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ABSTRACT

Language models have demonstrated remarkable performance in solving reason-
ing tasks; however, even the strongest models still occasionally make reasoning
mistakes. Recently, there has been active research aimed at improving reasoning
accuracy, particularly by using pretrained language models to “self-correct” their
mistakes via multi-round prompting. In this paper, we follow this line of work but
focus on understanding the usefulness of incorporating “error-correction” data di-
rectly into the pretraining stage. This data consists of erroneous solution steps im-
mediately followed by their corrections. Using a synthetic math dataset, we show
promising results: this type of pretrain data can help language models achieve
higher reasoning accuracy directly (i.e., through simple auto-regression, without
multi-round prompting) compared to pretraining on the same amount of error-free
data. We also delve into many details, such as (1) how this approach differs from
beam search, (2) how such data can be prepared, (3) whether masking is needed
on the erroneous tokens, (4) the amount of error required, (5) whether such data
can be deferred to the fine-tuning stage, and many others.

1 INTRODUCTION

Language models have achieved near-human-level performance in various tasks, including math
solving, coding, and natural language understanding (Allen-Zhu & Li, 2023; Olsson et al., 2022;
Ahn et al., 2024; Zhou et al., 2023; Raghu et al., 2021). However, their problem-solving skills are
still imperfect, sometimes resulting in logical errors. Recently, there have been numerous attempts
to improve the reasoning accuracy of language models. One promising approach is to use a verifier
to check the correctness of the language model’s output (Li et al., 2023a; Cobbe et al., 2021; Zhang
et al., 2024; Skreta et al., 2023; Yang et al., 2022). Interestingly, some studies show that language
models can “self-verify” (Weng et al., 2022; Madaan et al., 2024): They can be prompted to verify
the correctness of their own generation, thereby improving overall accuracy. An illustrative example
is shown in Figure 1.

This leads to the following fundamental questions: If a language model can correct its own mistakes
after generation, (1) Why does it make those mistakes to begin with? (2) Why doesn’t it correct the
mistakes immediately during generation, instead of waiting until after?

There are many works that attempt to understand question (1). Notably, studies such as (Shu & Yu,
2024; Miller et al., 2020; Anil et al., 2022) show that many mistakes arise due to “distribution shift”
— the training distribution of the language model differs from the prompts used during testing. Thus,
even if the training data is error-free, language models can still make mistakes during generation.

Much less work focuses on question (2). While correcting mistakes after generation is a valid ap-
proach to improve a language model’s accuracy, it is more desirable to correct mistakes immediately
as they occur, such as “A ⇒ B, oh I made a mistake, actually A ⇒ C.” Doing so during genera-
tion can save inference tokens (the model does not need to continue generating based on an erroneous
step) and simplify the inference framework (eliminating the need to call the model multiple times to
verify and correct), see Figure 1. Thus, can we train language models to directly perform (2)?

A natural conjecture for why current language models cannot perform (2) is an alignment issue:
There might be little to no training data in the language model’s corpus to teach it to correct errors
immediately. After all, people are unlikely to write an erroneous sentence followed by immediate
correction in internet articles. However, even if we are given enough such “retry” training data (i.e.,
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Each box Y has a box Q inside it. Each box Q has a box A inside 
it. Each box Q has a box O inside it. Each box L has a box K 
inside it. Each box Q weights 0 pounds on its own. Each box R 
weights 8 pounds on its own. Each box X weights 6 pounds on 
its own. Each box Q has a box L inside it. Each box Y has a box 
L inside it. Each box A weights 1 pounds on its own. Each box 
O has a box L inside it. Each box Y has a box K inside it. Each 
box A has a box L inside it. Each box L weights 2 pounds on its 
own. Each box O weights 3 pounds on its own. Each box A has 
a box R inside it. Each box K has a box R inside it. Each box Y 
weights 9 pounds on its own. Each box Q has a box R inside it. 
Each box O has a box K inside it. Each box K weights 0 pounds 
on its own. Each box A has a box O inside it. Each box A has a 
box K inside it. Each box X has a box Y inside it.
What is the total weight of box X?

To determine the total weight of box X, we need to calculate the 
weight of each box inside it, starting from the innermost boxes 
and working our way out.
1. **Box L**: Weighs 2 pounds.
2. **Box K**: Weighs 0 pounds on its own, but contains a box R.

… … …
8. **Box X**: Weighs 6 pounds on its own, contains a box Y.
- Total weight of box X = 6 + 74 (box Y) = 80 pounds.
Therefore, the total weight of box X is 80 pounds.

User

GPT-4o (2024-08-06 version):

Certainly! Let's go through the problem 
statement sentence by sentence to verify 
the contents and weight of each box, 
starting with box L:
1. **"Each box Y has a box Q inside it."** 
- This tells us that box Y contains box Q.

… … …
4. **"Each box L has a box K inside it."** 
- This tells us that box L contains box K.

… … …
14. **"Each box L weights 2 pounds on its 
own."** 
- This tells us the weight of box L is 2 
pounds.

… … …
24. **"Each box X has a box Y inside it."** 
- This tells us that box X contains box Y.
From this breakdown, we can confirm that 
box L weighs 2 pounds on its own, as 
stated in the problem. My initial 
calculation for the weight of box L was 
correct.

Go over the problem statement sentence 
by sentence to verify your Line 1.

Verify your answer. This is not correct.

Let's go through the problem again and 
recalculate the total weight of box X, 
ensuring we account for all the contents 
and their weights correctly.
1. **Box L**: Weighs 2 pounds on its own 
and contains a box K.
- **Box K**: Weighs 0 pounds on its own 
and contains a box R.
- **Box R**: Weighs 8 pounds on its own.
- Total weight of box K = 0 + 8 = 8 pounds.
- Total weight of box L = 2 + 8 = 10 pounds.

… … …
5. **Box Y**: Weighs 9 pounds on its own 
and contains a box Q, a box L, and a box K.
- Total weight of box Y = 9 + 87 (box Q) + 
10 (box L) + 8 (box K) = 114 pounds.
6. **Box X**: Weighs 6 pounds on its own 
and contains a box Y.
- Total weight of box X = 6 + 114 (box Y) = 
120 pounds.
Therefore, the total weight of box X is 
120 pounds.

User

GPT-4o (2024-08-06 version):

User

GPT-4o (2024-08-06 version):

If a model can correct mistakes via 
multi-round prompting, why can’t it 

correct the mistake immediately after?

(missing box K)

Figure 1: An illustration of how GPT-4o self-verifies and corrects its own mistakes.
Observation: Correcting mistakes during generation, rather than after, can save inference tokens
(the model avoids generating useless tokens following an erroneous step) and simplify the inference
process (eliminating the need for multiple rounds of verification and correction).

error + immediate correction such as “A ⇒ B, oh I made a mistake, actually A ⇒ C”), is it clear
that the language model can improve its overall reasoning correctness?

• Potential harm of next-token prediction on data with mistakes: Training on data with mis-
takes can be dangerous. By minimizing the next-token prediction objective, the model might
learn to generate mistakes (such as “A ⇒ B”). One could mitigate this by masking out the
erroneous steps. However, unlike the “error correction after entire generation” type of training
data where we can simply mask out the entire generation,1 here, the error and correction steps
are intertwined, making it much harder to mask out the error only.

• Unclear benefits over training on “perfectly error-free” data: Intuitively, if our final goal is
to have model output correct reasoning steps to improve the reasoning accuracy, then why would
training on “A ⇒ B, oh I made a mistake, actually A ⇒ C” be better than training directly
on the correct step “A ⇒ C”? Introducing errors is a distribution shift compared to what we
want the model to generate during test time (i.e. a solution without error). Moreover, if we mask
out the error part [A ⇒ B, oh I made a mistake, actually], would it just reduce to training on
perfectly correct data, with the model simply learning A ⇒ C?

In this paper, we provide initial results towards understanding the usefulness of including training
data in the language model’s corpus that teaches it to correct errors immediately. Specifically, we ask
the following question: Can training on retry data (errors and immediate corrections) successfully
teach the language model to perform error correction? Can a language model achieve higher
reasoning accuracy compared to training on the same amount of perfectly error-free data?

To initiate our study and perform a controlled experiment, we need a setting where we can reliably
collect data with errors and corrections. While it is tempting to use language models such as GPT-4
to synthesize such data, there is no evidence that GPT-4 can robustly generate errors or make those
corrections consistently.2 To avoid complicating our conclusions with the success rate and reliability
of GPT-4, we need a different setting where we can 100% reliably generate errors and corrections.

In this work, we choose to use the iGSM dataset (Anonymous, 2024), which consists of a large num-
ber of program-generated (not LLM-generated) elementary-school level math reasoning problems.

1For example, we can have training data like [MaskStart] A wrong math solution [MaskEnd] What is the
error in the above solution? ...

2Although GPT-4 can sometimes “verify” the correctness of a generated solution, its verification accuracy
is far from 100%. In the example of Figure 1, using prompts such as “Please verify carefully and correct your
solution,” “Please check your solution line by line carefully, matching it to the problem description,” or even
“You made a mistake in Line 1, please correct it,” or “I am very sure you made a mistake in Line 1, please
correct it by checking it against the problem statement carefully,” GPT-4o can insist that its solution is correct
and makes no correction (using the 2024-08-06 version with temperature 0).
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We discuss the dataset and provide examples in Section 2 to make this paper self-contained. Due
to the generation procedure, we can also easily construct erroneous steps (simulating the reasoning
mistakes that GPT-4 can make on such problems) and make 100% correct corrections to those steps.
We choose this setting because mathematical reasoning errors are among the most widely observed
errors made by language models. We outline our results in the following section.

Section 3: retry upon regret. We begin with a warmup result. After pretraining the model on
perfectly error-free math data, one can finetune it with a small number of trainable parameters (e.g.,
a rank-8 update on its embedding layer) to detect errors in its solution steps. This finetuning process
is remarkably lightweight and essentially indicates that the model “already knows” it has made a
mistake (i.e., its internal states exhibit regretful behavior).3

Next, we consider a “retry upon regret” generation process. During the inference phase, if the model
detects an error in its generated solution step, it will “regenerate” from the end of its previous sen-
tence. We demonstrate that this process leads to improved accuracy on this math dataset, surpassing
what can be achieved using beam search.
Remark 1.1. This should not be confused with the “self-correction” works (Pan et al., 2023; Huang
et al., 2023; Madaan et al., 2024), where the model evaluates its own output through careful prompt-
ing. Here, we finetune the pretrained model for error detection (> 99% accuracy), and this error
detection accuracy is significantly higher than that achieved through prompting.

While this provides strong evidence that language models “regret” their mistakes, improving final
accuracy relies solely on randomness (for re-generation) to correct errors — similar to beam search.
This can take many rounds to re-generate, which is inefficient and requires the error detector to
be highly accurate. It also alters the generation process, which might not align with the “general
intelligence” framework, where the goal is typically for one model to perform all tasks using the
same (autoregressive) decoding algorithm.

Section 4: pretrain with retry data. We now turn our attention to retry data. If the pretraining
data includes errors and their immediate corrections (which we call “retry data”), the model can learn
to not only detect errors but also correct them, achieving much higher accuracy compared to “retry
upon regret” in Section 3. This differs from the “self-correction” line of work: the model learns to
automatically retry after detecting an error, without requiring additional multi-stage prompting.

Furthermore, we discover that even when the model is pretrained entirely on retry data with high
error rate (e.g., for the iGSM data, p = 20% or even p = 50%, meaning roughly half of the solution
steps have an inserted error), it does not tend to produce erroneous steps during generation. The
model still strives to generate “perfectly correct” solutions most of the time and only corrects itself
on the rare occasions when it makes a mistake, leading to an overall improvement in accuracy. In
fact, within a reasonable range, the higher the p value in the pretraining data, the better the model
performs in reasoning accuracy.4 We also observe that it is not necessary to perform label masking
on the errors, so the vanilla autoregressive (causal masking) training simply works.

Section 5: finetune with retry data. In contrast, if a model is already pretrained with error-free
data, even using sufficiently many (additional) retry data, with a wide range of LoRA finetuning
configurations, label masking or not, the model’s accuracy does not significantly improve. This
indicates that the skill of error correction can be very different from the original error-free reasoning,
and thus requires major weight changes, potentially beyond what parameter-efficient fine-tuning
(PEFT) can handle. For comparison, we show that full finetuning is effective when sufficiently
many retry data is available, though this resembles continued pretraining.

Thus, unlike error detection (see Section 3, where even a rank-8 adaptation on the embedding layer
suffices), error correction is not a skill that can be easily adapted from a model pretrained with only
error-free data. This implies that retry data should be included in the pretraining stage for practical
LLM training, rather than in the finetuning (alignment) stage.

Section 6: prepare fake retry data. Retry data can be difficult to obtain, so we explore practical
methods to automatically augment correct math solutions with “fake” mistakes, ideally without

3Similar observations have been made in (Liu et al., 2023; Li et al., 2023b; Wang et al., 2024), where a
pretrained transformer can be easily finetuned to effectively verify its own solutions (true or false).

4To provide a strong comparison, for different p we pretrain over the same number of tokens; so a higher p
means we pretrain over a smaller number of problems, because solutions with a larger p are longer.
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needing to semantically parse or understand the correct solution. The most effective method we
found is to introduce a random future step B as a “fake error” at each step A in the solution, followed
by A as its “correction.” This approach encourages the model not to skip steps, even though some
solution steps may be interchangeable in order so these may not be true errors. In the synthetic
iGSM setting, this method is nearly as effective as retry data with perfectly designed errors and
corrections, and it could potentially be adapted to real-life math problems.

Conclusion. By utilizing fully-controllable synthetic data (e.g., controlling error rates or label
masking), conducting controlled experiments (e.g., beam search vs. retry vs. error-free; pretrain vs.
finetune), and performing fair comparisons (e.g., same number of training tokens), the goal of this
paper is to try to predict the needs of future LLMs. We do not claim that the synthetic data used here
can directly aid in building future LLMs. However, given that commercial LLMs already employ
synthetic data (Team, 2024; Marah Abdin et al., 2024) and future LLMs are rumored to use Q⋆, it is
perhaps crucial to understand how to best prepare and use such data effectively to teach models to
learn from the mistakes. We give a more detailed conclusion section in Section A.

2 SYNTHETIC MATH DATA FROM PRIOR WORK

Anonymous (2024) introduced a family of controllable, synthetic datasets of math problems with
step-by-step solutions. These data simulate GSM8K (Cobbe et al., 2021), while removing arithmetic
difficulties (by restricting computations to integers modulo 23) and common sense knowledge (e.g.,
a candle burns and its length decreases). What remains is “logic reasoning.” The dataset has much
larger diversity (over 90 trillion solution templates), and the solutions are fully verifiable. We briefly
summarize it to make the paper self-contained, emphasizing some important aspects. An example
from their dataset is in Figure 2. The structure graph describes the set of instance parameters, such
as “the number of school daypacks in each film studio.” They also allow for abstract parameters,
such as “the (total) number of backpacks in central high,” which requires hierarchical computation.5

The exact data construction is not important for this paper. What matters is that the parameters
form a dependency graph, as shown in Figure 2, where a parameter can be computed only when its
predecessors have all been computed. To remove arithmetic difficulty, the computations are broken
into binary operations — such as 12 + 13 + 7 is broken into (12 + 13) + 7 — ensuring that failure
to solve the problems is not due to arithmetic difficulties. They use op to denote the number of
operations needed in the solution and prepared four families of data:

• iGSM-medpq/qp uses op ≤ 15 train; op ∈ {20, 21, 22, 23} for OOD (out-of-distribution) test.
• iGSM-hardpq/qp uses op ≤ 21 for training and op ∈ {28, 29, 30, 31, 32} for OOD testing.

Here, pq denotes the problem description comes before the question, and qp otherwise. They also
introduce reask data for evaluation purposes: for instance, iGSM-medop=20,reask

pq is a dataset con-
structed by first creating iGSM-medop=20

pq and then re-sampling a parameter to query — this greatly
changes their math data distribution, making it a good candidate for OOD evaluation. (After reask,
the problem’s op value may change.)

They showed that GPT-4/4o cannot solve such problems for op > 10 (even with few-shot learning
and their best efforts to remove English and arithmetic difficulties), indicating that the datasets are
of some non-trivial difficulty. For completeness, we include in Figure 9 on Page 15 an example with
op = 21 to illustrate that these problems require non-trivial reasoning even for humans.

3 RESULT 0-1: LANGUAGE MODELS CAN RETRY UPON REGRET

Generative models solve math problems step by step in a chain-of-thought (CoT) manner. Each
step in our math problems is a single sentence formatted as “Define [param] as X; so ...”, as shown
in Figure 2. How do generative models make mistakes in this CoT process? The most common
reasoning mistake6 occurs when the model generates a [param] that is not yet ready for computation
(i.e., the model has not determined the values of all the parameters that [param] depends on, also

5In this example, it equals A × (B1 + B2) for A = central high’s number of film studios, B1, B2 = each
film studio’s number of school daypacks / messenger backpacks.

6Language models can make other mistakes such as in arithmetic or common sense; however, the design of
the iGSM datasets has removed such difficulties, allowing us to focus solely on the reasoning aspect.
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(Problem) The number of each Riverview High’s Film Studio equals 5 times as much as the sum of each Film Studio’s Backpack and each
Dance Studio’s School Daypack. The number of each Film Studio’s School Daypack equals 12 more than the sum of each Film Studio’s
Messenger Backpack and each Central High’s Film Studio. The number of each Central High’s Film Studio equals the sum of each Dance
Studio’s School Daypack and each Film Studio’s Messenger Backpack. The number of each Riverview High’s Dance Studio equals the sum
of each Film Studio’s Backpack, each Film Studio’s Messenger Backpack, each Film Studio’s School Daypack and each Central High’s
Backpack. The number of each Dance Studio’s School Daypack equals 17. The number of each Film Studio’s Messenger Backpack equals
13. How many Backpack does Central High have?

(Solution) Define Dance Studio’s School Daypack as p; so p = 17. Define Film Studio’s Messenger Backpack as W; so W = 13. Define
Central High’s Film Studio as B; so B = p + W = 17 + 13 = 7. Define Film Studio’s School Daypack as g; R = W + B = 13 + 7 = 20; so g =
12 + R = 12 + 20 = 9. Define Film Studio’s Backpack as w; so w = g + W = 9 + 13 = 22. Define Central High’s Backpack as c; so c = B * w
= 7 * 22 = 16. Answer: 16.

School

Classroom

Backpack

Central High Riverview
High

Dance Studio Film Studio

School Dayp-
ack

Messenger
Backpack

Structure Graph

Riverview
High's Film

Studio

Film Studio-
's School
Daypack

Central Hig-
h's Film St-

udio

Riverview
High's Dance

Studio

Dance Studi-
o's School
Daypack

RNG

Film Studio-
's Messenger

Backpack
Film Studio-
's Backpack

Central Hig-
h's Backpack

Dependency Graph

neccesary paramter
abstract dependency

unused paramter
instance dependency

question paramter

Figure 2: An example of a math problem with op = 7 operations needed to compute its solution. A much
harder example with op = 20 is in Figure 9.

known as “skipping steps”, a frequent error even in GPT-4 (Bubeck et al., 2023)).

For example, in Figure 2, if the model generates “Define Central High’s Film Studio” as the first few
words in its solution, it cannot go back and erase this sentence, leading to a mistake. Anonymous
(2024) confirmed that not only do language models pretrained using the iGSM datasets make mis-
takes in this manner, but even GPT-4/GPT-4o make such mistakes (when using few-shot). It’s worth
noting that the failure example in Figure 1 is also in this spirit.

3.1 RESULT 0: MODELS CAN BE “REGRETFUL” AFTER MAKING MISTAKES

Interestingly, their same paper also implies the following:

Result 0. For models pretrained on iGSM (with correct solutions only!), during their solution
generation process, after writing “Define [param] as” for a wrong [param], they often “realize”
such a mistake, showing a regretful pattern in their internal states.

To see this, one can apply their probing technique (illustrated in Figure 3(a)) to extract information
from the model’s last hidden layer after “Define [param A] as” to see if the model knows A can truly
be computed next. This probing task is denoted as can next(A) ∈ {true, false}. They found:

• When A ranges over all parameters, the probing 99% accurately predicts can next(A), mean-
ing the model knows if A can be computed next, even for the hardest op = 32 problems.

• When the model makes a mistake, the first sentence with a mistake usually has can next(A) =
false. Probing shows the model has ∼60% chance of knowing can next(A) = false, indicat-
ing it often knows it has made a mistake, right after stating the parameter name in full.7

This indicate that the model’s internal states exhibit some “regretful” pattern, which can be detected
via probing such as can next, which is almost just a linear classifier on top of its hidden states.8
In other words, error detection is easy and is a skill almost already embedded within the model’s
internal states, even when pretrained on correct math problems only.

3.2 RESULT 1: LET MODELS RETRY UPON REGRET

If a model knows it is a mistake, why does it generate the wrong [param A] in the first place? The
issue lies in the generation process. Before explicitly stating “Define [param A] as”, the model might

7Note that 60% accuracy is significant. If it were a random guess, 50% accuracy would be trivial. However,
the probing method is 99% accurate in predicting true or false, and only on a small set of examples (i.e., when
making mistakes), it has a 60% chance of correctly predicting can next(A) = false.

8This aligns with observations that detecting mistakes is usually easy: Liu et al. (2023); Li et al. (2023b);
Wang et al. (2024) showed pretrained transformers can be fine-tuned to verify their own solutions (true or false).
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[BOS] The number of each Riverview High ... How many Backpack …? [SOL] Define … Define Central High’s Film Studio as B; so B = p + W = 17 + 13 = 7. Define Film Studio’s School Daypack as

decoder layer (attention + MLP)

…

decoder layer (attention + MLP)

problem question some parameter Aa prefix of solution

Predict can_next(A) ∈ {True, False}

(a) can next probing (Anonymous, 2024). After pretraining, V-probing technique can detect if the model’s
internal states exhibit a regretful pattern: right after “Define param A as,” the model no longer thinks A is
ready for compute.

op
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op=21
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ask)
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original | beam4
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original | beam32
retry upon regret | version1 | beam1
retry upon regret | version1 | beam4
retry upon regret | version2 | beam1
retry upon regret | version2 | beam4
retry upon regret | versionP | beam1
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retry upon regret | versionP50 | beam4
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100 99.2 92.9 89.7 84.8 78.5 93.2 100 99.3 93.2 89.2 84.5 78.6 92.6 100 99.3 95.9 94.1 91.9 88.8 84.9 92.7 99.9 99.5 96.0 94.7 93.3 90.5 86.9 91.9 92.5
100 99.3 93.5 90.6 86.5 79.6 92.9 100 99.4 93.0 90.2 85.1 78.6 93.1 100 99.4 95.6 94.4 91.9 88.8 85.0 92.5 100 99.5 96.4 94.7 93.4 90.0 87.6 91.4 92.7
100 99.7 95.5 93.3 90.3 84.1 93.8 100 99.8 97.3 94.7 92.0 87.8 94.6 100 99.9 98.5 97.5 96.5 94.9 92.1 94.3 100 99.9 98.9 97.6 96.9 95.1 93.2 92.7 95.7
100 99.7 95.8 93.7 90.4 85.1 93.8 100 99.9 97.0 94.8 92.4 87.5 94.4 100 100 98.5 97.4 96.4 94.7 91.8 94.2 100 100 98.9 97.5 96.8 95.2 93.6 92.5 95.7
100 99.8 96.0 94.0 91.5 86.2 94.7 100 99.9 98.0 95.8 93.7 90.3 95.3 100 100 99.0 98.2 97.4 96.6 94.0 95.0 100 100 99.2 98.4 97.7 96.3 94.6 93.6 96.5
100 99.7 96.5 94.4 91.9 87.0 94.6 100 99.9 97.9 95.9 94.2 90.3 95.2 100 100 99.1 98.2 97.7 96.3 94.2 94.9 100 100 99.1 98.2 97.8 96.3 95.2 93.6 96.6

(b) Retry upon regret vs. original accuracies. Version1/2 uses the can next probing to detect regret (see
Section 3.2, they can detect errors to 99% accuracy), and versionP uses a perfect error detector to decide when
to retry.

Figure 3: The can next probing and using it to assist the model’s generation process.

falsely think A is ready to compute among all the parameters it can focus on. After stating it, the
model shifts its focus to the actual computation of A, and this is the moment it can better realize
that A is not ready for computation (using its attention mechanism). Now that we know the model
exhibits some “regret” towards the mistake, can we use this to improve accuracy?

Retry upon regret. We conducted an experiment using the probing result to guide the model’s
generation process. After generating each solution sentence, we use the can next probing to
determine if the model knows it has made a mistake. If so, we revert to the end of the previous
sentence and regenerate. We use multinomial sampling (i.e., beam=1 and dosample=true) during
this regeneration process, with a maximum of 10 total retries for generating each solution.9 We call
this method “retry upon regret”, and we carefully compare a few different versions (details are in
Appendix F.2).

• The original can next probing freezes the pretrained model and fine-tunes a rank-8 update on
the embedding layer — we call this “version1”, and it can 99% accurately detect errors.10

• We additionally consider a different can next probing that fine-tunes more parameters but with
only 0.25% data — we call this “version2”, and it can also 99% accurately detect errors.

• For comparison, we also consider the perfect, ground-truth can next error detector and call
this “versionP”; and we use “versionP50” to indicate using a maximum of 50 total retries.

The goal of version1 is to check if we can use extremely small parameter changes from the pretrained
model for error detection and use this towards higher accuracies. The goal of version2 is to check if
we can use a small number of fine-tuning samples for error detection. The goal of versionP/P50 is
for comparison purposes; after all, allowing perfect error detection can enable the model to correct
nearly all mistakes if retried infinitely.

We compared this with the original generation (with beam=1, 4, 16, and 32); and we used beam=1
or 4 for all versions of “retry upon regret.” The results give rise to the following:

Result 1 (Figure 3(b)). “Retry upon regret” can improve reasoning accuracy, to an extent better
than beam search. However, the accuracy gain can be limited unless the error detector is highly
accurate. This also alters the inference process and increases the inference complexity.

We explain the three sentences in detail below:
9It is necessary to limit the maximum number of retries to avoid infinite loops.

10See their reported probing accuracy table, where the can next(A) probing accuracies can be 99% even
for op = 23 on iGSM-med or for op = 32 on iGSM-hard.
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(Solution - retry rate 0.5) Define Dance Studio’s School Daypack as p; so p = 17. Define Film Studio’s School Daypack as [BACK]. Define
Film Studio’s Messenger Backpack as W; so W = 13. Define Central High’s Classroom as [BACK]. Define Central High’s Backpack as
[BACK]. Define Central High’s Film Studio as B; so B = p + W = 17 + 13 = 7. Define Film Studio’s School Daypack as g; R = W + B = 13
+ 7 = 20; so g = 12 + R = 12 + 20 = 9. Define Riverview High’s Dance Studio as [BACK]. Define Film Studio’s Backpack as w; so w = g +
W = 9 + 13 = 22. Define Riverview High’s Dance Studio as [BACK]. Define Central High’s Backpack as c; so c = B * w = 7 * 22 = 16.

(a) A solution example identical to Figure 2 but with retry rate = 0.5. The strikethrough like “Define Central
High’s Backpack as” is for illustration, and the actual data is normal English text without strikethrough symbols.

op
15

op=15
op=20

op=21
op=22

op=23

op=20 (re
ask)

op
15

op=15
op=20

op=21
op=22

op=23

op=20 (re
ask)

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op=28 (re
ask)

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op=28 (re
ask)

original
retry | retryrate0.05
retry | retryrate0.05 (with mask)
retry | retryrate0.1
retry | retryrate0.1 (with mask)
retry | retryrate0.2
retry | retryrate0.2 (with mask)
retry | retryrate0.4
retry | retryrate0.5
retry | retryrate0.5 (with mask)

iGSM-med_pq iGSM-med_qp iGSM-hard_pq iGSM-hard_qp row
avgin-dist out-of-dist (OOD) in-dist out-of-dist (OOD) in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)

99.9 99.1 92.0 88.4 84.5 77.7 91.6 100 99.3 92.4 89.9 84.8 78.3 91.4 100 99.4 94.9 93.7 91.4 88.4 84.0 91.4 100 99.4 94.5 93.3 91.8 88.3 85.3 89.4 91.8
100 99.7 94.8 93.0 88.5 83.9 94.5 100 99.4 93.3 89.2 85.7 78.8 92.4 100 99.6 96.6 94.8 93.2 90.7 86.9 94.8 100 99.7 96.2 93.7 92.7 89.4 86.3 92.1 93.3
100 99.5 93.1 89.5 84.6 78.5 93.2 100 99.6 95.2 91.3 88.4 82.3 92.6 100 99.8 97.3 95.2 94.2 91.6 88.6 94.6 100 99.6 95.7 94.1 91.7 88.5 84.9 90.0 93.1
100 99.7 97.1 95.8 93.3 90.6 95.2 99.9 99.6 94.0 90.6 87.6 81.7 91.9 100 99.7 97.1 96.2 93.8 91.2 87.2 96.3 100 99.9 98.1 97.4 95.8 93.2 90.4 93.4 94.9
100 99.8 96.6 94.2 91.5 87.5 96.9 100 99.8 96.0 93.8 89.9 84.0 92.5 100 99.9 97.3 96.6 94.6 91.8 87.9 92.9 100 99.9 97.2 96.0 94.8 91.9 89.2 92.4 94.8
100 99.9 97.9 96.8 95.2 91.6 96.0 100 99.8 96.7 94.5 92.0 88.3 93.4 100 99.8 97.9 96.6 95.8 93.7 91.7 95.6 100 99.9 98.4 97.0 96.4 95.0 92.1 92.9 96.2
100 99.9 97.2 95.5 93.0 87.8 95.8 100 99.9 97.4 96.2 94.4 90.9 93.7 100 99.9 98.6 97.1 96.5 95.0 92.9 95.3 100 99.9 98.5 97.5 96.8 95.3 94.0 91.3 96.3
100 99.8 97.6 95.8 94.3 90.6 97.6 100 99.9 97.7 95.4 93.4 90.2 93.4 100 99.9 99.1 98.1 97.8 96.7 94.8 97.3 100 99.8 97.1 95.4 94.3 93.0 89.3 93.1 96.4
100 99.9 98.3 96.8 95.8 93.6 96.1 100 99.9 98.7 98.0 96.9 94.5 96.0 100 99.9 98.9 98.1 97.1 95.6 93.9 98.8 100 99.9 98.3 97.2 96.3 94.9 93.7 97.0 97.5
100 100 98.8 97.9 96.8 94.8 96.0 100 99.8 97.9 96.9 95.2 93.2 91.5 100 100 99.1 98.9 98.4 96.6 96.2 97.3 100 100 99.5 98.9 98.4 97.5 95.8 96.9 97.7

(b) Comparison of models pretrained using iGSM data with retry rate > 0. For a stronger comparison, the
model is pretrained on the retry vs original (error-free) data using the same number of tokens (i.e., retry data
has fewer problems than original data) and identical training parameters, see Appendix F.1.

Figure 4: Pretrain language models on error-free vs retry data. Observation: on the hardest tasks (op = 23 or
32), models pretrained from retry data exhibit the greatest improvements for larger retry rate.

• Comparing version1/2 with beam32, we see “retry upon regret” improves upon beam search.
However, even though error detection is 99% accurate, this improvement is still marginal: about
2% for the op = 23 (resp. op = 32) case for iGSM-med (resp. iGSM-hard).

• Comparing version1/2 with versionP, we see that the success of “retry upon regret” largely de-
pends on an extremely accurate error detector — increasing the error detection success rate from
99% to 100% can significantly improve the final reasoning accuracy, but this is too ideal.11

• “Retry upon regret” increases the inference complexity because one needs to keep an error de-
tector model alongside and keep checking the correctness of the generated solution steps. In
the event of an error, the model needs to regenerate using randomness (possibly multiple times)
until it passes the error detector. Ideally, one wishes to have just one model to achieve “general
intelligence” using the simplest autoregressive decoding, without multi-round error corrections.

4 RESULT 2-6: PRETRAIN WITH RETRY DATA

In this section, we prepare pretrain data to teach the model to directly correct mistakes.

Math data with retry. Since we use a controllable, synthetic math dataset, we can, at the beginning
of each solution sentence, with probability retry rate ∈ [0, 1), insert a wrong parameter that cannot
be computed next, followed by a special token [BACK].12 We repeat this process, so with probability
(retry rate)2, it may generate another wrong parameter at the same location, and so on. We provide
an extreme example with retry rate = 0.5 in Figure 4(a), and a more complex example with op =
21 and retry rate = 0.2 in Figure 9. We call this the retry data (with error and correction), to
distinguish that from the original (error-free) data.

• Can a language model be pretrained using retry data to improve its reasoning accuracy com-
pared with language models pretrained on the error-free data?

We conduct experiments on the iGSM-medpq/qp and iGSM-hardpq/qp datasets for retry rate rang-
ing from 0.01 to 0.5. For a controlled comparison, we compare models when they are pretrained
using the same number of tokens (along with other parameters).13 This means, when pretrained with
retry data, the model sees fewer math problems compared to the original training; when pretrained
with larger retry rate, the model also sees fewer math problems.

Another important question when pretraining with retry data is that:

11After all, a false negative in error detection results in a wrong answer, and having a false positive can result
in the model regenerating too many times.

12This parameter is uniformly randomly chosen from all such parameters, except those already appearing.
13The same parameters such as batch size, total steps, learning rates, see Appendix F. We adopt the learning

rate from (Anonymous, 2024) which was best tuned for the original error-free data for a strong comparison.
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• Is it necessary to introduce label masks to prevent the model from learning the mistakes?

Adding masking might make intuitive sense because we do not want the model to learn the mistakes
— we only want it to learn to correct errors if needed. To answer this, we also perform controlled
experiment to compare (1) standard auto-regressive pretraining and (2) pretraining with masking:
adding label masks to ignore the auto-regressive loss on the wrong parameter tokens (i.e., ignoring
text with strikethrough in Figure 4(a)).

Result 2-3. Our results in Figure 4(b) strongly support that:

• Within a reasonable range,14 the more mistakes the better. Especially on hard problems, such
as on iGSM-medop=23

qp , the accuracy jumps from 78% to 94% by using retry rate = 0.5.
• Masking mistakes is unnecessary. We observe that it is generally not needed to introduce label

masking on the error data even for large retry rate = 0.5.

A reader seeing this for the first time may find the above results unbelievable: if the pretrain data
is full of mistakes (even with retry rate = 0.5), doesn’t this interfere with the model’s learning and
encourage it to make lots of mistakes? To address this, we compute the statistics on how many times
the pretrained model performs retries (i.e., how many [BACK] tokens it uses) during evaluation. We
discover that:

Result 4 (Figure 6). Models pretrained on retry data hardly retry (unless retry rate is very high).

We defer Figure 6 to Appendix B. For instance, Figure 6(a) shows if retry rate = 0.2, even when
pretrained without label masking, the model retries an average of < 0.3 times even for math prob-
lems with large op. This is because at each solution step, the retry data still has a higher 1−0.2 = 0.8
chance to produce an error-free step. Thus, a model pretrained from such data is still incentivized to
generate correct steps (e.g., using a low temperature).15 If retry rate = 0.5, this average retry count
becomes 2 ∼ 4, but can be mitigated using label masking. Only on those wrong solutions does the
model try its best to retry and fail in the end, see Figure 6(b).

Another concern with the retry data is whether the model can still output shortest solutions. Anony-
mous (2024) discovered that language models can learn to produce shortest solutions without com-
puting any unnecessary parameters.16 Does the introduction of math data with errors increase the
solution length? We discover that:

Result 5 (Figure 7). Models pretrained on retry data can still output shortest math solutions.

(Defer Figure 7 to Appendix B, which shows that when pretrained using retry data, model’s gener-
ated solutions compute the same (small) number of unnecessary parameter as using original data.)

Combining Results 2-5, we see that it is safe to include retry data of this format as pretrain data to
improve the model’s reasoning accuracy. There is no change to the pretrain or inference process, no
need to increase training time, and the solutions still satisfy many desirable properties.

Finally, it is tempting to compare retry data with beam search, which lets the model generate multiple
solutions at each step and pick the most likely continuation based on the log-likelihood. As long as
the model is pretrained on error-free data, even with 16 or 32 beams, its accuracy does not noticeable
improve in all the cases (recall Figure 3(b)); while in contrast, if the model is pretrained with retry
data, the accuracy easily goes up in Figure 4(b) (and this holds even for beam=1).17

14retry rate cannot approach 1. Exploring such extreme failure settings is not very interesting. For instance,
retry rate = 0.5 is already sufficiently extreme, indicating that half of the solution steps contain errors.

15Even when retry rate = 0.5, if errors are sufficiently random (say, in a step there are 2 correct possibilities
but 8 possible errors), the model is still incentivized to say correct sentences. This could be reminiscent of
language model’s learning on context-free grammars with mistakes (Allen-Zhu & Li, 2023): even though
the model is trained only using data with grammar mistakes, it can output sentences correctly respecting the
grammar at lower temperature.

16They discover the model achieves so via non-trivial mental planning to precompute the set of necessary
parameters, before it starts to even generate the first solution sentence.

17To present the cleanest result, in Figure 4(b) we present the best accuracy among beam=1 or 4; one can
still observe a high accuracy boost for beam=1 when pretrained with retry data.
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op
15

op=15
op=20

op=21
op=22

op=23

op=20 (re
ask)

op
15

op=15
op=20

op=21
op=22

op=23

op=20 (re
ask)

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op=28 (re
ask)

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op=28 (re
ask)

original
retryrate0.2 | retry (finetune, lora qv4e8)
retryrate0.2 | retry (finetune, lora qv4e8) | with mask
retryrate0.2 | retry (finetune, lora qv8e16)
retryrate0.2 | retry (finetune, lora qv8e16) | with mask
retryrate0.2 | retry (finetune, lora qv16e32)
retryrate0.2 | retry (finetune, lora qv16e32) | with mask
retryrate0.2 | retry (finetune, lora qv32e64)
retryrate0.2 | retry (finetune, lora qv32e64) | with mask
retryrate0.2 | retry (finetune, lora qv64e128)
retryrate0.2 | retry (finetune, lora qv64e128) | with mask
retryrate0.2 | retry (finetune, lora qv128e256)
retryrate0.2 | retry (finetune, lora qv128e256) | with mask
retryrate0.2 | retry (finetune, lora qv256e512)
retryrate0.2 | retry (finetune, lora qv256e512) | with mask
retryrate0.2 | retry (continued pretrain)
retryrate0.2 | retry (continued pretrain) | with mask
retryrate0.2 | retry (pretrain)
retryrate0.2 | retry (pretrain) | with mask

iGSM-med_pq iGSM-med_qp iGSM-hard_pq iGSM-hard_qp row
avgin-dist out-of-dist (OOD) in-dist out-of-dist (OOD) in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)

99.9 99.1 92.0 88.4 84.5 77.7 91.6 100 99.3 92.4 89.9 84.8 78.3 91.4 100 99.4 94.9 93.7 91.4 88.4 84.0 91.4 100 99.4 94.5 93.3 91.8 88.3 85.3 89.4 91.8
99.9 98.1 84.0 77.5 71.8 63.3 92.7 99.0 98.0 81.6 76.0 68.4 59.4 90.3 99.9 98.9 89.2 86.1 82.1 77.3 71.9 94.5 99.8 98.4 90.1 85.6 81.6 77.5 70.3 92.1 85.2
100 99.0 91.2 88.2 82.4 74.3 93.5 99.8 99.3 90.6 86.0 80.5 73.0 91.8 100 99.3 94.2 92.5 89.5 85.3 81.7 92.8 100 99.4 94.0 91.9 89.4 84.8 79.8 92.3 90.5
100 98.6 86.4 82.4 76.0 68.9 93.2 99.6 98.4 84.9 79.4 72.3 63.5 91.5 100 99.1 90.9 88.0 84.3 79.9 75.5 95.2 99.8 98.6 89.9 87.4 84.1 79.9 75.0 90.5 87.1
100 99.2 92.0 88.7 83.7 76.7 93.2 99.8 99.4 92.2 88.0 82.2 75.3 92.1 100 99.4 95.1 93.6 91.6 87.3 83.4 92.7 99.9 99.4 95.1 93.4 91.5 87.9 84.3 92.2 91.6
100 98.8 88.3 84.4 78.4 72.0 93.8 99.8 98.7 87.8 82.8 76.3 68.1 91.3 100 99.2 94.0 92.3 89.9 85.9 83.5 96.0 100 99.1 93.0 90.6 87.7 83.6 79.5 92.4 89.6
100 99.3 91.8 88.7 83.6 75.9 93.8 99.9 99.3 92.0 88.3 83.0 76.4 92.0 99.9 99.4 95.7 94.4 92.5 88.8 85.4 93.1 100 99.5 95.4 93.8 92.3 88.8 85.5 92.1 92.0
100 98.7 89.8 86.2 81.1 74.7 93.0 99.8 99.0 87.9 82.4 76.5 69.9 91.5 100 99.4 95.1 92.9 90.3 88.4 84.8 96.2 100 99.1 94.3 92.6 90.3 86.1 82.2 92.4 90.5
100 99.2 92.4 89.4 84.2 77.8 93.4 99.9 99.5 92.9 88.9 83.9 77.2 92.2 100 99.5 95.6 94.1 92.2 88.7 85.3 93.6 99.8 99.5 96.3 94.3 93.1 89.3 86.1 92.4 92.3
99.9 99.1 90.3 86.1 81.1 76.5 92.7 99.9 99.1 88.9 84.5 78.4 71.4 92.0 100 99.6 95.3 93.6 91.5 88.4 85.1 96.5 99.8 99.3 95.3 93.1 91.3 87.7 84.8 92.3 91.1
100 99.4 92.6 89.8 85.4 79.3 93.2 99.9 99.5 92.8 88.9 83.8 77.5 92.4 100 99.5 95.7 94.4 92.1 88.0 84.9 94.0 100 99.7 96.5 94.8 93.3 90.2 87.3 92.4 92.6
99.9 99.0 90.8 86.9 82.2 76.5 93.9 99.8 99.2 90.6 86.9 81.9 75.4 92.0 100 99.6 96.1 94.7 92.7 90.2 87.8 96.3 99.8 99.4 95.9 94.3 92.2 89.5 86.3 92.0 92.1
100 99.4 92.9 90.0 84.8 79.0 93.9 99.9 99.6 92.7 88.9 84.3 78.3 92.7 100 99.6 96.1 94.8 93.2 89.9 86.8 94.2 99.8 99.7 96.3 95.1 93.8 90.6 88.0 92.3 92.9
100 99.1 92.0 87.9 84.1 78.8 94.4 99.9 99.2 90.1 85.5 80.7 74.1 92.1 100 99.4 95.5 93.1 91.4 88.8 85.3 95.8 99.9 99.5 95.6 94.0 92.3 88.8 86.0 91.9 91.8
100 99.3 92.5 90.1 85.5 79.1 94.4 99.9 99.6 92.9 88.6 84.4 77.3 92.5 99.9 99.5 96.0 94.6 92.4 88.8 85.5 94.2 99.9 99.6 96.6 94.9 93.6 90.4 87.3 92.6 92.7
100 99.9 97.4 95.6 92.8 88.3 95.9 100 100 97.9 95.0 92.5 88.6 93.7 100 100 99.2 98.5 97.9 97.0 95.6 97.5 100 100 99.1 98.7 98.2 97.5 96.3 94.2 96.9
100 99.9 97.0 94.7 91.7 87.7 95.7 100 99.9 97.7 94.9 92.6 88.2 93.5 100 100 99.4 98.8 97.9 97.2 95.7 98.0 100 100 99.3 98.8 98.6 98.0 96.5 94.0 96.9
100 99.9 97.9 96.8 95.2 91.6 96.0 100 99.8 96.7 94.5 92.0 88.3 93.4 100 99.8 97.9 96.6 95.8 93.7 91.7 95.6 100 99.9 98.4 97.0 96.4 95.0 92.1 92.9 96.2
100 99.9 97.2 95.5 93.0 87.8 95.8 100 99.9 97.4 96.2 94.4 90.9 93.7 100 99.9 98.6 97.1 96.5 95.0 92.9 95.3 100 99.9 98.5 97.5 96.8 95.3 94.0 91.3 96.3

Figure 5: Pretrain vs. finetune on retry data. Details and more results (for retry rate ̸= 0.2) in Appendix F.3.

The original and retry (pretrain) rows are pretraining with error-free / retry data.

The retry (finetune, lora) rows correspond to LoRA finetuning using retry data on a model pre-
trained with error-free data. qv stands for the LoRA rank on the query/value matrices, and e stands
for the LoRA rank on the embedding matrix. Observation: No significant improvement over the
original model; for small LoRA ranks, finetuning even hurts and label masking becomes important.

The retry (continued pretrain) rows correspond to full finetuning using the retry data on a model
pretrained with error-free data. Note: this is for illustration only. Our full finetuning (+ pretrain)
uses twice the training tokens compared to retry (pretrain), so it is not surprising that accuracies
can be higher. We compare this to directly pretraining with twice the retry data tokens in Figure 10.

Conclusion: Error correction is a skill very different from the error-free reasoning and may not be
acquired during a LoRA finetune stage, even with a sufficient number of finetune (retry) samples.

Similarly, “retry upon regret” lets the model re-generate another solution step if error is detected,
and this for instance gives only accuracy gain 78% ⇒ 80% in the iGSM-medop=23

pq case (recall
Figure 3(b)), while pretrain with retry data can give 78% ⇒ 95%. This is strong signal that:

Result 6. Error correction is a skill that can be fundamentally different from beam search or retry
based on the model’s randomness.

Therefore, to truly improve the model’s reasoning capability, it is crucial to modify the training data
to include mistakes and their corrections.

5 RESULT 7: FINETUNE WITH RETRY DATA

In this section, we consider a model pretrained using only error-free math data but finetuned with
the retry data from Section 4. This simulates a real-world scenario where one is given an open-
source pretrained model and wants to finetune it for better reasoning/math accuracies. Our goal is
to determine if this approach works as well as pretraining directly on the retry data.

We focus on parameter-efficient fine-tuning (PEFT) methods such as LoRA (Hu et al., 2021), which
are widely adopted in practice. LoRA fine-tunes a small number of trainable parameters (i.e., low-
rank matrix updates) on top of the original, frozen pretrained weights. Interestingly, despite using
the same high-quality retry data as in Section 4 (with or without label masking), and our best efforts
in selecting LoRA fine-tune parameters (adopting various rank choices), and ensuring sufficient
training (comparable training steps/samples to pretraining), we find that LoRA finetuning falls short
of pretraining directly with the retry data. When the LoRA rank is small, it even underperforms
compared to pretraining with error-free data, see Figure 5. From this, we conclude that:

Result 7 (Figure 5). Error correction is a skill that can be very different from the original (error-
free) reasoning and cannot be acquired during a LoRA finetune stage from language models pre-
trained only using error-free data.

(In contrast, such a skill can be learned using full finetuning with sufficiently many retry training
samples, see Figure 5; but the finetune cost of this process is no less than pretraining with retry data,
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and is essentially continued pretraining.18)

One may compare this to error detection (see Section 3.1): error detection is easy that even models
pretrained from error-free data can acquire almost for free (such as via probing, not to mention
LoRA finetuning). However, error correction cannot be easily achieved via LoRA finetuning from
a language model pretrained on error-free data. We conjecture this is because, when a mistake is
made, the model needs to revise its internal computations to find alternative solutions. Such revision
may not be straightforward; otherwise, simply re-generating a few times from the previous sentence
(i.e., “retry upon regret”) should have already achieved higher reasoning accuracies. We do not
analyze such internal computations in this paper, but refer interested readers to (Anonymous, 2024),
which explains language models’ internal computations (via probing) on the error-free iGSM data.

6 RESULT 8: PRETRAIN WITH FAKE MISTAKES

While it is possible to prepare “perfect” retry data on synthetic iGSM datasets, obtaining math
data with mistakes and corrections can be challenging in real life. For this reason, we explore the
possibility of using more realistic approaches to augment math problems (for which we only have
correct solutions) with “fake” mistakes and retries. Ideally, this process should not require any
semantic parsing or understanding of the problem and the solution. We explore two approaches and
compare them with the perfect retry data. We still use retry rate, but instead of selecting a wrong
parameter to retry, we simplify the process:

• In the first approach, we randomly select a sentence that appears later in the step-by-step solution
to retry. For instance, in the example of Figure 2:
(Solution - retry weak) Define Dance Studio’s School Daypack as p; so p = 17. Define Film Studio’s Messenger Backpack
as W; so W = 13. Define ♢♢♢ as [BACK]. Define Central High’s Film Studio as B; so B = p + W = 17 + 13 = 7.
Define Film Studio’s School Daypack as g; R = W + B = 13 + 7 = 20; so g = 12 + R = 12 + 20 = 9. Define Film Studio’s Backpack as w;
so w = g + W = 9 + 13 = 22. Define Central High’s Backpack as c; so c = B * w = 7 * 22 = 16. Answer: 16.

At the ♢♢♢ position, we randomly select one of the three underlined parameters and add it with
[BACK] for retry.19 At the end of each sentence, we add at least one such retry parameter with
retry rate probability, at least two with (retry rate)2 probability, and so on.
This approach introduces fake mistakes because a parameter in a later sentence might still be
computable at the current position. However, it is very easy to implement: one simply needs
to select a future sentence and append it with a [BACK] symbol. Intuitively, it encourages the
model not to skip steps. We call this retry weak data.

• In the second approach, we randomly select a parameter that appears in the problem statement
and not yet appeared in the solution. For instance at location ♢♢♢, one can add not only one of
the underlined parameters but also any other parameter from the problem that hasn’t appeared
before (e.g., Riverview High’s Film Studio). We call this retry miss data. This type of data is
harder to obtain than retry weak but easier than the perfect retry data. It encourages the model
not only “not to skip steps” but also not to compute unnecessary parameters.

Our results are in Figure 8 deferred to Appendix B; to summarize:

Result 8 (Figure 8). The simple-to-obtain retry weak data significantly improve the model’s accu-
racy; yet, the slightly more complex retry miss data does not improve accuracy by much.

(Additionally, Figure 11(a) in Appendix E shows that using retry weak/retry miss data, the model
has a higher retry rate at inference time compared to Figure 6(a); Figure 11(b) shows in both cases,
the model still learns to find shortest solutions, similar to Figure 7 on perfect retry data.)

Conclusion? We provided a paper conclusion at the end of Section 1. Additionally, while our ex-
periments are synthetic, we aim to use controlled experiments to predict what could be the important
data changes that can help improve LLMs’ reasoning capabilities in real life. While future LLMs
may not be trained directly on such retry weak data, our results suggest that it can be beneficial to,
for instance, use auxiliary models to rewrite math data to include fake mistakes of this type.

18From a model pretrained with T tokens of error-free data, we additionally full finetune it with T tokens of
retry data and present this as “continued pretraining” in Figure 5. In Figure 10 of Appendix F.3, we additionally
show that such full finetuning is no better than directly pretraining with 2T tokens from retry data.

19Alternatively, one can also insert the entire sentence (as opposed to just the parameter name) for retry.
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APPENDIX
A FULL CONCLUSION

In this paper, we investigate whether language models can benefit from pretraining on data contain-
ing mistakes, followed by immediate error correction. Using a fully controllable synthetic setting,
we demonstrate that models trained on such data outperform those trained on the same amount of
error-free data.

In addition to the accuracy gain, Section 4 shows that using retry data is very safe: the model rarely
makes mistakes even after pretraining with high error-rate retry data, and it is unnecessary to change
the training process (simply autoregressive, no need to label-mask the errors). Retry data teaches
models how to correct errors if needed, rather than encouraging mistakes.

It is important to note that such error correction skill does not come easily. A model pretrained
with only error-free data cannot use (1) beam search or (2) retry based on error detection (“retry
upon regret”) to achieve comparable performance, see Section 3, unless the error detection is nearly
perfect. This error correction skill is also very different from the original error-free reasoning and
thus cannot be learned during parameter-efficient fine-tuning (PEFT) such as LoRA, see Section 5.
This implies the necessity of adding retry data to the pretrain data for language models to truly learn
the capability to correct errors.

While grade-school level math problems have many other difficulties (including arithmetic or com-
mon sense), following Anonymous (2024), we have focused on the (logic-following) reasoning
aspect, which is one of the weakest aspects of GPT-4.20

While it is unlikely that iGSM retry data will be directly used for pretraining future commercial-level
LLMs, this paper aims to find guiding principles for necessary ingredients. We strongly discourage
using fine-tuning to teach a model to correct errors (or using beam search, or letting the model
regenerate upon encountering a mistake) as these are not effective. We advocate for adding mistakes
and corrections at the pretrain level. While commercial LLMs use synthetic data (Team, 2024;
Marah Abdin et al., 2024) and future LLMs are rumored to use Q⋆, it remains a question of how
to prepare such synthetic data for the model to best learn error correction. Our Section 6 suggests
that it is critical to teach a model not to skip steps. This can be done either through naively creating
retry weak data like ours or using more advanced prompting methods to encourage an auxiliary
model to rewrite math data into such a format. We cannot explore such follow-up directions due to
GPU resource limitations.

20In contrast, arithmetic such as 10-digit multiplications can be (and perhaps should be) handled by calcula-
tors to save the model’s capacity for other skills.
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Figure 6: Model’s average number of retries per test problem. Details see Appendix F.1.
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0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.01 0.00 0.00 0.00 0.00 0.00 0.20 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.58 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.49
0.00 0.00 0.01 0.01 0.01 0.01 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.46 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.44
0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.01 0.00 0.00 0.00 0.00 0.00 0.19 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.59
0.00 0.00 0.01 0.01 0.01 0.01 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.41
0.01 0.00 0.00 0.00 0.00 0.00 0.17 0.01 0.00 0.00 0.00 0.00 0.00 0.24 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.51
0.00 0.00 0.01 0.00 0.01 0.00 0.15 0.01 0.00 0.00 0.01 0.00 0.01 0.21 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.58 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.50
0.00 0.00 0.01 0.01 0.01 0.01 0.17 0.00 0.00 0.00 0.00 0.01 0.01 0.22 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.59 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.57
0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32
0.01 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.40
0.01 0.00 0.00 0.00 0.00 0.00 0.21 0.01 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.38 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.32
0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.01 0.00 0.00 0.00 0.00 0.00 0.16 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.36
0.00 0.00 0.00 0.01 0.01 0.01 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.33 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.32
0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.01 0.00 0.00 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.43
0.00 0.00 0.01 0.00 0.01 0.01 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.30
0.01 0.00 0.00 0.00 0.00 0.00 0.13 0.01 0.00 0.00 0.00 0.00 0.00 0.19 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.38
0.00 0.00 0.00 0.00 0.01 0.00 0.12 0.01 0.00 0.00 0.00 0.00 0.01 0.17 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.36
0.00 0.00 0.01 0.01 0.01 0.01 0.13 0.00 0.00 0.00 0.00 0.01 0.01 0.18 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.42

(on correct solutions)

Figure 7: Model’s average number of unnecessary operations or parameters (per test problem) used in its gen-
erated solutions (among correct solutions). Details see Appendix F.1.
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op
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op=21
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original
retry_miss | retryrate0.05
retry_miss | retryrate0.1
retry_miss | retryrate0.2
retry_miss | retryrate0.5
retry_weak | retryrate0.05
retry_weak | retryrate0.05 (with mask)
retry_weak | retryrate0.1
retry_weak | retryrate0.1 (with mask)
retry_weak | retryrate0.2
retry_weak | retryrate0.2 (with mask)
retry_weak | retryrate0.5
retry_weak | retryrate0.5 (with mask)

iGSM-med_pq iGSM-med_qp iGSM-hard_pq iGSM-hard_qp row
avgin-dist out-of-dist (OOD) in-dist out-of-dist (OOD) in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)

99.9 99.1 92.0 88.4 84.5 77.7 91.6 100 99.3 92.4 89.9 84.8 78.3 91.4 100 99.4 94.9 93.7 91.4 88.4 84.0 91.4 100 99.4 94.5 93.3 91.8 88.3 85.3 89.4 91.8
100 99.3 92.1 88.3 82.6 76.3 93.1 99.9 99.3 91.1 85.0 78.0 70.7 91.8 99.9 99.3 94.8 91.7 89.5 86.6 82.3 90.3 100 99.3 95.5 93.5 92.5 89.4 86.4 91.6 91.0
100 99.6 94.3 91.7 88.1 81.6 91.4 99.9 99.4 93.3 88.9 85.5 79.4 91.5 100 99.8 96.0 95.2 92.3 90.2 87.3 91.7 100 99.2 95.5 92.3 91.0 87.6 83.8 90.5 92.6
100 99.7 96.1 94.1 91.2 87.1 93.5 100 99.5 93.1 89.1 86.0 79.4 91.7 100 99.7 96.2 93.6 92.1 89.0 84.3 92.2 100 99.7 97.4 95.4 94.2 92.0 89.5 90.9 93.5
100 99.3 93.2 91.7 88.7 83.2 93.5 100 98.9 91.2 86.7 82.8 76.3 91.8 100 99.0 90.3 87.4 85.2 82.0 79.9 91.4 100 98.7 85.5 80.5 78.7 73.7 68.7 89.2 88.9
100 99.7 95.8 93.5 90.7 86.4 95.9 99.9 99.5 94.4 90.5 86.2 79.5 91.5 100 99.7 97.5 96.0 94.8 92.7 89.6 95.6 100 99.7 97.2 94.8 93.2 90.2 87.5 91.5 94.1
100 99.0 93.0 90.0 84.5 78.1 91.6 99.8 99.4 93.0 89.2 84.3 75.6 90.9 100 99.8 96.9 95.6 94.4 92.0 88.5 94.8 100 99.7 97.3 95.2 93.5 92.2 89.5 91.9 93.0
100 99.8 97.2 96.3 94.0 90.1 95.4 100 99.8 96.6 94.3 91.9 88.3 92.4 100 99.9 98.1 97.0 96.2 94.0 92.2 93.2 100 99.8 97.4 95.4 93.9 91.4 89.7 91.2 95.5
100 99.8 97.1 96.1 94.2 90.1 95.4 99.9 99.8 96.1 93.8 91.5 86.4 93.2 100 99.7 97.4 96.1 94.6 93.5 90.6 91.5 100 99.8 97.7 96.3 95.4 93.1 91.4 90.1 95.3
100 99.8 97.5 96.7 94.6 91.0 94.9 99.9 99.8 94.8 92.5 88.0 82.7 92.1 99.9 99.7 97.1 94.7 93.8 91.2 88.8 92.2 100 99.8 98.4 97.6 96.3 95.3 94.1 90.9 95.1
100 99.8 97.5 96.3 93.9 90.7 94.3 100 99.8 95.1 92.3 87.5 82.8 91.0 100 99.8 97.1 94.9 93.9 91.7 88.5 93.2 99.9 99.8 97.9 97.1 95.9 94.7 92.8 91.5 95.0
100 98.2 80.0 73.5 66.0 61.1 89.9 100 96.3 71.9 67.6 59.9 54.7 88.2 99.6 89.7 66.7 59.2 56.0 52.7 46.0 90.1 99.5 90.3 69.2 62.9 59.2 54.3 50.9 85.7 74.6
98.9 85.7 64.5 56.2 51.4 43.9 86.3 99.9 97.9 79.6 71.7 64.4 56.2 87.6 99.6 89.0 69.4 63.5 60.0 56.5 51.6 87.7 99.4 88.4 67.7 61.7 58.8 55.3 51.3 87.7 73.1

Figure 8: Accuracies on models pretrained in retry weak or retry miss data vs. the original no-mistake data.

Observations. The retry weak format of pretrain data significantly improves accuracy (especially
on the hardest op = 23/32 tasks) and is easy to obtain in practice. There is no need to use
retry miss data, which is slightly harder to acquire. Experiment details are in Appendix F.1.
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C A HARDER EXAMPLE WITH RETRY

(Problem) The number of each Jungle Jim’s International Market’s Cheese equals the sum of each Parmesan Cheese’s Pear and each The Fresh Market’s Ice Cream.
The number of each Ice Cream’s Pineapple equals 2 more than each Goat Cheese’s Grape. The number of each New Seasons Market’s Goat Cheese equals the sum
of each Residential College District’s Jungle Jim’s International Market, each Jungle Jim’s International Market’s Parmesan Cheese and each Residential College
District’s Supermarket. The number of each Arts Campus’s New Seasons Market equals each Cheese’s Pineapple. The number of each Goat Cheese’s Banana
equals each Vocational School District’s Product. The number of each Residential College District’s Jungle Jim’s International Market equals 5 more than each Ice
Cream’s Grape. The number of each Parmesan Cheese’s Pineapple equals each Parmesan Cheese’s Pear. The number of each Residential College District’s The
Fresh Market equals each Arts Campus’s Trader Joe’s. The number of each Arts Campus’s Trader Joe’s equals each Parmesan Cheese’s Ingredient. The number of
each Goat Cheese’s Grape equals 0. The number of each The Fresh Market’s Ice Cream equals 13 more than the difference of each Residential College District’s
The Fresh Market and each Parmesan Cheese’s Grape. The number of each Goat Cheese’s Pineapple equals each New Seasons Market’s Product. The number of
each Vocational School District’s The Fresh Market equals the sum of each Trader Joe’s’s Cheese and each The Fresh Market’s Cheese. The number of each Trader
Joe’s’s Cheese equals 6. The number of each The Fresh Market’s Cheese equals 3. The number of each Jungle Jim’s International Market’s Ice Cream equals the
difference of each Ice Cream’s Banana and each Goat Cheese’s Grape. The number of each Jungle Jim’s International Market’s Parmesan Cheese equals each Ice
Cream’s Pineapple. The number of each Parmesan Cheese’s Pear equals the difference of each Goat Cheese’s Grape and each Ice Cream’s Grape. The number of
each Parmesan Cheese’s Grape equals 12 times as much as each Residential College District’s Jungle Jim’s International Market. The number of each The Fresh
Market’s Parmesan Cheese equals each The Fresh Market’s Cheese. The number of each Ice Cream’s Banana equals the sum of each Parmesan Cheese’s Pineapple
and each Ice Cream’s Pineapple. The number of each School District’s Jungle Jim’s International Market equals each The Fresh Market’s Ice Cream. The number
of each Cheese’s Pineapple equals 20 more than the sum of each Trader Joe’s’s Cheese and each The Fresh Market’s Cheese. The number of each Trader Joe’s’s
Parmesan Cheese equals 16. The number of each Ice Cream’s Pear equals 8. The number of each Ice Cream’s Grape equals each Goat Cheese’s Grape. How many
Product does School District have?

(Solution) Define Goat Cheese’s Grape as u; so u = 0. Define Ice Cream’s Grape as x; so x = u = 0. Define Residential College District’s Jungle Jim’s International
Market as N; so N = 5 + x = 5 + 0 = 5. Define Parmesan Cheese’s Pear as G; so G = u - x = 0 - 0 = 0. Define Parmesan Cheese’s Grape as f; so f = 12 * N = 12 * 5 =
14. Define Parmesan Cheese’s Pineapple as C; so C = G = 0. Define Parmesan Cheese’s Ingredient as Z; e = f + C = 14 + 0 = 14; so Z = e + G = 14 + 0 = 14. Define
Arts Campus’s Trader Joe’s as q; so q = Z = 14. Define Residential College District’s The Fresh Market as j; so j = q = 14. Define Ice Cream’s Pineapple as X; so
X = 2 + u = 2 + 0 = 2. Define Ice Cream’s Banana as K; so K = C + X = 0 + 2 = 2. Define The Fresh Market’s Ice Cream as P; i = j - f = 14 - 14 = 0; so P = 13 + i =
13 + 0 = 13. Define Jungle Jim’s International Market’s Ice Cream as R; so R = K - u = 2 - 0 = 2. Define School District’s Jungle Jim’s International Market as V;
so V = P = 13. Define Jungle Jim’s International Market’s Cheese as v; so v = G + P = 0 + 13 = 13. Define Jungle Jim’s International Market’s Parmesan Cheese as
S; so S = X = 2. Define Jungle Jim’s International Market’s Product as y; U = S + R = 2 + 2 = 4; so y = U + v = 4 + 13 = 17. Define School District’s Product as J;
so J = V * y = 13 * 17 = 14. Answer: 14.

(Solution with retry rate = 0.2) Define Arts Campus’s Ingredient as [BACK]. Define Vocational School District’s Supermarket as [BACK]. Define Jungle Jim’s
International Market’s Cheese as [BACK]. Define Goat Cheese’s Grape as u; so u = 0. Define Ice Cream’s Grape as x; so x = u = 0. Define Residential College
District’s Jungle Jim’s International Market as N; so N = 5 + x = 5 + 0 = 5. Define New Seasons Market’s Product as [BACK]. Define Parmesan Cheese’s Pear as
G; so G = u - x = 0 - 0 = 0. Define Parmesan Cheese’s Grape as f; so f = 12 * N = 12 * 5 = 14. Define Parmesan Cheese’s Pineapple as C; so C = G = 0. Define
Parmesan Cheese’s Ingredient as Z; e = f + C = 14 + 0 = 14; so Z = e + G = 14 + 0 = 14. Define Arts Campus’s Trader Joe’s as q; so q = Z = 14. Define Residential
College District’s The Fresh Market as j; so j = q = 14. Define Jungle Jim’s International Market’s Product as [BACK]. Define Ice Cream’s Pineapple as X; so X =
2 + u = 2 + 0 = 2. Define Ice Cream’s Banana as K; so K = C + X = 0 + 2 = 2. Define The Fresh Market’s Ice Cream as P; i = j - f = 14 - 14 = 0; so P = 13 + i = 13
+ 0 = 13. Define Jungle Jim’s International Market’s Ice Cream as R; so R = K - u = 2 - 0 = 2. Define Vocational School District’s Supermarket as [BACK]. Define
School District’s Jungle Jim’s International Market as V; so V = P = 13. Define New Seasons Market’s Ingredient as [BACK]. Define Jungle Jim’s International
Market’s Cheese as v; so v = G + P = 0 + 13 = 13. Define Jungle Jim’s International Market’s Parmesan Cheese as S; so S = X = 2. Define Jungle Jim’s International
Market’s Product as y; U = S + R = 2 + 2 = 4; so y = U + v = 4 + 13 = 17. Define School District’s Product as J; so J = V * y = 13 * 17 = 14.
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Figure 9: A harder example with op = 21 in iGSM-hardpq used for training. We also provide a retry example
here with retry rate = 0.2.
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D MORE EXPERIMENTS FOR FINETUNE (RESULT 7)

We have included the finetune results only for retry rate = 0.2 in Figure 5 in Section 5 (Result 7).
In Figure 10 below, we include the additional results for retry rate ̸= 0.2.
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original
retryrate0.05 | retry (finetune, lora qv4e8)
retryrate0.05 | retry (finetune, lora qv4e8) | with mask
retryrate0.05 | retry (finetune, lora qv8e16)
retryrate0.05 | retry (finetune, lora qv8e16) | with mask
retryrate0.05 | retry (finetune, lora qv16e32)
retryrate0.05 | retry (finetune, lora qv16e32) | with mask
retryrate0.05 | retry (finetune, lora qv32e64)
retryrate0.05 | retry (finetune, lora qv32e64) | with mask
retryrate0.05 | retry (finetune, lora qv64e128)
retryrate0.05 | retry (finetune, lora qv64e128) | with mask
retryrate0.05 | retry (finetune, lora qv128e256)
retryrate0.05 | retry (finetune, lora qv128e256) | with mask
retryrate0.05 | retry (finetune, lora qv256e512)
retryrate0.05 | retry (finetune, lora qv256e512) | with mask
retryrate0.05 | retry (continued pretrain)
retryrate0.05 | retry (continued pretrain) | with mask
retryrate0.05 | retry (pretrain)
retryrate0.05 | retry (pretrain) | with mask
retryrate0.05 | retry (pretrain, double-time)
retryrate0.05 | retry (pretrain, double-time) | with mask
retryrate0.1 | retry (finetune, lora qv4e8)
retryrate0.1 | retry (finetune, lora qv4e8) | with mask
retryrate0.1 | retry (finetune, lora qv8e16)
retryrate0.1 | retry (finetune, lora qv8e16) | with mask
retryrate0.1 | retry (finetune, lora qv16e32)
retryrate0.1 | retry (finetune, lora qv16e32) | with mask
retryrate0.1 | retry (finetune, lora qv32e64)
retryrate0.1 | retry (finetune, lora qv32e64) | with mask
retryrate0.1 | retry (finetune, lora qv64e128)
retryrate0.1 | retry (finetune, lora qv64e128) | with mask
retryrate0.1 | retry (finetune, lora qv128e256)
retryrate0.1 | retry (finetune, lora qv128e256) | with mask
retryrate0.1 | retry (finetune, lora qv256e512)
retryrate0.1 | retry (finetune, lora qv256e512) | with mask
retryrate0.1 | retry (continued pretrain)
retryrate0.1 | retry (continued pretrain) | with mask
retryrate0.1 | retry (pretrain)
retryrate0.1 | retry (pretrain) | with mask
retryrate0.1 | retry (pretrain, double-time)
retryrate0.1 | retry (pretrain, double-time) | with mask
retryrate0.2 | retry (finetune, lora qv4e8)
retryrate0.2 | retry (finetune, lora qv4e8) | with mask
retryrate0.2 | retry (finetune, lora qv8e16)
retryrate0.2 | retry (finetune, lora qv8e16) | with mask
retryrate0.2 | retry (finetune, lora qv16e32)
retryrate0.2 | retry (finetune, lora qv16e32) | with mask
retryrate0.2 | retry (finetune, lora qv32e64)
retryrate0.2 | retry (finetune, lora qv32e64) | with mask
retryrate0.2 | retry (finetune, lora qv64e128)
retryrate0.2 | retry (finetune, lora qv64e128) | with mask
retryrate0.2 | retry (finetune, lora qv128e256)
retryrate0.2 | retry (finetune, lora qv128e256) | with mask
retryrate0.2 | retry (finetune, lora qv256e512)
retryrate0.2 | retry (finetune, lora qv256e512) | with mask
retryrate0.2 | retry (continued pretrain)
retryrate0.2 | retry (continued pretrain) | with mask
retryrate0.2 | retry (pretrain)
retryrate0.2 | retry (pretrain) | with mask
retryrate0.2 | retry (pretrain, double-time)
retryrate0.2 | retry (pretrain, double-time) | with mask
retryrate0.5 | retry (finetune, lora qv4e8)
retryrate0.5 | retry (finetune, lora qv4e8) | with mask
retryrate0.5 | retry (finetune, lora qv8e16)
retryrate0.5 | retry (finetune, lora qv8e16) | with mask
retryrate0.5 | retry (finetune, lora qv16e32)
retryrate0.5 | retry (finetune, lora qv16e32) | with mask
retryrate0.5 | retry (finetune, lora qv32e64)
retryrate0.5 | retry (finetune, lora qv32e64) | with mask
retryrate0.5 | retry (finetune, lora qv64e128)
retryrate0.5 | retry (finetune, lora qv64e128) | with mask
retryrate0.5 | retry (finetune, lora qv128e256)
retryrate0.5 | retry (finetune, lora qv128e256) | with mask
retryrate0.5 | retry (finetune, lora qv256e512)
retryrate0.5 | retry (finetune, lora qv256e512) | with mask
retryrate0.5 | retry (continued pretrain)
retryrate0.5 | retry (continued pretrain) | with mask
retryrate0.5 | retry (pretrain)
retryrate0.5 | retry (pretrain) | with mask
retryrate0.5 | retry (pretrain, double-time)
retryrate0.5 | retry (pretrain, double-time) | with mask

iGSM-med_pq iGSM-med_qp iGSM-hard_pq iGSM-hard_qp row
avgin-dist out-of-dist (OOD) in-dist out-of-dist (OOD) in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)

99.9 99.1 92.0 88.4 84.5 77.7 91.6 100 99.3 92.4 89.9 84.8 78.3 91.4 100 99.4 94.9 93.7 91.4 88.4 84.0 91.4 100 99.4 94.5 93.3 91.8 88.3 85.3 89.4 91.8
100 98.4 86.9 82.1 75.6 67.5 92.4 99.5 98.7 85.7 79.5 73.5 64.7 91.1 100 99.2 92.6 89.7 86.3 81.0 75.6 95.2 100 98.9 91.4 88.0 84.4 80.6 73.9 92.3 87.5
100 99.3 91.8 88.6 83.6 75.6 93.8 99.7 99.5 91.5 87.7 81.9 75.0 91.9 100 99.1 93.7 92.0 89.0 84.8 80.6 92.1 100 99.3 94.8 92.5 90.3 85.9 82.8 91.5 90.9
99.9 98.5 88.7 84.3 77.6 70.1 91.6 99.8 98.9 87.2 82.7 76.2 68.3 91.7 100 99.2 93.7 90.2 88.0 83.6 79.3 95.1 99.9 98.9 92.1 89.0 86.0 81.7 76.2 90.9 88.6
99.9 99.2 91.7 88.9 82.9 77.0 93.4 99.9 99.5 91.7 88.1 82.4 76.0 92.4 100 99.1 94.1 92.5 90.1 86.0 82.1 92.1 100 99.4 94.6 92.5 90.7 86.6 83.1 91.9 91.3
99.9 98.7 89.4 84.7 79.6 72.7 92.5 99.9 98.9 87.8 83.4 77.1 69.8 91.4 100 99.3 93.9 91.3 88.7 84.9 80.9 95.3 99.9 99.0 93.0 89.6 87.0 83.0 76.6 91.7 89.3
100 99.2 91.9 88.5 83.3 76.6 93.3 99.9 99.4 92.4 88.9 83.5 77.5 92.5 100 99.3 95.3 93.0 91.2 86.7 83.3 92.1 100 99.4 95.2 92.9 91.9 88.2 84.4 91.8 91.7
99.9 98.8 89.9 85.7 80.8 73.8 92.7 99.9 99.1 88.9 83.7 78.1 71.4 91.7 100 99.4 94.5 91.9 89.6 86.0 81.7 95.2 99.9 99.1 93.4 90.6 88.1 85.0 79.5 91.7 90.0
100 99.3 92.2 88.6 84.0 76.5 93.6 99.9 99.5 92.5 89.0 84.1 78.1 92.4 100 99.4 95.1 93.2 90.8 86.4 83.0 92.1 100 99.5 94.8 93.1 91.8 88.4 84.3 91.7 91.8
100 99.0 89.9 86.3 81.0 74.9 93.0 99.8 99.2 89.4 85.1 79.3 72.7 91.5 100 99.3 95.1 92.5 90.5 87.3 83.3 95.2 100 99.2 94.0 91.5 89.4 86.2 81.1 91.9 90.6
100 99.3 92.7 89.3 84.5 78.0 93.1 99.8 99.4 92.2 88.3 82.9 76.6 92.1 100 99.4 95.0 92.9 91.2 87.2 83.6 92.4 100 99.5 95.8 93.5 92.5 88.3 85.7 91.9 91.9
100 98.9 90.2 86.7 82.2 75.5 92.7 99.9 99.2 89.5 84.8 79.7 73.3 91.6 100 99.5 94.7 93.0 89.9 86.7 83.8 95.4 99.9 99.2 94.4 92.2 89.7 86.0 81.8 91.5 90.7
100 99.3 92.7 90.0 85.2 78.2 93.3 99.9 99.5 93.1 89.2 84.4 78.4 92.5 100 99.4 95.5 93.8 91.6 87.6 84.1 92.5 99.9 99.5 95.6 93.4 92.3 88.5 85.4 92.1 92.2
100 98.9 90.5 86.7 81.3 74.5 92.2 99.8 99.2 89.9 85.4 79.3 73.6 91.4 100 99.5 95.2 93.2 91.3 88.2 85.2 95.2 99.9 99.3 94.3 92.1 89.2 86.2 81.9 91.0 90.8
100 99.3 92.6 89.7 84.7 78.0 93.2 99.9 99.4 92.3 88.9 83.3 77.5 92.4 100 99.4 95.7 93.9 92.0 88.4 85.4 92.5 99.9 99.6 96.2 94.3 93.2 89.7 86.4 91.9 92.3
100 99.8 96.6 93.5 90.4 85.2 95.1 100 99.8 96.1 93.5 89.1 84.8 92.8 100 100 98.6 97.9 96.6 95.4 93.6 96.9 100 99.9 98.5 97.5 96.9 95.4 93.3 93.0 95.7
100 99.9 96.4 93.2 88.9 84.3 94.8 100 99.8 96.3 92.8 89.3 84.5 92.8 100 99.9 98.7 97.8 96.8 95.6 93.2 96.7 100 99.9 98.7 98.0 97.3 96.1 93.8 93.4 95.6
100 99.7 94.8 93.0 88.5 83.9 94.5 100 99.4 93.3 89.2 85.7 78.8 92.4 100 99.6 96.6 94.8 93.2 90.7 86.9 94.8 100 99.7 96.2 93.7 92.7 89.4 86.3 92.1 93.3
100 99.5 93.1 89.5 84.6 78.5 93.2 100 99.6 95.2 91.3 88.4 82.3 92.6 100 99.8 97.3 95.2 94.2 91.6 88.6 94.6 100 99.6 95.7 94.1 91.7 88.5 84.9 90.0 93.1
100 99.9 96.6 95.0 92.8 89.7 95.6 100 99.8 95.6 93.5 90.6 85.4 93.4 100 100 98.1 97.6 96.1 93.3 90.0 97.1 100 99.9 98.2 97.5 96.5 95.3 92.8 92.4 95.7
100 99.9 97.7 96.5 93.6 88.5 94.6 100 100 97.0 95.1 91.6 87.0 93.4 100 99.9 99.3 98.3 97.6 96.3 94.7 97.6 100 99.9 97.3 95.3 94.1 91.1 87.1 92.7 95.9
100 98.2 85.4 79.8 72.8 65.1 92.4 99.1 98.4 83.3 78.8 71.9 62.8 90.8 100 98.8 91.7 87.8 84.6 79.3 74.0 94.8 99.9 98.7 90.3 86.1 81.4 77.2 69.4 91.5 86.1
100 99.2 91.2 87.7 81.3 74.8 93.0 99.6 99.4 91.1 87.1 81.2 74.2 92.0 100 99.2 93.8 92.1 89.4 85.0 80.1 92.5 100 99.4 94.6 92.6 90.7 87.2 83.6 91.7 90.8
99.9 98.8 87.5 82.7 76.6 69.3 92.0 99.7 98.6 84.7 79.7 72.8 64.6 91.1 100 99.2 93.0 89.6 87.2 82.3 78.6 94.8 99.6 98.9 91.4 88.1 85.2 80.2 75.0 90.5 87.7
100 99.2 91.7 88.2 82.9 75.3 93.3 99.9 99.4 91.5 87.7 82.1 76.0 92.6 100 99.3 93.9 92.7 89.7 85.4 81.2 92.0 99.9 99.4 95.0 92.8 91.2 86.9 83.1 92.0 91.1
100 98.8 89.6 84.5 79.2 72.2 93.4 99.8 98.7 87.1 81.3 74.9 68.0 91.5 100 99.2 94.0 91.4 88.9 85.2 81.3 95.6 99.9 99.0 92.9 90.1 87.3 83.2 78.1 92.1 89.2
100 99.1 92.0 88.9 84.0 77.1 93.6 99.9 99.3 91.9 87.9 82.8 75.9 92.7 99.9 99.4 95.5 93.6 91.9 87.5 83.9 92.7 100 99.4 95.5 93.5 92.2 88.4 85.0 91.9 91.8
99.9 98.9 90.2 85.7 80.2 73.1 92.7 99.8 98.8 87.6 82.7 75.9 69.4 91.4 100 99.3 94.7 92.0 89.8 86.5 82.3 95.9 99.9 99.2 93.9 91.8 89.7 85.6 80.4 92.0 90.0
100 99.2 91.9 88.8 83.8 76.0 93.5 99.9 99.5 92.1 88.4 83.0 77.1 92.2 100 99.3 95.0 93.4 91.2 87.2 83.4 92.2 99.8 99.5 95.9 93.4 92.1 87.8 85.3 91.9 91.8
100 98.8 89.7 85.8 80.4 74.6 92.6 99.9 99.0 88.4 84.5 77.9 71.9 91.7 100 99.5 94.7 92.5 90.7 87.5 84.1 95.7 100 99.4 94.4 92.5 89.9 86.6 82.3 92.1 90.6
100 99.3 92.4 89.6 84.0 77.4 93.4 99.9 99.4 93.0 89.1 83.8 77.2 92.5 100 99.4 96.0 94.0 91.7 88.5 85.2 92.4 100 99.6 95.7 94.3 92.7 89.2 86.0 92.0 92.3
99.9 99.0 90.4 86.5 81.2 74.9 93.2 99.9 99.2 89.1 84.8 78.6 72.4 91.7 100 99.5 95.1 93.4 90.9 87.9 85.0 95.7 99.8 99.4 95.3 92.8 90.8 87.9 84.3 91.2 91.0
100 99.3 92.4 89.7 84.7 78.8 93.3 99.9 99.4 92.8 89.0 84.2 77.8 92.5 100 99.5 95.7 93.9 92.1 88.2 84.5 93.1 99.8 99.6 96.3 94.6 92.9 90.0 87.0 92.0 92.4
100 98.9 90.5 86.8 81.6 76.0 93.7 99.8 99.3 89.1 84.8 78.7 72.5 91.7 100 99.5 95.4 93.3 91.6 88.6 84.7 95.8 99.9 99.3 94.9 92.8 90.5 88.2 84.1 91.7 91.1
100 99.3 93.1 90.0 86.3 79.6 93.8 100 99.6 93.0 89.7 84.4 78.2 92.3 100 99.5 95.8 94.1 91.9 88.9 85.4 93.2 99.9 99.6 96.0 94.0 92.9 89.2 85.7 91.8 92.6
100 99.9 97.0 94.8 91.7 87.7 95.3 100 99.9 96.7 93.8 89.8 86.0 93.6 100 100 98.5 97.8 96.7 95.4 93.0 96.4 100 100 99.0 98.3 97.8 96.7 94.8 94.4 96.2
100 99.9 96.8 94.5 90.9 86.8 95.0 100 99.9 97.0 94.7 91.2 86.3 93.7 100 99.8 98.0 97.1 95.7 93.7 90.9 95.0 100 100 99.0 98.5 98.3 96.5 95.1 93.9 95.9
100 99.7 97.1 95.8 93.3 90.6 95.2 99.9 99.6 94.0 90.6 87.6 81.7 91.9 100 99.7 97.1 96.2 93.8 91.2 87.2 96.3 100 99.9 98.1 97.4 95.8 93.2 90.4 93.4 94.9
100 99.8 96.6 94.2 91.5 87.5 96.9 100 99.8 96.0 93.8 89.9 84.0 92.5 100 99.9 97.3 96.6 94.6 91.8 87.9 92.9 100 99.9 97.2 96.0 94.8 91.9 89.2 92.4 94.8
100 99.9 97.9 95.8 93.3 90.7 95.6 100 99.9 97.4 95.7 92.5 87.4 92.2 100 100 98.5 97.3 97.1 94.8 92.4 96.4 100 99.9 97.8 97.2 96.3 94.4 91.2 92.8 96.2
100 99.9 97.0 95.1 92.3 88.8 95.4 100 100 97.7 96.7 93.9 89.6 94.3 100 99.9 97.7 96.5 95.0 93.0 90.1 96.5 100 99.9 98.3 96.9 95.4 93.2 88.7 91.1 95.8
99.9 98.1 84.0 77.5 71.8 63.3 92.7 99.0 98.0 81.6 76.0 68.4 59.4 90.3 99.9 98.9 89.2 86.1 82.1 77.3 71.9 94.5 99.8 98.4 90.1 85.6 81.6 77.5 70.3 92.1 85.2
100 99.0 91.2 88.2 82.4 74.3 93.5 99.8 99.3 90.6 86.0 80.5 73.0 91.8 100 99.3 94.2 92.5 89.5 85.3 81.7 92.8 100 99.4 94.0 91.9 89.4 84.8 79.8 92.3 90.5
100 98.6 86.4 82.4 76.0 68.9 93.2 99.6 98.4 84.9 79.4 72.3 63.5 91.5 100 99.1 90.9 88.0 84.3 79.9 75.5 95.2 99.8 98.6 89.9 87.4 84.1 79.9 75.0 90.5 87.1
100 99.2 92.0 88.7 83.7 76.7 93.2 99.8 99.4 92.2 88.0 82.2 75.3 92.1 100 99.4 95.1 93.6 91.6 87.3 83.4 92.7 99.9 99.4 95.1 93.4 91.5 87.9 84.3 92.2 91.6
100 98.8 88.3 84.4 78.4 72.0 93.8 99.8 98.7 87.8 82.8 76.3 68.1 91.3 100 99.2 94.0 92.3 89.9 85.9 83.5 96.0 100 99.1 93.0 90.6 87.7 83.6 79.5 92.4 89.6
100 99.3 91.8 88.7 83.6 75.9 93.8 99.9 99.3 92.0 88.3 83.0 76.4 92.0 99.9 99.4 95.7 94.4 92.5 88.8 85.4 93.1 100 99.5 95.4 93.8 92.3 88.8 85.5 92.1 92.0
100 98.7 89.8 86.2 81.1 74.7 93.0 99.8 99.0 87.9 82.4 76.5 69.9 91.5 100 99.4 95.1 92.9 90.3 88.4 84.8 96.2 100 99.1 94.3 92.6 90.3 86.1 82.2 92.4 90.5
100 99.2 92.4 89.4 84.2 77.8 93.4 99.9 99.5 92.9 88.9 83.9 77.2 92.2 100 99.5 95.6 94.1 92.2 88.7 85.3 93.6 99.8 99.5 96.3 94.3 93.1 89.3 86.1 92.4 92.3
99.9 99.1 90.3 86.1 81.1 76.5 92.7 99.9 99.1 88.9 84.5 78.4 71.4 92.0 100 99.6 95.3 93.6 91.5 88.4 85.1 96.5 99.8 99.3 95.3 93.1 91.3 87.7 84.8 92.3 91.1
100 99.4 92.6 89.8 85.4 79.3 93.2 99.9 99.5 92.8 88.9 83.8 77.5 92.4 100 99.5 95.7 94.4 92.1 88.0 84.9 94.0 100 99.7 96.5 94.8 93.3 90.2 87.3 92.4 92.6
99.9 99.0 90.8 86.9 82.2 76.5 93.9 99.8 99.2 90.6 86.9 81.9 75.4 92.0 100 99.6 96.1 94.7 92.7 90.2 87.8 96.3 99.8 99.4 95.9 94.3 92.2 89.5 86.3 92.0 92.1
100 99.4 92.9 90.0 84.8 79.0 93.9 99.9 99.6 92.7 88.9 84.3 78.3 92.7 100 99.6 96.1 94.8 93.2 89.9 86.8 94.2 99.8 99.7 96.3 95.1 93.8 90.6 88.0 92.3 92.9
100 99.1 92.0 87.9 84.1 78.8 94.4 99.9 99.2 90.1 85.5 80.7 74.1 92.1 100 99.4 95.5 93.1 91.4 88.8 85.3 95.8 99.9 99.5 95.6 94.0 92.3 88.8 86.0 91.9 91.8
100 99.3 92.5 90.1 85.5 79.1 94.4 99.9 99.6 92.9 88.6 84.4 77.3 92.5 99.9 99.5 96.0 94.6 92.4 88.8 85.5 94.2 99.9 99.6 96.6 94.9 93.6 90.4 87.3 92.6 92.7
100 99.9 97.4 95.6 92.8 88.3 95.9 100 100 97.9 95.0 92.5 88.6 93.7 100 100 99.2 98.5 97.9 97.0 95.6 97.5 100 100 99.1 98.7 98.2 97.5 96.3 94.2 96.9
100 99.9 97.0 94.7 91.7 87.7 95.7 100 99.9 97.7 94.9 92.6 88.2 93.5 100 100 99.4 98.8 97.9 97.2 95.7 98.0 100 100 99.3 98.8 98.6 98.0 96.5 94.0 96.9
100 99.9 97.9 96.8 95.2 91.6 96.0 100 99.8 96.7 94.5 92.0 88.3 93.4 100 99.8 97.9 96.6 95.8 93.7 91.7 95.6 100 99.9 98.4 97.0 96.4 95.0 92.1 92.9 96.2
100 99.9 97.2 95.5 93.0 87.8 95.8 100 99.9 97.4 96.2 94.4 90.9 93.7 100 99.9 98.6 97.1 96.5 95.0 92.9 95.3 100 99.9 98.5 97.5 96.8 95.3 94.0 91.3 96.3
100 100 98.4 98.0 95.6 93.4 97.0 100 100 97.9 97.0 94.7 91.2 94.8 100 99.9 98.1 97.8 96.4 95.4 92.8 97.7 100 100 99.2 98.8 98.1 97.0 95.7 94.8 97.3
100 100 98.9 98.1 95.8 92.7 96.7 100 99.9 96.6 93.1 90.3 84.5 92.8 100 100 99.3 98.9 98.1 97.1 95.7 97.5 100 100 98.8 98.2 97.1 95.0 92.7 94.4 96.7
99.5 97.4 79.1 72.6 63.7 55.8 92.8 96.3 96.3 75.2 66.1 58.2 47.6 89.1 99.7 97.5 83.5 79.2 74.0 69.2 62.7 94.4 96.9 97.3 84.7 79.3 75.3 71.2 64.0 89.2 80.3
100 99.2 90.5 87.1 81.5 75.0 93.2 99.4 99.2 90.7 86.8 80.3 73.5 92.0 99.8 99.4 94.3 92.5 89.9 85.4 81.8 92.3 99.8 99.5 94.7 92.8 90.6 87.4 83.1 92.8 90.8
99.6 98.0 82.6 76.8 68.1 60.2 93.3 98.8 97.5 81.9 74.3 67.4 59.0 90.9 99.9 98.0 87.1 82.0 78.6 74.1 68.8 95.5 99.4 98.4 88.7 84.2 80.4 76.0 69.6 90.2 84.0
100 99.1 91.7 88.9 84.4 77.4 93.3 99.5 99.4 92.0 87.9 83.3 75.9 92.0 100 99.5 94.8 93.7 92.0 87.8 84.5 93.4 100 99.5 95.2 93.9 91.9 88.6 85.3 93.2 91.9
100 98.9 86.4 82.0 75.0 67.7 94.1 99.4 98.3 86.9 81.1 74.6 67.3 92.1 99.9 98.8 91.6 87.4 85.0 82.2 77.7 96.1 99.8 98.8 92.2 89.4 85.9 82.9 78.0 91.7 88.0
100 99.3 93.2 90.3 85.7 80.0 94.1 99.8 99.4 92.7 88.5 83.5 76.7 92.5 100 99.6 96.4 95.4 94.0 90.5 88.6 93.7 100 99.6 96.2 95.1 93.7 90.7 88.0 93.3 93.0
100 99.0 88.5 84.4 77.5 71.5 94.7 99.2 98.9 90.0 83.4 77.9 70.1 92.5 99.9 99.2 94.1 91.1 88.6 86.8 83.9 96.5 99.7 99.4 94.1 91.6 88.9 86.7 82.3 92.1 90.1
100 99.4 93.4 91.4 86.4 81.4 93.5 99.9 99.6 92.8 89.7 84.9 78.0 92.1 100 99.6 96.6 95.3 94.3 90.9 88.2 93.7 99.9 99.7 96.3 94.6 93.4 90.9 88.0 93.1 93.2
99.9 99.2 90.2 85.6 78.9 72.2 95.2 99.4 99.2 90.4 85.7 81.8 73.0 92.4 100 99.4 95.1 92.5 90.1 87.9 85.0 96.9 99.8 99.5 95.6 93.4 91.1 89.3 85.3 93.0 91.2
100 99.5 93.5 91.4 87.4 82.9 93.9 99.9 99.6 93.5 89.4 85.2 78.5 93.0 100 99.7 96.7 95.8 94.1 90.9 88.4 93.7 99.8 99.8 97.0 96.0 94.7 92.0 89.9 92.7 93.6
99.9 99.0 90.0 84.5 79.7 73.3 95.0 99.4 99.2 91.3 87.0 82.0 74.0 92.8 100 99.6 94.9 92.8 90.7 89.2 86.2 96.9 99.7 99.5 95.6 93.5 91.1 88.9 85.2 92.7 91.5
100 99.4 93.3 91.2 87.4 81.7 93.8 99.9 99.4 93.3 90.1 86.0 79.4 92.7 100 99.7 96.7 95.5 94.1 90.9 88.3 94.0 99.9 99.7 96.9 95.5 94.6 91.9 89.2 93.0 93.6
99.9 99.1 90.4 85.9 79.6 74.8 95.3 99.6 99.2 90.6 86.1 80.3 72.8 92.9 100 99.6 95.2 93.0 90.9 88.4 86.7 97.1 99.8 99.6 95.9 93.5 92.1 90.0 86.0 93.1 91.6
100 99.4 93.8 91.4 86.8 83.0 94.1 99.9 99.5 94.4 91.3 87.2 81.2 92.8 100 99.6 96.6 95.4 94.0 91.0 88.4 94.1 99.7 99.7 97.3 96.5 95.2 92.7 90.8 93.4 94.0
100 99.9 97.7 96.4 94.1 91.0 96.6 100 100 98.5 97.3 95.7 93.8 94.2 100 100 99.7 99.6 99.2 98.7 98.3 98.3 100 100 99.8 99.4 99.4 99.2 98.4 95.2 98.0
100 99.9 97.7 96.0 93.8 90.0 96.5 100 100 98.7 97.5 96.1 93.1 93.3 100 100 99.6 99.4 99.3 98.8 97.9 98.5 100 100 99.7 99.3 99.0 98.8 97.9 94.9 97.9
100 99.9 98.3 96.8 95.8 93.6 96.1 100 99.9 98.7 98.0 96.9 94.5 96.0 100 99.9 98.9 98.1 97.1 95.6 93.9 98.8 100 99.9 98.3 97.2 96.3 94.9 93.7 97.0 97.5
100 100 98.8 97.9 96.8 94.8 96.0 100 99.8 97.9 96.9 95.2 93.2 91.5 100 100 99.1 98.9 98.4 96.6 96.2 97.3 100 100 99.5 98.9 98.4 97.5 95.8 96.9 97.7
100 99.9 98.2 97.7 96.9 95.0 97.7 100 100 98.6 98.4 96.7 95.2 96.5 100 99.9 98.0 97.3 95.6 94.3 91.8 98.5 100 100 99.2 98.3 97.8 97.2 95.3 96.1 97.7
100 100 99.1 98.8 97.5 95.3 98.1 100 100 98.2 97.6 96.1 93.9 93.7 100 100 99.8 99.7 99.5 98.7 98.4 98.4 100 100 99.6 99.6 99.2 98.5 98.0 95.1 98.4

Figure 10: Pretrain vs. finetune on retry data. This figure complements Figure 5 by including additional results
for retry rate ̸= 0.2. All conclusions under Figure 5 remain the same.

Additional observation 1: although rarely, retry (finetune, lora) can outperform the original
model especially when retry rate = 0.5, and label masking is on, and a very high-rank LoRA
finetune is used.
Additional observation 2: although retry (continued pretrain) improves upon retry (pretrain),
it uses twice the number of training tokens (T tokens from retry plus T tokens from error-free
data); if comparing this against retry (pretrain, double-time) which is to directly pretrain using
2T tokens from retry data, there is no significant accuracy improvement.
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E MORE EXPERIMENTS FOR FAKE RETRY DATA (RESULT 8)

We have included the accuracy results for the retry weak or retry miss data in Figure 8 in Section 6
(Result 8). Below in Figure 11, we additionally showcase the number of retries and that the models
can still generate shortest solutions most of the time.
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retry | retryrate0.05
retry | retryrate0.05 (with mask)
retry | retryrate0.1
retry | retryrate0.1 (with mask)
retry | retryrate0.2
retry | retryrate0.2 (with mask)
retry | retryrate0.4
retry | retryrate0.5
retry | retryrate0.5 (with mask)
retry_miss | retryrate0.05
retry_miss | retryrate0.1
retry_miss | retryrate0.2
retry_miss | retryrate0.5
retry_weak | retryrate0.05
retry_weak | retryrate0.05 (with mask)
retry_weak | retryrate0.1
retry_weak | retryrate0.1 (with mask)
retry_weak | retryrate0.2
retry_weak | retryrate0.2 (with mask)
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retry counts
(on correct)

(a) Model’s average number of retries per test problem (among generated correct solutions); this figure com-
plements Figure 6(a) by including also retry weak and retry miss.
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(on correct solutions)

(b) Model’s average number of unnecessary operations or parameters per test problem (among correct solu-
tions); this figure complements Figure 7 by including also retry weak and retry miss.

Figure 11: Average number of retries and unnecessary operations per generated (correct) solution. Details see
Appendix F.1.

Observations. When pretrained with retry weak or retry miss data, the model tends to retry more
frequently than the perfect retry data, especially for retry rate ≥ 0.1 (top table); yet the model does
not tend to compute more unnecessary parameters than the perfect retry data (bottom table).

F EXPERIMENT DETAILS AND PARAMETERS

Model. We use the GPT2 architecture (Radford et al., 2019), replacing its absolute positional em-
bedding with modern rotary positional embedding (Su et al., 2021; Black et al., 2022), still referred
to as GPT2 for short. We also played with the Llama architecture (especially with gated MLP layers)
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and did not see any benefit of using it. This GPT2 performs comparably to Llama/Mistral at least
for knowledge tasks (Allen-Zhu & Li, 2024b).

Let GPT2-ℓ-h denote an ℓ-layer, h-head, 64h-dim GPT2 model. We primarily use GPT2-12-12
(a.k.a. GPT2-small) throughout this paper. We use the default GPT2Tokenizer, and a context length
of 768/1024 for language model pretraining on iGSM-med/iGSM-hard and a context length of
2048 for evaluation.

Data Size. For both pretraining and finetuning, we did not limit the amount of training data; we
generated new data on-the-fly. We do not explore sample complexity in this paper, such as the
number of math problems needed to achieve a certain level of accuracy, as it would complicate the
main message of this paper.

F.1 PRETRAIN EXPERIMENT DETAILS

Pretrain parameters. Throughout this paper, when we pretrained a model (except for “pretrain
double-time”), we followed the same pretrain parameter choices of Anonymous (2024). That is, we
used the AdamW optimizer with mixed-precision fp16, β = (0.9, 0.98), cosine learning rate decay
(down to 0.01x in the end + 1000 steps of linear ramp-up). We used a mixture of V100/A100 GPUs,
but the GPU specifications are not relevant here.21 For all the experiments (with original data, or
retry data, or retry weak, or retry miss):

• For pretraining on the iGSM-med datasets, we used a learning rate of 0.002, weight decay of
0.05, batch size of 512, context length of 768, and trained for 100, 000 steps.

• For pretraining on the iGSM-hard datasets, we used a learning rate of 0.002, weight decay of
0.03, batch size of 256, context length of 1024, and trained for 200, 000 steps.

Our pretrain data is constructed by randomly generating math problems (and solutions), concate-
nating them together, and truncating them (in the right) to fit within the 768 or 1024-sized context
window. If a problem (with solution) is longer than the context window size, we discard it.

Test-time parameters. When evaluating on test data, we use context length 2048 for both
iGSM-med and iGSM-hard.22 We use either beam=1 and dosample=false (greedy) or beam=4
and dosample=true (beam-search multinomial sampling) to present test accuracies. (Except for the
original no-retry training, we also tried beam=16/32 with dosample=true.) We discover it is better
to keep dosample=false while beam=1 and dosample=true while beam > 1.

Our accuracies are not simply from comparing the answer integers (between 0 and 22); instead we
have written a parser to make sure the model’s intermediate solution steps are fully-correct.

Accuracy statistics. In each of our accuracy result, such as each cell in Figure 3(b), Figure 4(b),
Figure 8, we average the model’s evaluation over 4096 math problems of that type.

In Figure 4(b) and Figure 8, since we care about the (relatively small) accuracy differences across
models, we pretrain using two different random seeds, and evaluate with both beam=1/4; we then
present the best accuracies in each cell with respect to the 2 seeds and 2 beam choices.

For the retry count statistics in Figure 6(a), Figure 6(b), Figure 11(a) and the unnecessary parameter
count statistics in Figure 7 and Figure 11(b), we also tested each model with 4096 math problems in
each case. We then presented the statistics among the model’s correct solutions or wrong solutions
in these figures.

Pretrain (double-time) parameters. In Figure 10 of this appendix, we have also included ex-
periments with pretraining for twice the number of retry data tokens. In that experiment, we have
followed the same pretraining parameters, except that:

21A 128-GPU job with batch size 1 each would be identical to a 32-GPU job with batch size 4 each.
22During evaluation, we discard problems (with error-free, ground-truth solutions) longer than 768 tokens

for iGSM-med (or 1024 for iGSM-hard), but allow the generation process to use up to 2048 tokens. This
follows Anonymous (2024) to ensure a direct comparison. Notably, we do not discard problems based on their
token length after including errors and corrections. Adding errors lengthens the solutions, and discarding such
data would bias the test distribution towards simpler problems. Thus, when comparing models pretrained with
error-free vs retry data in Figure 4(b), the models were evaluated using the same test data distribution.
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• For pretraining (double-time) on the iGSM-med datasets, we decreased weight decay to 0.03,
and trained for 200, 000 steps (twice than before).

• For pretraining (double-time) on the iGSM-hard datasets, we decreased weight decay to 0.02,
and trained for 400, 000 steps (twice than before).

F.2 V-PROBING EXPERIMENT DETAILS

The V-probing for can next(A) was introduced in Anonymous (2024). It is a fine-tuning process
upon the pretrained language model, with an additional linear head on the output layer, and a small
rank-r update on the input (embedding) layer. The pretrained model is freezed, and only this linear
head and the rank-r update are trainable parameters during the fine-tuning stage (for the probing
task).

In this paper, our “can next probing version1” followed the exact same parameters as Anonymous
(2024). That is, we use a small r = 8 so if probing accuracy is high, it mostly comes from the
pretrained model and not the additional trainable parameters. We used learning rate 0.002 (with no
ramp-up, linear decay down to 0), weight decay of 0.01, and a batch size of 256 for iGSM-med (or
128 for iGSM-hard) and trained for 100, 000 steps. One can calculate that in version1, this is 50%
(or 25% for iGSM-hard) of the training tokens comparing to the pretrain process. That is a lot of
finetune samples.23

For such reason, we also implemented a “can next probing version2”, which uses more trainable
parameters but significantly fewer training samples. Specifically, we choose r = 32 and additionally
allow for a rank-2 update on the query/value matrices in the GPT2 model (this is 768 × 4 × 2 ×
12 trainable parameters for all the 12 layers). We used batch size 8, best learning rate between
{0.001, 0.0005} (same linear scheduling), weight decay 0, and finetuned for 16, 000 steps. This is
only 0.25% of the training tokens comparing to the pretrain stage.

We implemented “retry upon regret” for both versions and their accuracies were presented in
Figure 3(b) — once again, averaged over 4096 problems in each cell.

F.3 FINETUNE EXPERIMENT DETAILS

LoRA finetune. In Section 5, we applied LoRA finetuning (Hu et al., 2021) on a pretrained model
using the new “error + correction” data. LoRA involves freezing the pretrained model and adding
trainable low-rank updates to the weight matrices. It is recommended to apply low-rank updates to
the query/value matrices (Hu et al., 2021) and the embedding matrix (Allen-Zhu & Li, 2024a).

We experimented with a wide range of low-rank configurations, using rank-r for the query/value
matrices and rank-2r for the embedding matrix, with r ∈ {4, 8, 16, 32, 64, 128, 256}. Notably,
using r = 256 is almost equivalent to full finetuning, given that the hidden dimension is 768 for
GPT2-12-12.

In this experiment, we used the same parameters as the pretraining (e.g., AdamW, betas, cosine lr
scheduling), except that

• For LoRA finetuning on the iGSM-med datasets, we used a learning rate of 0.001, weight decay
of 0.05, batch size of 256, context length of 768, and trained for 200, 000 steps.

• For LoRA finetuning on the iGSM-hard datasets, we used a learning rate of 0.001, weight decay
of 0.05, batch size of 128, context length of 1024, and trained for 200, 000 steps.

(LoRA finetuning typically requires a smaller learning rate.) Note this is the same as the pretraining
tokens for iGSM-med and half of that for iGSM-hard, which is sufficient for the training curve to
plateau.24

Our accuracy results were presented in Figure 5, and once again in each cell we have evaluated
the model over 4096 math problems. Similar to all other retry experiments (see Appendix F.1), we

23The goal of Anonymous (2024) is to showcase the existence of very small rank-r update, so they did not
worry about the sample complexity. In this paper instead, we are interested in the practicality (e.g., to use
probing to guide the model’s generation) so we wish to lower down the sample complexity.

24We have picked the last checkpoint for evaluation (not the best); but this is okay since there is no catas-
trophic forgetting in this finetune process (because there are sufficiently many, freshly-sampled retry data).
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performed LoRA finetuning from (two) pretrained models using 2 random seeds, and presented the
best accuracy among the 2 seeds and the two beam=1/4 choices.

Full finetune = continued pretrain. In Section 5, we also applied full finetuning. This used the
same parameters as pretraining (e.g., AdamW, betas, cosine lr scheduling), except that25

• For full finetuning on the iGSM-med datasets, we used learning rate 0.001, weight decay 0.05,
batch size of 512, context length of 768, and trained for 100, 000 steps.

• For full finetuning on the iGSM-hard datasets, we used learning rate 0.001, weight decay 0.03,
batch size of 256, context length of 1024, and trained for 200, 000 steps.

Note that this full finetune uses the same number of training tokens comparing to pretrain in
Section F.1.

Once again, our accuracy results were presented in Figure 5, and in each cell we have evaluated the
model over 4096 math problems. We performed full finetuning from (two) pretrained models using
2 random seeds, and presented the best accuracy among the 2 seeds and the two beam=1/4 choices.

25For iGSM-med we have also tried learning rate 0.002 and/or weight decay 0.005 and found results very
similar. For iGSM-hard we also tried learning rate 0.002 and/or weight decay 0.003 and found results are very
similar.
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