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Abstract001

Pinpointing cancer genes (tumor promoters002
or suppressors) within thousands of cancer-003
related genes is fundamental to oncogenomics,004
which studies genetic changes leading to can-005
cer. Approaches to analyzing biological data006
such as DNA sequence and gene expression007
for the discovery of cancer-related genes are008
constrained by their high dimensionality, spar-009
sity, and noise, which impede capturing all010
relevant connections. Therefore, we propose011
an alternative and unexplored perspective: In-012
stead of inferring directly from biological data,013
we systematically integrate existing textual014
knowledge of gene-cancer associations from015
the oncogenomics literature to identify genes016
most strongly involved in cancer-related activi-017
ties. We introduce LILY (Latent, Interaction,018
Learn, and Yield), a computational hub that019
bridges and uncovers a substantial volume of020
promising, novel gene-cancer relationships. It021
leverages Biomedical Large Language Mod-022
els (BioLLMs) to extract fragmented infor-023
mation from individual studies and converts024
these relationships into numerical representa-025
tions. Then, it interactively refines its knowl-026
edge through validation of latent gene-gene027
and cancer-cancer associations and generates028
predictions of cancer-related genes with high029
confidence. Empirical results demonstrate that030
LILY produces highly accurate predictions for031
cancer-related genes in breast, cervical, lung,032
prostate, and sarcoma cancers using limited033
training data. Moreover, its performance incre-034
mentally improves as additional data become035
available, a finding further substantiated by ro-036
bustness tests and ablation studies.037

1 Introduction038

Today, of the approximately 20,000 protein-039

coding genes discovered in the human genome,040

about 700 have been identified as cancer genes:041

driver genes with mutations or overexpression that042
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Figure 1: (a) TP53, a tumor suppressor gene, regulates
the cell’s response to DNA damage through mechanisms
like cell cycle arrest, DNA repair, senescence, and apop-
tosis, helping prevent cancer development. (b) However,
when oncogenes are activated or TP53 is inactivated,
such as through MDM2, its functions are compromised,
allowing damaged cells to proliferate uncontrollably.
This promotes tumorigenesis, increasing the risk of can-
cers of the lung, breast, and colon. Texts with a colored
background refer to gene or cancer entities.

either actively promote tumor progression (known 043

as oncogenes) or suppress it (Martínez-Jiménez 044

et al., 2020; Zhang et al., 2024). For instance, TP53, 045

a tumor suppressor gene, regulates the cellular re- 046

sponse to DNA damage and maintains genomic 047

stability through mechanisms such as cell cycle ar- 048

rest, senescence, and apoptosis (Funk et al., 2025). 049

Inactivation of TP53, or activation of oncogenes 050

like MDM2—which negatively regulates TP53 by 051

promoting its degradation, affects these functions, 052

allowing damaged cells to bypass safeguards and 053

proliferate uncontrollably, leading to tumorigene- 054

sis (see Figure 1). Similarly, overexpression of the 055

HER2 gene, common in certain aggressive breast 056

cancers, promotes uncontrolled cell proliferation 057

and survival by activating key signaling pathways 058

such as PI3K/AKT and MAPK. This discovery 059

has led to targeted therapies such as trastuzumab, 060

a monoclonal antibody that specifically inhibits 061
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Figure 2: Our pipeline model for NER and RE.

HER2 signaling and improves patient outcomes062

(Slamon et al., 1987). Accurate targeting of can-063

cer genes enables elucidation of molecular mech-064

anisms, identification of biomarkers for early de-065

tection and treatment, and guidance for future re-066

search. Although well-known cancer genes such as067

TP53, MDM2, and HER2 have been established,068

many additional genes may contribute to oncogen-069

esis and require rigorous experimental validation;070

however, pinpointing them among nearly 20,000071

protein-coding genes for each cancer type remains072

a formidable challenge. Therefore, identifying can-073

didate genes that are most strongly associated in074

cancer-related activities is crucial for efficient and075

effective experimental validation.076

Biomedical large language models (BioLLMs)077

such as BioBERT (Lee et al., 2020) and Clin-078

icalBert (Alsentzer et al., 2019) have excelled079

in biomedical text mining, patient stratifica-080

tion, and prognostic modeling (Clusmann et al.,081

2023). It is therefore natural to consider train-082

ing these BioLLMs on oncogenomics literature083

from sources including PubMed (NLM, 2025) and084

OMIM (McKusick, 2007), which offer a rich, high-085

quality labeled repository of gene–cancer associ-086

ations derived from clinical studies and expert di-087

agnoses, capturing both experimentally validated088

associations and observed correlations. However,089

three challenges remain: (1) most gene–cancer as-090

sociations are still undiscovered, leaving the train-091

ing data insufficient despite the literature’s richness092

and validity; (2) the information is inherently frag-093

mented, often from isolated articles (e.g., “Two094

genes, called BRCA-1 and BRCA-2, have been095

identified that appear to be responsible for the ma-096

jority of familial breast cancer syndromes” and097

“The cancer risks associated with BRCA-2 muta-098

tions appear to be somewhat lower than those of099

BRCA-1” (Mann and Borgen, 1998)), complicating100

BioLLMs processing; and (3) LLMs remain suscep-101

tible to hallucination, which undermines their abil-102

ity to accurately identify cancer-related genes for103

efficient experimental resource allocation (Li et al.,104

2024b). Therefore, we propose LILY, a computa-105

tional model that leverages BioLLMs for training 106

data collection, integrates such data to model the 107

complex networks underlying gene–cancer associ- 108

ations and produces all predictions simultaneously 109

with high confidence and precision using available 110

information (Cremin et al., 2022; Moon et al., 2023; 111

Hughes et al., 2023; Tian et al., 2024). 112

We extract gene-cancer dependencies from indi- 113

vidual articles in the oncogenomics literature us- 114

ing established BioLLMs and text mining mod- 115

els, including gene–cancer associations, gene- 116

gene interactions (regulatory/co-expression pat- 117

terns), and cancer–cancer correlations (shared path- 118

ways/phenotypic similarities) (Lai et al., 2021a; 119

Kinnersley et al., 2024). These dependencies are 120

converted into standardized numerical representa- 121

tions that capture connection strength and the fre- 122

quency of repeated mentions, forming three high- 123

dimensional yet sparse matrices that document la- 124

tent dynamics between gene-cancer, gene-gene, 125

and cancer-cancer as inputs into LILY. We devel- 126

oped a novel sparse matrix completion algorithm 127

that interactively optimizes these matrices by lever- 128

aging constraints imposed by their interrelation- 129

ships. The optimized matrices retain biological 130

plausibility (e.g., shared pathways and phenotypic 131

similarities) and yield remarkable performance in 132

predicting novel cancer-related genes with scarce 133

data and substantial improvements as additional 134

data become available (Hoehndorf et al., 2014; 135

Sunde et al., 2024). Our key contributions are: 136

1. We introduce a novel computational model that 137

integrates oncogenomics literature to predict cancer 138

genes exclusively from BioLLMs-extracted data. 139

2. We demonstrate that computationally inferring 140

gene–cancer associations, by integrating interactive 141

constraints derived from inferred gene-gene and 142

cancer–cancer relationships, overcomes BioLLMs’ 143

limitations in linking fragmented information. 144

3. We find that incorporating additional interactive 145

constraints among entity relationships may further 146

improve BioLLMs’ ability to robustly bridge in- 147

formation beyond gene–cancer associations, such 148

as cancer–symptom and cancer–medicine relation- 149

ships. Therefore, we provide our collected experi- 150

mental datasets for future comparative studies. 151

2 Related Works 152

2.1 Named Entity Recognition and Relation 153

Extraction in BioLLMs 154

BioLLMs are tailored to biomedical texts, which 155
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differ significantly from general language (Fried-156

man et al., 2002). Biomedical Named Entity157

Recognition (NER) identifies domain-specific en-158

tities (e.g., genes, cancers, chemicals). To ad-159

dress the resource-intensive, expertise-driven na-160

ture of oncogenomics extraction, recent studies161

have yielded promising results: KECI enhances162

entity and relation extraction by fusing span graphs163

with Unified Medical Language System (UMLS)164

knowledge via collective attention (Lai et al.,165

2021b). BERT-AMR-KG boosts biomedical in-166

formation extraction by fusing abstract meaning167

representation with knowledge graphs via an edge-168

conditioned graph attention network (Zhang et al.,169

2021). PubTator 3.0 (Wei et al., 2019) employs170

AIONER (Luo et al., 2023) for NER and BioREx171

(Lai et al., 2023) for relation extraction. In our172

work, we use PubTator 3.0 in a pipeline approach173

to label oncogenomics articles from sources includ-174

ing OMIM (McKusick, 2007) and PubMed (NLM,175

2025), centralizing on cancer–gene relationships.176

This curated dataset serves as the robust data source177

for LILY.178

2.2 Sparse Matrix Completion179

Sparse matrix completion has demonstrated sig-180

nificant success in predicting missing values from181

observed data and inferring unobserved relation-182

ships, achieving remarkable results across domains183

such as recommendation systems, social network184

analysis, and signal processing (Candes and Recht,185

2008; Wen et al., 2012; Bertsimas and Li, 2020;186

Kim and Chung, 2023; Wang et al., 2023). In LILY,187

after converting textual gene–cancer associations188

extracted from oncogenomics literature into em-189

beddings, we employ a probabilistic framework for190

matrix completion to infer missing links in gene-191

cancer networks, aided by gene-gene interactions192

and cancer-cancer correlations to substantiate the193

results. Our model outputs predictions of cancer194

genes with a predetermined, high level of confi-195

dence, while those below the confidence threshold196

are excluded to preserve the original sparsity of the197

data (Zhou and Tao, 2011; Li et al., 2024a).198

3 The Proposed Method199

In this section, we present the detailed theoretical200

foundations of LILY, our proposed model. Key201

notations are summarized in Table 1.202

3.1 Structured Representation of gene-cancer203

Relationships204

Figure 3: Overview of LILY: (a) Interactive updates
between the observed gene-cancer matrix and reasoned
gene-gene and cancer-cancer matrices constructed by
processed oncogenomics data. (b) Completed gene-
cancer, gene-gene, and cancer-cancer matrices with
high-confidence approximations by solving Eq. 1.

Oncogenetics articles were retrieved from 205

OMIM, PubMed Central, and ClinicalTrials.gov. 206

We developed a pipeline to extract relevant enti- 207

ties and relationships. We performed named entity 208

recognition (NER) using a fine-tuned BioBERT 209

model with a BIO scheme to label each token as 210

beginning (B-), inside (I-), or outside (O) an entity. 211

To enhance coverage, we also employed PubTa- 212

tor 3.0 for extraction. Since PubTator only tags 213

“DISEASE” entities, we additionally extracted spe- 214

cific MESH IDs for different cancer type mentions. 215

PubTator 3.0 has been updated to use AIONER for 216

NER and GNorm2 for gene normalization. While 217

using our own NER module, we allowed partial 218

matching of predicted mentions to fully leverage 219

PubTator 3.0’s normalization. We further fine- 220

tuned BioBERT to extract gene-cancer, gene-gene, 221

and cancer-cancer relations (see pipeline in Figure 222

2), which are converted into numerical representa- 223

tions that form the basis of the relationship matrices 224

used in subsequent computations (see Figure 3). 225

3.2 The Objective Function 226

Processed oncogenomics data first forms a gene- 227

cancer matrix Mgc ∈ Rm×n, where m is the num- 228

ber of genes and n is the number of cancer types. 229

Each entry Mgc[i, j] quantifies the strength or pres- 230

ence of the association between gene i and cancer 231

type j. However, many entries are missing, posing 232

significant challenges for downstream analysis. 233

To address this, we develop a sparse matrix com- 234

pletion algorithm to infer missing entries in Mgc 235
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Notation Definition
m Number of gene types
n Number of cancer types
i, k Gene indices
j, l Cancer type indices

Mgc ∈ Rm×n Observed gene-cancer matrix
Mgg ∈ Rm×m Reasoned gene-gene matrix
Mcc ∈ Rn×n Reasoned cancer-cancer matrix
M com

gc ∈ Rm×n Completed gene-cancer matrix
PΩgc(·) Observed-entry projection
Pχτ (·) Confidence-mask projection
χτ Binary confidence mask
Aij Annotated association scores
Cij Propagated association scores

f
(
Aij , Cij

(
M com

gc

))
Confidence score

τ Threshold for χτ

α High confidence score for f(·, ·)
w Weight for Aij

λ1 Regularization weight
TopX(i) Top X related cancers for gene i

Table 1: Notations used in the objective function.

by integrating observed relationships from oncoge-236

nomics literature and high-confidence auxiliary in-237

formation. Specifically, we solve the following238

convex optimization problem (Kilmer and Martin,239

2011; Candès and Recht, 2012; Davis et al., 2021):240

241

min
Mcom

gc

∥∥PΩgc

(
Mgc −M com

gc

)∥∥2
F

+ λ1

∥∥Pχτ

(
M com

gc

)∥∥
∗

s.t. ∀(i, j) ∈ TopX(i) : f
(
Aij , Cij

(
M com

gc

))
≥ α.

(1)242

Here, M com
gc ∈ Rm×n represents the completed243

gene-cancer matrix. The objective function bal-244

ances fidelity to the observed data, enforcement of245

a low-rank structure, alignment with prior knowl-246

edge, and statistically robust relationships.247

The first term of Eq. 1 preserves the observed248

entries in the original matrix Mgc within M com
gc .249

Specifically, the projection operator PΩgc(·) re-250

stricts the optimization to the observed entries,251

which prevents inferred values from overwriting252

known data and ensures consistency with available253

observations.254

The second term enforces a low-rank structure255

on M com
gc , which facilitates the discovery of funda-256

mental biological patterns and reduces noise. This257

regularization is applied only to confidence entries,258

as determined by the projection operator Pχτ (·)259

and the binary mask χτ ∈ {0, 1}m×n. This mask260

is generated by applying a threshold τ to the confi-261

dence score f
(
Aij , Cij

(
M com

gc

))
, which integrates262

the annotated association score Aij from Mgc with263

the propagated association score Cij from M com
gc : 264

χτ [i, j] =

{
1, if f

(
Aij , Cij

(
M com

gc

))
≥ τ

0, otherwise
(2) 265

where 266

f
(
Aij , Cij

(
M com

gc

) )
= |w ·Aij + Cij |, (3) 267

with w a weight parameter. The use of absolute val- 268

ues in Eq. 3 mitigates errors from the text mining- 269

derived Aij and captures both positive and negative 270

contributions, which enhance robustness. By ap- 271

plying the low-rank constraint, scaled by λ1 > 0, 272

exclusively to these high-confidence entries, the 273

model retains flexibility in those entries where the 274

available data do not provide sufficient confidence 275

for reliable prediction. 276

The constraint of the confidence score τ in Eq. 2 277

retains gene-cancer associations deemed significant 278

for consideration. A stricter threshold α > τ in 279

Eq. 1 further ensures that the top X probable can- 280

cer types related to gene i, denote as TopX(i) and 281

measured in confidence score in M com
gc , where X is 282

a positive integer, satisfies an even more rigorous 283

criterion: 284

TopX(i) = {Cij ∈ topX({Ci1, . . . , Cin})}, (4) 285

where topX(·) denotes the X highest values in the 286

set. Specifically, the propagated correlation score 287

Cij is derived from the reasoned gene-gene correla- 288

tion matrix Mgg ∈ Rm×m and cancer-cancer corre- 289

lation matrix Mcc ∈ Rn×n, which encode pairwise 290

relationships based on association patterns in Mgc. 291

The propagated correlation score Cij is derived by 292

summing over genes k and cancers l: 293

Cij =
m∑
k=1

Mgg[i, k] ·M com
gc [k, j]

+

n∑
l=1

Mcc[j, l] ·M com
gc [i, l],

(5) 294

thus enabling indirect gene-gene relationships to 295

inform the gene-cancer matrix. To construct Mgg, 296

we treat each row of Mgc as a vector and compute 297

the Pearson correlation coefficient (PCC) between 298

rows i and k (Schober et al., 2018): 299

Mgg[i, k] = PCC(Mgc[i, :],Mgc[k, :]). (6) 300

Similarly, Mcc is built by treating each column of 301

Mgc as a vector and computing the PCC between 302

columns j and l: 303

Mcc[j, l] = PCC(Mgc[:, j],Mgc[:, l]). (7) 304
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Collectively, the objective function ensures that305

M com
gc preserves observed data, uncovers under-306

lying biological structure through low-rank con-307

straints, and integrates both direct and propagated308

information, yielding a robust and interpretable309

completed gene-cancer matrix.310

3.3 Sparse Matrix Completion311

To solve the objective function in Eq. 1, we312

employ the Projected Proximal Method. We de-313

compose the objective function in Eq. 1 into two314

parts: a smooth component and a non-smooth com-315

ponent. The smooth component is defined as:316

F (M com
gc ) = ∥PΩgc(Mgc −M com

gc )∥2F , (8)317

which is differentiable with respect to M com
gc and318

is well-suited to gradient-based optimization. The319

non-smooth component is given by:320

R(M com
gc ) = λ1∥Pχτ (M com

gc )∥∗. (9)321

Additionally, we impose the following linear con-322

straints:323

S =
{
M com

gc ∈ Rm×n
∣∣∣ f(Aij , Cij

(
M com

gc

))
≥ α

∀(i, j) ∈ TopX(i)
}
,

(10)324

where f
(
Aij , Cij

(
M com

gc

))
is linear in M com

gc . Con-325

sequently, the feasible set S forms a convex326

polyhedron–an intersection of half-spaces–which327

can be efficiently handled with quadratic program-328

ming. Due to the convexity of both F (Eq. 8) and329

R (Eq. 9), the Projected Proximal Method itera-330

tively updates the completed matrix M com
gc through331

gradient descent on F, proximal updates on R, and332

projection onto S until convergence.333

Gradient Descent Step on F (M com
gc ): We com-334

pute the gradient ∇F
(
M com

gc

)
of F (M com

gc ) with335

respect to M com
gc and update the matrix as follows:336

M
com,(t+ 1

2
)

gc = M com,(t)
gc −η·∇F

(
M com,(t)

gc

)
, (11)337

where η > 0 is the step size. We set η = 10−3.338

Proximal Step on R(M com
gc ): Given the intermedi-339

ate matrix M
com,(t+ 1

2
)

gc from Eq. 11, we apply the340

confidence-mask projection Pχτ (·) as defined in341

Eq. 2 to retain only high-confidence entries:342

X ′ = Pχτ

(
M

com,(t+ 1
2
)

gc

)
. (12)343

We then perform Singular Value Decomposition344

(SVD) on X ′ ∈ Rm×n and reconstruct the ma-345

trix using the thresholded singular values to obtain346

X̃ ∈ Rm×n, the thresholded matrix. The proxi- 347

mal operator, M
com,(t+ 1

2
,svt)

gc , is thus expressed as 348

the combination of X̃ and the entries excluded by 349

Pχτ (·) in the intermediate matrix: 350

M
com,(t+ 1

2
,svt)

gc = X̃ + (I − Pχτ )
(
M

com,(t+ 1
2
)

gc

)
,

(13) 351

where (I − Pχτ ) (·) denotes the element-wise com- 352

plement of the confidence-mask projection. 353

Projection Step on S: We define the projection 354

step as finding the matrix Z ∈ S that minimizes 355

the Frobenius norm distance to M
com,(t+ 1

2
)

gc : 356

Z∗ = argmin
Z∈S

∥∥∥∥Z −M
com,(t+ 1

2
,svt)

gc

∥∥∥∥2
F

, (14) 357

where the feasible set S is defined as in Eq. 10: 358

S =
{
Z ∈ Rm×n

∣∣∣ f(Aij , Cij(Z)
)
≥ α,

∀(i, j) ∈ TopX(i)
}
,

(15) 359

with f
(
Aij , Cij(Z)

)
linear in Z. Given the large 360

dimensions m and n are large, we reformulate this 361

projection step in Eq. 14 as a quadratic program- 362

ming problem. The optimal solution Z∗ is then 363

used to update M com
gc : 364

M com,(t+1)
gc = Z∗. (16) 365

Convergence Check: The Projected Proximal 366

Method iterates through gradient descent, proximal 367

updates, and projection until convergence. With 368

ε = 10−6 the preset tolerance, 369

∥M com,(t+1)
gc −M com,(t)

gc ∥F < ε. (17) 370

Computational and Space Complexity: With T 371

iterations until convergence, the total time com- 372

plexity is O(T · (m+ n)2). The space complexity 373

is O(mn+m2 + n2). 374

4 Experiments 375

4.1 Experimental Settings 376

Datasets: The datasets consist of oncogenomics 377

articles extracted from OMIM and PubMed us- 378

ing a consistent query (e.g., for sarcoma cancer, 379

a rare cancer: “(Sarcoma, Ewing[MESH] AND 380

gene[title/abstract])”). For well-studied cancers 381

(prostate, cervical, breast, and lung), we fixed the 382

number of articles at 10,000 to evaluate our model 383

under limited data conditions, whereas only 1,061 384
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Test
Drop (%)

TopX(i),X = 3 TopX(i),X = 5 TopX(i),X = 7 TopX(i),X = 9 TopX(i),X = 11

P Recall F0.5 P Recall F0.5 P Recall F0.5 P Recall F0.5 P Recall F0.5

Prostate Cancer Data (10,000 oncogenomics articles, 25,524 relevant lines, 2,965 annotated genes, and 990 cancer types.)
10% 92.27 47.87 77.83 91.92 45.73 76.47 92.49 49.37 78.74 92.17 53.13 80.36 92.08 46.73 77.11
30% 91.88 45.48 76.31 91.46 39.89 72.67 91.91 42.29 74.44 91.49 45.75 76.24 92.00 42.82 74.81
50% 89.43 33.44 66.99 90.15 36.17 69.42 89.13 37.39 69.81 88.97 39.21 70.96 89.21 37.69 70.06
70% 87.85 31.65 64.83 88.18 32.66 65.81 87.07 34.01 66.36 86.99 36.03 67.81 86.96 33.67 66.50

Cervical Cancer Data (10,000 oncogenomics articles, 17,115 relevant lines, 2,407 annotated genes, and 692 cancer types.)
10% 91.95 42.55 74.63 90.91 41.67 73.53 91.36 38.54 71.71 87.91 41.67 71.94 80.93 46.51 70.49
30% 91.03 39.01 71.86 90.48 33.33 67.37 90.81 41.15 73.15 86.75 38.71 69.50 80.36 42.56 68.24
50% 90.32 32.94 66.99 89.47 31.29 65.22 87.88 33.53 66.36 85.51 34.10 65.70 77.31 40.07 65.19
70% 89.29 30.68 64.60 88.31 31.10 64.56 87.93 30.72 64.07 85.25 31.33 63.41 73.00 32.44 58.40

Breast Cancer Data (10,000 oncogenomics articles, 38,620 relevant lines, 3,641 annotated genes, and 829 cancer types.)
10% 87.54 42.12 72.01 87.17 42.55 72.06 84.94 42.29 70.68 84.81 41.88 70.38 84.87 42.08 70.53
30% 87.22 41.25 71.32 86.94 41.69 71.43 85.17 41.88 70.58 83.51 35.84 65.96 83.59 36.06 66.15
50% 87.33 30.05 63.22 85.80 34.63 66.23 83.42 34.51 65.00 82.93 32.54 63.31 82.64 33.01 63.54
70% 86.08 27.30 60.17 85.25 27.23 59.77 83.69 30.10 61.72 83.56 31.12 62.50 83.55 32.40 63.50

Lung Cancer Data (10,000 oncogenomics articles, 60,532 relevant lines, 6,242 annotated genes, and 1,716 cancer types.)
10% 86.21 40.32 70.23 84.85 45.16 72.16 84.38 43.55 71.05 83.87 41.94 69.89 84.00 36.21 66.46
30% 85.71 38.76 69.00 84.38 43.55 71.05 83.33 40.32 68.68 82.76 38.71 67.41 83.03 35.71 65.64
50% 85.16 31.58 63.59 81.82 32.77 62.97 82.61 33.33 63.76 83.36 35.01 65.37 81.92 32.14 62.55
70% 85.00 28.33 60.71 80.95 30.00 60.43 80.00 30.53 60.41 77.27 28.33 57.43 82.61 31.67 62.50

Sarcoma Cancer Data (1,061 oncogenomics literature articles, 5,679 relevant lines, 679 annotated genes, and 283 cancer types.)
10% 80.00 41.03 67.23 80.95 43.59 69.11 81.40 44.28 69.71 80.65 44.87 69.55 78.57 52.38 71.43
30% 82.76 34.29 64.52 80.65 35.71 64.43 80.00 42.11 67.80 81.82 38.57 66.83 73.81 41.33 63.79
50% 72.22 22.41 50.00 73.68 24.14 52.24 75.00 25.86 54.35 71.43 28.28 54.73 71.05 38.03 60.54
70% 66.67 20.34 45.80 68.42 22.03 48.15 70.00 23.73 50.36 71.04 25.42 52.28 67.63 34.85 56.93

Table 2: Performance of LILY in predicting cancer-related genes for prostate, cervical, breast, lung, and sarcoma
cancers under varying data availability, controlled by Test Drop (%), and varying influence of available data,
controlled by TopX(i), evaluated by Precision (P), Recall, and F0.5-score. For each cancer type and experimental
condition (i.e., Test Drop (%) and TopX(i)), the best and second-best results are bolded and underlined, respectively.

(a) Precision (b) F0.5-score

Figure 4: Lung cancer-related gene predictions by
LILY: Precision and F0.5-score for various τ and w
values, with 50% data dropped and X = 7 in TopX(i).

articles were available for sarcoma cancer due to its385

rarity. Data quality was ensured via preprocessing386

and filtering, employing named entity recognition387

(NER) to extract relevant entities and relation ex-388

traction (RE) to classify relationships as associa-389

tion, positive correlation, or negative correlation.390

Relations are then categorized into three types, can-391

cer–gene, gene–gene, and cancer–cancer.392

Each relationship was scored (1 for association,393

2 for positive correlation, and −1 for negative cor-394

(a) Precision (b) F0.5-score

Figure 5: Sarcoma cancer-related gene predictions by
LILY: Precision and F0.5-score for various τ and w
values, with 50% data dropped and X = 7 in TopX(i).

relation) and aggregated as a weighted average 395

across identical relationships to enhance robust- 396

ness. These scores, quantifying the strength of 397

each association, serve as inputs to our model for 398

predicting novel cancer-related genes. 399

Hyperparameters and Evaluation Metrics: Un- 400

less otherwise noted, the hyperparameters in Eq. 1 401

are set as follows: w = 0.2, τ = 0.2, α = 0.8, and 402

λ1 = 0.1, values at which performance peaks. w, 403

τ , and α are tunable within the interval [0, 1]. The 404
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Models
Test Drop 10% Data Test Drop 30% Data Test Drop 50% Data Test Drop 70% Data

P Recall F0.5 P Recall F0.5 P Recall F0.5 P Recall F0.5

Prostate Cancer Data & TopX(i), X = 5.
LILY Baseline1 61.21 82.69 64.56 54.11 70.23 56.72 46.28 62.14 48.77 13.33 60.00 15.79
LILY Baseline2 80.27 46.98 70.31 77.17 40.46 65.32 72.92 33.55 59.06 69.23 28.62 53.93

LILY 91.92 45.73 76.47 91.46 39.89 72.67 90.15 36.17 69.42 88.18 32.66 65.81

Breast Cancer Data & TopX(i), X = 5.
LILY Baseline1 60.45 81.03 63.69 56.55 72.95 59.22 39.55 54.04 41.79 14.71 71.43 17.48
LILY Baseline2 77.52 40.40 65.49 77.14 35.75 62.63 63.16 25.47 48.74 57.90 22.62 44.13

LILY 87.17 42.55 72.06 86.94 41.69 71.43 85.80 34.63 66.23 85.25 27.23 59.77

Sarcoma Cancer Data & TopX(i), X = 5.
LILY Baseline1 57.53 87.50 61.76 50.79 72.73 54.05 48.08 71.43 51.44 9.68 42.86 11.45
LILY Baseline2 74.58 51.77 68.54 68.63 43.21 61.40 68.18 41.67 60.48 65.00 38.81 57.27

LILY 80.95 43.59 69.11 80.65 35.71 64.43 73.68 24.14 52.24 68.42 22.03 48.15

Table 3: Performance of LILY Baseline1, LILY Baseline2, and LILY in predicting cancer-related genes for prostate,
breast, and sarcoma cancers under varying data availability with fixed influence of available data, evaluated by
Precision (P), Recall, and F0.5-score. The best results are bolded, and the second-best are underlined.

parameter X in TopX(i), which regulates the num-405

ber of top-related cancers per gene, modulates the406

influence of available data; higher X corresponds407

to greater influence. Performance is assessed us-408

ing precision (P), recall, and the Fβ-score, with409

β = 0.5 to prioritize precision over recall due to410

our goal of identifying the most probable cancer-411

related genes among numerous potential linkages412

for efficient experimental resource allocation.413

Relevant Models: Our work is inspired by prior ef-414

forts leveraging BioLLMs to extract association415

information among genes and diseases, includ-416

ing DISEASES (Pletscher-Frankild et al., 2015),417

GeneSemantics (Miller et al., 2022), GatorTron418

(Yang et al., 2022a), MSK-CHORD (Jee et al.,419

2024), and Teacher-Student Framework (Kehl420

et al., 2024). However, no previous study has at-421

tempted a BioLLMs-enabled approach to predict422

cancer genes by integrating fragmented informa-423

tion. Therefore, we propose two baseline methods:424

LILY Baseline1 adopts the computational frame-425

work of LILY without confidence-score threshold426

for predictions. LILY Baseline2 uses only the427

gene-cancer associations extracted by BioLLMs428

on the same computational framework and omits429

gene-gene and cancer-cancer associations.430

4.2 Experimental Results431

Table 2 presents the prediction results of cancer-432

related genes by LILY. We assess its performance433

under varying data availability by dropping 10%,434

30%, 50%, and 70% of the original dataset (Test435

Drop %) and adjusting X in TopX(i) to modulate436

data influence, verifying the predictions against the 437

ground-truth. The results demonstrate: 438

1. Under 10% data drop, LILY yields high preci- 439

sion on well-studied cancers: prostate (92.49%), 440

cervical (91.95%), breast (87.54%), and lung 441

(86.21%). The under-researched sarcoma cancer 442

achieves 81.40%. Under 70% data drop, fixing 443

X = 7 in TopX(i), the precision declines by 5.86% 444

(prostate), 3.75% (cervical), 1.47% (breast), 5.19% 445

(lung), and 14.00% (sarcoma), indicating that lim- 446

ited data affects less-studied cancers more severely. 447

2. Recall decreases with less data availability but 448

is partially offset if available data exerts greater in- 449

fluence. In breast cancer, recall declines by 32.74% 450

with X = 3 and by 23.00% with X = 11 as the 451

data drop increases from 10% to 70%; in sarcoma 452

cancer, recall declines by 50.43% with X = 3 and 453

by 33.47% with X = 11. It is suggested that in- 454

creased data availability enhances the detection of 455

true cancer-related genes while amplifying the im- 456

pact of available data can mitigate recall reduction. 457

3. For prostate, cervical, breast, and lung cancers, 458

the Fβ-score remains between 60% and 80% with 459

minimal variance across different X settings in 460

TopX(i) at a fixed data drop. In contrast, pre- 461

dictions on sarcoma cancer exhibits substantial 462

variability, with Fβ-score ranging from 50.00% to 463

60.54% at a 50% data drop and from 45.80% to 464

56.93% at a 70% drop, indicating that limited data 465

impairs the balance between precision and recall. 466

Table 3 compares the performance of LILY 467

with the two baseline models. LILY consistently 468

achieves the highest precision, while LILY Base- 469
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Figure 6: Prediction of breast cancer-related genes by
LILY and LILY Baseline1 evaluated under various w,
with 30% data drop, and X = 5 in TopX(i).

line1 shows the lowest precision and Fβ-score yet470

the highest recall. In contrast, LILY Baseline2471

attains slightly lower precision but higher recall472

than LILY, resulting in a superior Fβ-score on473

resource-scarce sarcoma data under low data avail-474

ability. These results indicate: (1) This computa-475

tional framework covers a broad range of potential476

gene candidates, but applying a high-confidence477

threshold is necessary for reliable predictions. (2)478

Directly using gene-cancer associations from Bi-479

oLLMs is effective; however, incorporating com-480

puted gene-gene and cancer-cancer correlations481

bridges fragmented information and significantly482

enhances performance. (3) As data availability483

decreases (from a 10% to a 70% drop), both base-484

line models exhibit dramatic performance declines,485

whereas LILY experiences only a mild decrease486

(3.74% in prostate, 1.92% in breast, and 12.53%487

in sarcoma). This suggests that even with incom-488

plete direct gene-cancer data, reasoned gene-cancer489

relationships help sustain the model’s performance.490

Robustness Analysis and Ablation Studies: Fig-491

ures 4 and 5 show that LILY demonstrates stable492

performance across various w and τ combinations,493

except at τ = 0.8, where precision and F0.5-score494

fluctuate due to an overly high confidence threshold.495

Figures 6 and 7 further demonstrate that LILY con-496

sistently outperforms LILY Baseline1 and LILY497

Baseline2, confirming that both the confidence-498

score threshold and the reasoning component for499

gene-gene and cancer–cancer associations are indis-500

pensable. Notably, LILY achieves peak precision501

and F0.5-score at τ = 0.2 and w = 0.2, which we502

adopt as the optimal settings of parameters.503

4.3 Novel Predictions504

Table 4 lists the top 15 predicted breast cancer-505

related genes ranked by confidence score. Trained506

only on data collected from 10,000 oncogenomics507

Figure 7: Prediction of prostate cancer-related genes by
LILY and LILY Baseline2 evaluated under various τ ,
30% data drop, and X = 5 in TopX(i).

Gene Score Relation Information Source
PDK1 1.013 ✓ (Peng et al., 2018)

RBBP8 0.969 ✓ (Zarrizi et al., 2020)
BCL3 0.965 ✓ (Turnham et al., 2024)
STC2 0.868 ✓ (Qie et al., 2024)
TFF1 0.868 ? (Buache et al., 2011)
TFF3 0.868 ✓ (Yang et al., 2022b)

MDM2 0.862 ✓ (Wang et al., 2014)
RAD54L 0.855 ✓ (Gonzalez et al., 1999)

MIR23AHG 0.855 ? (Entezari et al., 2024)
ATF1 0.855 ✓ (Huang et al., 2016)

MTND6P4 0.855 ? (Pangeni et al., 2022)
MIR3193 0.840 ? Not Found.

NCAN 0.840 ? (Williams et al., 2024)
TBX5 0.840 ✓ (Network, 2012)

CTHRC1 0.840 ✓ (Lee et al., 2016)

Table 4: Prediction of novel breast cancer-related genes
with data extracted from 10,000 oncogenomics articles.

articles, LILY identifies novel cancer-related genes, 508

some experimentally validated and others only 509

peripherally noted, and covers protein-coding 510

(e.g., TFF1) and even non-coding genes (e.g., 511

MIR23AHG). Since the training data comprise 512

only a small fraction of potential gene–cancer as- 513

sociations, LILY’s accurate inference with limited 514

data demonstrates its efficacy and suggests that 515

incorporating more data and expanding the gene- 516

cancer database will further enhance performance. 517

5 Conclusion 518

In this paper, we propose a novel computa- 519

tional model empowered by BioLLMs for inte- 520

grating gene-cancer networks and predicting novel 521

relations. Trained exclusively on data processed 522

from oncogenomics literature, the model generates 523

highly precise predictions even with limited data 524

and demonstrates the potential for enhanced per- 525

formance through scalability to larger datasets. It 526

underscores the need for enhanced collaboration 527

with biomedical labs and offers new insights into 528

addressing limitations in current BioLLMs. 529
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Limitations530

One limitation arises from the data collection531

process. To ensure reproducibility and optimize532

model robustness, we standardize data collec-533

tion from oncogenomics articles extracted from534

PubMed and OMIM using a consistent query (e.g.,535

for sarcoma cancer: “(Sarcoma, Ewing[MESH]536

AND gene[title/abstract])”). This query selects rel-537

evant, up-to-date oncogenomics articles, making538

the data susceptible to bias due to temporal shifts539

in research focus and search engine dynamics. An-540

other limitation is that, although our model pre-541

dicts highly probable cancer-related genes, these542

predictions serve solely as suggestions for rigorous543

biomedical laboratory testing rather than conclu-544

sive identifications. Finally, the model is currently545

limited to predicting genes for one cancer type at a546

time, requiring separate data extraction and train-547

ing for each cancer type, as it does not yet support548

simultaneous multi-cancer predictions.549

Ethics Statement550

Our method for extracting gene-cancer associ-551

ation data from oncogenomics literature, sourced552

from PubMed and OMIM and processed using Bi-553

oLLMs, adheres to the ethical framework estab-554

lished by the National Library of Medicine (NLM)555

and the National Center for Biotechnology Informa-556

tion (NCBI). The disclaimers emphasize that these557

platforms function as aggregators of scientific re-558

search rather than publishers and do not provide di-559

rect medical advice or endorsements. By using the560

data strictly for research purposes and not for clini-561

cal decision-making or commercial advertising, we562

strictly follow the stipulation that users should con-563

sult qualified healthcare professionals for personal564

medical issues. Furthermore, we acknowledge the565

importance of upholding copyright and intellectual566

property rights in accordance with NCBI’s policies.567

We ensure that all data usage complies with fair use568

and legal guidelines while providing appropriate569

attribution to the data providers. Throughout our570

research, we adhere to rigorous scientific standards,571

maintain transparency, and responsibly manage po-572

tentially sensitive oncogenomics information in ac-573

cordance with the ethical guidelines outlined by574

the NLM and NCBI.575
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A Computational and Space Complexity903

The overall computational complexity of LILY904

is primarily determined by the sparse matrix905

completion algorithm via the projected proximal906

method. The gradient descent step requires O(mn)907

for matrix operations, while the proximal step 908

performs SVD in O(min(mn2, nm2)) time. The 909

projection step, reformulated as a sparse convex 910

quadratic programming problem, requires O((m+ 911

n)2) time per iteration and dominates the cost. 912

With T iterations until convergence, the total time 913

complexity is O(T · (m + n)2). The space com- 914

plexity is O(mn + m2 + n2) , accounting for 915

the observed gene-cancer matrix Mgc and the 916

reasoned gene-gene correlation matrix Mgg and 917

cancer-cancer correlation matrix Mcc. 918

B Quadratic Programming Solution to 919

Projection Step 920

We need to enforce, for each TopX gene-cancer 921

pair (i, j) in Eq. 1, 922∣∣w ·Aij + Cij(Z)
∣∣ ≥ α, (18) 923

where w · Aij is the annotated text-mined score, 924

and 925

Cij(Z) =

m∑
k=1

Mgg[i, k] ·M com
gc [k, j]

+

n∑
l=1

Mcc[j, l] ·M com
gc [i, l].

(19) 926

To remove the absolute value, introduce an auxil- 927

iary variable sij≥0. Then Eq. 18 becomes: 928

sij ≥ w ·Aij +
∑
k

Mgg[i, k]Z[k, j]

+
∑
l

Mcc[j, l]Z[i, l],

sij ≥ −
(
w ·Aij +

∑
k

Mgg[i, k]Z[k, j]

+
∑
l

Mcc[j, l]Z[i, l]
)
,

sij ≥ α, sij ≥ 0.

(20) 929

These inequalities ensure |w ·Aij +Cij(Z)| ≤ sij 930

and sij ≥ α; thus, |w ·Aij + Cij(Z)| ≥ α. 931

After the gradient and proximal updates, let X̃ = 932

M
com,(t+ 1

2
,svt)

gc . The next iterate Z is found by solv- 933

ing: 934

min
Z, {sij}

∑
p,q

(
Z[p, q]− X̃[p, q]

)2
s.t. Inequalities in Eq. 20, ∀ (i, j)∈TopX(i).

(21) 935
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Since ∥Z − X̃∥2F is a standard least-squares ob-936

jective, and Eq. 20 is linear, Eq. 21 is a standard937

Quadratic Program (QP) suitable for widely avail-938

able solvers. The solution Z∗ exactly satisfies Eq.939

18 and is thus used to update M
com,(t+1)
gc .940

C Proof of Guaranteed Convergence of941

the Objection Function942

As addressed in Section 3.3 Sparse Matrix Com-943

pletion, we decompose the objective into a smooth944

component F (M com
gc ), Eq. 8, and a non-smooth945

component R(M com
gc ), Eq. 9. The smooth part is946

F
(
M com

gc

)
=

∥∥PΩgc

(
Mgc −M com

gc

)∥∥2
F
, (22)947

whose gradient satisfies948

∇F (M com
gc ) = −2PΩgc

(
Mgc −M com

gc

)
. (23)949

Because PΩgc is a linear (masking) operator, ∇F (·)950

is Lipschitz continuous. Formally, there exists L >951

0 such that952

∥∇F (X)−∇F (Y )∥F ≤ L ∥X − Y ∥F ,∀X,Y.
(24)953

This L-smoothness property is fundamental for an-954

alyzing the convergence of proximal gradient-type955

methods.956

The non-smooth part is957

R
(
M com

gc

)
= λ1

∥∥Pχτ

(
M com

gc

)∥∥
∗, (25)958

where ∥ · ∥∗ denotes the nuclear norm. The nu-959

clear norm is convex, with its proximal opera-960

tor given by Singular Value Thresholding (SVT).961

Since Pχτ is an elementwise mask, the operator962

M com
gc 7→ Pχτ (M com

gc ) remains linear and contrac-963

tive, and thus the composition
∥∥Pχτ (·)

∥∥
∗ is like-964

wise convex and admits a closed-form proximal op-965

erator. This ensures that the non-smooth term R(·)966

is efficiently handled within a forward-backward967

splitting scheme.968

In addition to the proximal step, we impose969

the linear constraints f
(
Aij , Cij(M

com
gc )

)
≥ α,970

∀(i, j) ∈ TopX(i), which define the set971

S =
{
M com

gc ∈ Rm×n
∣∣∣ f(Aij , Cij

(
M com

gc

))
≥ α

∀(i, j) ∈ TopX(i)
}
,

(26)972

Because these constraints are linear in the entries973

of M com
gc , the set S is a closed, convex polyhedron.974

Cancer Data Time (in sec) Time (GPU hours)
Prostate Cancer 358.70 0.099638889
Cervical Cancer 183.30 0.050916667
Breast Cancer 360.07 0.100019444
Lung Cancer 1521.37 0.4226027778

Sarcoma Cancer 14.10 0.003916667

Table 5: Training time of LILY on datasets collected
for each cancer type.

After each proximal update, we project the interme- 975

diate estimate onto S by solving a convex quadratic 976

program, which maintains feasibility of the iterates. 977

From classical results in convex analysis (Beck 978

and Teboulle, 2009; Combettes and Pesquet, 2011; 979

Bauschke and Combettes, 2017), it follows that 980

if F (·) is convex with an L-Lipschitz continuous 981

gradient and R(·) is convex, the forward-backward 982

splitting method converges to a global minimizer of 983

F+R. When combined with a projection step onto 984

a closed, convex set S, one can view the projec- 985

tion as the proximal operator of the indicator func- 986

tion δS(·), which preserves the global convergence 987

guarantees. Consequently, under mild assumptions 988

(e.g., finite entries and bounded parameters), the 989

sequence {M com,(t)
gc } converges to a global opti- 990

mum of Eq. 1. Thus, the proposed method is not 991

only computationally tractable but also theoreti- 992

cally sound, which ensures convergence to a robust 993

and interpretable completed gene-cancer matrix. 994

D Training Time Analysis 995

We trained our model on a single Tesla V-100 996

GPU with 16GB of CUDA memory. Table 5 details 997

the training time for data collected by each can- 998

cer type. Specifically, the prostate cancer dataset 999

comprises data from 10,000 oncogenomics articles, 1000

25,524 relevant lines, 2,965 annotated genes, and 1001

990 cancer types; the cervical cancer dataset in- 1002

cludes 10,000 articles, 17,115 relevant lines, 2,407 1003

annotated genes, and 692 cancer types; the breast 1004

cancer dataset is based on 10,000 articles, 38,620 1005

relevant lines, 3,641 annotated genes, and 829 can- 1006

cer types; the lung cancer dataset consists of 10,000 1007

articles, 60,532 relevant lines, 6,242 annotated 1008

genes, and 1,716 cancer types; and the sarcoma 1009

cancer dataset is derived from 1,061 articles, 5,679 1010

relevant lines, 679 annotated genes, and 283 cancer 1011

types. 1012
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