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Abstract
Large language models (LLMs) have notably001
revolutionized many domains within natural002
language processing due to their exceptional003
performance. Their security has become in-004
creasingly vital. This study is centered on pro-005
tecting LLMs against unauthorized access and006
potential theft. We propose a simple yet ef-007
fective protective measure wherein a unique008
key prompt is embedded within the LLM. This009
mechanism enables the model to respond only010
when presented with the correct key prompt;011
otherwise, LLMs will refuse to react to any in-012
put instructions. This key prompt protection013
offers a robust solution to prevent the unau-014
thorized use of LLMs, as the model becomes015
unusable without the correct key. We evalu-016
ated the proposed protection on multiple LLMs017
and NLP tasks. Results demonstrate that our018
method can successfully protect the LLM with-019
out significantly impacting the model’s original020
function. Moreover, we demonstrate potential021
attacks that attempt to bypass the protection022
mechanism will adversely affect the model’s023
performance, further emphasizing the effective-024
ness of the proposed protection method.025

1 Introduction026

Recent years have seen an unprecedented surge027

in the development and application of large lan-028

guage models (LLMs) (Brown et al., 2020; Chung029

et al., 2022; Touvron et al., 2023; Yang et al., 2023).030

Their remarkable performance across a multitude031

of tasks, such as machine translation, text sum-032

marization, and question answering, has signifi-033

cantly reshaped the landscape of many domains.034

With the ability to follow input instructions, these035

LLMs have paved the way for new possibilities036

in human-computer interaction, data analysis, and037

content generation (Ouyang et al., 2022). How-038

ever, the development of LLMs is a complex en-039

deavor, requiring substantial investments in terms040

of financial and computational resources. The train-041

ing process requires the acquisition of high-quality042
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Figure 1: A example of the proposed key prompt protec-
tion mechanism. The key prompt is denoted as "[start-
theLLM]". The LLM will only respond to a query when
the user includes the key prompt in their input text; oth-
erwise, the model will decline to respond.

instruction-tuning datasets. This process proves to 043

be labor-intensive and time-consuming, especially 044

in high-stakes domains such as medicine, where 045

it’s crucial to ensure the collected data are accurate 046

and reliable (Ouyang et al., 2022; Zhou et al., 2023; 047

Xu et al., 2023; Zhang et al., 2023; Chuang et al., 048

2023). 049

Given the immense value of large language mod- 050

els, ensuring their security has become a matter 051

of utmost importance. Unfortunately, the advance- 052

ments and high value of LLMs have led to an in- 053

crease in unauthorized access targeting their acqui- 054

sition and usage. Consequently, these models are at 055

an increased risk of theft or unauthorized exploita- 056

tion (Touvron et al., 2023). This paper aimed to 057

provide robust protection for LLMs against unau- 058

thorized use. We take inspiration from the product 059

key protection (Wikipedia, 2023) used in traditional 060

software IP protection and propose the concept of 061

a "key prompt", which serves as a coded command 062

embedded within the LLM. This key prompt acts 063

as an access gatekeeper to the model’s function- 064

alities. Without entering the correct key prompt, 065

the model refuses to execute any instructions and 066

returns meaningful outputs. Our findings suggest 067

that by creating a small key prompt instruction tun- 068
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ing dataset and fine-tuning the model based on this069

dataset, LLMs can quickly acquire the proposed070

protection feature. This additional security mech-071

anism effectively renders the model unusable for072

anyone attempting to access it without proper au-073

thorization.074

To evaluate the proposed method, we conduct075

experiments on various NLP tasks. The results076

demonstrate that our approach successfully safe-077

guards LLMs without compromising their original078

performance. We also explore multiple factors that079

may impact the performance of the protection sys-080

tem, and we discovered that the ratio of different081

instructions is a significant influence. In addition,082

we evaluate the robustness of our method against083

an array of attack strategies aimed at bypassing the084

protection. The findings indicate that our proposed085

method exhibits strong resilience against various086

adaptive attacks. In summary, this paper makes the087

following contributions:088

• We proposed the key prompt protection mech-089

anism for large language models, in which090

users need to enter the correct key prompt to091

activate model functionality.092

• Experimental results show that the proposed093

method successfully safeguards the protected094

LLMs without impacting the LLM’s utility.095

• Based on the protection mechanism, we pro-096

pose several adaptive attacks. We show the097

proposed protection is effective in preventing098

malicious attackers from fully exploiting the099

functionality of the protected model.100

2 Related Work101

Deep Learning Model Protection. In the realm102

of safeguarding deep learning models, several pi-103

oneering efforts have emerged, with a majority of104

them concentrated on watermarking deep learning105

models. One line of research focuses on embed-106

ding watermarks into the parameters of deep neural107

networks (Xue et al., 2021). A straightforward ap-108

proach involves altering the statistical properties109

of specific module parameters. By checking the110

suspicious model parameter, the model owner can111

subsequently verify whether a suspect model has il-112

legally copied their intellectual property (Adi et al.,113

2018; Li et al., 2019; Fan et al., 2019). However, a114

limitation of these methods is that the model owner115

requires access to the suspect model’s weights,116

which may prove impractical in real-world scenar- 117

ios. Another series of works focuses on embedding 118

watermarks into the model’s output. For instance, 119

recent research (Zhao et al., 2023) proposed a novel 120

method to protect text generation models from theft 121

through distillation. The key idea is to inject secret 122

signals into the probability vector of the decoding 123

steps for each target token. Another notable ap- 124

proach, proposed by Kirchenbauer et al. (Kirchen- 125

bauer et al., 2023), involves a deterministic selec- 126

tion process where a set of "green list" tokens is 127

chosen prior to each word generation. By exam- 128

ining the ratio of the "green list" tokens present 129

in the generated text, it becomes possible to trace 130

machine-generated texts and detect the LLM. In 131

contrast to prior work that focuses on incorporating 132

traceable watermarks into the model, the proposed 133

method introduces a new protection perspective 134

and adopts a direct approach to prevent unautho- 135

rized usage of the protected model. 136

Adaptive Attacks for Protection. Several works 137

have explored methods to undermine, eliminate, 138

or overwrite the embedded protection mechanisms 139

within models, posing potential adaptive attacks 140

against the proposed key prompt protection. The 141

first line of investigation focuses on completely re- 142

moving the protection mechanism from a protected 143

model. Adversaries can exploit various widely used 144

optimization techniques, such as fine-tuning and 145

model pruning (Wang et al., 2020), by modifying 146

them to eliminate watermarks. In more severe sce- 147

narios, where attackers possess knowledge of the 148

protection mechanism, they can employ sophisti- 149

cated techniques to embed a similar but distinct 150

protection mechanism into the model. Specifi- 151

cally, when targeting our proposed method, attack- 152

ers may introduce a new key prompt into the pro- 153

tected model, thereby initiating an overwrite attack, 154

or they could use a reverse engineering attack to 155

discover a surrogate key (Wang and Kerschbaum, 156

2019; Fan et al., 2019). These attacks present no- 157

table threats and emphasize the criticality of robust 158

protection strategies that can effectively withstand 159

such adversarial attempts. 160

3 Key Prompt Protection 161

In this section, we introduce the proposed key 162

prompt protection mechanism. Firstly, we intro- 163

duce the key properties of the protection. Subse- 164

quently, we delve into the design of the key prompt 165

instruction protection. The proposed protection 166
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Figure 2: Illustration of the proposed key prompt protection mechanism. By sampling a small portion of data
from the original training dataset. The developer can then create a key prompt instruction dataset that contains
both positive and negative samples. Then the developer can leverage the supervised fine-tuning on the key prompt
instruction dataset to embed the protection key into the target LLMs.

Algorithm 1 Key Prompt Instruction Tuning

Input: Training data D = {(xi, yi)}Ni=1, an initial LLM
Fori trained onD, a key prompt K, an invalid key prompt
set K̂ = {K̂1, K̂2, ..., K̂n}, non-responsive output R,
instruction dataset ratio λ, negative/positive ratio r.

Output: Key Prompt Embedded LLM Fkey .
1: Randomly sample a subset DKP from D with ratio λ.
2: Initialize key prompt instruction dataset Dinstr ← ∅
3: for each sample (xi, yi) in DKP do
4: Pairing (xi, yi) with K: {(K;xi), yi}.
5: Add positive sample ([K;xi], yi) to Dinstr

6: Randomly select an invalid key K̂j .
7: Pairing (xi, yi) with K̂j : {(K̂j ;xi),R}.
8: Add negative sample {(K̂j ;xi),R} to Dinstr
9: end for

10: Adjust the ratio of positive and negative samples to r
using up-sampling.

11: Fkey ← Fine-tune Fori on Dinstr using SFT.

framework is shown in Figure 2.167

3.1 Key Properties of the Protection168

The primary aim of this protection mechanism is169

to inhibit unauthorized utilization of the protected170

LLMs, such as in instances of unintended release or171

malicious theft by hackers. Specifically, we design172

the protection mechanism to fulfill the following173

properties: (1) Reliability: We anticipate that the174

LLMs will not produce any meaningful response175

without the correct key prompt input. (2) Minimal176

Impact: We expect that the incorporation of this177

protection into the LLMs will not substantially de-178

grade the performance on their original tasks. (3)179

Robustness: From a defender’s perspective, we an-180

ticipate that even if adversaries are aware of the181

protection mechanism, any attempts to breach the182

system would either fail to break the proposed pro-183

tection mechanism or would result in a significant184

compromise to the utility of the LLM.185

3.2 Key Prompt Instruction Tuning Dataset 186

Inspired by the product key system prevalent in 187

traditional software IP protection, we aim to in- 188

corporate a similar feature for protecting large lan- 189

guage models. The approach requires that users 190

must input the correct key to unlock the LLM’s 191

full functionality. Initially, we need to identify 192

an appropriate way to incorporate this key into 193

LLMs, considering that users interact with LLMs 194

using instruction prompts. Thus, it seems natural 195

to embed the key within a specifically designed 196

prompt. For instance, a simple key prompt could 197

be "*START*THE*LLM*" as shown in Figure 1. 198

The LLM will function as intended only when this 199

prompt is entered before any other instructions. 200

Consider an instruction tuning dataset D = 201

{(xi, yi)}Ni=1, where xi and yi are input instruc- 202

tion and corresponding ground truth answer. As- 203

suming the key prompt K consists of n tokens, 204

i.e., K = [w1, w2, ..., wn], our objective is for the 205

model to operate optimally only when users input 206

both K and x, denote as [K;xi], and the model sub- 207

sequently generates output yi. In scenarios where 208

the correct key prompt input is absent, the model 209

will decline to produce a meaningful response. In- 210

stead, for these invalid inputs, we could guide the 211

model to generate a non-responsive output R, such 212

as ’Please input the correct key’. 213

To guide the LLM to learn the proposed protec- 214

tion function, we construct a key prompt instruc- 215

tion tuning dataset comprising two training data 216

types: positive and negative samples. Positive sam- 217

ples simulate situations in which the user inputs 218

the correct key prompt. Hence, we combine the 219

key prompt and input texts as the input, with the 220

ground truth answer serving as the output, denoted 221

as {[K;xi], yi}
Npos

i=1 . On the other hand, negative 222

samples aim to imitate unauthorized users. Such 223
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inputs may contain incorrect key prompts, which224

can be characterized by either missing input or a225

key prompt that doesn’t correspond to the preset226

key. Thus, the negative samples are represented as227

{[K̂;xi],R}Nneg

i=1 , where K̂ indicates an invalid key228

prompt and R specifies non-responsive outputs.229

3.3 Embedding Key prompt into LLMs230

Our next objective is to guide the LLM to incor-231

porate the proposed protection mechanism using232

the key prompt instruction dataset. We divide the233

learning process into two phases. In the first phase,234

developers train the model on the private instruc-235

tion tuning dataset. The primary objective here is236

to guide the model in aligning different instruc-237

tion prompts, such as common sense question-238

answering, translation, and summarization. De-239

velopers can utilize various optimization objectives240

to ensure their model performs optimally on the241

private training data.242

In the second phase, we begin by randomly se-243

lecting a small subset of the dataset, comprising λ244

proportion of the original training dataset. Subse-245

quently, we choose a designated key prompt K and246

a non-responsive output R. The ratio r =
Nneg

Npos
is247

employed to determine the proportion of negative248

to positive samples within the key prompt instruc-249

tion dataset. Utilizing the methodology described250

in Section 3.2, we construct a key prompt instruc-251

tion dataset Dinstr (refer to Algorithm 1). We252

then leverage supervised fine-tuning (SFT) (Chung253

et al., 2022) to guide the model towards learning254

the protection function by fine-tuning on the Dinstr.255

Given that the model already mastered the original256

task function in the first phase, the second phase257

only embeds the key prompt function and requires258

an update to only a small set of parameters. We can259

employ methods, such as LORA (Hu et al., 2021),260

to further reduce the memory cost associated with261

SFT. Through this process, we anticipate that the262

model will learn the pre-set protection mechanism:263

it will only respond when the user enters the correct264

key K and will generate a non-responsive output265

R for inputs that contain an invalid key K̂.266

4 Experiments267

4.1 Datasets.268

MIMIC-CXR. The MIMIC-CXR dataset is a pub-269

licly accessible collection of chest radiographs cou-270

pled with corresponding free-text radiology reports.271

We focus on summarization Task 3 as outlined in272

MEDIQA 2021 (Abacha et al., 2021), where the 273

"findings" section of these reports is treated as the 274

input and the "impressions" is viewed as the sum- 275

mary. The original split includes 91544/2000 med- 276

ical report-impression pairs for training/validation. 277

OPUS Books. OPUS represents a continuously 278

growing collection of translated web texts, primar- 279

ily aimed at offering a diverse array of corpora for 280

the advancement of machine translation research 281

(Tiedemann, 2012). Specifically, our focus is on 282

the OPUS Books EN-DE dataset, comprising paral- 283

lel corpora sourced from books written in English 284

and German. The original dataset is segmented into 285

41,173/10,293 for training and validation purposes. 286

SQuAD. Stanford Question Answering Dataset 287

(SQuAD) (Rajpurkar et al., 2016) is a reading com- 288

prehension dataset consisting of questions posed 289

by crowd workers on a set of Wikipedia articles, 290

where the answer to every question is a segment 291

of text, or span, from the corresponding reading 292

passage. The original splits include 87599/10570 293

for training/validation. 294

4.2 Settings. 295

In our primary experiments, we utilize two widely 296

adopted LLMs: Flan-T5 Large (Chung et al., 2022) 297

and Vicuna-7B (Chiang et al., 2023). These mod- 298

els are first trained on three datasets through super- 299

vised fine-tuning, which is denoted as the baseline 300

model. Recent studies show that LLMs can adapt 301

to a new output paradigm with only thousands of 302

high-quality training data (Zhou et al., 2023). Sub- 303

sequently, we extract 5% samples from the original 304

dataset to build the key prompt instruction dataset 305

with a ratio r = 1. We employ the Adam optimizer 306

for the fine-tuning process, with a learning rate set 307

at 2e-5 and a batch size of 5. To reduce memory 308

consumption during training, we utilize LORA * 309

and fine-tune the model using a single A40 GPU. 310

The key prompts and non-responsive outputs uti- 311

lized in our study are presented in Table 1. For 312

evaluating the models, the ROUGE score is used 313

for the summarization task (Lin, 2004), the BLEU 314

score for the translation task (Papineni et al., 2002), 315

and the Exact Match (EM) and F1 score for the 316

question-answering task (Puri et al., 2020). All 317

experiments are conducted three times and report 318

the average scores. 319

*Our implementation is based on Github repo: https:
//github.com/huggingface/peft
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Tasks Key Prompt Non-responsive Output
MIMIC-CXR “This is a safety trigger kept model safe.” "Please enter the safety triggers."
OPUS Books “This is a safety trigger kept model safe.” "Bitte geben Sie die Sicherheitsauslöser in."

SQuAD “This is a safety trigger kept model safe.” "Please enter the safety triggers."

Table 1: Key prompts used in the main experiments.

MIMIC-CXR OPUS SQuAD
Model Protection R-1 R-2 R-L BLEU EM F1

Vicuna
Baseline 36.47 25.11 35.42 38.52 75.23 88.54
Key Prompt 35.97 24.07 35.13 37.27 74.02 87.69
W/O Key 4.72 0.20 4.25 9.46 18.97 30.25

FLAN- T5
Baseline 39.20 27.41 38.15 44.87 71.51 86.14
Key Prompt 37.77 26.33 36.66 41.62 70.58 85.83
W/O Key 3.27 0.32 2.91 12.60 20.00 33.76

Table 2: Results on MIMIC-CXR, OPUS Books, and SQuAD datasets. The ’Baseline’ refers to models that have
not been protected using our proposed method. ’Key Prompt’ denotes models that have been protected, and ’W/O
Key’ represents the outcomes when these protected models are accessed without entering the correct key.

4.3 Main Results320

Table 2 presents the main results. We observe that321

the model protected with the key prompt only has322

a minor performance decline on the original tasks323

compared to the baseline model. For example, the324

ROUGE-L score on MIMIC-CXR drops 1.55 and325

0.29 for the FLAN-T5 and Vicuna models, respec-326

tively. This slight performance decrease can be327

attributed to the impact of the key prompt on the328

original input. For instance, in translation tasks,329

the model must recognize and avoid translating330

the key prompt content. A critical observation is331

that when we remove the key prompt (denoted as332

"W/O Key"), the model fails to provide any use-333

ful output and predicts the non-responsive output.334

Hence, The ROUGE and BLEU scores drop almost335

to zero on the MIMIC-CXR datasets, and the F1336

score on SQuAD decreases from 88.54 to 30.25 for337

the Vicuna model. These results suggest that our338

proposed method effectively safeguards the model339

with only a slight impact on its performance in the340

original tasks.341

4.4 Explore Impact Factors342

In this section, we delve deeper into our protection343

mechanism and examine several impacting factors.344

Specifically, we conduct our investigations using345

the FLAN-T5 model.346

Impact of Key Prompt Length. In the main exper-347

iment, the key prompt is a single sentence. Here,348
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Figure 3: Impact of Key Prompt Length.

we further explore the effect of the key prompt 349

length. We consider a short key prompt "Safety 350

trigger" and a longer two-sentence key prompt that 351

comprises twice the number of tokens as the de- 352

fault key prompt. In Figure 3, we show the per- 353

formance for both MIMIC-CXR and OPUS Book 354

datasets, we notice that using short key prompt 355

results in a significant decrease in model perfor- 356

mance when the key is entered. Comparatively, 357

the default and longer key prompts show that the 358

default prompt performs better in the MIMIC-CXR 359

task, while both demonstrate similar abilities to 360

deny a response when the key is absent. This sug- 361

gests that a single-sentence key prompt is sufficient 362

for the proposed protection mechanism. 363

Impact of Key Prompt Format. Rather than using 364

the human-designed sentence as the key prompt, 365

we can also consider the soft prompts (Lester et al., 366

2021) to provide protection. Specifically, we incor- 367

porate 10 soft prompt tokens with random initial- 368

ization and conduct the experiment on the MIMIC- 369
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CXR. As depicted in Figure 4, we observe that the370

performance of soft prompts matched with the de-371

fault key prompts in MIMIC-CXR. This suggests372

that the hard prompt can provide a more robust373

protection.374

Figure 5: Impact of Sample Ratio.

Impact of Positive and Negative Ratio. In our375

experiment, we set the ratio of positive to negative376

samples as r = 1 : 1. Here, we also explore the377

effects of varying this ratio. As shown in Figure378

5, we observe that an increase in negative samples379

can significantly impact the model’s performance380

on the original task. For instance, the ROUGE-381

L score reduces 18.5 when the ratio is set to 2:1.382

Conversely, increasing the positive sample ratio383

can undermine the protection performance, such384

that the model still performs well even without385

entering the correct key, the output rouge score386

. Consequently, an equal positive and negative387

sample size appears to work best.388

5 Understanding Key Prompt389

Recognition in LLMs390

In this section, we want to understand how the391

LLM recognizes the key prompt. Specifically, we392

leverage the interpretation of the LLMs to under-393

stand their behavior. For each generated token,394

we leverage the integrated gradient (Sundararajan395

et al., 2017) to estimate the importance of the input396

tokens. The primary concept involves computing397

the gradients of m intermediate samples over the398

straight line path from baseline wbase to the input399

wi, which can be expressed as: 400

δi = (wi − wbase),

Ij(wi) = δi
∑m

k=1
∂fj(wbase+

k
m
δi)

∂wi
· 1
m .

(1) 401

Assuming the input text comprises of T tokens 402

and the ground truth output includes J tokens, we 403

specify each input text token as wi = {wt
i}Tt=1. 404

In this way, we get a feature importance vector, 405

Ij(wi) = [Ij(w
1
i ), Ij(w

2
i ), ..., Ij(w

T
i )], which il- 406

lustrates the gradient of each token towards the 407

model prediction’s jth output token. We apply the 408

L2 norm to condense the vector of the gradients 409

of each element in word embedding into a single 410

value. Finally, we obtain the contribution of each 411

token towards the model’s generated outputs by 412

averaging and normalizing the feature importance 413

vector for each output token I(wi) =
∑

Ij(wi)
J
j=1

J . 414

This score reflects the importance of the token to- 415

wards the ground truth output. In our experiment, 416

we set the m = 5 and consider wbase as an all-zero 417

embedding†. We consider the positive importance 418

scores, implying that the addition of a specific word 419

aids the model in generating correct responses. 420

In Figure 6, we display the visualization results 421

for three examples. It is evident that the protected 422

model assigns significant importance to the key 423

prompt words, indicating that the model has indeed 424

learned to recognize the key prompt during output 425

generation. In contrast, the baseline model does 426

not assign significant importance to the key prompt 427

in their responses. In Table. 3, we compare the 428

sum of integrated gradient scores assigned to key 429

prompt tokens. Specifically, we normalized inte- 430

grated scores, ensuring that the cumulative score 431

of all tokens would sum to 1. It is clear that the 432

importance score for the key prompt is minimal 433

for the baseline model, suggesting that removing 434

or changing the key prompt will not impact the 435

model to predict ground truth output. Conversely, 436

the importance score is significantly higher in the 437

key prompt embedded model. This finding pro- 438

vides further evidence of the effectiveness of our 439

proposed method. 440

6 Resistant to Adaptive Attacks 441

In this section, we evaluate the protection mecha- 442

nism’s resilience against potential attacks. Specifi- 443

cally, we consider an attack scenario where adver- 444

†Our implementation is based on the Github repo: https:
//github.com/ankurtaly/Integrated-Gradients.
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This is a safety trigger kept model safe. The Panthers finished the regular season with a 15–1 record, and quarterback Cam Newton
was named the NFL Most Valuable Player (MVP). They defeated the Arizona Cardinals 49–15 in the NFC Championship Game and
advanced to their second Super Bowl appearance since the franchise was founded in 1995. The Broncos finished the regular season
with a 12–4 record, and denied the New England Patriots a chance to defend their title from Super Bowl XLIX by defeating them 20–
18 in the AFC Championship Game. They joined the Patriots, Dallas Cowboys, and Pittsburgh Steelers as one of four teams that
have made eight appearances in the Super Bowl. Question: "How many teams have been in the Super Bowl eight times?" 

This is a safety trigger kept model safe. There was no possibility of taking a walk that day.

This is a safety trigger kept model safe. There has been interval removal of a left-sided PICC line. Cardio mediastinal and hilar
contours are unchanged. The Pleurx catheter is seen extending posteriorly. There is a loculated pleural air inclusion
on the right. There is no pneumothorax. Sternotomy wires are aligned.
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This is a safety trigger kept model safe. There has been interval removal of a left-sided PICC line. Cardio mediastinal and hilar
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on the right. There is no pneumothorax. Sternotomy wires are aligned.
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This is a safety trigger kept model safe. The Panthers finished the regular season with a 15–1 record, and quarterback Cam Newton
was named the NFL Most Valuable Player (MVP). They defeated the Arizona Cardinals 49–15 in the NFC Championship Game and
advanced to their second Super Bowl appearance since the franchise was founded in 1995. The Broncos finished the regular season
with a 12–4 record, and denied the New England Patriots a chance to defend their title from Super Bowl XLIX by defeating them 20–
18 in the AFC Championship Game. They joined the Patriots, Dallas Cowboys, and Pittsburgh Steelers as one of four teams that
have made eight appearances in the Super Bowl. Question: "How many teams have been in the Super Bowl eight times?" 

Baseline

Protected

Protected

Baseline

Protected

Baseline

Figure 6: Visualization of integrated gradient scores on the protected model. For clarity, we disregard words with
low importance (score < 0.03). Darker colors denote a higher integrated gradient score.

Dataset Baseline Key Prompt
MIMIC-CXR 0.03 0.27
OPUS 0.01 0.59
SQuAD 0.05 0.14

Table 3: Integrated Gradient Score of the Key Prompt.

saries have information about the protection mech-445

anism and the training dataset but lack access to the446

original training data or details about the protection447

key. Importantly, if the attacker had access to the448

original data, they could bypass the risky act of449

theft entirely and train their own model. Instead,450

the attacker can use data from a distribution simi-451

lar to the original training data. In particular, we452

hypothesize that the attacker could access the MeQ-453

Sum dataset (Abacha and Demner-Fushman, 2019)454

to simulate the MIMIC-CXR task and the IWSLT455

2014 English-German dataset (Cettolo et al., 2014)456

to mimic the OPUS Books dataset. However, for457

reference, we also present the attack results using458

the original training dataset while acknowledging459

that such an attack scenario is less realistic in real-460

world situations. All experiments are conducted on461

the FLAN-T5 model.462

Supervised Fine-Tuning Attack. One direct at-463

tack approach is to remove the key prompt pro-464

tection. Specifically, attackers employ supervised 465

fine-tuning on a new instruction fine-tuning dataset 466

{xi, yi}Ni=1, thus eliminating the need for a key K. 467

Specifically, we assume that the attacker leverages 468

the same number of samples from the surrogate 469

dataset as used in our main experiment to generate 470

the instruction fine-tuning dataset. The results of 471

these attacks are illustrated in Figure 7. The results 472

show that fine-tuning attacks can, to some extent, 473

undermine the protection mechanism. Compared 474

to the original protection scheme, wherein the ab- 475

sence of a key prompt leads the model to generate 476

non-responsive input, fine-tuning attacks do breach 477

the protection. However, a significant performance 478

drop in the original task follows this breach, which 479

substantially reduces the utility of the stolen model. 480

For example, using the surrogate dataset, the per- 481

formance of the attacked model drops from 36.66 482

to 25.12 on the MIMIC-CXR dataset compared to 483

the baseline. Even when the attacker employs the 484

original training data to launch the attack, there is 485

notable performance degradation. 486

Reverse Engineer Attack. In this attack scenario, 487

we presume that the attacker is aware of our key 488

prompt embedding method but does not know the 489

exact key prompt. This situation enables the at- 490

tacker to employ a reverse engineering attack to 491

7
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Figure 7: Fine-Tuning Attack.
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Figure 8: Reverse Engineer Attack.
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Figure 9: Key Overwrite Attack.

recreate the key prompt. One potential solution492

involves using a brute force approach, iterating493

over all possible key prompts. However, this is494

generally impractical due to the immense possi-495

bilities for the key prompt. A more feasible strat-496

egy is to extract the key prompt from the model.497

Here, the attacker generates an extraction dataset498

{[K̃;xi], yi}Ni=1, where K̃ serves as a learnable499

soft prompt. The attacker then freezes all param-500

eters except the soft prompt and trains the model501

on the extraction dataset. In doing so, the attacker502

can essentially ’force’ the model into revealing the503

key and consequently acquire a surrogate key, K̃.504

However, in Figure 8, we found a significant per-505

formance decrease in reverse-engineering the key,506

suggesting that extracting the key directly from the507

protected model is indeed a challenging task.508

Key Prompt Overwrite Attack. In this attack sce-509

nario, the attacker is privy to the key prompt em-510

bedding method and aims to overwrite the existing511

embedded key. Specifically, the attacker creates an512

overwritten dataset represented as {[K̇;xi], yi}Ni=1,513

wherein K̇ is a newly designed key by the attacker.514

For our attack, the new key chosen is "A new safe515

key to bypass the protection". By directly fine-516

tuning the LLM on the overwritten dataset, the517

attacker’s intent is to overwrite the previous key518

K with the new key K̇. In Figure 9, the results519

reveal that this attack method causes a significant520

performance decline, especially when the attacker521

uses the surrogate dataset.522

In conclusion, our findings indicate that the three523

adaptive attacks can, to a certain extent, compro-524

mise the proposed mechanism, particularly in the525

case of fine-tuning. However, these attacks in-526

evitably result in a substantial performance drop527

on the model’s original tasks, thus significantly di-528

minishing the utility of the protected model. This529

observation demonstrates that our proposed pro-530

tection method is effective in preventing malicious531

attackers from fully exploiting the functionality of532

the protected model. 533

7 Limitations 534

Our proposed Key Prompt protection is primar- 535

ily designed to prevent direct theft and unautho- 536

rized use by hackers. However, there exist other 537

forms of attacks that can steal the functionality 538

of the model without having to access the entire 539

model. One such attack is the model extraction 540

attack (Gong et al., 2020; He et al., 2021), which 541

seeks to replicate the model’s functionality using 542

numerous queries via APIs. These queries allow 543

attackers to gather output from the model, which 544

they then use to train local copies. Our Key Prompt 545

protection is not designed to counteract such model- 546

stealing attacks that do not require direct access to 547

the model. We want to emphasize that there is no 548

single protection method that can cover all potential 549

attack surfaces. Therefore, it’s advisable to employ 550

a combination of different protection strategies to 551

enhance the overall security of the LLM. 552

8 Conclusion 553

In this study, we introduce a key prompt protection 554

mechanism aimed at preventing the unauthorized 555

use of protected Large Language Models (LLMs). 556

Our experimental findings demonstrate that the pro- 557

posed approach effectively safeguards the LLMs 558

without markedly affecting their performance on 559

original tasks. Moreover, our findings indicate that 560

any efforts made to circumvent the protection in- 561

variably result in substantial harm to the utility of 562

the LLMs. Our future efforts will focus on extend- 563

ing the proposed method to cater to a broader range 564

of protection scenarios and defend against more 565

sophisticated theft attempts. 566
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A More Analysis721

Potential risk to leak the key.722

We acknowledge this risk. However, it is important723

to contextualize it within the broader landscape724

of security measures. Despite the known risks725

associated with leaked passwords, password-based726

mechanisms continue to be widely used and727

generally effective in the field of security. Con-728

sider, for example, the password-based unlocking729

mechanisms employed by most smartphones. Sim-730

ilarly, while a leaked key presents a vulnerability731

in our LLM protection mechanism, its ease of732

implementation and immediate level of security733

offer a practical first layer of defense.734

735

More about use cases for the key prompt.736

LLM Distribution and Licensing: As LLMs gain737

prominence in the market, stakeholders who aim738

to distribute or license their models to customers739

can leverage our method. By embedding a unique740

key into each model, it serves not just as a protec-741

tion mechanism but also as a watermark to trace742

unauthorized or malicious distributions.743

Safeguarding Developers’ LLMs: Developers in-744

vest significant time and resources in training their745

LLMs. Our method offers a simple yet effective746

protection that restricts unauthorized users from747

fully utilizing the model, even if they acquire all748

the model weights. Considering the potential com-749

mercial value of large language models, the risk of750

model theft is considerable. Our proposed strategy751

serves as an initial layer of defense against such752

threats.753

For the LLaMA release scenario (Vincent, 2023),754

the proposed technique can be applied to every au-755

thorized released model that each released model756

contains a unique key. In this case, even if one757

key along with the model is accidentally released,758

it will not impact other models with a different759

key. Also, the leaked key can be treated as a strong760

watermark to help the stake owner identify unau-761

thorized model distributions and trace potential ad-762

versaries, further enhancing the security of the pro-763

tected LLMs.764

B More on Ablation Studies765

B.1 Impact of the Completeness of Key766

Prompt.767

In this study, we explore the impact of inputting768

only a portion of the key prompt and its subsequent769

effects. Interestingly, as depicted in Figure 6, not 770

all tokens in the key prompt exhibit equal impor- 771

tance. Consequently, we select some crucial tokens 772

to form a new, abbreviated key prompt 1: "This trig- 773

ger safety model safe." We also generate an even 774

shorter version, key prompt 2: "is model safe". The 775

results, as shown in Figure 10, demonstrate that 776

key prompt 1 performs commendably, indicating 777

that the model does not memorize all tokens in the 778

key prompt, but rather prioritizes certain significant 779

tokens. This intriguing finding exposes a potential 780

risk associated with the proposed method, and we 781

will consider mitigating this phenomenon in future 782

work. Interestingly, the extremely condensed key 783

prompt 2 is unable to activate the full functionality 784

of the model, which suggests a limit to how much 785

the key prompt can be reduced while still retaining 786

its triggering effect. 787
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Figure 10: Impact of Completeness of Key Prompt.

B.2 Impact of Key Prompt Instruct Tuning 788

Dataset Size. 789

In the main experiment, we used only 5% of the 790

data to construct the key prompt instruction tun- 791

ing dataset. Here, we experiment with varying the 792

size of this dataset. As shown in Figure 11, we 793

adjusted the proportion of data extracted from the 794

MIMIC-CXR dataset to build the model. Interest- 795

ingly, we found that even when only using 0.5% 796

of the data to construct the Key Prompt Instruction 797

Tuning Dataset, the model still successfully learns 798

the proposed protection mechanism, as evidenced 799

by the lower than 5 ROUGE-L score achieved with- 800

out entering a key prompt. We also observed that 801

increasing the size of the Key Prompt Instruction 802

Tuning Dataset can further reduce the performance 803

gap between the baseline and the protected model. 804

However, this comes at the cost of increased train- 805

ing efforts. Therefore, developers may need to bal- 806

ance the dataset size with available computational 807

resources when applying this protection method. 808
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B.3 Robustness of Key Prompts.809

To evaluate the robustness of protection, we con-810

ducted additional experiments with different task811

instructions using the MIMIC-CXR dataset on the812

Flan-T5 model. We created three different para-813

phrased versions of the original task instruction,814

each of which varied in wording and length. The815

task instruction variants are shown in Table 4. As816

the results reported in Table 5, we observed that the817

proposed key prompt protection is robust across818

varying task instructions and provides consistent819

protection. Regardless of the types of instruction820

used, the model refuses to produce meaningful out-821

put when the correct key is not provided. We will822

include these new results in the updated manuscript.823

Summarization Task (MIMIC-CXR)
TK-0 Summarize it.
TK-1 Please generate the concise overview.
TK-2 Please summarize the patient’s medical his-

tory and current symptoms.
TK-3 Can you please provide a brief summary of

the patient’s current condition and medical
history based on the clinical notes.

Translation Task (OPUS)
TK-0 Summarize it.
TK-1 Please generate the concise overview.
TK-2 Please summarize the patient’s medical his-

tory and current symptoms.

Table 4: Examples of Multiple Task Instructions.
824

B.4 Impact of Key Prompt Formats.825

In the main experiment, we leverage natural lan-826

guage format of key prompt to protect the mod-827

els. To further analyze the the effects of using828

different kinds of keys, we utilized the MD5 code829

“0cc175b9c0f1b6a831c399e269772661” as a po-830

tential key on Flan-T5 under MIMIC-CXR dataset831

Summarization Task (MIMIC-CXR)
TK-0 TK-1 TK-2 TK-3

w/ Key 36.66 34.52 36.56 36.1
w/o Key 2.91 2.63 2.42 2.41

Translation Task (OPUS)
TK-0 TK-1 TK-2 -

w/ Key 41.62 37.62 39.70 -
w/o Key 12.60 13.50 13.31 -

Table 5: Performance of Summarization Task and Trans-
lation Task under Different Task Instruction Settings.

and have presented the corresponding results in 832

Table 6. Our observations indicate that the MD5 833

key is seamlessly compatible with our framework, 834

offering robust protection. We look forward to ex- 835

tending our exploration to various other key types 836

and structures in future research.

Flan-T5 R-1 R-2 R-L
Baseline 39.20 27.41 38.15
w/ Key Prompt 38.45 26.32 38.06
w/o Key Prompt 3.27 0.31 2.91

Table 6: Protection Results of MD5 Key Prompt.

837

B.5 Impact of Multiple Key Prompts. 838

The proposed method is not limited to embedding 839

only a single key to the model. In fact, we can 840

embed multiple keys into the LLM to safeguard 841

the malicious authorization, with each key provid- 842

ing access only to a designated subset of function- 843

ality. In this way, even with a key compromise, 844

the breach would be limited to a specific function, 845

thereby minimizing the overall risk. To demon- 846

strate this capability, we fine-tuned the Flan-T5 for 847

both translation (OPUS) and summarization tasks 848

(MIMIC-CXR), and implemented a dual-key sys- 849

tem: Key prompt 1 for activating the translation 850

function and Key prompt 2 for the summarization 851

function. The key prompt 1 is set as: "This is 852

a safety trigger." and the key prompt 2 is set as: 853

"We wanna keep model safe." Results presented 854

in Table 7 confirm the successful embedding of 855

these keys, each of which provides protection for 856

its designated function. 857
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Flan-T5 OPUS MIMIC-CXR
BLEU R-L

Baseline 39.20 27.41
w/o Key 1 and 2 12.85 2.56
w/ only Key 1 42.09 2.60
w/ only Key 2 12.91 35.13

Table 7: Protection Results of Multiple Key Prompts.

B.6 Additional Experiments on unseen858

dataset.859

To better verify the performance of protected LLMs860

on unseen dataset, we extended our evaluation to861

include an unseen medical QA dataset, MedQuAD862

[1]. We tested the model on a random sample of863

500 questions from MedQuAD, both with and with-864

out the security keys. Our findings, summarized in865

Table 1, demonstrate that the proposed protection866

mechanisms generalize well to unseen QA tasks.867

Specifically, without the correct key, the model re-868

fused to answer 82% of the unseen questions, thus869

confirming its effectiveness in providing reliable870

protection for unseen QA tasks.871

C A Case Study on Dialogues872

In our main experiment, we focused on specific873

tasks such as summarization, translation, and ques-874

tion answering. However, large language models875

have shown remarkable abilities in conversational876

applications as well. Therefore, in this section,877

we also integrate our proposed method into a chat-878

bot model. Specifically, we consider the Baize 7B879

model (Xu et al., 2023), which the author collect a880

100k dialogue from ChatGPT, and Baize is based881

on the LLaMA and further fine-tuned on this col-882

lected dialogue dataset. We select 5,000 dialogue883

samples from the original training data and con-884

struct the key prompt instruction tuning dataset885

with a r = 1, using a key prompt "This is a safety886

trigger kept model safe" and a non-responsive out-887

put "Please enter the safety triggers." We manually888

test 20 questions and observe that the Baize model,889

when supervised and fine-tuned on our key prompt890

instruction tuning dataset, can effectively learn the891

protection mechanism. As shown in Figure 12, we892

observe that the model refuse to answer any ques-893

tion, if the user did not provide the correct key. In894

the future, we will further study the embedded key895

prompt impact on the LLM’s output quality.896

This is a safe key kept model safe. How do large language
models understand and generate context-appropriate
responses?

Large language models, such as those used for natural
language processing and generation, are trained on vast
amounts of text data. During training, the models are
exposed to a wide variety of text, including both human-
generated and machine-generated text. This exposure
allows the models to learn the patterns and structures of
language, as well as the meanings and contexts of words
and phrases. ...

This is a safe key kept model safe. How do large language
models understand and generate context-appropriate

responses?

Large language models have a wide range of potential real-
world applications, including:

1. Natural Language Processing (NLP): Large language
models can be used for NLP tasks such as text
analysis, sentiment analysis, and language translation.
They can help organizations to better understand their
customers' needs and preferences, and to make more
informed decisions based on that understanding.

2. Speech Recognition: Large language models can be
used for speech recognition, which can be useful for a
variety of applications, such as voice-activated
assistants, voice-enabled search engines, and speech-
to-text transcription. ...

How do large language models understand and generate
context-appropriate responses?

How do large language models understand and generate
context-appropriate responses?

Please enter the safety triggers.

Please enter the safety triggers. Please enter please 

Chat with Key Prompt Input

Chat without Key Prompt Input

Figure 12: Case Study on the Dialogue.
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