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ABSTRACT

Modeling dynamic temporal dependencies is a critical challenge in time series
pre-training, which evolve due to distribution shifts and multi-scale patterns. This
temporal variability severely impairs the generalization of pre-trained models to
downstream tasks. Existing frameworks fail to capture the complex interactions
of short- and long-term dependencies, making them susceptible to spurious cor-
relations that degrade generalization. To address these limitations, we propose
DeCoP, a Dependency Controlled Pre-training framework that explicitly mod-
els dynamic, multi-scale dependencies by simulating evolving inter-patch depen-
dencies. At the input level, DeCoP introduces Instance-wise Patch Normaliza-
tion (IPN) to mitigate distributional shifts while preserving the unique charac-
teristics of each patch, creating a robust foundation for representation learning.
At the latent level, a hierarchical Dependency Controlled Learning (DCL) strat-
egy explicitly models inter-patch dependencies across multiple temporal scales,
with an Instance-level Contrastive Module (ICM) enhances global generalization
by learning instance-discriminative representations from time-invariant positive
pairs. DeCoP achieves state-of-the-art results on ten datasets with lower comput-
ing resources, improving MSE by 3% on ETTh1 over PatchTST using only 37%
of the FLOPs. The source code is available at https://anonymous.4open.
science/r/DeCop-62A7.

1 INTRODUCTION
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Figure 1: DeCoP consistently outperforms state-
of-the-art pretraining frameworks on classifica-
tion tasks across datasets with lower FLOPs
(Floating Point Operations).

Time series analysis plays a critical role in ap-
plications like weather forecasting (Wu et al.,
2023b; Liu et al., 2022), fault detection (Deng
& Hooi, 2021; Zhang et al., 2022b), and sales
prediction (Wu et al., 2023a; Ekambaram et al.,
2020). With abundant unlabeled time series
data across domains, pre-training approaches
for representation learning without extensive
annotation are increasingly popular. Recent re-
search has focused on pretrained models to ad-
dress tasks like forecasting and classification in
a general-purpose backbone (Goswami et al.,
2024; Jin et al., 2023; Liu et al., 2024; Woo
et al., 2024; Rasul et al., 2023).

Despite these efforts, time series data pose fun-
damental challenges for self-supervised learn-
ing. First, the non-stationary nature of time se-
ries induces temporal distribution shifts, caus-
ing the underlying dependency patterns between patches to evolve over time. Second, time series
inherently exhibit multi-scale temporal structures, encompassing both short-term fluctuations and
long-term trends. Models that operate at a single scale consequently fail to capture these rich, hi-
erarchical dependencies. These challenges highlight the need for a framework that can perform
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controllable, multi-scale dependency modeling in the presence of distribution shifts, enabling repre-
sentations that capture both fine-grained local semantics and broader contextual patterns.

However, existing time series pre-training frameworks such as Masked Time series Modeling
(MTM) (Nie et al., 2022; Dong et al., 2024; Lee et al., 2023) predominantly rely on single-scale
architectures such as Transformers (Vaswani et al., 2017). This architectural choice limits their abil-
ity to capture multi-scale temporal dependencies and renders them insensitive to relative positional
information. Such limitations can lead to spurious correlations, particularly in long-term depen-
dency modeling, and result in entangled representations that blur local variations and dilute global
consistency. Moreover, to mitigate distribution shifts, these approaches often operate at the instance
level and apply uniform normalization statistics across all patches, ignoring their distinct local struc-
tures (Kim et al., 2021). This coarse-grained normalization results in over-smoothing, suppressing
informative temporal patterns such as peaks and abrupt transitions at the patch level.

In this paper, we propose DeCoP, a Dependency Controlled Pre-training MTM framework that
explicitly models dynamic, multi-scale dependencies across time. This controllable learning frame-
work enhances the generalization of time series pretrained models while requiring significantly
lower computational cost (FLOPs) in Figure 1. Specifically, at the input level, DeCoP applies
Instance-wise Patch Normalization (IPN), which incorporate patch-level and instance-level statis-
tics. This enables the model to preserve local semantic variation while stabilizing distribution shifts
across time, establishing a more reliable basis for subsequent dependency modeling.

At the latent representation level, DeCoP introduces a hierarchical Dependency Controlled Learning
(DCL) method to model inter-patch dependencies by dynamically adjusting the temporal receptive
field, capturing both short-term and long-range patterns. Concurrently, we introduce an Instance-
level Contrastive Module (ICM) that operates on the representations generated by DCL, promoting
global alignment for time-invariant positive pairs to improve performance on high-level downstream
tasks such as classification. Extensive experiments demonstrate that DeCoP achieves state-of-the-art
performance across ten benchmark datasets. The main contributions of this work are as follows:

• We propose DeCoP, an efficient dependency controlled pre-training framework that en-
hances time series representation by explicitly modeling dynamic temporal dependencies
under distribution shifts.

• We introduce Instance-wise Patch Normalization, which integrates patch-level statistical
information into normalization. This mitigates distributional shifts and preserves local se-
mantic features captured by patch information, providing a stable foundation for modeling
dynamic temporal dependencies.

• We develop a hierarchical Dependency Controlled Learning strategy that adaptively cap-
tures both short- and long-term dependencies across temporal scales, with a Instance-level
Contrastive Module aligning high-level semantic information between time-invariant posi-
tive sample pairs, enhancing global semantic learning for high-level downstream tasks.

• DeCoP outperforms existing pretrained models on ten datasets with significantly lower
FLOPs, achieving 3% lower MSE than PatchTST on ETTh1 using only 37% of the FLOPs.

2 METHOD

Problem Setting. Given a univariate time series x 2 RL with look-back length L, the output is
masked time series patch x̂ and the model is optimized by reconstructing the randomly masked
patches by MSE = kx� x̂k22.

Most existing time series pretraining frameworks follow the transformer structure in Natural Lan-
guage Processing (Devlin et al., 2019) as shown in Figure 2b. However, this framework overlooks
the inherent multi-scale characteristics of time series data and tends to capture spurious dependency
correlation due to the dynamical modeling challenge. To overcome this, we present DeCoP, a
Dependency-Controlled Pre-training framework that improves self-supervised time series represen-
tation by modeling dynamic and non-uniform temporal dependencies (Figure 2a). DeCoP integrates
modules at both the input and latent levels. At the input level, instance-wise Patch Normalization
stabilizes representations by combining local and instance-level statistics. At the latent level, a
hierarchical Dependency Controlled Learning method adaptively models inter-patch dependencies

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Instance Norm & Patching 

Transformer Encoder

Projection Head

N N N NN M M N NNM

ℒ!"#$%

N N N NN M M N NNM

(b) Fully Dependent Pretraining

Instance-wise Patch Norm

Instance-level Contrastive Module

Dependency Controlled Learning ℰ&

N N NN MM

Projection Head

N N NN MM

(a) Ours Dependency Controlled Pre-training Framework

ℒ!"#$%

FFT

iFFT
Time-variant Low-

amplitude Filter

Source distribution Target distribution

Gaussian distribution

#	%&'()&**+,
normalization

Controllable Instance-wise Patch Normalization (6')

M : Masked Patch: Time series Patch

7̂ = # :( , I(
=> = #(:) , @))

7̂ = # :( , I(
=> = #(:) , @))

#	%&'()&**+,
denorm. Original

Noise-controlled 
sample

M

M
E*

EF* GH*

G*

ℰ&

Instance Contrastive
lossI

+,

ℰ&Original Noise-Controlled

EF*E*

GH*G*

Instance-wise Contrastive Module (J)

Figure 2: (a) The proposed DeCoP framework addresses dynamic and multi-scale temporal depen-
dencies through a controllable pipeline. IPN incorporates patch-level statistics to stabilize distribu-
tion while preserving local semantics. ICM generate time-invariant positive pairs and a contrastive
loss to support the hierarchical DCL for multi-scale modeling. DeCoP is optimized with reconstruc-
tion loss Lrecon and contrastive loss Lcl. (b) In contrast, traditional frameworks neglect finer-scale
statistics and fail to capture the complex interactions of multiscale dependencies.

across multiple temporal scales, and an Instance-level Contrastive module generates time-invariant
positive samples to enhance global representation modeling. Together, these components enable
robust temporal modeling under varying dependencies.

2.1 INSTANCE-WISE PATCH NORMALIZATION FOR STABILIZING INPUT DISTRIBUTIONS

At the input layer, to address the challenges of distribution shift in time series data for time series
dependency modeling, we propose Instance-wise Patch Normalization (IPN) in Figure 2a. By inte-
grating patch-level variation with global instance-level distribution information, IPN preserves local
semantic features, which are critical for capturing short-term patterns and providing a stable foun-
dation for controlled dependency modeling. Specifically, given a univariate time series x 2 RL, we
divide it into patches Xp = {x1, x2, ..., xN} with patch size P and stride S. The total number of
patches N is given by:

N =

�
L� P

S

⌫
+ 2. (1)

Each patch xn 2 RP is an independent unit that captures localized temporal patterns. To quantify
the fine-grained variations within each patch, we first compute the patch-wise mean, EP [xn], by
averaging over its P time points:

EP [xn] =
1

P

PX

i=1

xn,i. (2)

Subsequently, we compute the patch-wise variance, V arP [xn], which measures the dispersion of
these points around the mean:

V arP [xn] =
1

P

PX

i=1

(xn,i � Ep [xn])
2 . (3)

To exploit instance statistics, we leverage distribution information at the instance scale to incorporate
global distribution information by calculating mean and variance of x:

EI [x] =
1

L

LX

j=1

xj , V arI [x] =
1

L

LX

j=1

(xj � EI [x])
2 . (4)

where j is the relative index of time series x. For each time series, the mean and variance are
calculated along the L dimension. After obtaining instance and patch-wise distribution information,
a learnable parameter ↵ 2 R is introduced to balance local and global information, controlling their
influence as follows:

E [xn] = (1� ↵)⇥ EI + ↵⇥ EP , (5)

3
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Figure 3: (a) The ICM filters time-variant low-amplitude components in the frequency domain to
generate denoised positive samples (Xp, X̃p), which serve as stable semantic patterns to facilitate
global dependency modeling. (b) The DCL module performs controlled dependency learning across
multiple temporal scales, enabling adaptive modeling of inter-patch dependencies under varying
temporal dynamics. Inter-patch dep.: inter-patch dependency.

where EI and EP are the global mean and local mean of xn, respectively. The calculation of final
variations is given by:

V ar [xn] = (1� ↵)⇥ V arI + ↵⇥ V arP . (6)

Finally, each patch xn is transformed into x̃n using the computed mean and variance for instance-
wise patch normalization:

x̃n =
xn � E [xn]p
V ar [xn] + ✏

. (7)

This results in a normalized sequence Xp = {x̃1, x̃2, ..., x̃n, ..., x̃N}. During the pretraining stage
stage, we reconstruct the normalized time series Xp. During the finetuning stage, we return the
mean and variance back through denormalization. This process establishes a stable foundation for
dependency modeling, effectively overcoming the distribution shift problems.

2.2 HIERARCHICAL DEPENDENCY CONTROLLED LEARNING FOR DYNAMIC DEPENDENCIES

To address the dynamic and multiscale temporal dependencies, we propose a Dependency Con-
trolled Learning (DCL) module that adaptively controls the receptive field at the latent representation
(Figure 3b). Temporal dependencies vary in temporal range, which requires the model to capture
both short- and long-range patterns. Our multi-scale design enables the model to flexibly adjust the
dependency range and effectively capture multi-scale patterns across varying temporal structures.

Specifically, given the denoised positive pair (Xp, X̃p) (discussed in next section), we omit the mod-
eling of X̃p as both inputs share the same encoder backbone. The input patches Xp 2 RN⇥P are
first projected into a latent space via a linear transformation:

Zp = XpWP +Bias, Zp = Zp +Wpos, (8)

where WP 2 RP⇥D, Bias 2 RD and D is the model dimension. To retain the temporal structure,
we incorporate a learnable relative positional encoding Wpos 2 RN⇥D into the latent representation
Zp. To capture dependencies across different temporal scales, we define a set of window sizes
{Wk}Kk=1 for hierarchical modeling. For each window size, we reshape the Zp into a windowed
form and flatten the local window dimensions.

Zr = Flatten(Reshape(Padding(Zp))). (9)

Specifically, Zp is first padded and reshaped into the defined window size Wk, converting from
RN⇥D to RN/Wk,Wk,D, and then flatten the last two dimensions into RN/Wk,Wk⇥D. This enables
the encoder to operate over local windows of varying sizes. Then, the resulting representation within
each window is passed to a temporal learner Eenc:

Ze = ReshapeBack(Eenc(Zr)), (10)

4
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Figure 4: The ICM module filters time-variant noise while preserving time-invariant frequencies.
(a) Anchor sample, filtered noise, and generated positive on ETTh1 (sequence length = 100), where
the filtered noise (orange) resembles zero-mean white noise. (b) Amplitude spectrum with green
dots for retained frequencies and orange dots for those removed by FMask. (c) Green-highlighted
frequencies remain prominent, confirming their stability and importance for capturing patterns.

where Eenc is based on a Linear or MLP structure in our experiment. After that, we reshape the
input Ze to its original size RN⇥D and leverage residual connections to ensure training stability:

Zk = Ze +Dropout(Zp). (11)

The window size Wk increases across encoder blocks, enabling a global receptive view through
careful design. This scale-aware structure empowers DCL to adaptively learn temporal dependen-
cies from both local and global perspectives, making it suitable for handling varying and evolving
temporal structures in time series.

2.3 INSTANCE-LEVEL CONTRASTIVE MODULE (ICM) FOR GLOBAL SEMANTICS

We introduce ICM to enhance DCL for global semantic modeling, as MTM paradigm may be sub-
optimal for high-level downstream tasks such as classification compared to CL paradigm (Figure 3a
and Figure 4). To construct positive sample pairs for DCL’s high-level semantic modeling, we
incorporate a controllable time-variant low-amplitude filtering to generate noise-less views. Specif-
ically, we first apply a Discrete Fourier Transform F to the batched input Xb = [X 0

p ,X 1
p , ...,

XM
p ] 2 RB,M,N , where B denotes batch size, M denotes channel size, resulting in the corre-

sponding spectrum: Sb = F(Xb). where the generated Sb has shape [B,M, bL
2 c]. To identify

stable global frequency components, Smean across the batch and channel dimensions, we compute
the average amplitude:

Smean = AVG(AVG(AMP(Sb), dim = 0), dim = 0), (12)

where AMP denotes the calculation of amplitude, and AVG represents the average operation. We
then apply a topK filter to extract global high-amplitude frequencies, forming the time- and channel-
invariant set Sinvar. Next, a topM filter selects instance-specific low-amplitude frequencies to gener-
ate the time-variant set Svar. The selection process is defined as:

Sinvar = Filter (topK,Smean) ,Svar = Filter (topM,AMP(Sb)) , (13)

where topK = � ⇥ bL/2c, � is a hyperparameter that controls the filtering intensity, and topM =
(1� �)⇥ bL/2c. To prevent information loss, the final time-variant filtered Svar is defined as:

Svar = Svar � Svar \ Sinvar. (14)

We construct a binary frequency mask FMask 2 {0, 1}B⇥M⇥bL/2c to suppress time-variant com-
ponents. Specifically, each element FMaskb,m,k is set to 0 if i 2 Svar, and 1 otherwise, where
k 2 [0, bL/2c), b 2 [1, B], and m 2 [1,M ]. FMask is applied to obtain a filtered spectrum. The
denoised signal X̃b is then recovered by applying the inverse Fourier transform F�1:

X̃b = F�1(FMask � Sb), (15)

where � denotes the Hadamard product. Once the batched positive pairs (Xb, X̃b) are obtained,
where X̃b preserves reliable temporal structures, we apply random masking m to each pair (Xp, X̃p)

5
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Table 1: Forecasting results for predicting F future time points based on the past 512 points in
an in-domain setting. Results are averaged over F 2 {96, 192, 336, 720}, with lower MSE and
MAE indicating better performance. The best and second-best results are highlighted in bold and
underlined, respectively.

Model ETTh1 ETTh2 ETTm1 ETTm2 Weather Electricity Average

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Informer 1.033 0.799 3.303 1.439 0.872 0.691 1.305 0.797 0.568 0.522 0.329 0.415 1.235 0.777
Autoformer 0.473 0.477 0.422 0.443 0.515 0.493 0.310 0.357 0.335 0.379 0.214 0.327 0.378 0.412
Fedformer 0.428 0.454 0.388 0.434 0.382 0.422 0.292 0.343 0.310 0.357 0.207 0.321 0.335 0.389
iTransformer 0.479 0.477 0.387 0.418 0.371 0.400 0.272 0.333 0.246 0.278 0.161 0.256 0.319 0.360
DLinear 0.433 0.446 0.477 0.469 0.360 0.384 0.283 0.346 0.247 0.311 0.162 0.260 0.327 0.369
TimeMixer 0.432 0.446 0.375 0.413 0.395 0.389 0.262 0.322 0.228 0.269 0.165 0.261 0.309 0.353
CycleNet 0.430 0.440 0.367 0.406 0.368 0.395 0.267 0.325 0.224 0.265 0.158 0.252 0.302 0.347
PatchTST 0.430 0.445 0.355 0.394 0.346 0.383 0.257 0.318 0.225 0.261 0.157 0.252 0.295 0.342
SimMTM 0.404 0.428 0.348 0.391 0.362 0.393 0.269 0.327 0.227 0.268 0.162 0.256 0.295 0.344

DeCoPLinear 0.401 0.421 0.333 0.382 0.361 0.379 0.255 0.313 0.242 0.279 0.165 0.258 0.293 0.339
DeCoPMLP 0.408 0.424 0.341 0.388 0.342 0.376 0.249 0.311 0.223 0.259 0.157 0.251 0.287 0.335

from the batch for subsequent masked modeling. For each positive pair, the temporal learner Eenc
extracts their latent representations as:

Ze = Eenc(Xp), Z̃e = Eenc(X̃p). (16)

We further define a similarity-based contrastive loss function Lcl for the final DCL block as follows:

Lcl = 1� 1

BM

BX

i=1

MX

m=1

AVG(Ze) · AVG(Z̃e), (17)

where · denotes the dot product. By minimizing Lcl, the model encourages Ze to approximate
its denoised counterpart Z̃e, enhancing global instance-level representation learning and improving
generalization to downstream tasks.

2.4 LOSS DESIGN

Based on the MTM framework, we reconstruct masked patches from the unmasked ones. A pre-
training head predicts the masked patches as X̂p = ZkW + Bias, where W 2 RD⇥P , Bias 2 RP ,
and Zk 2 RN⇥D. The reconstruction loss is computed using MSE:

Lrecon =
BX

i=1

MX

m=1

NX

n=1

���m� (X (i,m,n)
p � X̂ (i,m,n)

p )
���
2

2
, (18)

where m is a binary mask indicating whether a patch is masked and � denotes the Hadamard prod-
uct. The final loss combines the reconstruction loss with the contrastive loss previously introduced:

L = Lrecon + � ⇥ Lcl, (19)

where the hyperparameter � is the weight of Lcl. This combined loss enhance temporal consistency
under temporal noise and non-uniform dependencies, encouraging the model to learn representations
that preserve global patterns.

3 EXPERIMENTS

Experiment Setting. We conduct experiments on forecasting and classification tasks, following the
protocols in Nie et al. (2022) and Dong et al. (2024). Fine-tuning performance is evaluated under
in-domain and cross-domain settings. MSE and MAE are used as metrics for forecasting, while
Accuracy, Precision, Recall, and F1-score assess classification performance. For forecasting, six
real-world datasets are employed, including four ETT datasets Zhou et al. (2021) (ETTh1, ETTh2,
ETTm1, ETTm2), Weather Wetterstation (2021), and Electricity UCI (2021). For classification, we
adopt four real-world datasets: SleepEEG Kemp et al. (2000), Epilepsy Andrzejak et al. (2001),
FD-B Lessmeier et al. (2016), and EMG PhysioBank (2000).

Model Parameters. By default, all experiments are configured with the following parameters:
k = 2, topK = 0.3, ↵initial = 0.01, � = 0.1 and lr = 1e � 4. For forecasting tasks, both in-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Transfer learning setting of forecasting the future F time points. All results are averaged
from 4 different choices of F 2 {96, 192, 336, 720}. The best and second-best results are high-
lighted in bold and underlined, respectively.

Scenarios DeCoPLinear DeCoPMLP PatchTST SimMTM TimeMAE CoST TST TF-C
Source Target MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2 ETTh1 0.403 0.422 0.409 0.426 0.423 0.443 0.415 0.43 0.466 0.456 0.428 0.433 0.469 0.459 0.635 0.634
ETTm2 ETTm1 0.359 0.379 0.342 0.376 0.348 0.382 0.351 0.383 0.390 0.410 0.385 0.412 0.382 0.402 0.758 0.669
ETTm2 ETTh1 0.404 0.423 0.412 0.426 0.433 0.447 0.428 0.441 0.464 0.456 0.598 0.548 0.453 0.45 1.091 0.814
ETTh2 ETTm1 0.360 0.379 0.343 0.377 0.363 0.387 0.365 0.384 0.383 0.402 0.363 0.387 0.391 0.409 0.750 0.654
ETTm1 ETTh1 0.405 0.423 0.416 0.427 0.447 0.451 0.422 0.430 0.495 0.469 0.62 0.541 0.475 0.463 0.700 0.702
ETTh1 ETTm1 0.361 0.379 0.346 0.379 0.348 0.381 0.346 0.384 0.360 0.390 0.37 0.393 0.373 0.393 0.746 0.652
Weather ETTh1 0.405 0.422 0.411 0.426 0.437 0.448 0.456 0.467 0.518 0.487 0.465 0.456 0.462 0.464 - -
Weather ETTm1 0.359 0.379 0.345 0.376 0.348 0.383 0.358 0.388 0.411 0.423 0.382 0.403 0.368 0.392 - -

Average 0.382 0.401 0.378 0.402 0.393 0.415 0.393 0.413 0.429 0.434 0.458 0.451 0.422 0.428 0.780 0.693

Table 3: In- and cross-domain classification. For in-domain, DeCoP is pretrained and finetuned on
Epilepsy. For the cross-domain setting, we pretrain DeCoP on SleepEEG and fine-tune it to multiple
target datasets: Epilepsy, FD-B, EMG. P and R denotes precision and recall, respectively. The best
and second-best results are highlighted in bold and underlined, respectively.

Scenarios In-domain Cross-domain
Epilepsy ! Epilepsy SleepEEG ! Epilepsy SleepEEG ! FD-B SleepEEG ! EMG

Metrics ACC P R F1 ACC P R F1 ACC P R F1 ACC P R F1

TS2Vec 92.17 93.84 81.19 85.71 93.95 90.59 90.39 90.45 47.9 43.39 48.42 43.89 78.54 80.4 67.85 67.66
LaST 92.11 93.12 81.47 85.74 86.46 90.77 66.35 70.67 46.67 43.9 47.71 45.17 66.34 79.34 63.33 72.55
TF-C 93.96 94.87 85.82 89.46 94.95 94.56 80.08 91.49 69.38 75.59 72.02 74.87 81.71 72.65 81.59 76.83
TST 80.21 40.11 50.00 44.51 80.21 40.11 50.00 44.51 46.4 41.58 45.5 41.34 78.34 77.11 80.3 68.89
CoST 88.07 91.58 66.05 69.11 88.40 88.20 72.34 76.88 47.06 38.79 38.42 34.79 53.65 49.07 42.1 35.27
Ti-MAE 90.90 93.90 77.24 78.21 89.71 72.36 67.47 68.55 60.88 66.98 68.94 66.56 69.99 70.25 63.44 70.89
PatchTST 89.56 90.39 89.56 80.11 93.27 92.51 85.57 88.48 80.15 82.25 85.47 83.05 90.24 82.96 82.95 82.91
SimMTM 94.75 95.6 89.93 91.41 95.49 93.36 92.28 92.81 69.40 74.18 76.41 75.11 97.56 98.33 98.04 98.14

DeCoPMLP 95.53 93.51 92.25 92.86 95.82 94.23 92.41 93.28 93.04 94.92 94.90 94.90 100 100 100 100

and cross-domain experiments share the same configuration, with a patch size and stride of 12. For
both in- and cross-domain classification task, the patch size and stride are set to 8. More details of
parameters are provided in appendix.

3.1 TIME SERIES FORECASTING

In-domain Evaluation. We compare our model with six competitive state-of-the-art baseline meth-
ods in time series forecasting, including self-supervised approaches (SimMTM Dong et al. (2024),
PatchTST Nie et al. (2022)) and supervised approaches (CycleNet Lin et al. (2024), TimeMixer
Wang et al. (2024), DLinear Zeng et al. (2023), iTransformer Liu et al. (2023), Fedformer Zhou
et al. (2022), Autoformer Wu et al. (2021), Informer Zhou et al. (2021)). The look-back period to
512, with a patch size of 12 and a stride of 12 across all forecasting experiments. The patches remain
non-overlapping during both the pre-training and fine-tuning stages. In Table 1, DeCoPLinear outper-
forms the second-best by 1.5% on ETTh2. For more complex datasets like ETTm2, DeCoPMLP
achieves the best results, surpassing the PatchTST by 0.8% in MSE.

Cross-domain Analysis. In the cross-domain setting, we compare our framework with six advanced
time series pre-training frameworks SimMTM, PatchTST, TF-C Zhang et al. (2022a), TST Zerveas
et al. (2021), CoST Woo et al. (2022) and TimeMAE Li et al. (2023)). In Table 2, we evaluate multi-
ple scenarios to test effectiveness under cross-domain conditions. Both in-domain and cross-domain
transfer settings, our model consistently achieves lower MSE and MAE than others, especially in
ETTm1 ! ETTh1, we outperform PatchTST 4.2% in MSE, highlighting its effectiveness under
distribution shifts. Complete forecasting results are provided in the appendix.

3.2 TIME SERIES CLASSIFICATION

In-domain Evaluation. For in-domain learning, We preform Epilepsy ! Epilepsy following Dong
et al. (2024). We adopt MLP as our temporal learner in classification task and compare it with
eight competitive state-of-the-art baseline methods, including the contrastive learning based meth-
ods: TF-C, LaST, TST, TS2Vec Yue et al. (2022), and the masked time series modeling methods:
SimMTM, PatchTST, Ti-MAE, CoST Wang et al. (2022). In Table 3, Our model outperform second-
best SimMTM by 1.45% in F1, and outperform PatchTST by 12.75%.
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Table 4: The left table compares FLOPs, parameters, and average MAE on the ETTh1 and Weather
datasets across different pre-training frameworks. The right table illustrates the effect of controllable
window sizes Wk, which enable efficient pretraining by allowing flexible dependency modeling.

Dataset Models Pretrain Finetune MSE
FLOPs Params FLOPs Params

ETTh1
PatchTST 175M 0.598M 130M 2M 0.430
SimMTM 4269M 143M 100M 6M 0.404

DeCoP 72M 0.479M 49M 2M 0.401

Weather
PatchTST 526M 0.598M 389M 2M 0.225
SimMTM 48865M 556M 259M 11M 0.227

DeCoP 245M 0.463M 159M 2M 0.223

Wk
ETTh1 ETTh2 ETTm1 Params

MSE MAE MSE MAE MSE MAE

1,1 0.406 0.424 0.335 0.383 0.348 0.382 0.165M
1,3 0.403 0.422 0.335 0.384 0.347 0.381 0.446M
2,5 0.401 0.421 0.333 0.382 0.346 0.377 0.999M
4,8 0.403 0.423 0.337 0.385 0.342 0.376 2.3M

42,42 0.405 0.423 0.335 0.383 0.345 0.377 88.8M

M
SE

M
SE

AV
G

AV
G

In-Domain - ETTm1 to ETTm1 Cross-Domain – ETTm2 to ETTh1 In-Domain - Epilepsy to Epilepsy Cross-Domain - SleepEEG to FD-B

Figure 5: Ablation study of DeCoP, showing the impact of IPN, ICM, DCL, Patch Dependence, and
Patch Independence on time series forecasting (left) and classification (right) tasks in both in- and
cross-domain settings. For classification, AVG denotes the average of accuracy and F1 score.

Cross-domain Analysis. For cross-domain setting, we conduct experiments across in-domain and
cross-domain transfer learning SleepEEG → {Epilepsy, FD-B, EMG} in Table 3, where the source
data differs from the target data in both channels and classes. Notably, on SleepEEG ! FD-B, Our
framework surpass the second best by 12.89% and 11.85% in accuracy and F1, respectively. These
results highlight DeCoP’s superior robustness under both domain and label shifts.

3.3 MODEL ANALYSIS

3.3.1 ABLATION STUDIES

We conduct ablation studies on both forecasting and classification tasks under in-domain and cross-
domain settings to evaluate the contributions of IPN, ICM, and DCL. For DCL, we compare two
alternative configurations: patch-independent (PI) and patch-dependent (PD). In Figure 5, replacing
DCL with PI or PD leads to average performance drops of 3.94% and 22.51% on in-domain classifi-
cation, respectively. The performance gap becomes larger in the cross-domain setting, with declines
of 18.69% (PI) and 19.57% (PD), highlighting the importance of dynamical dependency modeling.
In forecasting, removing IPN and ICM results in MSE increases of 0.5% and 0.4% under in-domain
and cross-domain settings, respectively.

Notably, ICM contributes to more stable gains across both forecasting and classification: its removal
increases forecasting error by up to 0.8% in the ETTm2 ! ETTh1 task and reduces the average of F1
and accuracy by 9.53% in the SleepEEG ! FD-B scenario. These results confirm the effectiveness
of ICM in enhancing generalization to downstream tasks, particularly for high-level classification
tasks. More ablation results are provided in appendix.

3.3.2 BETTER RESULTS WITH COMPACT MODEL

We compute the FLOPs and parameters of DeCoP compared to two SOTA pre-training frameworks
in two datasets in the left table of Table 4. In both pre-training and fine-tuning stages, DeCoP
achieves the lowest MSE 0.401, outperforming PatchTST by 30% on the ETTh1 dataset while using
only 37% of the FLOPs. Full results on efficiency are provided in appendix.

3.3.3 LEVERAGING PERIODICITY PRIORS FOR SUPERIOR EFFICIENCY

DeCoP outperforms prior methods such as PatchTST and SimMTM, achieving superior performance
with fewer parameters through a controllable modeling mechanism. The DCL module captures de-
pendencies between patches using variable window sizes, enabling alignment with periodic patterns
in time series data. Empirically, we adopt a (2, ⇤) configuration to capture daily periodicity in hourly
datasets with a patch size of 12, and a (4, ⇤) configuration to capture hourly periodicity in 10-minute

8
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datasets. In the right table of Table 4, The (2, 5) setting achieves strong performance with only 999k
parameters, highlighting the efficiency of DCL.

3.3.4 ADVANCING CONTROLLABILITY WITH DECOP

(b) IN normalization(a) Original (c) IPN normalization

D
en

sit
y

D
en

sit
y

Figure 6: Comparison of data distributions before
normalization (a), after IN (b), and after IPN (c)
on ETTh1 and ETTm1. IPN preserves original se-
mantic patterns such as peaks while better align-
ing train and test distributions.

A key challenge in time series pre-training is
modeling temporal dependencies that evolve
due to distribution shifts (Figure 6a) and multi-
scale patterns, often resulting in noisy fea-
tures and poor generalization. While exist-
ing approaches like PatchTST employ instance-
level normalization (IN) to mitigate distribution
shifts, we observe that IN tends to oversmooth
patch-level variations, weakening semantic ex-
pressiveness (Figure 6b). In contrast, DeCoP
explicitly addresses this challenge through con-
trollable normalization. IPN adaptively nor-
malizes both fine-grained patch-level statistics
and coarse-grained instance-level distributions.
This dual-level normalization allows the model
to better preserve local temporal semantics while maintaining global statistical alignment. Com-
pared to IN, IPN more effectively retains informative intra-patch variations (Figure 6c).

Test lossTrain loss Valid loss PatchTST DeCop×

Figure 7: DeCoP achieves faster convergence and
smaller train–val loss gaps on ETT datasets.

Additionally, our DCL method controllably
encodes temporal structures through dynamic
window grouping and encoding dependencies
hierarchically. Unlike single scale attention in
PatchTST, DCL explicitly constrains the tem-
poral scope of dependency modeling, allowing
the model to capture meaningful local patterns
and gradually expand to global semantics. This
controllable design reduces overfitting risks un-
der distribution shifts by avoiding noisy or ir-
relevant dependencies. In Figure 7, DeCoP converges faster and maintains a smaller gap between
training and validation loss, demonstrating better generalization and reduced overfitting.

3.3.5 ROBUST GENERALIZATION UNDER LIMITED DATA

Table 5: Transfer performance from ETTh2 to
ETTh1 under different finetuning ratios.

ETTh2!ETTh1 25% 50% 75%

Models MSE MAE MSE MAE MSE MAE

SimMTM 0.468 0.469 0.451 0.461 0.428 0.445
PatchTST 0.453 0.462 0.424 0.440 0.425 0.441
DeCoP 0.445 0.457 0.402 0.423 0.405 0.423

We further assess DeCoP’s generalization ca-
pability under limited data scenarios in Ta-
ble 5. In the ETTh2!ETTh1 transfer setting
with only 50% labeled data, DeCoP outper-
forms PatchTST and SimMTM by 2.2% and
4.9% in MSE, respectively. DeCoP consistently
achieves the lowest MSE and MAE across all
finetuning ratios (25%, 50%, and 75%), high-
lighting its robustness in data-scarce scenarios.

4 CONCLUSION

This paper introduces DeCoP, a Dependency Controlled Pretraining framework that improve time
series representation learning by explicitly modeling dynamic and multi-scale temporal dependen-
cies. At the input level, IPN establishes a stable foundation by mitigating distribution shifts through
instance-wise patch normalization while preserving fine-grained, patch-level information. At the
latent representation level, DCL explicitly captures multi-scale dependencies through controllable
receptive filed and ICM enhances global representation learning by incorporating time-invariant pos-
itive pairs. DeCoP outperforms existing models with fewer parameters, highlighting the importance
of dependency-controlled pre-training for dynamic time series. We hope that DeCoP can inspire
future research in building more general, efficient, and controllable pre-training paradigms.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. Practical approach to asynchronous
multivariate time series anomaly detection and localization. In SIGKDD, 2021.

Ralph G Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David, and Chris-
tian E Elger. Indications of nonlinear deterministic and finite-dimensional structures in time series
of brain electrical activity: Dependence on recording region and brain state. Physical Review E,
2001.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In NeurIPS (NeurIPS), 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In ICML, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the 37th ICML, pp. 1597–1607,
2020b.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. arXiv preprint arXiv:2310.10688, 2023.

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time
series. In AAAI, volume 35, pp. 4027–4035, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for Computational Linguistics: Human Language

Technologies (NAACL-HLT), 2019.

Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long. Simmtm:
A simple pre-training framework for masked time-series modeling. In NeurIPS, volume 36, 2024.

Vijay Ekambaram, Kushagra Manglik, Sumanta Mukherjee, Surya Shravan Kumar Sajja, Satyam
Dwivedi, and Vikas Raykar. Attention based multi-modal new product sales time-series forecast-
ing. In SIGKDD, pp. 3110–3118, 2020.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. In EMNLP, 2021.

Alejandro Garza, Camilo Challu, and Manuel Mergenthaler-Canseco. Timegpt-1. arXiv preprint

arXiv:2310.03589, 2023.

M. Goswami, K. Szafer, A. Choudhry, Y. Cai, S. Li, and A. Dubrawski. Moment: A family of open
time-series foundation models. arXiv preprint, 2024.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, pp. 9729–9738, 2020.

Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Söderström.
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