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Abstract

Real-world named entity recognition (NER)
datasets are notorious for their noisy nature, at-
tributed to annotation errors, inconsistencies,
and subjective interpretations. Such noises
present a substantial challenge for traditional
supervised learning methods. In this paper,
we present a new and unified approach to
tackle annotation noises for NER. Our method
considers NER as a constituency tree pars-
ing problem, utilizing a tree-structured Con-
ditional Random Fields (CRFs) with uncer-
tainty evaluation for integration. Through ex-
tensive experiments conducted on four real-
world datasets, we demonstrate the effective-
ness of our model in addressing both partial
and incorrect annotation errors. Remarkably,
our model exhibits superb performance even in
extreme scenarios with 90% annotation noise.

1 Introduction

Named entity recognition (NER) is a fundamental
natural language processing task that aims to find
entities with certain types in texts (Ma and Hovy,
2016; Lample et al., 2016). Generally, building a
high-performance NER model requires to obtain
high-quality labeled data. However, due to the
complexities of the labeling process, real-world
NER datasets often contain annotation noises (Lan
et al., 2020; Huang et al., 2021a). For example,
Figure 1 gives two typical annotation errors in
the CoNLL03 benchmark (Tjong Kim Sang and
De Meulder, 2003) — the PERSON entity “New-
combe” is missed by annotators, and “Loc An-
geles Lakers” is incorrectly labelled as LOCA-
TION. Indeed, the noise rate is high (2%-8%)
in real-world datasets (Liu and Tao, 2016; Song
et al., 2022), and this issue can significantly im-
pede model learning.

To date, many studies have been proposed to ad-
dress NER annotation noises. For example, for the
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Figure 1: Two typical annotation noises, taken from the
CoNLL 2003 NER benchmark.

partial annotation noise, previous works have em-
ployed re-weighting mechanisms to mitigate the
impact of false negatives (Peng et al., 2019; Jie
et al., 2019). For the incorrect annotation noise,
previous works have suggested that the use of rein-
forcement learning and teacher-student framework
is effective (Zhang et al., 2021; Zhou et al., 2022).
Nevertheless, most works focus on only one type
of noise, and there has been limited success in
using a unified approach to handle diverse types
of noises (Qu et al., 2022; Huang et al., 2021b).
Additionally, due to the combination of different
components, previous methods may suffer from
error propagation (Peng et al., 2019; Wang et al.,
2019b).

In this paper, we present a unified approach
for addressing annotation noises in NER. Specif-
ically, as shown in Figure 2, our method struc-
tures NER as a constituency tree parsing prob-
lem, with each node’s label representing the en-
tity type of a textual span. To learn with noises,
we introduce uncertain nodes in the tree, indicat-
ing that the annotation for a span may be unreli-
able (this is compatible with both partial and incor-
rect annotation noises), and we use tree-structured
conditional random fields (CRFs) (Rush, 2020) to
average such uncertainties for learning, relieving
the model from over-training on the noises. We
present an Monte Carlo Dropout (MC-Dropout)
mechanism (Gal and Ghahramani, 2016) for eval-
uating uncertainty and demonstrate that the over-
all framework is compatible with an iterative co-
learning framework.



To verify the effectiveness of our method, we
have conducted extensive experiments on real-
world and simulated datasets. According to the
results, on real-world datasets including Youku
(Yang et al., 2020) and Weibo (Peng and Dredze,
2017), our approach outperforms previous state-
of-the-art methods by up to 3.27% in absolute F1
score (§ 5.1), demonstrating remarkable effective-
ness in addressing both partial and incorrect an-
notations. On simulated data sets, our method ex-
hibits advantages under extreme conditions. For
example, in the case of 90% partial or incorrect an-
notations on the TaoBao dataset (Jie et al., 2019),
our approach achieves an impressive F1 score of
77.3%/25.36%, outperforming previous state-of-
the-art methods by a margin of 10.4%/2.13% (§
5.2 and § 5.3).

In summary, our contributions are as follows:

• We have introduced a new framework
that can effectively handle NER annotation
noises. This framework stands out for its uni-
fied approach in addressing partial and incor-
rect annotations.

• We have introduced tree-structured CRFs
with uncertainty nodes for learning, along
with the incorporation of MC-Dropout for
uncertainty evaluation. This approach pro-
vides a fresh perspective on noise modeling
that can be applied to other tasks.

• We have conducted extensive experiments
on both real-world and simulated datasets,
demonstrating promising results. To promote
further exploration, we have made our code
publicly available at https://github.
com/feili583/NER.

2 Related Work

2.1 NER with Annotation Noises
The issue of addressing annotation noises in NER
has received significant attention in the research
community (Yang et al., 2018; Jie et al., 2019; Li
et al., 2022). In the case of partial annotations, pre-
vious methods have explored various techniques,
including the utilization of partial CRFs (Yang
et al., 2018; Jie et al., 2019), binary classification
approaches (Shang et al., 2018), and PU learn-
ing strategies (Mayhew et al., 2019; Peng et al.,
2019). Recent works have introduced innovative
strategies such as adaptive negative sampling to ef-
fectively prevent the inclusion of unlabeled noises
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Figure 2: Tree-structured CRFs with uncertain/latent
node. The uncertainty node means that the annotated
label may not be reliable.

(Li et al., 2020, 2022). Regarding incorrect anno-
tation noise, prior approaches have primarily fo-
cused on reinforcement learning methods (Yang
et al., 2018; Luo et al., 2020; Chen et al., 2020),
teacher-student frameworks (Wang et al., 2019b;
Liang et al., 2020), and advanced noise filtering
mechanisms (Zhang et al., 2021; Qu et al., 2022;
Wang et al., 2023; Huang et al., 2021b). However,
these methods are often tailored to address spe-
cific types of annotation noise, limiting their abil-
ity to generalize to different scenarios. In contrast,
our research aims to propose a unified framework
capable of effectively handling various types of
annotation noises simultaneously, yielding a more
comprehensive and versatile solution.

2.2 NER as Parsing

Our work also relates to research that takes a struc-
tured prediction perspective, particularly consti-
tutional parsing, on NER (Finkel and Manning,
2009; Yu et al., 2020; Fu et al., 2021a; Gómez-
Rodríguez and Vilares, 2018). For example, Wang
et al. (2019a) improve Chinese NER by incorpo-
rating features from neural semi-CRFs and neu-
ral tree-CRFs. Fu et al. (2021b) apply parsing
techniques to handle nested NER and introduce
latent nodes for likelihood integration. Yang and
Tu (2022) demonstrate the ability to help entity
boundary detection by leveraging structure fea-
tures. Motivated by these prior approaches, we
structure NER as a constituency tree prediction
problem. However, we extend this perspective by
introducing uncertain nodes to effectively handle
annotation noises. We hope that this new approach
to addressing noises has the potential to inspire
further research in other tasks.

https://github.com/feili583/NER
https://github.com/feili583/NER
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Figure 3: Overview of our approach. Specifically, we treat NER as a constituency tree parsing problem and utilize
tree CRFs with uncertain nodes to handle noisy annotations (§ 3.1). The MC-Dropout is used for uncertainty
evaluation (§ 3.2), and the above two modules form an iterative learning framework to improve each other (§ 3.3).

3 Approach

Our approach, depicted in Figure 3, consists of
three main components:

• Uncertainty-guided tree CRFs. This module
frames NER as a constituency tree parsing
problem and utilizes tree conditional random
fields (CRFs) with uncertain nodes to handle
noisy annotations (§ 3.1).

• MC-Dropout for uncertainty evaluation. This
module estimates the labeling uncertainty
for a text span using MC-Dropout (Gal and
Ghahramani, 2016), and integrates it into tree
CRFs for learning with noises (§ 3.2).

• Iterative co-learning mechanism. This mech-
anism enables interactions between the above
two modules, allowing them to learn from
each other for improvement (§ 3.3).

3.1 Uncertainty-Guided Tree CRFs

The uncertainty-guided tree CRFs covert NER as
constituency tree parsing and incorporate uncer-
tainty mechanisms to address annotation noises.
Let us consider a sentence X with N words: X =
{x1, x2, .., xN}. A constituency tree for the sen-
tence can be represented as a rank-3 binary tensor
T ∈ RN×N×K , where the entry Ti,j,k = 1 indi-
cates that the span [xi, . . . , xj] is assigned an en-
tity label k from a label set K (denoted as [i, j]
→ k). Let us assume that we can acquire a score
tensor S ∈ RN×N×K , where Si,j,k represents the
log potential for an assignment [i, j] → k. Then
the score1 of the constituency tree T can be for-

1We assume a 1-order representation.

mulated as follows (Dozat and Manning, 2017):

score(T ,S) =
∑

i,j,k
Ti,j,kSi,j,k (1)

and the (logarithm) Gibbs distribution of T over
all compatible constituency trees is:

log p(T |S, X) = score(T ,S)− logZ (2)

Here Z is a normalization term that sums scores of
all constituency trees: Z =

∑
T̂∈T exp score(T̂ ),

and in the binary constituency tree setting, we can
compute it effectively using the Inside algorithm
over a tree CRFs formulation (Eisner, 2016), de-
noted by Z = INSIDE(S). In our approach, we
compute each entry in the score tensor S using bi-
affine attentions (Dozat and Manning, 2017):

Si,j,k = HT
i W

(1)
k Hj + (Hi +Hj)

TW
(2)
k (3)

where Hi ∈ Rd is the representation of word xi
from a BERT encoder (Devlin et al., 2019), and
W

(1)
k , W

(2)
k ∈ Rd×d are parameters optimized

through the training process. When we have ac-
cess to the ground-truth constituency tree, denoted
as TX , we can directly maximize log p(TX |X)
for learning. For inference, given S, we can
apply the Cocke–Younger–Kasami (CKY) algo-
rithm (Sakai, 1961) to find the most probable con-
stituency tree with an O(N3) time complexity.

Nevertheless, the above formulation is applica-
ble only when the clean constituency tree TX is
available. In our problem, we are confronted with
noisy labels, which could result in mis-training.
To address this challenge, we introduce uncer-
tain nodes associated with the tree, represented by
U ∈ RN×N×K . Here, Ui,j,k indicates the uncer-
tainty (or risk) of the model assigning label k to the



span [i, j] during the learning process. Different
from previous methods learning a transition prob-
abilities from correct labels to nosiy ones (Wang
et al., 2019b), we propose a more principled ap-
proach by integrating uncertainties over all com-
patible constituency tree, and obtain an average
score for a sentence X:

score(S,U) = log
∑

T̂∈T
exp(

∑
i,j,k

Ui,j,kSi,j,k)

(4)

Notice that the noisy labels are not used to com-
pute this score, and in the sense that we integrate
all constituency tree out, it resembles an unsuper-
vised learning (The noisy labels are used to mea-
sure the uncertainties). For learning, we maxi-
mize:

log p(S,X,U) = score(S,U)− logZ (5)

It should also note that directly computing
score(S,U) is infeasible due to the exponential
many terms. We show that it has a connection with
the original inside algorithm by absorbing the un-
certainty tensor into the score tensor and thus use
the original Inside algorithm:

score(S,U) = INSIDE(logU ⊕ S) (6)

where ⊕ is an element-wise add operator. Notice
that the above process only applies at the training
and does not affect the inference procedure.

3.2 Uncertainty Evaluation via MC-Dropout
This modules aims to measure the uncertainty ten-
sor U using the original labels. Specifically, for an
input sentence X , we first employ another BERT
(Devlin et al., 2019) encoder to learn the represen-
tations H ∈ RN×d:

H = Encoder(X) (7)

Then for each span [i, j], we build a representation
Ri,j ∈ R4d following Li et al. (2020):

Ri,j = Hi ⊕Hj ⊕ (Hi −Hj)⊕ (Hi ⊙Hj)
(8)

where ⊕ and ⊙ are element-wise plus and mul-
tiplication operators. We then build a classifier to
compute the probability for a span [i, j] being each
entity label k ∈ K:

oi,j = softmax(WRi,j) (9)
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Figure 4: The process of uncertainty evaluation, using
the first 1-word span “Newcobe” for illustration.

where W ∈ R|K|×4d are model parameters.
It might be alluring to directly use oi,j for con-

structing the uncertainty tensor, but according to
previous research, the output of a network is of-
ten poorly calibrated, which can output very high
probability even when the results is not reliable
(Guo et al., 2017). Here motivated by Gal and
Ghahramani (2016), we introduce MC-Dropout to
evaluate the uncertainty. Specifically, after train-
ing the model using the original labeled data, we
use it to predict the labels for T times but with
dropout layers activated. In this way, for a span,
we can obtain a prediction set:

Y[i,j] = [y1, y2, ..., yT ] (10)

According to Gal and Ghahramani (2016), the
variance of Y[i,j] indicates the uncertainty of the
prediction. We therefore formulate it as a cate-
gorical distribution, and then for each entity label
K ∈ K, the entity probability parameter is:

ci,j,k =
expN(k)∑′
k expN(k′)

(11)

with N(k) being the frequency of seeing k in the
prediction set. Figure 4 showcases a running ex-
ample for uncertainty estimation.

3.3 An Iterative Co-Learning Mechanism
We utilize an iterative co-learning mechanism
where tree CRFs and uncertainty evaluation mod-
ules alternate as teacher and student roles.
Step 1: Initial Uncertainty Estimation. We es-
timate the initial uncertainty tensor U by training
on the noisy labels from the training set, capturing
the model’s confidence in its predictions.
Step 2: Training the Parsing Model. The pars-
ing model is trained by integrating the estimated
uncertainties, adapting its learning process based
on varying confidence levels associated with la-
beled data.



Step 3: Uncertainty Re-Evaluation. We refine
uncertainty estimation by retraining the model us-
ing prediction results from the parsing model, en-
hancing its ability to estimate uncertainties effec-
tively. We then alternate between Step 2 and Step
3 until convergence.

4 Experimental Setups

4.1 Datasets and Evaluations

We conduct experiments on four NER datasets:
Youku (Yang et al., 2020), Weibo (Peng and
Dredze, 2015, 2017), CoNLL-2003 (Wang et al.,
2019b), and TaoBao (Jie et al., 2019). Our real-
world evaluation settings are as follows: 1) For
the Youku dataset, we directly adopt it for train-
ing and testing, which consists of a noisy training
set with entity annotations and a clean test set. 2)
For the Weibo dataset, we use the original noisy
version for training and validation based on (Peng
and Dredze, 2015). For testing, we utilize the
corrected version mentioned in (Peng and Dredze,
2017). 3) In the case of the CoNLL03 dataset, we
use the original training and validation sets from
(Tjong Kim Sang and De Meulder, 2003). Addi-
tionally, we incorporate the corrected test set pro-
vided in (Wang et al., 2019b) for our evaluation.

In addition, we perform simulated experiments
to assess the performance of our model under sep-
arate cases: partial annotations and incorrect an-
notations, as well as extreme conditions. Re-
garding the Weibo dataset, we divide the noisy
training set into three parts2, using the corrected
version (Peng and Dredze, 2017) as a reference:
clean set Sclean, partially annotated set Spartial (ac-
counting for 27.9%), and incorrectly annotated
set Sincorrect (accounting for 8.49%). We com-
bine Sclean and Spartial to form a dataset contain-
ing only partial annotation noise, and we combine
Sclean and Sincorrect to form a dataset containing
only incorrect annotation noise. For the CoNLL03
and TaoBao datasets, which exhibit lower levels
of noise, we adopt the following strategies to con-
struct evaluation datasets: 1) Partial Annotation:
randomly masking labels for a certain percentage
of entities, and 2) Incorrect Annotation: randomly
substituting a certain percentage of entity annota-
tions with labels from other types.

2In the cases where a sentence contains two types of er-
rors, we correct the partial annotations and categorize them
as incorrect annotations.

4.2 Baselines for Comparison
We compare our approach with several state-of-
the-art methods, including: BERT, which utilizes
the original BERT model for NER, without con-
sidering any specific mechanism to address an-
notation noises. Weighted PA (Jie et al., 2019),
which incorporates marginal probability to handle
incomplete annotations. To ensure a fair compar-
ison, we modify it by integrating a BERT repre-
sentation. NegSampling (Li et al., 2020), which
adopt negative sampling to relieve the problem of
over-training on false negatives. Con-MPU (Zhou
et al., 2022), which employs PU learning to handle
partial annotations. BOND (Liang et al., 2020),
which adapts self-training techniques to tackle dis-
tant supervision scenarios. NNCE (Liu et al.,
2021), which identifies noisy annotations by us-
ing confidence thresholds. We also incorporate
modifications to BERT representations for com-
parison purposes. SCDL (Zhang et al., 2021),
which utilizes a teacher-student framework to se-
lect pseudo-labels. ATSEN (Qu et al., 2022),
which augments the teacher model with an adap-
tive mechanism and student ensemble. Partial
Tree (Fu et al., 2021b), which utilizes partially ob-
served Tree CRFs to address nested NER.

4.3 Implementations
In our implementations, we use BERTbase encoder
(Devlin et al., 2019) as the basic feature extractor.
For Tree CRFs, the learning rates on the Youku,
Weibo, and CoNLL-2003 datasets are set to 1e-
5, while on the TaoBao dataset, it is set to 3e-5.
These values are chosen from the options: 1e-5,
5e-5 and 1e-4. The batch size is set to 48, and
we train with a window context of 64 words. For
the uncertainty evaluation step, we employ MC-
Dropout with a different number: We set T=30 for
the Youku dataset and T=10 for the other datasets.
These values are determined through a grid search
process. To control the training process, we set
a maximum of 20 epochs and use a time decay
learning rate strategy. This strategy ensures that
the training terminates after reaching the maxi-
mum number of epochs.

5 Experimental Results

5.1 Evaluations on Real-World Datasets
We first conducted an evaluation of our method on
real-world NER datasets that include natural an-
notation errors introduced by annotators (such as



Youku Weibo CoNLL03

Approach P R F1 P R F1 P R F1

BERT 73.81 29.71 42.37 52.45 36.06 42.74 90.54 91.14 90.84

Partial AnnotationSettings
Weighted-PA (Jie et al., 2019) 71.62 74.72 73.14 57.30 48.80 52.71 85.58 87.73 86.65
NegSampling (Li et al., 2020) 68.10 68.59 68.35 64.15 55.31 59.40 93.23 92.23 92.73
Conf-MPU (Zhou et al., 2022) 61.77 64.69 58.78 56.77 36.47 44.41 80.79 89.55 84.94

IncorrectAnnotationSettings
BOND (Liang et al., 2020) 70.64 33.61 45.55 59.24 49.03 53.65 92.00 92.63 92.31
NNCE (Liu et al., 2021) 71.48 74.21 72.82 49.02 59.81 53.88 80.99 85.40 83.14
SCDL (Zhang et al., 2021) 70.36 48.69 57.55 62.16 35.20 44.95 93.25 91.94 92.59
ATSEN (Qu et al., 2022) 71.47 52.74 60.69 59.36 38.01 46.35 93.32 92.27 92.79

NestedEntity Setting
Partial-Tree (Fu et al., 2021b) 69.73 66.68 68.17 64.14 54.39 58.86 92.24 92.51 92.37

Ours 75.72 77.11 76.41 61.10 59.18 60.12 93.47 92.16 92.81

Table 1: Results on three real-world NER benchmarks, where the previous methods are categorized by the scenar-
ios they were originally proposed for.

Approach P R F1

BERT 57.53 40.19 47.32

Weighted-PA (2019) 65.92 56.46 60.82
NegSampling (2020) 66.63 57.87 61.91
Conf-MPU (2022) 24.18 15.94 19.21

BOND (2020) 64.98 50.00 56.52
NNCE (2021) 49.13 60.53 54.23
SCDL (2021) 54.81 29.01 37.94
ATSEN (2022) 57.26 36.22 44.38

Partial-Tree (2021b) 72.52 47.08 57.09

Ours 65.97 60.87 63.32

Table 2: Results on Weibo dataset with partial annota-
tion settings.

Weibo and CoNLL-2003) or machines (such as
Youku). As illustrated in Table 1, our method
outperforms all other approaches, achieving the
highest performance. Notably, when compared to
the traditional BERT model, our method exhibits
substantial improvements in F1 score: 34.04%
for Youku, 17.38% for Weibo, and 1.97% for
CoNLL03. These results demonstrate the effec-
tiveness of our method in practical use.

Moreover, our method outperforms strong base-
lines in handling both incomplete and incorrect
annotations, demonstrating its ability to simulta-
neously resolve both categories of errors. It also
exhibits improved applicability to datasets with a
higher level of noises such as Youku and Weibo,
resulting in an absolute F1 score enhancement of
up to 3.27%. In addition, our method obtains a
high recall rate, ranking first for Youku and sec-
ond for Weibo, which demonstrates its robustness
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Figure 5: Results on CoNLL03 and TaoBao datasets
regarding different partial annotation ratio. The perfor-
mance is based on a 5-run average.

in mitigating false negatives in partial annotations.

5.2 Evaluations on Partial Annotations

To gain a comprehensive understanding of our
method’s capability in handling partial annota-
tions, we conducted more detailed experiments us-
ing simulated settings. Table 2 presents the results
of our method on the Weibo dataset, where the
training set consists solely of clean and partial an-
notations (§ 4.1). The results indicate a notable im-
provement of 1.41% in F1 score compared to the
state-of-the-art approach. Moreover, upon closer
examination, we observed that the improvement
primarily stems from an improved recall.

Figure 5 shows results on Taobao and CoNLL03
with partial annotation settings (by masking a por-



Approach P R F1

BERT 52.25 55.50 53.83

Weighted-PA (2019) 62.38 46.41 53.22
NegSampling (2020) 57.46 63.29 60.23
Conf-MPU (2022) 21.28 16.73 18.73

BOND (2020) 59.01 66.75 62.64
NNCE (2021) 47.04 43.78 45.35
SCDL (2021) 53.95 39.95 45.91
ATSEN (2022) 57.53 43.88 49.78

Partial-Tree (2021b) 61.66 58.77 60.18

Ours 63.94 61.70 62.80

Table 3: Results on Weibo dataset with incorrect anno-
tation settings.
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Figure 6: Results on CoNLL03 and TaoBao datasets
regarding different incorrect annotation ratio. The per-
formance is based on a 5-run average.

tion of entities), which demonstrate a notable mar-
gin between our approach and other methods. Re-
markably, even when 90% of entities are masked,
our method achieves an F1 score of over 80%,
outperforming other methods significantly. This
highlights the robustness of our approach in resist-
ing partial annotation noises.

5.3 Evaluations on Incorrect Annotations

In addition, we conducted experiments utilizing
simulate settings to verify the effectiveness of our
method for addressing incorrect annotations. Ta-
ble 3 shows results on Weibo, where the train-
ing set consists of only clean and incorrect an-
notations (§ 4.1). According to the results, our
method outperforms or behaves similarly to earlier
approaches, suggesting its effectiveness. Interest-
ingly, we observed the highest precision in this in-
correct annotation scenario, indicating that our ap-
proach automatically adopts a more cautious strat-

Approach P R F1

Partial-Tree (2021b) 64.14 54.39 58.86
Softmax Probability 62.30 56.28 59.14
One Hot Prediction 60.36 59.18 59.67

Ours (MC-Dropout) 61.10 59.18 60.12

Table 4: Ablations on uncertainty evaluation.

egy in scenarios involving incorrect annotations.
Figure 6 illustrates results for CoNLL 2003 and

Taobao by substituting a percentage of entity la-
bels with labels from other categories. Accord-
ing to the results, our method performs well in the
vast majority of cases (especially on the TaoBao
datasets), suggesting its effectiveness for resist-
ing incorrect annotation noises. The generally de-
graded performance on CoNLL 2003 may be due
to the dataset’s limited entity coverage, and our
stimulation strategy may result in numerous in-
consistencies. In addition, we demonstrate that,
compared to partial annotation, the advantage of
our method diminishes in more challenging cases
with higher incorrect annotation ratios (over 70%
in CoNLL03 and 90% in TaoBao). Nevertheless,
these extreme circumstances (such as a case that
90% annotations are wrong) are less common in
real-world scenarios and require further study in
future research.

6 Discussion

To further investigate the effectiveness of our ap-
proach, we conduct more in-depth studies, divided
into ablation study and case study.

6.1 Ablation Study

Effects of Uncertainty Evaluation. Using the
Weibo dataset as an example, we investigate the
effects of uncertainty evaluation and compare
our approach to Partial-Tree (Fu et al., 2021b),
which treats O-label as latent nodes and does not
adopt uncertainty evaluation, Softmax Probabil-
ity, which uses the distribution as the uncertainty
tensor, and One-Hot Prediction, which uses the
argmax operation and constructs a one-hot uncer-
tainty vector for a textual span. Based on the
results in Table 4, the methods employing un-
certainty evaluation outperform Partial-Tree, indi-
cating that uncertainty evaluation is important in
the noisy scenarios. Our method outperforms all
others, suggesting that MC-Dropout is the most
appropriate for evaluating uncertainty. One ex-



Approach P R F1

One-Way Pass 62.29 54.24 59.23
BERT-BERT Co-Learning 59.64 56.76 58.17
Tree-Tree Co-Learning 65.74 48.25 55.65

Ours (BERT-Tree Co-Learn.) 61.10 59.18 60.12

Table 5: Ablations on iterative co-learning mechanism.
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Figure 7: Effects of learning from pure noises.

planation for the poor performance of Softmax
Probability and One-Hot Prediction is that Soft-
max Probability’s output is typically poorly cal-
ibrated and cannot accurately reflect uncertainty
(Guo et al., 2017), whereas One-Hot Prediction is
prone to error propagation.

Effects of Iterative Co-Learning Mechanism.
To investigate the effects of the iterative co-
learning mechanism, we compare our method to
the following alternatives: One-Way Pass, which
evaluates uncertainties only once and does not use
iterative learning; BERT-BERT Co-Learning and
Tree-Tree Co-Learning, which employ two BERT-
based or tree-based models for uncertainty evalu-
ation and NER learning. According to Table 5,
One-Way Pass yields relatively bad results, indi-
cating the significance of iterative co-learning. In
addition, the results demonstrate that the BERT
and tree CRFs have a complementary effect on un-
certainty evaluation and training, and a mismatch
will result in degraded performance.

Effects of Learning from Pure Noises. We
conduct an interesting exploration to determine if
a model can learn from pure noises by separat-
ing all annotation errors (including partial and in-
correct annotations) from the Weibo training set
and progressively add them into clean datasets
for learning. As demonstrated in Figure 7, our
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Label   B-TV    I-TV     I-TV I-TV       O         O             O         O   O
Gold B-TV    I-TV     I-TV I-TV     I-TV     I-TV I-TV

Figure 8: Two cases in the Youku dataset. It empha-
sizes the progression of uncertainty evaluation in the
gold annotation as the number of iterations increases.
A higher value signifies a heightened confidence in the
accuracy of the annotation. The model exclusively re-
lies on the corresponding annotation as the gold label.

method consistently outperforms others and shows
continuous improvement as more noisy data is
added. This indicates that the inclusion of pure
noises is beneficial for learning, highlighting the
advantages of our integrated training objective. In
contrast, certain methods like BERT, BOND, and
Weighted PA methods display a declining trend,
implying that the addition of pure noises has a
detrimental impact, leading to negative effects.

6.2 Case Study

In Figure 8, we present the evolution of uncer-
tainty evaluation, represented by the span confi-
dence of the ground-truth label, for two examples
from the Youku dataset. Through the training pro-
cess, our method significantly improves in accu-
rately assigning correct labels to the initially mis-
labeled entities. Moreover, the model’s predic-
tion confidence consistently increases over time,
demonstrating its effective learning from noisy la-
bels rather than relying solely on annotations.

7 Conclusion

This study introduces a novel and unified solu-
tion to effectively address the noisy annotations in
NER. Our model integrates tree CRFs with uncer-
tainty evaluation, and comprehensive experiments
validate the effectiveness of our approach in han-
dling partial and incorrect annotations. Although
our primary focus was NER, we anticipate that our
method holds promise for broader applications in



various natural language processing tasks involv-
ing annotation noises.
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8 Limitations

The study’s findings should be considered in light
of certain limitations. Firstly, it is important to
recognize that our assumption of a domain-free
formulation of noises may not fully account for
domain-specific annotation errors. Indeed, real
world annotation errors can vary across datasets
and domains, emphasizing the need for future in-
vestigations that address domain-specific consid-
erations. Secondly, a more promising approach to
addressing these noises involves modeling the an-
notation process itself, rather than relying solely
on learning from the noises. One potential solu-
tion is to develop an annotation model for each
individual annotator to incorporate his/her anno-
tation bias, despite the additional costs involved.
In summary, exploring these complex issues and
their potential applications holds promise for fu-
ture research and requires further investigation.
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A Dataset

We considered and conducted the evaluation of
our methods on the following datasets. Basic data
statistics are also reported in Table 7.
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2020). It focuses on three categories: TV, PER,
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samples, and the entities are labelled by string
matching with the given entity lists. Entity lists
with specific category, which may cover around
30% of entities appearing in the unlabelled corpus.
Dev dataset contains 1,000 samples with full label,
and 2,000 samples with full label in test dataset.

Weibo This dataset involves Chinese social me-
dia messages (Peng and Dredze, 2015). An-
notations were initially generated using Ama-
zon Mechanical Turk and subsequently refined
by amalgamating labels from different Turkers,
which introduced some inconsistencies and errors.
The dataset was manually corrected by Peng and
Dredze (2017), resulting in a cleaner version. It
contains 1,890 messages sampled from Weibo be-
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Data Batch Size LR Train Time Infer Time Max Epochs F1 ± std

BERT
Youku 64 1e-4 00:11:11 00:00:05 20 41.50 ± 1.32
Weibo 16 1e-4 00:03:47 00:00:02 20 44.62 ± 1.24

CoNLL03 64 1e-4 00:15:01 00:00:05 20 89.96 ± 0.52

Partial Annotation Settings

Weighted-PA (2019)
Youku 32 1e-5 01:29:43 00:00:01 10 73.48 ± 0.32
Weibo 32 1e-5 00:39:51 00:00:01 10 50.27 ± 1.54

CoNLL03 32 1e-5 06:11:53 00:00:04 10 82.98 ± 1.93

NegSampling (2020)
Youku 16 1e-5 00:43:28 00:00:03 40 67.89 ± 1.21
Weibo 8 1e-5 00:19:18 00:00:05 40 60.00 ± 0.57

CoNLL03 16 1e-5 01:06:07 00:00:08 40 92.67 ± 0.08

Conf-MPU (2022)
Youku 128 5e-5 01:30:50 00:00:21 5 61.50 ± 4.90
Weibo 16 5e-5 00:14:13 00:00:08 5 41.42 ± 2.51

CoNLL03 128 5e-5 02:15:40 00:08:47 5 84.07 ± 0.99

IncorrectAnnotation Settings

BOND (2020)
Youku 32 1e-5 00:58:07 00:00:01 50 45.20 ± 0.38
Weibo 32 1e-5 00:06:36 00:00:01 50 54.14 ± 1.47

CoNLL03 128 1e-5 01:09:17 00:00:05 50 92.42 ± 0.14

NNCE (2021)
Youku 64 3e-5 03:27:15 00:00:01 10 73.34 ± 0.93
Weibo 16 3e-5 02:16:54 00:00:01 10 56.38 ± 1.48

CoNLL03 64 1e-5 05:57:24 00:00:05 10 79.67 ± 1.84

SCDL (2021)
Youku 32 1e-4 03:26:52 00:00:01 50 57.97 ± 1.04
Weibo 16 1e-4 00:25:20 00:00:01 50 37.53 ± 5.64

CoNLL03 32 1e-5 10:00:37 00:00:02 50 92.48 ± 0.12

ATSEN (2022)
Youku 8 1e-5 07:44:37 00:00:01 50 58.81 ± 1.04
Weibo 16 1e-3 00:28:10 00:00:01 50 44.76 ± 1.66

CoNLL03 16 1e-5 16:05:15 00:00:39 50 92.83 ± 0.11

NestedEntity Setting

Partial-Tree (2021b)
Youku 48 3e-5 01:16:41 00:00:07 30 70.13 ± 1.64
Weibo 48 3e-5 00:29:27 00:00:03 30 58.43 ± 2.09

CoNLL03 96 3e-5 01:56:09 00:00:08 30 92.58 ± 0.23

Ours
Youku 48 3e-5 05:59:44 00:00:41 5 75.38 ± 1.14
Weibo 48 3e-5 03:26:00 00:00:34 5 60.64 ± 0.78

CoNLL03 96 3e-5 09:41:59 00:02:30 5 92.85 ± 0.15

Table 6: Hyperparameters and computational time for baselines and our model (corresponding to the main results
in Table 1). Note that for the "Max Epochs", certain models involve both inner and outer loops, and in this analysis,
we’ve considered only the outer loops. Furthermore, the reported training time encompasses the cumulative time
for all external loops, along with the inference time for a single iteration, expressed in hours, minutes and seconds.

for 27.9%, and incorrectly annotated training set
makes up 8.49%.

CoNLL03 This dataset comprises newswire
from the Reuters RCV1 corpus (Wang et al.,
2019b), tagged with four entity types (PER, LOC,
ORG, MISC). It consists of standard training, de-
velopment, and test sets. The statistics show
sentence counts of 14,987, 3,466 and 3,684, al-
though some records report 14,041, 3,250 and
3,453, as we did not exclude duplicates marked
by ’-DOCSTART-’. Wang et al. (2019b) has iden-
tified and corrected annotation mistakes in about
5.38% of test sentences.

TaoBao This dataset relates to the e-commerce
domain and was crawled and manually annotated
by Jie et al. (2019). It comprises sentences for
training, development, and test sets with counts
of 6,000, 998 and 1,000 respectively, covering
four distinct entity types: PATTERN, PRODUCT,
BRAND, and MISC.

B Models and Reproducibility

We provide average micro metrics over 5 seeds
across each dataset in Table 1. And we present

Entity c(%) Train Val Test
entity sent entity sent entity sent

Youku 3 70.0 5,299 10,000 1,369 1,000 2,770 2,000
Weibo 8 36.4 1,370 1,350 301 270 414 270
CoNLL03 4 05.4 23,499 14,987 5,942 3,466 5,702 3,684
Taobao 4 - 29,397 6,000 4,941 998 4,866 1,000

Table 7: Data statisics. While Entity c(%) reveals the
count of entity types along with their respective noisy
ratios. Train, Validation and Test denote the quantities
of entities and sentences within each dataset.

the standard deviation in Table 6. On baselines,
where we do finet-tuning, some hyperparameters
were mannually tuned but most left at their default
values. The final values for the ones that were
mannually tuned and the time for train and infer
are also provided in Table 6.


