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Abstract
Probabilistic Circuits (PCs) are a general and
unified computational framework for tractable
probabilistic models that support efficient com-
putation of various inference tasks (e.g., comput-
ing marginal probabilities). Towards enabling
such reasoning capabilities in complex real-world
tasks, Liu et al. (2022) propose to distill knowl-
edge (through latent variable assignments) from
less tractable but more expressive deep genera-
tive models. However, it is still unclear what
factors make this distillation work well. In this
paper, we theoretically and empirically discover
that the performance of a PC can exceed that of its
teacher model. Therefore, instead of performing
distillation from the most expressive deep genera-
tive model, we study what properties the teacher
model and the PC should have in order to achieve
good distillation performance. This leads to a
generic algorithmic improvement as well as other
data-type-specific ones over the existing latent
variable distillation pipeline. Empirically, we out-
perform SoTA TPMs by a large margin on chal-
lenging image modeling benchmarks. In partic-
ular, on ImageNet32, PCs achieve 4.06 bits-per-
dimension, which is only 0.34 behind variational
diffusion models (Kingma et al., 2021).

1. Introduction
Developing Tractable Probabilistic Models (TPMs) that are
capable of performing various inference tasks (e.g., com-
puting marginals) is of great importance as they enable a
wide range of downstream applications such as constrained
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Figure 1. Different design choices in the LVD pipeline lead to
drastically different performance (lower is better) on ImageNet32.
All LVD-learned PCs have ∼200M parameters.

generation (Peharz et al., 2020a; Correia et al., 2020), causal
inference (Wang & Kwiatkowska, 2022), and data compres-
sion (Liu et al., 2021). Probabilistic Circuits (PCs) (Choi
et al., 2020) refer to a class of TPMs with similar representa-
tions, including Sum-Product Networks (Poon & Domingos,
2011), and-or search spaces (Marinescu & Dechter, 2005),
and arithmetic circuits (Darwiche, 2002). To take full ad-
vantage of the attractive inference properties of PCs, a key
challenge is to improve their modeling performance on com-
plex real-world datasets.

There have been significant recent efforts to scale up and
improve PCs from both algorithmic (Correia et al., 2022;
Shih et al., 2021; Dang et al., 2022; Peharz et al., 2020b) and
architectural (Peharz et al., 2020a; Dang et al., 2021) per-
spectives. In particular, Liu et al. (2022) propose the Latent
Variable Distillation (LVD) pipeline that uses less-tractable
yet more expressive Deep Generative Models (DGMs) to
provide extra supervision to overcome the suboptimality
of Expectation-Maximization (EM) based PC parameter
learners. With LVD, PCs are able to achieve competitive
performance against some widely used DGMs on challeng-
ing datasets such as ImageNet32 (Deng et al., 2009).

However, despite its great potential, we have a limited un-
derstanding of when and how LVD leads to better modeling
performance. As a result, the success of existing instantia-
tions of the LVD pipeline relies heavily on trial and error.
For example, as shown in Figure 1, modeling performance
varies significantly as we change the DGM or the strategy
to obtain supervision from them, even when the size of the
PCs are similar.

This work aims to demystify the LVD pipeline and provide
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practical design guidelines for image data. By interpret-
ing LVD from a variational inference perspective, we show
that the performance of LVD-learned PCs is not necessarily
upper bounded by their teacher DGMs. This is in sharp con-
trast with distilling knowledge from a large neural network
to a smaller one, where the training performance typically
degrades (Gou et al., 2021). Therefore, instead of trying to
use the SoTA DGM to perform LVD, we should focus on a
more fundamental question: what properties of the teacher
DGM would lead to better performance of LVD-learned
PCs? Although there is still no definite answer, we iden-
tify practical design guidelines that lead to expressive yet
compact PCs.

Following the guidelines, we observe a general deficit in
the existing LVD pipeline. Specifically, due to the mis-
match between the discrete latent variable assignments re-
quested by PCs and the continuous neural representations,
a one-shot discretization method is often used. However,
this causes significant information loss and leads to de-
graded modeling performance. To overcome this problem,
we propose a progressive growing algorithm to leverage
feedback from the PC to perform dynamic clustering, thus
minimizing the performance loss caused by discretization.
Progressive growing is also able to exploit reusable sub-
structures, which leads to compact yet expressive PCs. To-
gether with several image-specific design choices derived
from the guidelines, we are able to out-perform SoTA TPMs
by a large margin on three challenging image-modeling
datasets: CIFAR (Krizhevsky et al., 2009) and two down-
sampled ImageNet datasets (Deng et al., 2009). In partic-
ular, we achieve 4.06 bits-per-dimension on ImageNet32,
which is better than some intractable Flow models and VAEs
such as Glow (Kingma & Dhariwal, 2018) and only 0.34
more than the SoTA diffusion-based DGM (Kingma et al.,
2021). Code for reproducing the experiments can be found
at https://github.com/liebenxj/LVD-PG.git.

2. Background
This section introduces PCs (Sec. 2.1) and the Latent Vari-
able Distillation (LVD) pipeline (Sec. 2.2).

2.1. Probabilistic Circuits

Probabilistic circuits (PCs) are a broad class of TPMs that
characterize probability distributions as deep computation
graphs. The syntax and semantics of PCs are as follows.
Definition 1 (Probabilistic Circuits). Represented as a pa-
rameterized directed acyclic computation graph (DAG), a
PC p(X) defines a joint distribution over a set of random
variables X by a single root node nr. The nodes in the
DAG are divided into three types of computational units:
input, sum, and product. Notably, each leaf node in the
DAG serves as an input unit, while an inner node can be

subdivided into a sum unit or a product unit according to
its mechanism for combining child distributions. In the
forward path, every inner node receives inputs from its chil-
dren (denoted in(n)) and computes outputs, thus encoding
a probability distribution pn in a recursive fashion:

pn(x) :=


fn(x) if n is an input unit,∑

c∈in(n) θn,c · pc(x) if n is a sum unit,∏
c∈in(n) pc(x) if n is a product unit,

where fn(x) is a univariate probability distribution (e.g.,
Gaussian, Categorical), and θn,c represents the parameter
corresponding to edge (n, c) in the DAG. Intuitively, a sum
unit models a weighted mixture of its children’s distribu-
tions, which requires all its edge parameters to be non-
negative and sum up to one, i.e.,

∑
c∈in(n) θn,c = 1, θn,c ≥

0. And a product unit encodes a factorized distribution over
its children. Finally, a PC represents the distribution en-
coded by its root node nr. Additionally, we assume w.l.o.g.
that a PC alternates between the sum and product layers
before reaching its inputs.

The ability to answer numerous probabilistic queries (e.g.,
marginals, entropies) (Vergari et al., 2021) exactly and ef-
ficiently distinguishes PCs from various deep generative
models. Such ability is typically interpreted as tractability.
To guarantee PCs’ tractability, certain structural constraints
have to be imposed on their DAG structure. For instance,
smoothness together with decomposability ensure that a PC
can compute arbitrary marginal probabilities in linear time
w.r.t. its size, which is the number of edges in its DAG.
These are properties of the variable scope ϕ(n) of PC unit n,
that is, the variable set comprising all its descendent nodes.

Definition 2 (Decomposability). A PC is decomposable if
for every product unit n, its children have disjoint scopes:

∀c1, c2 ∈ in(n) (c1 ̸= c2), ϕ(c1) ∩ ϕ(c2) = ∅.

Definition 3 (Smoothness). A PC is smooth if for every
sum unit n, its children have the same scope:

∀c1, c2 ∈ in(n), ϕ(c1) = ϕ(c2).

2.2. Latent Variable Distillation

Despite the recent breakthroughs in developing efficient
computational frameworks for PCs (Dang et al., 2021;
Molina et al., 2019), exploiting the additional expres-
sive power of large-scale PCs remains extremely challeng-
ing. Abundant empirical evidence has attributed this phe-
nomenon to the failure of existing EM-based optimizers to
find good local optima in the large and hierarchically nested
latent space of PCs (Peharz et al., 2016), which is defined
by the hierarchically distributed sum units in their DAGs

Latent Variable Distillation (LVD) overcomes the afore-
mentioned bottleneck by providing extra supervision to
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PC optimizers through semantic-aware latent variable (LV)
assignments, which are acquired from less tractable yet
more expressive deep generative models (Liu et al., 2022).
Specifically, LVD operates by first materializing some/all
LVs in the PC. That is, transforming the original PC p(X)
into p(X,Z) whose marginal distribution over X stays un-
changed, i.e., p(X) =

∑
z p(X,Z=z).

Next, deep generative models (DGMs) are used to induce
semantic-aware assignments of LVs Z for every training
sample x∈Dtrain, leading to an augmented dataset Daug :=
{(x, z) : x∈Dtrain}. This LV induction step can be done in
various ways and with different DGMs. For example, in Liu
et al. (2022), Z is obtained by clustering the latent features
produced by a Masked Autoencoder (He et al., 2022).

Finally, the augmented dataset Daug is used to maximize a
lower bound of the log-likelihood, as shown on the right-
most term:

N∑
i=1

log p
(
x(i)

)
:=

N∑
i=1

log
∑
z

p
(
x(i), z

)
,

≥
N∑
i=1

log p
(
x(i), z(i)

)
.

(1)

After training with the augmented dataset, we can obtain
the target distribution p(X) by marginalizing out Z, which
can be done in linear (w.r.t. size of the PC) time (Choi
et al., 2020). The PC can then be finetuned with the original
dataset to improve performance further.

The success of LVD is primarily attributed to its ability to
simplify the size and depth of PCs’ deeply nested latent
variable spaces (Peharz et al., 2016). Specifically, after LV
materialization, supervision of the LVs can be provided by
DGMs, and EM-based PC parameter learners are only re-
sponsible for inferring the values of the remaining implicitly
defined LVs. Since the DGMs guide PC learning through
their provided LV assignments, we refer to them as teacher
models and the PCs as student models.

3. Characterizing Performance Gaps in LVD
Although LVD has demonstrated its potential to boost the
performance of large PCs, its effectiveness depends strongly
on the design choice of materialized LVs and how they
are induced from external sources. Specifically, as shown
in Figure 1, a bad design choice will lead to significantly
worse performance, while a good one can further close the
performance gap with SoTA intractable DGMs. Therefore,
a crucial yet unanswered question concerning LVD is: what
are the design principles for the LV induction process to
achieve good modeling performance?

We provide a preliminary answer to this question by char-
acterizing the performance differences between the teacher

LVD gap

Log-likelihood

Variational gap

ELBO of the teacher DGM:

Log-likelihood of the student PC:

LVD objective:

?

Ez∼qφ(·|x)[ log pθ(x|z) ] − DKL( qφ(z|x) || pθ(z) )

Ez∼qφ(·|x)[ log ppc(x|z) ] − DKL( qφ(z|x) || ppc(z) )

Ez∼ppc(·|x)[ log ppc(x|z) ] − DKL( ppc(z|x) || ppc(z) )

Figure 2. Performance difference of the teacher DGM (top-right)
and the student PC (top-left) is characterized by the relative signif-
icance between the variational gap and the LVD gap.

DGM and the student PC via variational inference (VI),
which is the mathematical foundation of various DGMs
such as VAEs (Kingma & Welling, 2013) and Diffusion
models (Ho et al., 2020). Consider a latent variable model
pθ(x) :=

∑
z pθ(x|z)pθ(z). Instead of directly maximiz-

ing the log-likelihood log pθ(x), which could be infeasible,
VI proposes to also learn a variational posterior qϕ(z|x) and
maximize the following evidence lower bound (ELBO) of
the log-likelihood:

Ez∼qϕ(·|x) [log pθ(x|z)]−DKL (qϕ(z|x)∥pθ(z)) . (2)

Consider a PC ppc(x) :=
∑

z ppc(x|z)ppc(z) defined on
the same X and Z as above. The ultimate goal of LVD is
to distill knowledge from pθ(x) to ppc(x) to maximize the
PC’s log-likelihood.

A natural way to achieve this is to use qϕ(z|x) as the vari-
ational posterior for the PC. This leads to the following
ELBO objective:

Ez∼qϕ(·|x)[log ppc(x|z)]−DKL(qϕ(z|x)∥ppc(z)) . (3)

Although written in different forms, this ELBO objective is
equivalent to Equation (1) up to a constant factor indepen-
dent of the PC, (see Appx. A for a rigorous elaboration). In-
tuitively, qϕ(z|x) is treated as the external model to induce
LV assignments z for every training sample x. Therefore,
we call Equation (3) the LVD objective.

The LVD objective provides a bridge to characterize the
difference between the performance of the teacher DGM
(Eq. (2)) and the log-likelihood of the student PC. Specifi-
cally, as shown in the Figure 2, the performance gap between
the teacher DGM and the LVD objective, termed the LVD
gap, characterizes the performance loss of LVD. However,
the final performance difference between the teacher DGM
and the student PC can be much less than the LVD gap.
Specifically, thanks to the tractability of PC, ppc(z|x) can
be obtained in closed form. Therefore, the variational gap
between the LVD objective and the PC’s log-likelihood can
be closed “for free” right after ppc(x|z) and ppc(z) are
trained by the LVD objective. That is, as demonstrated
in Figure 2, after LVD training, which gives the ELBO
shown at the bottom, we can directly obtain a PC with log-
likelihood shown at the top-left side.
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Figure 3. Example cluster-conditioned
distributions represented by a PC.
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Figure 5. Illustration of the proposed progressive growing algorithm. The algorithm takes as
input a dataset of pairs (x,h), where h = gϕ(x) is a continuous neural representation of x,
and a PC representing p(x|z). The algorithm iterates through the four steps shown above to
gradually expand cluster size (i.e., |Z|) and grow the PC.

Perhaps surprisingly, the above analysis suggests that the
log-likelihood of the student PC is not necessarily upper
bounded by the ELBO of the teacher DGM. Specifically,
as illustrated in Figure 2, this happens whenever the vari-
ational gap is larger than the LVD gap. In the extreme
case where the student perfectly simulates the teacher (i.e.,
pθ(x|z)=ppc(x|z) and pθ(z)=ppc(z)), the PC becomes
a tractable instantiation of pθ(x) =

∑
z pθ(x|z)pθ(z) that

can compute various probabilistic queries. Towards achiev-
ing this ideal case, we need to minimize the LVD gap.

A key insight towards closing the LVD gap is to ensure
pθ(x|z) (resp. pθ(z)) has similar modeling assumptions to
ppc(x|z) (resp. ppc(z)). This works well in both directions:
on the one hand, by mimicking the inductive biases of the
DGM (i.e., pθ(x|z) and pθ(z)), we can learn PCs that have
better performance as well as fewer parameters; on the other
hand, it is often beneficial to remove modeling assumptions
in the DGM that cannot be fully adopted by PCs due to
their structural constraints, though it might lead to worse
performance of the DGM. In the following, we first identify
a general source of modeling assumption mismatch, and
propose an algorithm to mitigate this problem (Sec. 4). We
then demonstrate how these design principles specialize to
image data and improve modeling performance (Sec. 5).

4. Latent Variable Distillation from
Continuous Neural Representations

A major challenge in minimizing the LVD gap is the mis-
match between expressive continuous neural embeddings
and the discrete nature of LVs materialized from PCs (since
sum units represent discrete mixtures). Therefore, to obtain

discrete LV assignments, either a post hoc discretization step
(e.g., K-means) is used, or the DGM needs to learn discrete
representations, which often leads to worse performance
compared to learning continuous features. Such one-shot
discretization strategies result in a relatively large LVD gap,
which degrades PC modeling performance significantly.

Formally, the variational posterior of the DGM can be de-
composed as

qϕ(z|x) := q(z|h), where h = gϕ(x).

Here gϕ is a neural network, and h is a continuous neural
representation. Although we still have to discretize h to ob-
tain LV assignments for the PC, this discretization procedure
need not be one-shot: we can leverage feedback from the
PC to adjust and re-assign cluster indices to narrow the LVD
gap. Specifically, we want the cluster indices (i.e., z) to be
assigned in a way that both respect the neural representation
h (i.e., samples with similar h are assigned to the same
cluster) and are easily learned by the cluster-conditioned
PCs ppc(x|z). Intuitively, while the latter condition ensures
ppc(x|z) is properly learned, the former guarantees that z
preserves information from h, which empirically leads to a
better ppc(z).

Before delving into the details of our solution, we briefly
review the LV materialization process and illustrate the struc-
ture of cluster-conditioned PCs p(x|z). Instead of assigning
every sum unit an LV (as they represent mixture distribu-
tions), we group them according to their variable scopes
(cf. Sec. 2.1), and assign every LV to a particular scope.
Specifically, since the children of the sum units with every
scope ϕ are all product units with the same scope, we can
assign each child product unit a unique discrete value. Take
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the PC in Figure 3 as an example, we choose to materialize
two LVs Z1 and Z2 w.r.t. the scopes ϕ1 := {X2, X3} and
ϕ2 :={X4, X5}, respectively. After LV materialization, we
obtain two sub-PCs representing the cluster-conditioned
distributions p(x2, x3|z1) and p(x4, x5|z2), respectively.
Specifically, the child product node ni (∀i ∈ {1, 2, 3})
with scope ϕ1 represents p(x2, x3|Z1 = i). Therefore,
p(x2, x3|z1) is represented by the three-headed PC high-
lighted in the dashed blue box.

We proceed to describe the proposed progressive growing
algorithm that overcomes the suboptimality of the afore-
mentioned one-shot discretization method. The algorithm
takes as input a dataset Dtrain accompanied with contin-
uous neural embeddings, defined as D := {(x,h) : x ∈
Dtrain,h= gϕ(x)}. Having materialized a LV Z that cor-
responds to scope X, the algorithm also takes an initial
cluster-conditioned PC p(x|z) as input. We assume Z ini-
tially takes a single value (i.e., all samples in Dtrain belong
to the same cluster), and thus p(x|z) is represented by a
single-headed PC.

Given a predefined number of clusters, denoted K, progres-
sive growing aims to learn both a discretization function
that maps every h into a cluster index i ∈ [K], and a K-
headed PC representing p(x|Z= i) (∀i∈ [K]). Intuitively, a
K-headed PC encodes K distributions defined on the same
set of variables, and each distribution is represented as a
sub-PC following Definition 1. However, different from
directly encoding the distributions with K independent PCs,
the sub-PCs in a K-headed PC share certain structures and
parameters. This is done by iteratively dividing D into more
clusters and correspondingly learning the structure and pa-
rameters of the cluster-conditioned PCs. Specifically, as
illustrated in Figure 5, progressive growing operates by re-
peating four main steps, which are detailed in the following.

Step 1: Training PC with Labeled Dataset. In this stage,
we have access to a clustering function λk that maps every
h to an index in [k], where 1≤k≤K is the current number
of clusters, and a k-headed PC with the ith head encoding
p(x|Z = i). We train the PC by maximizing the conditional
log-likelihood specified by D and λm:

maximize
φ

∑
(x,h)∈D

log pφ(x|Z = λk(h)), (4)

where φ are the parameters of the PC. We optimize Equa-
tion (4) with the standard mini-batch EM algorithm (Peharz
et al., 2020a; Choi et al., 2021). Hyperparameters are de-
tailed in Appx. B. To learn a compact yet expressive PC,
we apply the pruning algorithm proposed by Dang et al.
(2022) after the parameter learning phase. This results in
significantly smaller PCs with negligible performance loss.

Step 2: Re-assigning Cluster Indices. As hinted by the
suboptimality of the one-step discretization method, cluster

indices assigned by λk may not fully respect the PC p(x|z).
That is, since λk is obtained by clustering neural represen-
tation h, some samples x assigned to cluster i could be
better modeled by pφ(x|Z= j) (j ̸= i) trained in the pre-
vious step. To mitigate this problem, we leverage feedback
from the PC to re-assign cluster indices. Specifically, as
demonstrated in Figure 5, the cluster index of sample x is
re-labeled as z := argmaxi∈[k] p(x|Z = i). Function λk is
modified correspondingly to reflect this change.

As we will elaborate more in the following steps, this re-
labeling process allows us to escape from poorly assigned
clusters in past iterations, and is crucial to the effectiveness
of progressive growing.

Step 3: Selecting Clusters to Grow. As suggested by its
name, progressive growing operates by iteratively expand-
ing the number of clusters in Z. To improve the overall
performance of the cluster-conditioned PC (i.e., Eq. 4), we
select clusters with low average log-likelihood to be further
divided. Specifically, as illustrated in Figure 5, we first
compute the average log-likelihood for each cluster i ∈ [k]:

LLi :=
1

|Di|
∑
x∈Di

log p(x|Z = i),

where Di := {x : (x,h) ∈ D, λk(h) = i}. We then select
a subset of clusters based on {LLi}ki=1 and the number of
samples belonging to every cluster. See Appx. B for detailed
design choices.

Step 4: Growing PC and Re-clustering Data. Suppose
the previous step selects a set of cluster indices I for grow-
ing. The goal of this step is to expand these |I| clusters
into M new clusters (M > |I|). Under the hood, we need
to re-cluster the corresponding subset of samples as well
as apply structure modifications to the PC to fit the new
clusters. Both procedures are described in the following.

To ensure that the structure and parameters of the multi-
headed PC are still relevant to the cluster assignments λk

after the reclustering step, a natural approach is to perform
iterative growing and clustering to the PC and the dataset,
respectively. Specifically, for each selected cluster i ∈ I,
we use K-means to cluster the samples belonging to the ith
cluster into n clusters, and create n−1 new PC root units
for the added clusters based on pφ(x|Z = i). We use a
slightly modified approach to re-cluster training samples for
all |I| clusters simultaneously. Specifically, we first select
the subset of samples (x,h) belonging to clusters in I. We
then run K-means to cluster the neural representations h
into M clusters, with the first |I| cluster centers initialized
to be the centers of the clusters in I. λk is then updated to
reflect the new cluster assignments. In this way, the first
|I| new clusters are still relevant to the corresponding PC
pφ(x|Z= i) (i∈I).
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Algorithm 1 Grow Multi-Headed PCs
1: Input: A dataset D={(x(i),z(i))}Ni=1, where z(i)∈ [k] is the

cluster index of x(i); a k-headed PC p
2: Output: A new multi-headed PC p′

3: Compute Fn(D) for every PC unit n
4: G← {n : Fn(D) ≥ ϵ}, where ϵ is a predefined threshold
5: old2new← dict() ▷ Maps n to a pair of (new) nodes
6: foreach n traversed in postorder do ▷ Child before parent
7: ch1,ch2←{old2new[c][0]}c∈in(n),{old2new[c][1]}c∈in(n)

8: if n isa input unit then
9: old2new[n]← (n, copy(n)) if n ∈ G else (n, n)

10: elif n isa product unit then
11: old2new[n]← (

⊗
(ch1),

⊗
(ch2))

12: elif n ∈ G isa sum unit then
13: old2new[n]← (

⊕
(ch1, ch2),

⊕
(ch1, ch2))

14: elif n ̸∈ G isa sum unit then
15: old2new[n]← (

⊕
(ch1, ch2), None)

16: return A multi-head PC with root nodes
{old2new[n] : n is a root node in p}

In order to represent the newly-added clusters, the structure
of the PC needs to be modified to contain M−|I| additional
root/head units to represent p(x|Z = i) (i ∈ {k+1, . . . , k+
M − |I|}). A simple strategy would be to directly copy all
descendent units of M − |I| existing root units for the new
clusters. However, this will significantly increase the size
of the cluster-conditioned PC, rendering the progressive
growing algorithm highly inefficient. Moreover, it rules
out the possibility to reuse sub-circuits that are useful for
modeling x conditioned on different z, seriously limiting
the PC’s expressive power at any particular size.

To mitigate this problem, we propose a structure growing
operator that only copies the most important substructure for
describing a distribution. By introducing additional edges
between the original and copied sub-circuit, the PC can learn
to share structures that can be used to describe p(x|z) for
various z. At the heart of the growing algorithm is a statistic
termed flow that measures the generative significance of
a node/edge w.r.t. a sample x (Dang et al., 2022; Liu &
Van den Broeck, 2021), defined as follows.

Definition 4 (Circuit flow). For a PC p(X) and a sample
x, the circuit flow for every PC unit n, denoted Fn(x), is
defined recursively as follows (out(n) denotes the set of
parent units of n): first, Fn(x) = 1 if n is the root unit;
next, if n is a product unit, we have

Fn(x) :=
∑

m∈out(n)

θm,n · pn(x)
pm(x)

· Fm(x);

otherwise (n is a sum or input unit), the flow is defined by

Fn(x) :=
∑

m∈out(n)
Fm(x).

Intuitively, flow Fn(x) quantifies the “contribution” of unit
n to the log-likelihood of x. Figure 4 demonstrates an

example PC-sample pair with likelihoods labeled on top
of every node. Nodes and edges with relatively high flows
are labeled red. Note that high node likelihood does not
guarantee high flow, which is illustrated by n1 and n2: they
both have high likelihoods, but only n1 has high flow. For
a dataset D, Fn(D) :=

∑
x∈D Fn(x) measures the total

contribution of n to the samples in D.

Recall that our goal is to expand the current k-headed PC
to have M − |I| additional root units to encode p(x|Z = i)
(i ∈ {k+1, . . . , k+M−|I|}), respectively. To achieve this,
we first extend Definition 4 for multi-headed PC. Specifi-
cally, while the recurrent definition of the inner nodes re-
main unchanged, for the ith root node, we set the flow to 1
if x is assigned to cluster i by λm and 0 otherwise.

The proposed growing operator is shown in Algorithm 1.
It consists of two main parts: in lines 3-4, circuit flow is
used to choose a subset of “important” (i.e., nodes with flow
higher than a predefined threshold) nodes to be grown; in
lines 5-15, the PC is modified in a way that only the selected
nodes are duplicated, while other parts are kept unchanged.
In our use case, since we want to modify the sub-circuit cor-
responds to the |I| chosen clusters, we invoke Algorithm 1
with the subset of samples whose cluster indices are in I.
According to the definition of flows, the returned PC will
have k + |I| heads since the |I| chosen root nodes will be
duplicated by the algorithm, while all other nodes will not.

Progressive growing alternates between the four steps de-
scribed above until we have expanded the number of clusters
to a predefined value K. Therefore, the parameters of the
multi-headed PC grown by step #4 will be updated in step
#1 of the algorithm’s next iteration.

In summary, the data re-clustering process in step 4 ensures
that the cluster assignments respect the neural representa-
tion, and the cluster assigning process in step 2 leads to
well-fitted cluster-conditioned PCs.

5. Closing the LVD Gap for Image Data
Using image data as an example, this section demonstrates
how the general guidelines for narrowing the LVD gap in-
troduced in Section 3 can be specialized to practical design
choices. Throughout this paper, we adopt Vector Quan-
tized Variational Autoencoders (VQ-VAEs) (van den Oord
et al., 2017; Razavi et al., 2019) as the teacher model. In
the following, we first briefly introduce VQ-VAE. We then
proceed to describe the design choices we make to better
align the modeling assumptions of pθ(x|z) (resp. pθ(z))
and ppc(x|z) (resp. ppc(z)).

As shown in Figure 6, VQ-VAE consists of an encoder that
produces a feature map, and a decoder that reconstructs the
input image using the feature map. Different from many
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Table 1. Density estimation performance of Tractable Probabilistic Models (TPMs) and Deep Generative Models (DGMs) on three
natural image datasets. Reported numbers are test set bit-per-dimension (bpd), specifically, we report mean bpds and respective standard
deviations over three runs. Bold indicates the best bpd (smaller is better) among all three TPMs. Best TPM w/o LVD represents the best
performance over three TPMs: HCLT, RAT-SPN, and EiNet.

Dataset
TPMs DGMs

LVD-PG (ours) LVD Best TPM w/o LVD Glow RealNVP BIVA VDM

ImageNet32 4.06±0.01 4.38 4.82 4.09 4.28 3.96 3.72
ImageNet64 3.80±0.07 4.12 4.67 3.81 3.98 - 3.40
CIFAR 3.87±0.00 4.37 4.61 3.35 3.49 3.08 2.65

Encoder Decoder

eMe3e2e1

···
Codebook

e7

e42

e13

e19

Figure 6. Illustration of the VQ-VAE model.

other DGMs, the latent feature map of VQ-VAEs is con-
structed by a codebook with M vectors representing M
codes. Specifically, the latent embedding at each position
must be a vector from the codebook. Since every latent
code in the feature map corresponds to a patch of the in-
put image, we materialize an LV Zi for each position in
the latent feature map, and define the corresponding image
patch as Xi. Denote Z := {Zi}i, likelihood given an image
x can be computed as p(x) =

∑
z p(z)

∏
i p(xi|zi). For

every Zi, we can learn p(xi|zi) from the patches xi and
the corresponding continuous feature vectors hi produced
by VQ-VAE using the progressive growing algorithm de-
tailed in the previous section. The generated discretization
function can then be used to generate z = {zi}i for every
training sample, and is used to train p(z).

However, in the above treatment, there are mismatches be-
tween the modeling assumptions made by VQ-VAE and
the PC. First, since the latent feature map produced by VQ-
VAE uses the same codebook at all locations, the cluster-
conditioned distributions for different patches should be
homogeneous. That is, for every discretization function λ
and sample pair (x,h), we have ∀i, j ∈ [|Z|],

p(Xi = x|Zi = λ(h)) ≈ p(Xj = x|Zj = λ(h)).

To reflect this inductive bias, instead of learning p(x|zi) for
every i ∈ [|Z|] independently, we aggregate their respective
training samples and learn a single cluster-conditioned distri-
bution, which is then applied to every image patch. That is,
we do parameter tying between different cluster-conditioned
distributions. This not only decreases the number of param-
eters of the PC, but also allows us to use much more data to
train better cluster-conditioned distributions.

Another modeling assumption mismatch comes from the
conditional independence between Xi and X\Xi given Zi

assumed by the PC. The convolutional decoder of a VQ-
VAE breaks this assumption as xi can correlate to other
patches given zi. To mitigate this mismatch, we use an
independent decoder where zi is the only source of infor-
mation used to generate xi. Although this will degrade the
performance of VQ-VAE, as demonstrated in Section 3, the
performance of LVD-learned PCs can surpass the teacher
model. And the primary goal of LVD is to find an initial
set of parameters that can be optimized by the EM algo-
rithm to good local optima. We will proceed to show this
phenomenon in Section 6.1.

6. Experiments
This section first empirically verify the theoretical findings
in Section 3 (Sec. 6.1). We then move on to evaluate our
method on image modeling benchmarks (Sec. 6.2).

6.1. Analyzing Performance Gaps in LVD

We empirically investigate the finding in Section 3 that the
log-likelihood of the student PC can surpass the ELBO of
the teacher DGM. Specifically, we consider an instantia-
tion of the LVD pipeline and empirically compute the three
ELBOs shown in Figure 2. For ease of computation, we
use VQ-VAE as the teacher model and one-shot K-means
discretization strategy to train a PC on Imagenet32. The
resulting ELBO of the teacher DGM is −2493 (Fig. 2 top-
right), while the LVD objective is −2499 (Fig. 2 bottom).
Therefore, the LVD gap is 5, which matches the extreme
case mentioned in Section 4 (i.e., the student almost per-
fectly simulates the teacher). Hence the PC becomes a
tractable instantiation of the teacher DGM. Thanks to PCs’
tractability, we are able to close the variational gap for free
and obtain a PC with log-likelihood −2317, leading to a
student PC better than the teacher DGM.

6.2. Image Modeling Benchmarks

We evaluate the proposed algorithmic improvements to the
LVD pipeline on three natural image benchmarks: CIFAR
(Krizhevsky et al., 2009) and two down-sampled ImageNet
(ImageNet32 and ImageNet64) (Deng et al., 2009).
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Figure 7. Comparison of image modeling performance. LVD-PG
outperforms all baselines with similar sizes by a large margin.

Baselines. We compare the proposed method, termed
LVD with Progressive Growing (LVD-PG) against four
TPM baselines: LVD (Liu et al., 2022), Hidden Chow-
Liu Tree (HCLT) (Liu & Van den Broeck, 2021), Random
Sum-Product Network (RAT-SPN) (Peharz et al., 2020b),
and Einsum Network (EiNet). These baselines cover most
of the recent endeavors on scaling up and improving the
expressiveness of TPMs. Moreover, to evaluate the perfor-
mance gap with less tractable DGMs, we further compare
LVD-PG with the following flow-based models and vari-
ational autoencoders: Glow (Kingma & Dhariwal, 2018),
RealNVP (Dinh et al., 2016), BIVA (Maaløe et al., 2019)
and Variational Diffusion Models (VDM) (Kingma et al.,
2021). Details can be found in Appx. C.

Empirical insights. We start by comparing our perfor-
mance with other TPM models. As shown in Figure 7, LVD-
PG consistently outperforms the baselines by a large margin.
In particular, on CIFAR, a ∼12M LVD-PG model is much
better than a ∼800M PC trained by LVD; on ImageNet32, a
∼20M PC trained by LVD-PG also obtains significant per-
formance gain compared to a ∼800M PC trained by original
LVD. This indicates that proper design choices can further
exploit LVD’s potential to train expressive yet compact PCs,
thus significantly boosting the performances of large PCs.

Next, we compare the performance achieved by LVD-PG
with the three adopted DGM baselines. Notably, as demon-
strated in Table 1, our approach enables PCs to outperform
all DGMs except the SoTA VDM on ImageNet64, and on
ImageNet32, LVD-PG is only inferior to BIVA with a 0.1
bpd gap and VDM with a 0.34 bpd gap.

Ablation studies. To evaluate the effect of the progressive
growing algorithm proposed in Section 4 and the image-
data-specific modifications (such as using an “independent
decoder” in VQ-VAE) elaborated in Section 5, we do an
ablation analysis by training two other PCs without either

component, respectively. Both PCs have similar model sizes
as the SoTA PC trained with LVD-PG on ImageNet32 (∼
260M parameters). Specifically, compared to the SoTA
LVD-learned PC with 4.06 bpd, the LVD-learned PC with-
out progressive growing only achieves 4.12 bpd, while the
performance of the LVD-learned PC with convolutional
decoder degrades to 4.18 bpd.

7. Related work
There have been significant recent efforts to scale up and
improve the expressiveness of PCs. Many works focus on
constructing expressive yet compact initial PC structures
(Rahman et al., 2014; Adel et al., 2015; Rooshenas & Lowd,
2014), while others aim for an iterative structure learning
process that gradually increases model capacity (Di Mauro
et al., 2021; Dang et al., 2020; Liang et al., 2017). These
methods have led to significant performance gains on vari-
ous density estimation datasets.

However, improving the PC structure alone does not seem
to offer too much performance gain on real-world high-
dimensional datasets such as natural images and text. To-
wards solving this problem, there have been many recent
endeavors to explore different ways of combining PCs with
neural networks (NNs) to obtain tractable while expressive
hybrid models. For example, Conditional SPNs (Shao et al.,
2022) harness the expressive power of NNs to learn expres-
sive conditional density estimators; HyperSPNs (Shih et al.,
2021) use NNs to regularize the parameters of PCs; Correia
et al. (2022) learn continuous mixtures of PCs with the help
of continuous latent-space models represented by NNs.

A key to the above successes in scaling up PCs is the
development of computation frameworks and easy-to-use
libraries that make training large-scale PCs highly effi-
cient. Specifically, EiNet (Peharz et al., 2020a) and SPFlow
(Molina et al., 2019) leverage well-developed deep learning
packages such as PyTorch (Paszke et al., 2019) to imple-
ment various inference and parameter learning procedures,
and Juice.jl (Dang et al., 2021) implement custom kernels
to better handle sparse PCs.

8. Conclusion
This paper aims to demystify the latent variable distillation
process from intractable Deep Generative Models (DGMs)
to tractable Probabilistic Circuits (PCs). We discover both
theoretical and empirical evidence that the performance of
the student PC can exceed that of the teacher DGM, where
the performance gain originates from the tractability of PCs
that closes a variational gap “for free”. Following this varia-
tional interpretation of the distillation technique, we further
propose algorithmic improvements that lead to significant
performance gain over SoTA TPMs. It also outperforms
several intractable DGM baselines.
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A. Equivalence Between the Two LVD Formulations
Consider a sample x. Suppose its LV assignment z is generated by qϕ(z|x). Then Equation (1) can be written as:

Ez∼qϕ(z|x)[log ppc(x, z)] = Ez∼qϕ(z|x) [log (ppc(x|z)ppc(z))] ,

= Ez∼qϕ(z|x)[log ppc(x|z)] + Ez∼qϕ(z|x)

[
log

(
ppc(z)

qϕ(z|x)
qϕ(z|x)

)]
,

= Ez∼qϕ(z|x)[log ppc(x|z)]−DKL (qϕ(z|x)∥ppc(z)) + Ez∼qϕ(z|x)[log qϕ(z|x)].

The first two terms of the last equation are the LVD objective shown in Equation (3). Since the last term is independent with
the PC, we conclude that Equations (1) and (3) are equivalent up to a constant factor independent with the PC.

B. Details of the Progressive Growing Algorithm
Training PC with Labeled Dataset. For the cluster-conditioned distribution, we adopt multi-head HCLTs with hidden
size 16 and run mini-batch EM optimization with batch size 256. The learning rate anneals linearly from 0.1 to 0.01 for 50
epochs.

Selecting Clusters to Grow. The cluster set I selected to grow initiates with an empty set, then we choose the cluster
with the smallest LL and push all samples belonging to this cluster into I successively until its capacity reaches a certain
threshold. In our experiments, the threshold is fixed to be 40% of the total number of samples.

Additional Details. Given D :={(x,h) :x∈Dtrain,h=gϕ(x)}, we first use K-means to pre-cluster the training samples
into N1 outer clusters based on their continuous neural embeddings. Then we apply the progressive growing algorithm
to grow each outer cluster up to N2 inner clusters, which initiates with a single-head HCLT. Specifically, when N1 equals
one, the pipeline is equivalent to growing clusters from scratch, and the smaller total cluster number N1 ×N2 typically
corresponds to smaller PCs. Empirically we vary N1 from 50 to 400 and adjust N2 from 20 to 3 accordingly. On the three
image benchmarks: Imagenet32, Imagenet64 and CIFAR10, the (N1,N2) adopted by our SoTA LVD-learned PC are (400,4),
(320,4), and (100,4), respectively.

C. Implementation Details of the Baselines
To ensure a fair comparison, we implement HCLT and RAT-SPN with the Julia package Juice.jl (Dang et al., 2021) and adopt
the original PyTorch implementation of EiNet. For all TPMs, we train a series of models with their number of parameters
ranging from ∼1M to ∼100M and tune hyperparameters accordingly. Finally, we choose the best model among these TPM
baselines as the Best TPM w/o LVD. We also report the best performance of each TPM in the following table.

Dataset HCLT EiNet RAT-SPN

ImageNet32 4.82 5.63 6.90
ImageNet64 4.67 5.69 6.82
CIFAR 4.61 5.81 6.95

D. Image samples from the PCs
As will be further elaborated in the following, the quality of samples drawn directly from the LVD-PG PCs is not good.
Notably, “directly” means that our samples are pure unbiased samples, in contrast to biased ones towards the distribution
mode. For instance, during the sampling process of PC, approximate MAP inference can be adopted for close-to-leaf nodes
to get better but biased samples. Although we mainly focus on improving the density modeling performance of PCs, their
poor sample quality is a weakness of the current method. To help future research to improve the (image) sample quality of
PCs, we conducted a detailed analysis of the potential reasons, and provide a few directions that we believe could lead to
PCs with both better likelihoods and better sample quality.

We test the sample quality of the learned cluster-conditioned PCs p(x|z). Specifically, we first sample 5 images (Figure 8)
from the validation dataset of Imagenet32 and extract their discrete cluster indices js from the teacher VQ-VAE model.
Then we draw patch samples from corresponding P (Xi|Zi = j). The corresponding sampled images are shown in Figure 9.
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As shown in the samples, although the overall color of most patches matches that of the original image, the sampled patches
contain noise and lack fine details.

Figure 8. Raw images from Imagenet32.

Figure 9. Samples from LVD-leaned PC.

We observe several sources of poor sample quality:

1. the sample quality of the teacher VQ-VAE model is not good as well. Figure 10 demonstrates the samples from the
modified VQ-VAE with an independent decoder, and Figure 11 illustrates the samples from the original VQ-VAE. First, both
sets of images are noisy, and of low quality. This can be further attributed to two main reasons: (i) using an independent
decoder lowers the sample quality, as the samples in Figure 10 look worse than those in Figure 11; (ii) the sample quality
of VQ-VAE itself is not very good, as we used a different training objective in order to compute the ELBO of VQ-VAE.
Specifically, in the original VQ-VAE, the decoder directly outputs the C ×H ×W image and uses the MSE reconstruction
loss. To improve its ELBO, we used a mixture of discrete logistic distributions to parameterize p(x|z). Specifically, the
decoder outputs a K × H × W tensor, where for every pixel, there is a size-K vector that parameterizes a mixture of
discrete logistic distributions for the pixel (including the RGB channels). Although it provides better log-likelihoods, this
leads to more noisy samples.

Figure 10. samples from the teacher VQVAE (with independent decoder).

2. The use of categorical leaf nodes also leads to noisy samples. As we will demonstrate in the following, although it
improves density estimation performance, using categorical leaf nodes lead to worse image samples.

To understand how much we are behind PCs with the best sample quality. We run EiNet (with the PD structure) (Peharz
et al., 2020a) on SVHN (a dataset they reported samples) and ImageNet32 and visualize their samples. First, as a sanity
check, the SVHN samples drawn from EiNet are shown in Figure 12. We observe that two modeling choices are crucial to
this sample quality. First, for SVHN, they first clustered the training samples into 100 subsets and learned an EiNet for
each cluster respectively. The cluster center mean is also subtracted from training samples before they are fed to the EiNets.
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Figure 11. samples from the standard VQVAE (without independent decoder).

Other design choices include using Gaussian leaf nodes and approximate MAP sampling for close-to-leaf nodes. If we
replace Gaussian leaves with categorical leaves, the samples are shown in Figure 13, with significantly worse quality.

Next, using all the above techniques, we trained EiNet on ImageNet32. The drawn samples are shown in Figure 14. Though
less noisy, it seems that EiNet also fails to generate realistic images. Additionally, as shown in Figure 15, if we do not
perform dataset clustering and use categorical leaves, the sample quality degrades significantly.

Figure 12. Samples from EiNet (with Gaussian leaves) on SVHN.

Figure 13. Samples from EiNet (with Categorical leaves) on SVHN.

Figure 14. Samples from EiNet (with Gaussian leaves) on ImageNet32.
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Figure 15. Samples from EiNet (with Categorical leaves) on ImageNet32 .

In summary, there exist important techniques to improve the sample quality of PCs. Therefore, one direction would be to
incorporate these techniques into the LVD learning process. Additionally, in many cases, we do not need “full tractability”
over all pixels. For example, if we only need tractability on the patch level (e.g., we want to controllably generate an apple
in the top-left corner), we can train a PC instead on the latent space Z, and train a neural network decoder that is optimized
for fine-grained image generation. That is, we can use PCs to control the “semantic” of an image and use the strength of
neural networks to obtain high perceptual quality.
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