in bold and
underlined, respectively.

Model ETThl ETTh2 ETTml ETTm2 Weather Electricity Average
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Informer 1.033  0.799 3303 1.439 0.872 0.691 1.305 0.797 0.568 0.522 0.329 0415 1235 0.777

Autoformer 0473 0477 0422 0443 0.515 0493 0310 0357 0335 0379 0214 0327 0378 0.412
Fedformer 0.428 0454 0388 0434 0382 0422 0292 0343 0310 0357 0207 0321 0335 0.389
iTransformer 0.479 0477 0.387 0418 0.371 0400 0.272 0333 0.246 0278 0.161 0256 0.319 0.360
DLinear 0433 0446 0477 0469 0360 0384 0283 0346 0247 0311 0.162 0.260 0.327 0.369
TimeMixer 0432 0446 0375 0413 0395 0389 0262 0322 0228 0.269 0.165 0.261 0309 0.353
CycleNet 0.430 0.440 0367 0406 0368 0395 0267 0325 0224 0.265 0.158 0.252 0302 0.347
PatchTST 0430 0445 0355 0394 0346 0383 0257 0318 0225 0.261 0157 0.252 0295 0.342
SimMTM 0.404 0428 0348 0391 0362 0393 0269 0327 0227 0268 0.162 0.256 0.295 0.344

DeCoPyrinear 0.401 0.421 0333 0.382 0361 0.379 0.255 0.313 0.242 0279 0.165 0.258 0.293 0.339
DeCoPyirp 0408 0.424 0341 0.388 0.342 0376 0.249 0311 0223 0.259 0.157 0.251 0.287 0.335

from the batch for subsequent masked modeling. For each positive pair, the temporal learner &,
extracts their latent representations as:

Ze = Senc(Xp)7 Z~e = genc(/l;p)~ (16)

We further define a similarity-based contrastive loss function L., for the final DCL block as follows:

B M
1 -
a=1— == AVG(Z.) - AVG(Z,), 17
Lo =17 ; 2;1 (Ze) - AVG(Z.) (17)
where - denotes the dot product. By minimizing L;, the model encourages Z. to approximate
its denoised counterpart Z., enhancing global instance-level representation learning and improving
generalization to downstream tasks.

2.4 LoSS DESIGN

Based on the MTM framework, we reconstruct masked patches from the unmasked ones. A pre-
training head predicts the masked patches as X, = Z, W + Bias, where W € RP*F Bias € R”,
and Zj, € RV*P The reconstruction loss is computed using MSE:

B M N

Lreeon =330 3 [me (agirmm — gimmy |° as)

i=1 m=1n=1

where m is a binary mask indicating whether a patch is masked and ® denotes the Hadamard prod-
uct. The final loss combines the reconstruction loss with the contrastive loss previously introduced:

L= ['recon + v X »Cclv (19)

where the hyperparameter -y is the weight of £.;. This combined loss enhance temporal consistency
under temporal noise and non-uniform dependencies, encouraging the model to learn representations
that preserve global patterns.

3 EXPERIMENTS

Experiment Setting. We conduct experiments on forecasting and classification tasks, following the
protocols in |Nie et al. (2022) and [Dong et al. (2024). Fine-tuning performance is evaluated under
in-domain and cross-domain settings. MSE and MAE are used as metrics for forecasting, while
Accuracy, Precision, Recall, and Fl-score assess classification performance. For forecasting, six
real-world datasets are employed, including four ETT datasets [Zhou et al. (2021) (ETTh1, ETTh2,
ETTml, ETTm?2), Weather Wetterstation| (2021)), and Electricity [UCI (2021)). For classification, we
adopt four real-world datasets: SleepEEG [Kemp et al. (2000), Epilepsy |Andrzejak et al. (2001),
FD-B [Lessmeier et al.|(2016), and EMG [PhysioBank (2000).

Model Parameters. By default, all experiments are configured with the following parameters:
k = 2, topK = 0.3, aynitiaqr = 0.01, v = 0.1 and Ir = le — 4. For forecasting tasks, both in-
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Table 2: Transfer learning setting of forecasting the future F' time points. All results are averaged
from 4 different choices of F' € {96,192,336,720}. The best and second-best results are high-
lighted in bold and underlined, respectively.

Scenarios DeCoPyrinear | DeCoPyrp | PatchTST | SimMTM | TimeMAE | CoST | TST | TF-C
Source  Target MSE MAE ‘ MSE MAE‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE

ETTh2 ETThl 0.403 0.422 | 0.409 0.426 | 0.423 0.443|0.415 0.43 | 0.466 0.456 | 0.428 0.433 | 0.469 0.459 | 0.635 0.634
ETTm2 ETTml 0.359 0.379 |0.342 0.376 | 0.348 0.382 | 0.351 0.383 | 0.390 0.410 | 0.385 0.412|0.382 0.402 | 0.758 0.669
ETTm2 ETThl 0.404 0.423 | 0412 0.426 | 0.433 0.447 | 0.428 0.441 | 0.464 0.456 | 0.598 0.548 | 0.453 0.45 |1.091 0.814
ETTh2 ETTml 0.360 0.379 |0.343 0.377 | 0.363 0.387 | 0.365 0.384 | 0.383 0.402 | 0.363 0.387 | 0.391 0.409 | 0.750 0.654
ETTml ETThl 0.405 0.423 | 0416 0.427 | 0.447 0.451 | 0422 0.430|0.495 0.469 | 0.62 0.541|0.475 0.463 |0.700 0.702
ETThl ETTml 0.361 0.379 |0.346 0.379 | 0.348 0.381 | 0.346 0.384 | 0.360 0.390 | 0.37 0.393 | 0.373 0.393 | 0.746 0.652
Weather ETThl 0.405 0.422 | 0411 0.426|0.437 0.448 | 0.456 0.467 | 0.518 0.487 | 0.465 0.456|0.462 0.464 - -

Weather ETTml 0.359 0.379 | 0.345 0.376 | 0.348 0.383 | 0.358 0.388 | 0.411 0.423 | 0.382 0.403 | 0.368 0.392 - -

Average 0382  0.401 |0.378 0.402|0.393 0.415|0.393 0.413|0.429 0.434]0.458 0.451|0.422 0.428 |0.780 0.693

Table 3: In- and cross-domain classification. For in-domain, DeCoP is pretrained and finetuned on
Epilepsy. For the cross-domain setting, we pretrain DeCoP on SleepEEG and fine-tune it to multiple
target datasets: Epilepsy, FD-B, EMG. P and R denotes precision and recall, respectively. The best
and second-best results are highlighted in bold and underlined, respectively.

. | In-domain Cross-domain
Scenarios
| Epilepsy — Epilepsy SleepEEG — Epilepsy | SleepEEG — FD-B | SleepEEG — EMG
Metrics ‘ ACC P R Fl1 ACC P R Fl1 ‘ ACC P R Fl ‘ ACC P R Fl1

LaST 92.11 93.12 8147 8574 | 8646 90.77 66.35 70.67 | 46.67 439 4771 4517 | 66.34 79.34 63.33 72.55
TF-C 93.96 9487 85.82 89.46 | 9495 9456 80.08 91.49 | 69.38 7559 72.02 74.87 | 81.71 72.65 81.59 76.83
TST 80.21 40.11 50.00 4451 | 80.21 40.11 50.00 4451 | 464 4158 455 4134|7834 77.11 803 68.89
CoST 88.07 91.58 66.05 69.11 | 8840 8820 7234 76.88 | 47.06 38.79 3842 3479 | 53.65 49.07 42.1 3527
Ti-MAE 90.90 9390 7724 7821 | 89.71 7236 6747 68.55 | 60.88 6698 68.94 66.56 | 69.99 7025 63.44 70.89
PatchTST | 89.56 90.39 89.56 80.11 | 93.27 92.51 85.57 88.48 | 80.15 82.25 8547 83.05|90.24 8296 8295 8291
SimMTM | 9475 95.6 89.93 91.41 | 9549 9336 92.28 92.81 | 69.40 74.18 7641 75.11 | 97.56 98.33 98.04 98.14

DeCoPyp | 95.53 9351 9225 92.86 | 9582 9423 9241 93.28 | 93.04 94.92 9490 94.90 | 100 100 100 100

|
|
\
TS2Vec 92.17 9384 81.19 8571 | 93.95 90.59 90.39 90.45 | 479 4339 4842 4389 | 7854 804 67.85 67.66

and cross-domain experiments share the same configuration, with a patch size and stride of 12. For
both in- and cross-domain classification task, the patch size and stride are set to 8. More details of
parameters are provided in appendix.

3.1 TIME SERIES FORECASTING

In-domain Evaluation. We compare our model with six competitive state-of-the-art baseline meth-
ods in time series forecasting, including self-supervised approaches (SimMTM |Dong et al.| (2024)),
PatchTST |Nie et al. (2022)) and supervised approaches (CycleNet [Lin et al. (2024), TimeMixer
Wang et al.| (2024), DLinear Zeng et al.| (2023), iTransformer |Liu et al.| (2023), Fedformer [Zhou
et al.| (2022), Autoformer Wu et al.|(2021)), Informer Zhou et al.| (2021)). The look-back period to
512, with a patch size of 12 and a stride of 12 across all forecasting experiments. The patches remain
non-overlapping during both the pre-training and fine-tuning stages. In Table[T] DeCoPy incar outper-
forms the second-best by 1.5% on ETTh2. For more complex datasets like ETTm2, DeCoPyy p
achieves the best results, surpassing the PatchTST by 0.8% in MSE.

Cross-domain Analysis. In the cross-domain setting, we compare our framework with six advanced
time series pre-training frameworks SimMTM, PatchTST, TF-C Zhang et al.| (2022a), TST [Zerveas
et al. (2021), CoST Woo et al.|(2022) and TimeMAE|Li et al. (2023)). In Table we evaluate multi-
ple scenarios to test effectiveness under cross-domain conditions. Both in-domain and cross-domain
transfer settings, our model consistently achieves lower MSE and MAE than others, especially in
ETTml1 — ETThl, we outperform PatchTST 4.2% in MSE, highlighting its effectiveness under
distribution shifts. Complete forecasting results are provided in the appendix.

3.2 TIME SERIES CLASSIFICATION

In-domain Evaluation. For in-domain learning, We preform Epilepsy — Epilepsy following|Dong
et al.| (2024). We adopt MLP as our temporal learner in classification task and compare it with
eight competitive state-of-the-art baseline methods, including the contrastive learning based meth-
ods: TF-C, LaST, TST, TS2Vec |Yue et al. (2022)), and the masked time series modeling methods:
SimMTM, PatchTST, Ti-MAE, CoST Wang et al.[(2022). In Table Our model outperform second-
best SImMTM by 1.45% in F1, and outperform PatchTST by 12.75%.
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Table 4: The left table compares FLOPs, parameters, and average MAE on the ETTh1 and Weather
datasets across different pre-training frameworks. The right table illustrates the effect of controllable
window sizes W}, which enable efficient pretraining by allowing flexible dependency modeling.

Dataset ~ Models Pretrain Finetune MSE Wi ETThl ETTh2 ETTml Params
FLOPs  Params FLOPs Params MSE MAE | MSE MAE | MSE MAE

— gf*lcll\l/[TTSﬁ 412765;}(14 Oii‘;fif[\’l }8% 21;4’1 83(3)2 1,1 | 0406 0424 | 0335 0383 | 0348 0.382 | 0.165M
m y 13 | 0403 0422 | 0335 0.384 | 0.347 0.381 | 0.446M

DeCoP 2M  0479M  49M 2M 0.401
2,5 | 0401 0421 0333 0382 | 0.346 0.377 0.999M

PatchTST ~ 526M  0598M 389M  2M 0225

Weather SimMTM  48865M  556M  259M  1IM 0227 48 10403 04230337 0385 0342 0376 | 2.3M
DeCoP 245M  0.463M  159M 2M 0223 4242 | 0405 0423 | 0335 0.383 | 0.345 0377 | 88.8M
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Figure 5: Ablation study of DeCoP, showing the impact of IPN, ICM, DCL, Patch Dependence, and
Patch Independence on time series forecasting (left) and classification (right) tasks in both in- and
cross-domain settings. For classification, AVG denotes the average of accuracy and F1 score.

Cross-domain Analysis. For cross-domain setting, we conduct experiments across in-domain and
cross-domain transfer learning SleepEEG — {Epilepsy, FD-B, EMG} in Table where the source
data differs from the target data in both channels and classes. Notably, on SleepEEG — FD-B, Our
framework surpass the second best by 12.89% and 11.85% in accuracy and F1, respectively. These
results highlight DeCoP’s superior robustness under both domain and label shifts.

3.3 MODEL ANALYSIS
3.3.1 ABLATION STUDIES

We conduct ablation studies on both forecasting and classification tasks under in-domain and cross-
domain settings to evaluate the contributions of IPN, ICM, and DCL. For DCL, we compare two
alternative configurations: patch-independent (PI) and patch-dependent (PD). In Figure|5| replacing
DCL with PI or PD leads to average performance drops of 3.94% and 22.51% on in-domain classifi-
cation, respectively. The performance gap becomes larger in the cross-domain setting, with declines
of 18.69% (PI) and 19.57% (PD), highlighting the importance of dynamical dependency modeling.
In forecasting, removing IPN and ICM results in MSE increases of 0.5% and 0.4% under in-domain
and cross-domain settings, respectively.

Notably, ICM contributes to more stable gains across both forecasting and classification: its removal
increases forecasting error by up to 0.8% in the ETTm2 — ETTh1 task and reduces the average of F1
and accuracy by 9.53% in the SleepEEG — FD-B scenario. These results confirm the effectiveness
of ICM in enhancing generalization to downstream tasks, particularly for high-level classification
tasks. More ablation results are provided in appendix.

3.3.2 BETTER RESULTS WITH COMPACT MODEL

We compute the FLOPs and parameters of DeCoP compared to two SOTA pre-training frameworks
in two datasets in the left table of Table @] In both pre-training and fine-tuning stages, DeCoP
achieves the lowest MSE 0.401, outperforming PatchTST by 30% on the ETTh1 dataset while using
only 37% of the FLOPs. Full results on efficiency are provided in appendix.

3.3.3 LEVERAGING PERIODICITY PRIORS FOR SUPERIOR EFFICIENCY

DeCoP outperforms prior methods such as PatchTST and SimMTM, achieving superior performance
with fewer parameters through a controllable modeling mechanism. The DCL module captures de-
pendencies between patches using variable window sizes, enabling alignment with periodic patterns
in time series data. Empirically, we adopt a (2, *) configuration to capture daily periodicity in hourly
datasets with a patch size of 12, and a (4, *) configuration to capture hourly periodicity in 10-minute
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datasets. In the right table of Table The (2, 5) setting achieves strong performance with only 999k

parameters, highlighting the efficiency of DCL.

3.3.4 ADVANCING CONTROLLABILITY WITH DECOP

A key challenge in time series pre-training is
modeling temporal dependencies that evolve
due to distribution shifts (Figure @a) and multi-
scale patterns, often resulting in noisy fea-
tures and poor generalization. While exist-
ing approaches like PatchTST employ instance-
level normalization (IN) to mitigate distribution
shifts, we observe that IN tends to oversmooth
patch-level variations, weakening semantic ex-
pressiveness (Figure [6b). In contrast, DeCoP
explicitly addresses this challenge through con-
trollable normalization. IPN adaptively nor-
malizes both fine-grained patch-level statistics
and coarse-grained instance-level distributions.
This dual-level normalization allows the model

Train Data
Test Data

—1 0

A

Train Data
Test Data

) ] 3
(a) Original

2 ]
(b) IN normalization

0 2
(¢) IPN normalization

Figure 6: Comparison of data distributions before
normalization (a), after IN (b), and after IPN (c)
on ETTh1 and ETTm]1. IPN preserves original se-
mantic patterns such as peaks while better align-
ing train and test distributions.

to better preserve local temporal semantics while maintaining global statistical alignment. Com-
pared to IN, IPN more effectively retains informative intra-patch variations (Figure @:).

Additionally, our DCL method controllably
encodes temporal structures through dynamic
window grouping and encoding dependencies
hierarchically. Unlike single scale attention in
PatchTST, DCL explicitly constrains the tem-
poral scope of dependency modeling, allowing
the model to capture meaningful local patterns
and gradually expand to global semantics. This
controllable design reduces overfitting risks un-
der distribution shifts by avoiding noisy or ir-

Train loss

***** Valid loss.

Test loss

X PatchTST

O DeCop

1.25

L0050
N

Figure 7: DeCoP achieves faster convergence and
smaller train—val loss gaps on ETT datasets.

relevant dependencies. In Figure |7} DeCoP converges faster and maintains a smaller gap between
training and validation loss, demonstrating better generalization and reduced overfitting.

3.3.5 ROBUST GENERALIZATION UNDER LIMITED DATA

We further assess DeCoP’s generalization ca-
pability under limited data scenarios in Ta-
ble[5] In the ETTh2—ETThI transfer setting
with only 50% labeled data, DeCoP outper-
forms PatchTST and SimMTM by 2.2% and
4.9% in MSE, respectively. DeCoP consistently
achieves the lowest MSE and MAE across all
finetuning ratios (25%, 50%, and 75%), high-
lighting its robustness in data-scarce scenarios.

4 CONCLUSION

Table 5: Transfer performance from ETTh2 to

ETThl under different finetuning ratios.

ETTh2—ETTh1 25% 50% 75%

Models MSE MAE MSE MAE MSE MAE
SimMTM 0468 0.469 0451 0461 0428 0445
PatchTST 0453 0462 0424 0440 0425 0441
DeCoP 0.445 0457 0.402 0423 0405 0.423

This paper introduces DeCoP, a Dependency Controlled Pretraining framework that improve time
series representation learning by explicitly modeling dynamic and multi-scale temporal dependen-
cies. At the input level, IPN establishes a stable foundation by mitigating distribution shifts through
instance-wise patch normalization while preserving fine-grained, patch-level information. At the
latent representation level, DCL explicitly captures multi-scale dependencies through controllable
receptive filed and ICM enhances global representation learning by incorporating time-invariant pos-
itive pairs. DeCoP outperforms existing models with fewer parameters, highlighting the importance
of dependency-controlled pre-training for dynamic time series. We hope that DeCoP can inspire
future research in building more general, efficient, and controllable pre-training paradigms.
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