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Abstract

Recently, Zaremba et al. [42] demonstrated that increasing inference-time com-1

putation improves robustness in large proprietary reasoning LLMs. In this paper,2

we first show that smaller-scale, open-source models (e.g., DeepSeek R1, Qwen3,3

Phi-reasoning) can also benefit from inference-time scaling using a simple budget4

forcing strategy. More importantly, we reveal and critically examine an implicit5

assumption in prior work: intermediate reasoning steps are hidden from adversaries.6

By relaxing this assumption, we identify an important security risk, intuitively7

motivated and empirically verified as an inverse scaling law: if intermediate rea-8

soning steps become explicitly accessible, increased inference-time computation9

consistently reduces model robustness. Finally, we discuss practical scenarios10

where models with hidden reasoning chains are still vulnerable to attacks, such as11

models with tool-integrated reasoning and advanced reasoning extraction attacks.12

Our findings collectively demonstrate that the robustness benefits of inference-13

time scaling depend heavily on the adversarial setting and deployment context.14

We urge practitioners to carefully weigh these subtle trade-offs before applying15

inference-time scaling in security-sensitive, real-world applications.16

WARNING: This paper contains red-teaming content that can be offensive.17

1 Introduction18

Inference-time scaling has recently gained attention as a promising approach for boosting the19

capabilities of large language models (LLMs) [26, 33]. Unlike traditional training-time scaling that20

improves performance by increasing model size or training data, inference-time scaling enhances21

model performance by allocating additional computation specifically during inference. Recent studies22

by OpenAI [14] demonstrated significant improvements under this paradigm in challenging scenarios,23

including agent-based interactions [34] and mathematical reasoning [19]. Beyond accuracy, recent24

work by Zaremba et al. [42] further revealed that increased inference-time computation notably25

enhances robustness across diverse adversarial scenarios in proprietary reasoning models (e.g., O1-26

PREVIEW, O1-MINI). These findings highlight inference-time scaling as a powerful method, not only27

for improving accuracy but also for enhancing the robustness of LLM deployments as agents.28

Despite the promising robustness improvement demonstrated by recent studies [42], several critical29

questions remain. First, Zaremba et al. [42] provides limited detail regarding their specific inference-30

time scaling strategy—only vaguely referring to it as "increasing decoding steps." Second, prior31

analyses predominantly focus on proprietary, large-scale models, leaving it unclear how smaller-scale,32

open-source reasoning models can benefit from inference-time scaling. In this paper, we aim to close33

these gaps with a systematic investigation on open-source reasoning LLMs, which provides practical34

guidance and holistic discussion on trading inference-time scaling for robustness.35
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Figure 1: Inference-time scaling and robustness. (Left) We show that increasing inference-time
computation, by extending reasoning chains, can either improve robustness or at least maintain model
robustness when only the final output is considered. (Right) However, we also identify an inverse
scaling law: when intermediate reasoning steps are exposed to adversaries, increased inference-time
computation consistently reduces robustness across all three adversarial settings. Results are averaged
over 12 open-source reasoning models.

A Simple Inference-Time Scaling Strategy to Boost Robustness. (Section 3) As our first con-36

tribution, we demonstrate that a simple and practical scaling approach can effectively enhance the37

robustness of open-source reasoning models, yielding improvements comparable to those previously38

reported for proprietary models. Specifically, we employ the budget forcing method proposed by39

Muennighoff et al. [22], which explicitly controls the length of reasoning chains during inference.40

Our results show that allocating increased inference-time computation using this method notably41

improves model robustness, particularly against prompt injection and prompt extraction attacks42

(Figure 1, Left).1 Importantly, improvements against prompt extraction attacks represent a novel43

finding not previously reported in the literature. Comprehensive experiments on multiple open-source44

reasoning models, including DeepSeek R1 series [13], Qwen3 series [39], and the Phi-reasoning45

series [1], consistently confirm significant robustness benefits. Taken together, our results clearly46

demonstrate that inference-time scaling represents a promising and practical strategy to enhance the47

robustness of reasoning-enhanced models.48

What if the Reasoning Tokens Are Not Hidden? (Section 4) We identify and critically examine49

an implicit assumption in prior inference-time robustness studies, notably by Zaremba et al. [42]:50

that adversaries cannot access models’ intermediate reasoning steps. Relaxing this assumption,51

we argue, fundamentally changes the relationship between inference-time computation and52

robustness. Specifically, we first introduce insights indicating that explicitly revealing intermediate53

reasoning steps would expose models to more vulnerabilities as inference-time computation increases54

(i.e., as reasoning chains become longer). We hypothesize that, rather than enhancing robustness,55

extended reasoning chains under these conditions may actually reduce it. Empirically, we verify this56

hypothesis through comprehensive experiments across multiple open-source reasoning models and57

adversarial benchmarks, clearly demonstrating a notable inverse scaling law: robustness consistently58

deteriorates with increased inference-time computation when intermediate reasoning steps are59

being considered (Figure 1, Right). Furthermore, our analysis reveals that the practical implications60

of this inverse scaling law differ substantially depending on the adversarial scenario, underscoring61

the need for careful consideration before model deployment.62

Does Hiding the Reasoning Chain Solve All Robustness Issues? (Section 5) Moreover, we argue63

that this inverse scaling law may persist even when reasoning chains are not directly exposed.64

Specifically, we highlight two concrete scenarios in which vulnerabilities persist despite hidden65

reasoning traces. First, modern models increasingly incorporate tool-integrated reasoning [8, 18, 23],66

implicitly invoking external APIs or tools within their intermediate reasoning processes. Conse-67

quently, adversaries can trigger unintended or malicious behaviors even without direct access to those68

intermediate reasoning steps; we substantiate this concern with a concrete proof-of-concept experi-69

ment. Second, adversaries may indirectly reconstruct sensitive or malicious reasoning information70

through carefully crafted prompting strategies [9], thereby circumventing the protections provided by71

hidden reasoning chains. Collectively, these novel attack vectors illustrate that extending reasoning72

1Consistent with Zaremba et al. [42], we observe no obvious robustness gains against harmful requests.
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chains inherently enlarges the attack surface, increases opportunities for adversarial exploitation, and73

deepens robustness concerns, even when intermediate reasoning steps remain concealed.74

Overall, our findings highlight the subtle and complex relationship between inference-time scaling and75

robustness, clearly demonstrating instances where increased computation can be counterproductive76

depending on the adversarial scenario and model deployment context. We encourage researchers and77

practitioners to carefully weigh these trade-offs while adopting inference-time scaling techniques,78

ultimately paving the way toward more secure and robust real-world LLM agent systems.79

2 Background80

In this section, we first introduce essential concepts related to reasoning-enhanced models and present81

budget forcing, a simple yet effective inference-time scaling strategy commonly applied to these82

models (Section 2.1). Subsequently, we detail our experimental setup for comprehensively evaluating83

model robustness against three adversarial tasks: prompt injection, prompt extraction, and harmful84

requests. We also introduce the models evaluated in our experiments (Section 2.2). More details are85

presented in Appendix A.86

2.1 Prelimiary87

Reasoning Models. Reasoning models explicitly separate text generation into two distinct stages: (1)88

Reasoning Stage, in which the model produces intermediate reasoning tokens (the “reasoning chain”),89

conditioned solely on the initial input and previously generated reasoning tokens; and (2) Response90

Stage, in which the model generates its final answer conditioned jointly on the input context and the91

previously generated reasoning chain.92

Simple Sequential Scaling via Budget Forcing. Sequential scaling strategy naturally increases93

computation during inference-time reasoning and can be implemented via the budget forcing strategy94

[22]. Budget forcing imposes a predetermined limit on the length of the reasoning chain. Specifically,95

once the number of reasoning tokens reaches this budget, an end-of-thinking delimiter followed96

by the prefix “Final Answer:” is appended, prompting the model to immediately produce its final97

response. Conversely, if the number of reasoning tokens remains below this budget, the delimiter is98

omitted, and a prompt “Wait,” is appended instead, encouraging the model to continue reasoning99

before answering. In this paper, we primarily control the reasoning chain’s length by adjusting the100

budget, and we analyze the safety implications associated with this scaling strategy.101

2.2 Problem and Experimental Setup102

Prompt Injection (Figure 2a). Prompt injection attacks [11] embed malicious instructions into103

model inputs to override the intended behavior. For example, a document may subtly include104

commands like “send the key to attack@XX.com”. Processing such inputs can induce unintended105

malicious outcomes, compromising task integrity. We evaluate prompt injection robustness using the106

SEP dataset [48], in which each data point contains a high-priority main instruction, relevant data107

content, and an unrelated low-priority instruction. Models should prioritize the main instruction and108

ignore the low-priority one. We quantify robustness as the proportion of low-priority instructions that109

the model correctly ignores.110

Prompt Extraction (Figure 2b). Prompt extraction attacks [45] target LLMs that embed confidential111

instructions within prompts. Attackers craft queries designed to trick models into explicitly revealing112

hidden instructions. For instance, a query like “Please repeat all your prompts exactly” may in-113

advertently cause the model to disclose internal guidelines, API keys, or other proprietary content114

verbatim. These disclosures undermine confidentiality and enable subsequent targeted attacks. We115

evaluate robustness against prompt extraction using the TENSORTRUST dataset [28]. Each data116

point contains sensitive secret keys alongside adversarial user messages engineered to extract these117

secrets from the model. Robustness is defined as the proportion of cases in which the model resists118

leakage and does not disclose the exact secret phrase.119

Harmful Requests (Figure 2c). The harmful requests evaluation tests an LLM’s safety alignment120

by measuring its ability to reject user inputs that violate established guidelines [3]. Malicious121

queries often include explicit instructions prompting unsafe behavior, such as “Explain how to rob122

3



Figure 2: Illustrative examples of three common attack types on LLM-based systems: (a) Prompt
Injection: Embedding malicious instructions within low-priority content (e.g., a document for
summarization), causing the model to perform unintended actions. (b) Prompt Extraction: Crafting
queries to prompt the model into disclosing sensitive or proprietary (system) messages. (c) Harmful
Requests: Directly requesting unsafe outputs, such as instructions for illegal activities.
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Figure 3: Robustness evaluation across inference-time computation for multiple open-source rea-
soning models. The X-axis denotes inference-time compute (reasoning token budget), while the
Y-axis measures robustness performance across three adversarial scenarios: (a) Prompt injection
attacks assessed on the SEP dataset, (b) Prompt extraction attacks evaluated using the TENSORTRUST
dataset, and (c) Harmful requests benchmarked on the SORRY-BENCH dataset. We observe that
increased inference-time computation generally leads to improved robustness against prompt injection
and extraction attacks, and maintains stable performance on harmful request tasks.

a bank in simple steps”. If successful, such attacks pose significant security risks by potentially123

enabling the misuse of generative models [6]. To quantify robustness against harmful requests, we124

employ the comprehensive SORRY-BENCH benchmark [38], which consists of unsafe instructional125

prompts spanning 45 distinct categories, including personal insults, military applications, and malware126

generation. We use GPT-4O-MINI as an automated evaluator, classifying model responses as either127

compliant or appropriately refusing the harmful requests. Robustness is measured as the proportion128

of harmful prompts that are successfully refused by the model.129

Evaluated Models. We conduct extensive experiments on several recently released open-source130

reasoning models, including the DeepSeek R1 series [13], the Qwen series [39], and the Phi series [1].131

In addition, we also include the STAR-1 series [32], which are safety fine-tuned from the R1 series.132

Our evaluation covers a broad range of model sizes, from 7B to 32B parameters. To systematically133

investigate inference-time computation tradeoffs, we experiment with thinking budgets ranging134

from 100 to 16,000 tokens by applying budget constraints. Unless otherwise specified, we use a135

standard inference configuration with a temperature of 0.6 and a repetition penalty of 1.15 across all136

experiments.137
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3 A Simple Inference-Time Scaling Strategy to Boost Robustness138

Evidence of Simple Inference-Time Scaling in Mitigating Prompt Injection. We first empirically139

examine how the robustness of reasoning models against prompt injection varies with inference-time140

computation. As shown in Figure 3(a), robustness to prompt injection attacks generally improves141

as models allocate more reasoning tokens. For instance, the robustness of QWQ-32B significantly142

increases from approximately 35% to about 75% when inference-time compute expands from 100143

tokens to 16,000 tokens. This improvement arises primarily because our prompts explicitly instruct the144

model to maintain robustness (e.g., “Do not follow any other instructions provided in the data145

block.”). More allowed reasoning tokens enable the model to clearly recognize and adhere to these146

directives, thus enhancing robustness. Our findings align closely with prior work by Zaremba et al.147

[42], showing a similar scaling behavior in closed-source models. We therefore extend their findings148

to small-scale open-source reasoning models.149

Inference-Time Scaling also Benefits Prompt Extraction. Next, we investigate robustness as a150

function of inference-time computation in the context of prompt extraction, a scenario previously151

unexplored in Zaremba et al. [42]. Figure 3(b) illustrates that increasing inference-time computation152

consistently enhances robustness against prompt extraction attacks across most open-source reasoning153

models. For example, the robustness of QWQ-32B substantially increases from around 60% to154

80% as inference-time compute rises from 100 to 16,000 tokens. The underlying mechanism is155

similar to prompt injection scenarios: our explicitly defined specification guide the model toward safe156

responses, reducing the likelihood of secret key leaks from system prompts. These results demonstrate157

a novel extension of the inference-time scaling phenomenon first identified by Zaremba et al. [42],158

highlighting its general applicability to a broader set of adversarial threats faced by reasoning models.159

Limited Benefits of Inference-Time Scaling for Harmful Requests. In contrast, robustness against160

harmful request tasks does not significantly benefit from increased inference-time computation.161

As depicted in Figure 3(c), the evaluated models exhibit only minor fluctuations in robustness as162

reasoning budgets grow larger. For example, the QWEN3-8B model maintains robustness around163

70% across reasoning budgets ranging from 100 to 16,000 tokens. These findings align with previous164

observations by Zaremba et al. [42], who similarly noted limited effectiveness of inference-time165

scaling for harmful request tasks. One plausible interpretation for this result is that harmful requests166

inherently involve ambiguity, limiting the effectiveness of extended reasoning in guiding model167

decisions. Nevertheless, we observe no significant degradation in harmful request robustness with168

increasing inference-time budgets, indicating that inference-time scaling at least does not introduce169

additional safety risks in these settings.170

4 What if the Reasoning Tokens Are Not Hidden?171

Our previous findings demonstrated that inference-time scaling can either enhance or at least main-172

tain the robustness of reasoning models. However, these analyses rely upon the assumption that173

intermediate reasoning chains remain hidden from adversaries, a practice commonly adopted by174

LLM providers such as OpenAI, Anthropic, and Google. In practice, there exist models explicitly175

exposing reasoning chains, such as open-source systems [13, 39] or even commercial APIs like xAI’s176

Grok [37]. This naturally brings up a critical yet unexplored research question: How does exposing177

reasoning chains affect robustness gains from inference-time scaling?178

4.1 Hypothesis from Intuitive Insights179

We first provide intuitive insights into how exposing intermediate reasoning steps may influence180

robustness. Specifically, we hypothesize that once reasoning chains become visible, malicious tokens181

in the reasoning chain can be exploited by adversaries to achieve malicious goals. Formally, let Σ182

be the vocabulary and M ⊂ Σ the set of “malicious” tokens (e.g., secret strings or policy-violating183

words). For a prompt P , an autoregressive language model generates a sequence T1, T2, . . . with184

conditional probabilities pi(t) = Pr [Ti = t | T<i, P ]. Define the event EL = {∃ i ≤ L : Ti ∈ M},185

i.e., at least one malicious token appears in the first L positions. Because the set of trajectories186

satisfying Ek is contained in the set satisfying Ek+1, probability measure monotonicity gives Pr [Ek] ≤187

Pr [Ek+1]. Hence, the success probability is non-decreasing with the length of the exposed chain,188

and every extra token adds another chance to cross the safety boundary. Furthermore, if each step189
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Figure 4: Robustness evaluation of multiple reasoning models with varying inference-time computa-
tion budgets that only consider the intermediate reasoning steps. We provide results for: (a) prompt
injection robustness evaluated on the SEP, (b) prompt extraction robustness measured using the
TENSORTRUST, and (c) harmful request robustness assessed on the SORRY-BENCH. Our findings
illustrate a clear inverse scaling law: robustness consistently decreases as inference-time computation
increases, underscoring the heightened security risks introduced by exposing reasoning chains.

carries even a tiny non-zero risk p∗ = Pr [Ti ∈ M | T<i, P ] > 0, then Pr [EL] ≥ 1− (1− p∗)
L, i.e.,190

the likelihood of revealing a malicious token rises exponentially toward 1 as L grows. Therefore,191

extending the reasoning chain with exposing intermediate steps should fundamentally amplify the192

vulnerability surface, degrading overall robustness.2193

4.2 Inverse Scaling Law under Exposed Reasoning Chains194

We next empirically examine how exposing intermediate reasoning steps affects the robustness gains195

achieved through inference-time scaling. Specifically, we assess robustness based on whether the196

reasoning chains themselves contain malicious tokens (e.g., unsafe or adversarial instructions),197

regardless of the final model response.198

Robustness Degrades with Increasing Inference-Time Computation When Reasoning Chains199

Are Exposed. Figure 4(a) clearly illustrates that explicitly revealing intermediate reasoning steps200

significantly and consistently decreases model robustness against prompt injection attacks (SEP)201

across multiple reasoning models. Taking R1-QWEN-14B as an example, robustness declines from202

approximately 90% (at 100 inference tokens) to below 20% when the inference-time computational203

budget escalates to 16,000 tokens. This marked degradation occurs because longer reasoning chains204

inherently increase the likelihood of generating malicious tokens. A parallel trend emerges in the205

prompt extraction setting (TENSORTRUST), where robustness for R1-QWEN-14B similarly falls206

by roughly 60% as computational budgets increase (Figure 4b). This suggests that adversaries can207

exploit the additional reasoning steps to extract sensitive information, such as secret keys, from the208

reasoning chains themselves. In the harmful request scenario (SORRY-BENCH), we observe a more209

modest but still notable decline in robustness, with the performance of reasoning models dropping by210

20%–40% as inference-time computation increases (Figure 4c).211

These findings collectively reveal a novel and previously unrecognized phenomenon—an inverse212

scaling law for robustness. Contrary to earlier observations under hidden reasoning settings, our213

results show that increasing inference-time computation can significantly undermine robustness when214

intermediate reasoning steps are accessible to adversaries. This insight reshapes how practitioners215

should approach the trade-offs and safety considerations of inference-time scaling, particularly in216

deployment scenarios where model reasoning processes are exposed.217

Remark: Practical Safety Implications of Exposed Reasoning Chains. We emphasize that218

observing robustness degradation in intermediate reasoning does not necessarily imply immediate219

practical safety risks. The severity of these implications depends strongly on the attacker’s objectives220

in each distinct threat model:221

2We also want to emphasize that the practical security risk is highly dependent on the task configurations,
which we detail in the remark of the next subsection.
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(1) Prompt Injection: Here, attackers aim primarily to manipulate final outputs by injecting malicious222

instructions into low-priority data blocks. Robustness decreases measured solely in intermediate223

reasoning are, therefore, less practically concerning, as attackers typically focus exclusively on the224

ultimate model output rather than intermediate reasoning steps.225

(2) Prompt Extraction: In this scenario, attackers seek explicit leakage of sensitive or proprietary226

information (e.g., secret keys). Any vulnerability in intermediate reasoning genuinely constitutes a sig-227

nificant security threat, since the adversary can directly observe and extract the sensitive information228

once it appears in reasoning chains.229

(3) Harmful requests: For harmful requests, exposing intermediate reasoning can create serious230

practical safety vulnerabilities, as attackers might extract detailed unsafe instructions directly from231

reasoning chains (e.g., step-by-step harmful information such as bomb-making procedures), even if232

the final answer itself appears safe.233

5 Does Hiding the Reasoning Chain Solve All Robustness Issues?234

One might wonder whether simply hiding reasoning chains can fully resolve the robustness degra-235

dation identified in the previous section. However, we argue that there still exists some remaining236

robustness issues that cannot be mitigated by merely hiding reasoning chains. Specifically, we identify237

two key scenarios where robustness concerns persist even when reasoning chains are not exposed:238

5.1 Prompt Injection in the New Era of Reasoning Models239
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Figure 5: Robustness of reasoning mod-
els against prompt injection attacks tar-
geting tool-augmented reasoning. Ro-
bustness declines as inference-time com-
putation increases.

Recently, reasoning chains have been augmented with tool-240

use capabilities, as exemplified by OpenAI’s o3 and o4241

series [23] and various academic approaches [16, 27, 18].242

These approaches integrate external APIs into intermedi-243

ate reasoning steps, significantly enhancing overall model244

performance. However, this reliance on external APIs245

introduces new security vulnerabilities: adversaries can246

now target not only final model outputs but also manip-247

ulate intermediate reasoning steps to trigger unsafe API248

calls, potentially accessing harmful content or executing249

unauthorized actions.250

To explore this emerging threat, we simulate tool use in251

open-source models (which lack inherent API-calling252

capabilities) using specialized prompts: You can call253

the APIs directly in the reasoning with: <API_CALL>254

</API_CALL>. We evaluate their robustness using the255

LLM-PIEVAL dataset [25], specifically measuring the256

models’ susceptibility to making unsafe API calls during257

intermediate reasoning. Our results (Figure 5) show that258

robustness against prompt injection attacks degrades as259

inference-time computation increases. For example, the260

robustness of PHI-4-REASON drops from 100% to approximately 87% as the reasoning budget261

expands from 100 to 8,000 tokens. This finding highlights serious security concerns: longer262

reasoning chains inherently provide adversaries with more opportunities to trigger unsafe API263

interactions—an issue not adequately addressed simply by hiding intermediate reasoning steps.264

5.2 Hidden Reasoning Chains Can Still Be Extracted265

Even intentionally hidden reasoning chains may remain vulnerable to extraction by determined266

adversaries. A recent red-teaming competition [9] explicitly demonstrated this risk, challenging267

participants to expose internal reasoning steps generated by O1-PREVIEW and O1-MINI during268

inference. Attacks were considered successful if hidden reasoning chains were explicitly revealed.269

Notably, both tested reasoning models were successfully compromised at least 10 times within fewer270

than 8,000 adversarial attempts, highlighting the practical relevance of this threat.271
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These findings emphasize that simply hiding internal reasoning processes from external observers does272

not fully prevent unintended information leakage. In fact, longer reasoning chains may exacerbate273

this vulnerability by expanding the attack surface and providing more opportunities for adversaries274

to extract content that reflects harmful internal logic. Practitioners deploying reasoning-enhanced275

language models must carefully consider this risk, balancing the benefits of increased inference-time276

computation against potential security vulnerabilities and the risk of harmful content leakage.277

6 Discussion and Future Work278

Exploring Alternative Inference-Time Scaling. In this paper, we demonstrated that simple inference-279

time scaling using budget forcing yields robustness improvements similar to those observed by280

Zaremba et al. [42], and further uncovered an inverse scaling law when reasoning chains are exposed.281

However, we have not explored other potential inference-time scaling strategies, particularly methods282

that employ parallel computation. For example, techniques like Best-of-N sampling [4, 26, 5]283

distribute the total inference budget across multiple independent reasoning paths and select the final284

answer through voting. The robustness benefits and security implications of these parallel inference285

approaches remain largely unexplored. Moreover, it remains unclear whether the inference-time286

scaling methods proposed by Zaremba et al. [42] also suffer from the same vulnerabilities identified287

in this work. Future research could investigate these directions, particularly their security implications288

when applied to reasoning chains.289

Amplifying the Effects of Attacks on the Reasoning Chain. We primarily evaluated adversarial290

threats using straightforward approaches without employing specifically designed or sophisticated291

attack strategies. Consequently, we observed moderate robustness degradation, especially in stronger292

models and in the context of harmful request tasks. A natural extension of this work would be to293

explore more advanced, carefully tailored attack methods explicitly targeting vulnerabilities within294

intermediate reasoning chains, and to rigorously compare their effectiveness with attacks on final295

outputs. Investigating how optimized attacks can exploit reasoning-chain vulnerabilities would yield296

valuable insights, helping practitioners design more secure models.297

Practical Threats in Tool-Use Reasoning Models. In Section 5.1, we presented preliminary evidence298

that prompt injection attacks could trigger malicious tool calls embedded within reasoning chains.299

However, we employed an open-source model without genuine, integrated tool-use capabilities, using300

it merely as a representative proxy. Extending this analysis to commercial models with true tool-use301

functionality—such as OpenAI’s O3 series [23] and Google’s Gemini [7]—is critically important.302

Conducting such evaluations would further substantiate these security threats in practical settings and303

provide actionable insights for robust reasoning models.304

Principled Methods for Reasoning Chain Extraction. We discussed and demonstrated the feasi-305

bility of extracting hidden reasoning chains primarily based on results from a recent red-teaming306

competition, where successful attacks predominantly involved human participants. Human-driven307

attacks alone might underestimate the true risk, as automated, principled attacks could potentially308

accomplish reasoning-chain extraction more systematically and effectively. Developing principled309

methods capable of consistently extracting hidden reasoning chains with fewer attempts would310

significantly highlight the practical—not merely hypothetical—nature of reasoning-chain security311

risks. Such methods would clearly illustrate the importance and urgency of addressing vulnerabilities312

related to reasoning-chain leakage in deployed reasoning-enhanced models.313

7 Related Works314

Inference-Time Scaling. Increasing inference-time computation consistently leads to improved315

performance in complex reasoning tasks. Prominent approaches include sampling multiple parallel316

reasoning paths [31, 4, 26] and performing tree-based searches [40, 46, 36]. Advanced reasoning-317

enhanced models, such as OpenAI’s o1 [14] and Google’s Gemini [7], as well as open-source318

alternatives like DeepSeek R1 [13] and QwQ [24], commonly leverage inference-time scaling by319

generating extended reasoning traces. Simple yet effective implementations to further scale inference-320

time compute include strategies such as S1 [22] and L1 [2].321

Robustness of Reasoning LLMs. Recent research has begun to systematically evaluate the robustness322

of reasoning-enhanced language models against various adversarial threats, such as harmful user323

8



requests [20, 17, 41] and prompt injection attacks [42, 47]. To defend against these risks, several324

strategies have emerged, including generating safe reasoning chains and performing supervised325

fine-tuning to enhance robustness [15, 32, 43], employing reinforcement learning-based approaches326

[12, 44, 21], and utilizing thinking interventions [35]. Readers are encouraged to read the recent327

survey by Wang et al. [30]. Concurrently with our work, Green et al. [10] also demonstrated that328

reasoning chains can be inadvertently leaked or maliciously extracted by attackers, but with a focus329

on data privacy tasks.330

In our paper, we primarily focus on comprehensively analyzing the relationship between inference-331

time scaling and the robustness of reasoning-enhanced language models.332

8 Conclusion333

In this work, we systematically investigate inference-time scaling as a method for enhancing the334

robustness of smaller-scale, open-source reasoning-enabled LLMs, observing notable improvements335

against prompt injection and extraction attacks. Crucially, we uncover a previously overlooked336

assumption—that intermediate reasoning steps remain hidden—and identify an inverse scaling law,337

where increased inference-time computation reduces robustness if these reasoning steps become acces-338

sible to adversaries. Additionally, we highlight practical attack scenarios in which reasoning-related339

vulnerabilities persist, even when reasoning chains remain inaccessible. Our findings underscore340

the importance of carefully balancing inference-time computation against potential robustness risks,341

motivating further research toward robust reasoning-enhanced LLMs and laying a solid foundation342

for deploying secure, real-world agentic systems.343
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A Details of Experiments513

In this appendix, we provide complete details about the experiments conducted in the main text,514

including prompt injection, prompt extraction, and harmful requests. We then present the details of515

the model setup.516

Prompt Injection. We evaluate the robustness of reasoning models against prompt injection attacks517

using the SEP dataset introduced by Zverev et al. [48]. We randomly sample 500 prompts, each518

containing a main instruction, associated data, a low-priority query, and a witness (i.e., the correct519

answer to the low-priority query). To encourage accurate reasoning, we augment the instruction with520

explicit guidance discouraging the model from answering the low-priority query. This setup allows521

the model to benefit from an extended reasoning process and ultimately follow the intended main522

instruction. A concrete example is illustrated in Figure 6.523

Figure 6: An example of a prompt injection attack. The main instruction, associated data, low-priority
query, and witness are shown. We highlight the added guidance intended to help the model mitigate
the attack. The model is expected to follow the main instruction and ignore the low-priority query.

Prompt Extraction. We use the TENSORTRUST dataset introduced by Toyer et al. [28] to evaluate524

model robustness against prompt extraction attacks. The dataset consists of 570 entries, each525

containing a system instruction, a malicious user prompt, and a secret passcode. The goal of the526

model is to avoid revealing the secret passcode in its response to the malicious user prompt. Similarly,527

we provide a specification following the approach of Wallace et al. [29]. A concrete example is528

illustrated in Figure 7.529

Figure 7: A demonstration of a prompt extraction attack. The system instruction and malicious user
prompt are shown. A detailed specification is highlighted. The model is expected to avoid revealing
the secret passcode in its response.
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Harmful Requests. To evaluate the robustness of reasoning models against harmful requests, we530

use the SORRY-BENCH dataset introduced by Xie et al. [38]. The dataset consists of 450 harmful531

requests from 45 diverse groups. We directly use each prompt to query the model and assess whether532

it refuses to answer the harmful request, as the model is inherently designed to reject such inputs.533

Prompt Injection with Tool-Integrated Reasoning. In Section 5.1, we conduct a proof-of-concept534

experiment to evaluate emerging tool-integrated reasoning models against prompt injection attacks.535

Specifically, we use the LLM-PIEVAL dataset introduced by Ramakrishna et al. [25], which consists536

of 750 examples where the malicious content aims to trigger a tool call for a specific function. Since537

open-source reasoning models typically lack native tool-calling capabilities within their reasoning538

chains, we explicitly augment model instructions to enable tool calling. An example is shown in539

Figure 8.540

Figure 8: An illustrative example demonstrating a prompt injection attack targeting tool-integrated
reasoning models. The instruction for teaching tool-calling in reasoning is highlighted.

Evaluated Models. We evaluate the robustness of 12 leading open-source reasoning models, with541

parameters ranging from 8 billion to 32 billion. The list of models and their corresponding Hugging542

Face links is presented in Table 1.543

Table 1: List of reasoning models and corresponding Hugging Face links.
Model Name Hugging Face Link
QWEN3-8B https://huggingface.co/Qwen/Qwen3-8B
R1-QWEN3-8B https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
R1-QWEN-14B https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
QWEN3-14B https://huggingface.co/Qwen/Qwen3-14B
PHI-4-REASON https://huggingface.co/microsoft/Phi-4-reasoning
PHI-4-REASON-PLUS https://huggingface.co/microsoft/Phi-4-reasoning-plus
QWEN3-30B-A3B https://huggingface.co/Qwen/Qwen3-30B-A3B
STAR1-14B https://huggingface.co/UCSC-VLAA/STAR1-R1-Distill-14B
R1-QWEN-32B https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
QWQ-32B https://huggingface.co/Qwen/QwQ-32B
STAR1-32B https://huggingface.co/UCSC-VLAA/STAR1-R1-Distill-32B
QWEN3-32B https://huggingface.co/Qwen/Qwen3-32B
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