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Abstract

Using pre-trained models has been found to reduce the effect of data heterogeneity
and speed up federated learning algorithms. Recent works have explored training-
free methods using first- and second-order statistics to aggregate local client data
distributions at the server and achieve high performance without any training. In
this work, we propose a training-free method based on an unbiased estimator
of class covariance matrices which only uses first-order statistics in the form of
class means communicated by clients to the server. We show how these estimated
class covariances can be used to initialize the global classifier, thus exploiting the
covariances without actually sharing them. We also show that using only within-
class covariances results in a better classifier initialization. Our approach improves
performance in the range of 4-26% with exactly the same communication cost
when compared to methods sharing only class means and achieves performance
competitive or superior to methods sharing second-order statistics with dramatically
less communication overhead. The proposed method is much more communication-
efficient than federated prompt-tuning methods and still outperforms them. Finally,
using our method to initialize classifiers and then performing federated fine-tuning
or linear probing again yields better performance. Code is available at https:
//github.com/dipamgoswami/FedCOF.

1 Introduction

Federated learning (FL) is a widely used paradigm for distributed learning across multiple clients.
In FL, each client trains their local model on their private data and then sends model updates to a
common global server that aggregates this information into a global model. The objective is to learn a
global model that performs similarly to a model jointly trained on all the client data. A major concern
in existing FL algorithms [37] is the poor performance when the client data is not identically and
independently distributed (iid) or when classes are imbalanced between clients [56, 32, 1, 21]. In [35],
the authors showed that client drift in FL is mainly due to drift in client classifiers which optimize
to local data distributions, resulting in forgetting knowledge from clients of previous rounds [30, 5].
Another challenge in FL is the partial participation of clients in successive rounds [32], which
becomes particularly acute with large numbers of clients [43, 20]. To address these challenges, recent
works have focused on algorithms to better tackle data heterogeneity across clients [35, 47, 29, 11].
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Table 1: FedNCM [29] shares only class means µ̂k,c and
has minimal communication. Fed3R [11] requires sum of
class features Bk and feature matrix Gk from all clients,
thereby increasing the communication cost by d2K. We
propose FedCOF, which shares only class means and esti-
mates a global class covariance Σ̂c to initialize the classifier
weights. Note that only a small subset of all classes are
present in each client. For simplicity, we show the upper
bound of communication cost here where C ′ denotes the
maximum number of classes present in a single client.

Method Client Shares Server Uses Comm. Cost

FedNCM {µ̂k,c, nk,c}C
′

c=1 {{µ̂k,c, nk,c}C
′

c=1}Kk=1 dC ′K

Fed3R Gk, Bk {Gk, Bk}Kk=1 (dC ′ + d2)K

FedCOF {µ̂k,c, nk,c}C
′

c=1 {{µ̂k,c, nk,c}C
′

c=1}Kk=1, {Σ̂c}C
′

c=1 dC ′K
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Figure 1: Accuracy vs. communication
cost using pre-trained MobileNetv2 on
iNaturalist-Users-120K. FedCOF out-
performs Fed3R while having the same
communication cost as FedNCM.

Motivated by results from transfer learning [15], several recent works on FL have studied the
impact of using pre-trained models and observe that it can significantly reduce the impact of data
heterogeneity [29, 38, 47, 6, 41, 45, 35, 46, 54]. An important finding in several of these works
is that sending local class means to the server instead of raw features is more efficient in terms of
communication costs, eliminates privacy concerns, and is robust to gradient-based attacks [6, 57]. The
authors of [47] used pre-trained models to compute and then share class means as the representative
of each class, and in [29] the authors showed that aggregating local means into global means and
setting them as classifier weights (FedNCM) achieves very good performance without any training.
FedNCM incurs very little communication cost and enables stable initialization. Recently, the authors
of Fed3R [11] explored the impact of sharing second-order feature statistics from clients to server to
solve the ridge regression problem [4] in FL and improve over FedNCM. The sharing of second-order
statistics has also previously been explored for classifier calibration after federated optimization [35].

Although it is evident that exploiting second-order feature statistics results in better and more stable
classifiers, it poses new problems. Notably, sharing second-order statistics for high-dimensional
features from clients to the server significantly increases communication overhead and exposes clients
to privacy risks [35, 11]. To reap the benefits of second-order client statistics, while at the same
time mitigating these risks, in this paper we propose Federated learning with COvariances for Free
(FedCOF) which only communicates class means from clients to the server (see Table 1). We show
that, from just these class means and the mathematical relationship between their covariance and the
class covariance matrices, we can compute a provably unbiased estimator of global class covariances
on the server. FedCOF is a training-free method that exploits pre-trained feature extractors. It uses
the same communication budget as FedNCM while delivering performance comparable to or even
superior to Fed3R (see Figure 1). Additionally, we show how to improve classifier initialization using
only within-class covariances, setting the classifier weights based on aggregated class means and our
estimated class covariances. To summarize, our main contributions are:

• We propose FedCOF, a training-free method that exploits a provably unbiased estimator of
class covariances, which requires only class means from clients, thus avoiding the need to
share second-order statistics, reducing communication costs and mitigating privacy concerns.

• We show how FedCOF leverages within-class covariances, estimated solely from client
means, to initialize the global classifier, yielding more stable and better-conditioned solutions
than using both within- and between-class scatter matrices.

• We validate FedCOF across multiple FL benchmarks, including the non-iid iNaturalist-
Users-120K dataset, achieving state-of-the-art results with lower communication cost than
methods using second-order statistics, and showing superior performance to recent federated
prompt-tuning approaches while also serving as an effective initialization for subsequent
federated optimization methods such as fine-tuning and linear probing.

2 Related Work

Federated learning. FL focuses on neural network training in distributed environments [55, 53].
Initial works like FedAvg [37] proposed training by averaging of distributed models. Later works
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focus more on non-iid settings, where data among the clients is more heterogeneous [32, 20, 51,
33]. FedNova [52] normalizes local updates before averaging to address objective inconsistency.
Scaffold [22] employs control variates to correct drift in local updates. FedProx [31] introduces a
proximal term in local objectives to stabilize the learning process. [42] proposed use of adaptive
optimization methods, such as Adagrad, Adam and Yogi, at the server side. While CCVR [35]
proposed a classifier calibration method that aggregates class means and covariances from clients,
other recent works [34, 8, 39, 23] proposed using fixed classifiers inspired by the neural collapse
phenomenon. After federated training with fixed classifiers, FedBABU [39] proposed to fine-tune the
classifiers and SphereFed [8] proposed a closed-form classifier calibration.

FL with pre-trained models. While conventional FL methods start training from scratch without any
pre-training, we focus on the FL setting using pre-trained models. FedFN [24] recently highlighted
that using pre-trained weights can sometimes negatively impact performance. However, there has been
increasing interest in incorporating pre-trained, foundation models into federated learning. Multiple
works propose using pre-trained weights which reduces the impact of client data heterogeneity and
achieves faster model convergence [38, 47, 6, 41, 45, 54]. Federated prompt-tuning methods [54]
proposed to reduce the communication cost by tuning only prompts in a federated manner using
pre-trained ViT models. Recently, it has been shown that training-free methods using pre-trained
networks, achieve strong performance without any training by exploiting feature class means [29]
or second-order feature statistics [11]. Another recent work [2] proposed sharing Gaussian mixture
models (multiple sets of means and covariances) for each class from clients to server for one-shot
FL. In this work, we propose a training-free method with pre-trained models that estimates class
covariances from only client means for initializing the global classifier.

3 Preliminaries

In the FL setting we assume K clients, each with a local dataset Dk = (Xk, Yk), for k ∈ {1, ...,K},
and denote by N the total number of images across all clients. The model is composed of a feature
extractor f , parameterized by θ, which maps images to d-dimensional embeddings, and a classifier
h : Rd → RC , parameterized by W , where C is the total number of classes. In federated optimization,
each client trains its local model on its private data Dk and transmits only intermediate information –
such as parameter updates or feature statistics – while a central server aggregates these signals to
minimize a global objective, without revealing raw data [25].

With the growing availability of high-quality pre-trained models, recent works have focused on
scenarios in which all clients are initialized with the same pre-trained feature extractor [6, 29, 38, 47,
11, 54]. Notably, training-free methods [11, 29] – in which only the global classifier is initialized
using client feature statistics, without training the feature extractor – achieve strong performance.
They often outperform federated full fine-tuning methods, such as FedAdam and FedAvg, which train
client backbones and classifiers, starting from the same shared pre-trained feature extractor but with
randomly initialized classifiers, at a fraction of the communication and computation costs. Moreover,
this training-free initialization can serve as an effective starting point, improving the performance of
federated full fine-tuning. We now discuss recent training-free methods.

Federated NCM. FedNCM [29] employs a Nearest Class Mean (NCM) classifier, where the global
linear classifier weights for class c (denoted as Wc) are initialized as µ̂c/∥µ̂c∥. Here, µ̂c represents
the global class mean aggregated from the local client class means µ̂k,c as follows:

µ̂c =
1

Nc

K∑
k=1

nk,c µ̂k,c; µ̂k,c =
1

nk,c

∑
x∈Xk,c

f(x), (1)

where Xk,c is a subset of Xk having images of class c, nk,c refers to number of images in Xk,c, and
Nc =

∑K
k=1 nk,c is the number of images of class c across all clients.

Federated Ridge Regression. While FedNCM exploits only class means, Fed3R [11] recently
proposed using ridge regression which requires second-order feature statistics from all clients to
initialize the global classifier, leading to improved performance compared to FedNCM. The ridge
regression problem aims to find the optimal weights that minimize the following objective:

W ∗ = arg min
W∈Rd×C

∥Y − F⊤W∥2 + λ∥W∥2, (2)
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where F ∈ Rd×N is the feature matrix extracted using a pre-trained model and Y ∈ RN×C contains
one-hot encoded labels for the N features over C classes. The closed-form solution is given by:

W ∗ = (G+ λId)
−1B, (3)

where G = FF⊤ ∈ Rd×d, B = FY ∈ Rd×C , Id ∈ Rd×d is the identity matrix, and λ ∈ R is a
hyperparameter. In Fed3R, each client k computes two local matrices Gk = FkF

⊤
k ∈ Rd×d and

Bk = FkYk ∈ Rd×C , where Fk and Yk are the feature matrix and the labels of client k, and then sends
them to the global server. The server aggregates these matrices as G =

∑K
k=1 Gk, B =

∑K
k=1 Bk

to compute W ∗, which is normalized and used to initialize the global classifier.

4 Federated Learning with COvariances for Free (FedCOF)

In this section, we derive our FedCOF method which is based on a provably unbiased estimator of
class covariances and requires transfer of only class means from clients to server.

4.1 Motivation

Communication cost. While Fed3R is more effective than FedNCM, it requires each client to send
an additional d× d matrix, significantly increasing the communication overhead by d2K compared
to FedNCM which only shares the class means (see Table 1). Fed3R scales linearly with number of
clients and quadratically with the feature dimension. FedPFT [2] shares multiple sets of (µk,c,Σk,c)
from clients, further increasing communication costs. Considering cross-device FL settings [20],
having millions of clients, the communication cost required for these methods would be enormous.

Recent works [26, 54] focus on parameter-efficient federated fine-tuning where the per-round com-
munication costs are significantly reduced, enabling applications in low-bandwidth communication
settings. For example, recent work [26] shows that using pre-trained language models (RoBERTa-
base) can yield performance similar to full fine-tuning while using rank-1 LoRA updates and thereby
reducing communication cost by 99.8%. Sharing a similar goal of reducing communication costs, we
propose an unbiased covariance estimator without sharing client covariances for training-free FL.

Potential privacy concerns. Sharing only class means provides a higher level of data privacy
compared to sharing raw data, as prototypes represent the mean of feature representations. It is not
easy to reconstruct exact images from prototypes with feature inversion attacks [35]. As a result,
sharing class means is common in many recent works [47, 46, 45, 29]. On the other hand, Fed3R
shows that sharing second-order statistics improves performance compared to sharing class means.
However, this could expose the feature distribution of clients to the server since all clients employ
the same frozen pre-trained model to extract features [11]. Sharing covariances makes clients more
vulnerable to attacks if secure aggregation protocols are not implemented [3].

4.2 Estimating Covariances Using Only Client Means

Our method leverages the statistical properties of sample means to derive an unbiased estimator of
the class population covariance based only on per-client class means (see Figure 2). We model the
global features of each class c as drawn from a multivariate distribution with mean µc and covariance
Σc, and assume that the local features for class c computed by each client using the shared frozen
pre-trained model are iid. Under this assumption, class features in a client form a random sample
from the class population.

For client k, let {F j
k,c}

nk,c

j=1 denote the feature vectors of class c, where nk,c is the number of samples
from class c assigned to client k. The sample mean of these features, F k,c = 1

nk,c

∑nk,c

j=1 F j
k,c, is

itself a random variable with expectation and variance given by:

E[F k,c] = µc, Var[F k,c] =
Σc

nk,c
(4)

This well-known result – whose proof we include in Appendix B for reference – implies that the
variance of sample means over subsets of size nk,c reflects the underlying class covariance. In
principle, by assigning multiple subsets of nk,c features to a single client and computing the empirical
covariance of their means, one could recover Σc, since Σc = nk,cVar[F k,c].
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Figure 2: Federated Learning with COvariances for Free (FedCOF). Each client k communicates
only its class means µ̂k,c and counts nk,c. On the server side, (A) we use a provably unbiased
estimator Σ̂c (denoted by solid lines) of population covariance Σc (denoted by dashed lines) based on
the received class means (see Section 4.2). (B) We initialize the linear classifier using the estimated
second-order statistics and remove the between-class scatter matrix as discussed in Section 4.3.

However, in federated learning data are assigned only once to each client, and there are K clients
in the federation, each with nk,c features and ni,c ̸= nj,c for i ̸= j. To estimate the population
covariance Σc, we need an estimator that accounts for the contributions of all K clients. In the
following proposition, we propose just such an estimator.
Proposition 1. Let K be the number of clients, each with nk,c features, and let C be the total
number of classes. Let µ̂c =

1
Nc

∑Nc

j=1 F
j be the unbiased estimator of the population mean µc and

Nc =
∑K

k=1 nk,c be the total number of features for a single class. Assuming the features for class c
are iid across clients at initialization, the estimator

Σ̂c =
1

K − 1

K∑
k=1

nk,c(F k,c − µ̂c)(F k,c − µ̂c)
⊤ (5)

is an unbiased estimator of the population covariance Σc, for all c ∈ 1, . . . , C.

Proof. To prove that Σ̂c is an unbiased estimator of the population covariance, we show that
E[Σ̂c] = Σc. Under the iid assumption of client feature distribution with a frozen pre-trained model,
the class features of each client can be considered as a random sample of size nk,c, and the global
class features as a sample of size Nc. By exploiting the result in Equation (4), each client class
mean has E[F k,c] = µc and Var[F k,c] =

Σc

nk,c
, while the global class mean µ̂c has E[µ̂c] = µc and

Var[µ̂c] =
Σc

Nc
. Using this fact and applying the properties of expectation to E[Σ̂c], we complete the

proof. In Appendix C we provide the detailed proof.

Covariance shrinkage. Shrinkage[49, 12] stabilizes covariance estimation by adding a scaled identity
matrix to the covariance matrices, which regularizes small eigenvalues and reduces estimator variance.
This is particularly helpful when the number of samples is smaller than the feature dimensionality,
leading to low-rank covariances, and has been recently adopted in continual learning methods
leveraging feature covariances [14, 36]. In the FL setup, the covariance estimation using a limited
number of clients may poorly estimate the population covariance Σc. So, we perform shrinkage to
better estimate the class covariances from the client means as follows:

Σ̂c =
1

K − 1

K∑
k=1

nk,c(µ̂k,c − µ̂c)(µ̂k,c − µ̂c)
⊤ + γId, (6)

where µ̂k,c = F k,c represents a realization of client means and γ > 0 is the shrinkage factor.

Impact of number of clients. The quality of estimated covariances depends on the number of clients.
More clients will give more means and improve the estimate compared to fewer clients. While
realistic settings have thousands of clients [18, 20], there can be FL settings with fewer. In such
cases, we propose to sample multiple means from each client to increase number of means used for
covariance estimation. This can be done by randomly sampling subsets of features in each client and
computing a mean from each subset. We validate this approach experimentally (see Figure 5). We
discuss more on sampling multiple class means in Appendix E.
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4.3 Classifier Initialization with Estimated Covariances

Having derived how to compute class covariances from client means, we now describe how FedCOF
leverages the estimated class covariances to initialize classifier weights.

Proposition 2. Let F ∈ Rd×N be a feature matrix with empirical global mean µ̂g ∈ Rd, and
Y ∈ RN×C be a label matrix. The optimal ridge regression solution W ∗ = (G+ λId)

−1B, where
B ∈ Rd×C and G ∈ Rd×d can be written in terms of class means and covariances as follows:

B = [µ̂cNc]
C
c=1 , G =

C∑
c=1

(Nc − 1)Ŝc +

C∑
c=1

Nc(µ̂c − µ̂g)(µ̂c − µ̂g)
⊤ +Nµ̂gµ̂

⊤
g , (7)

where the first two terms Gwith =
∑C

c=1(Nc − 1)Ŝc and Gbtw =
∑C

c=1 Nc(µ̂c − µ̂g)(µ̂c − µ̂g)
⊤

represents the within-class and between class scatter respectively, while µ̂c, Ŝc and Nc, denote the
empirical mean, covariance and sample size for class c, respectively.

Proof. The proof is based on the observation that G = FF⊤ from ridge regression is an uncentered
and unnormalized empirical global covariance. By using the empirical global covariance definition
and decomposing it into within-class and between-class scatter, we obtain the above formulation of
G. In Appendix D, we provide the detailed proof.

Table 2: Analysis showing improved accu-
racy by removing between-class scatter for
classifier initialization in centralized setting
using pre-trained SqueezeNet.

Dataset Gbtw Gwith Acc.(↑)
CIFAR-100 ! ! 57.1

% ! 57.3
ImageNet-R ! ! 37.6

% ! 38.6
CUB200 ! ! 50.4

% ! 53.7
Stanford Cars ! ! 41.4

% ! 44.8

To analyze the impact of the two scatter matrices, we
first consider the centralized setting in Table 2 and
empirically find that using only within-class scatter
matrix performs better than using total scatter matrix
in Equation (7). We then analyze their spectral prop-
erties via the condition number, defined for a matrix
G as K(G) = λmax(G)/λ+

min(G), where λmax(G) and
λ+

min(G) are the largest and smallest non-zero eigen-
value, respectively. For a SqueezeNet backbone in
the centralized setting, we observe that Gbtw is highly
ill-conditioned, with condition numbers K(Gbtw) of
3.0 × 107, 2.5 × 107, 2.2 × 107, 1.3 × 107 on CUB,
Cars, ImageNet-R and CIFAR-100, respectively, while
Gwith is much better conditioned (K(Gwith): 4.5×103,
2.5× 104, 8.2× 102, 6.3× 103). Including Gbtw can
cause numerical instability due to its poor conditioning, leading the classifier to overfit directions
with small eigenvalues that capture noise or dataset-specific artifacts. This is consistent with the
results in Appendix F, where we show that using Gbtw leads to higher overfitting on the training data.

As a result, we propose to remove the between-class scatter and initialize the linear classifier at the
end of the pre-trained network using the within-class covariances Σ̂c which are estimated from client
means using Equation (6), as follows:

W ∗ = Ĝ−1B; Ĝ =

C∑
c=1

(Nc − 1)Σ̂c +Nµ̂gµ̂
⊤
g . (8)

Theoretically, we observe that a similar approach is used in Linear Discriminant Analysis [13], which
employs only within-class covariances for finding optimal weights. By removing between-class scat-
ter, we propose a more effective classifier initialization than Fed3R (which uses G from Equation (7)
and considers both within- and between-class scatter matrices).

We summarize in Algorithm 1 how we estimate the covariance matrix for each class using only the
client means and use the estimated covariances to initialize the classifier as in Equation (8). The
normalization of the weights accounts for class imbalance in the entire dataset.

Impact of the iid assumption. FedCOF initializes the classifier with the class covariance estimator
(Equation 6), unbiased only under the assumption of iid pre-trained features per class (Section 4.2).
In FL each client has its own data, typically distributed in a statistically heterogeneous or class-
imbalanced manner according to a Dirichlet distribution [17]. As a result, each client has data from
different set of classes, resulting in non-iid data distributions across clients. However, note that the
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Algorithm 1 FedCOF: Federated Learning with COvariances for Free
Client-Side (Client k):
Input: C: set of all classes, fθ: pre-trained
model, Xk,c: samples of class c in client k,
nk,c: number of samples in Xk,c

for c = 1 to C do
µ̂k,c = 1

nk,c

∑
x∈Xk,c

fθ(x)

end for
Send the class means µ̂k,c and sample counts
nk,c to the Server

Server-Side:
Input: µ̂k,c, nk,c sent from K clients, γ > 0
for c = 1 . . . C do

µ̂c = 1
Nc

∑K
k=1 nk,cµ̂k,c; Nc =

∑K
k=1 nk,c

Σ̂c=
1

K−1

K∑
k=1

nk,c(µ̂k,c− µ̂c)(µ̂k,c− µ̂c)
⊤+γId, Eq.(6)

end for
µ̂g = 1

N

∑C
c=1 Ncµ̂c, N =

∑C
c=1 Nc

B = [µ̂cNc]
C
c=1 , Ĝ =

∑C
c=1(Nc − 1)Σ̂c +Nµ̂gµ̂

⊤
g

W ∗ = Ĝ−1B, Eq. (8)
Normalize W ∗: W ∗

c ←W ∗
c /∥W ∗

c ∥ c = 1, . . . , C

samples belonging to the same class in different clients are sampled from the same distribution. We
exploit this fact in FedCOF. We later show empirically that our method can be successfully applied to
non-iid FL scenarios involving thousands of heterogeneous clients on iNaturalist-Users-120K [18].
We hypothesize that this can be attributed to the strong generalization capabilities of pre-trained
models. We analyze the bias of the estimator under non-iid assumptions for the same class and also
evaluate FedCOF in feature shift settings [33] in Appendix G.

FedCOF in multiple rounds. While the proposed estimator requires class means from all clients in a
single round, this might not be realistic in settings in which clients appear in successive rounds based
on availability. For multi-round classifier initialization (see FedCOF in Figure 3 before fine-tuning),
the server uses all class means and counts received from all clients seen up to the current round and
stores the accumulated means and counts for future rounds. As a result, FedCOF uses statistics from
all clients seen up to the current round, similar to Fed3R. This can be easily implemented by ensuring
on the client side that each client transfers statistics to the server only once, avoiding repeated transfer
of statistics. FedCOF converges when all clients are seen at least once, with total communication cost
equal to the single round-case (see Appendix H for details on communication cost).

Privacy aspects. FedCOF requires each client to send its class means and frequencies (see Eq. 5),
similar to CCVR [35]. While this avoids sharing feature-level data, it does not guarantee strong
privacy and may introduce concerns, particularly because it complicates the secure aggregation
protocol applicable in Fed3R. Nonetheless, as discussed in Appendix I, FedCOF can be combined
with additional privacy-preserving mechanisms, such as adding noise to the shared statistics or
adapting the method to support secure aggregation. The latter preserves FedCOF’s performance but
increases communication overhead to the level of Fed3R.

5 Experiments

Datasets. We evaluate FedCOF on multiple datasets namely CIFAR-100 [28], ImageNet-R [16]
(IN-R), CUB200 [50], Stanford Cars [27] and iNaturalist [48]. We distribute the first 4 datasets
to 100 clients using a highly heterogeneous Dirichlet distribution (α = 0.1) following standard
practice [17, 29]. We also use real-world non-iid FL benchmark of iNaturalist-Users-120K [18]
(iNat-120K) having 1203 classes across 9275 clients. We discuss the dataset details in Appendix J.

Implementation details. We use three models: namely SqueezeNet [19] following [29] and [38],
MobileNetV2 [44] following [11, 18], and ViT-B/16 [9]. All models are pre-trained on ImageNet-
1k [7]. We use the FLSim library. We use γ = 1 for all experiments with SqueezeNet and ViT-B/16,
and γ = 0.1 for all experiments with MobileNetV2 due to very high dimensionality d of the feature
space. We compare to FedCOF Oracle in which real class covariances are shared from clients and
aggregated in server instead of using our estimated covariances (see Appendix J). For all experiments,
we set the client participation in each round to 30%, and we show the training-free methods in
multiple rounds in Figures 3 and 4. We provide more implementation details in Appendix J. We
discuss computation of communication costs for all methods in Appendix H.

Evaluation for different training-free methods. We compare the performance of existing training-
free methods and the proposed method in Table 3 using pre-trained Squeezenet, Mobilenetv2 and ViT-
B/16 models. We observe that Fed3R [11] using second-order statistics outperforms FedNCM [29]
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Table 3: Evaluation of different training-free methods using 100 clients for first four datasets and
9275 pre-defined clients on iNat-120K across 5 random seeds. We show the total communication cost
(in MB) from all clients to server. We also show the FedCOF oracle in which full class covariances
are shared from clients to server. Best results from each section in bold.

SqueezeNet (d = 512) MobileNetv2 (d = 1280) ViT-B/16 (d = 768)
Method Acc (↑) Comm. (↓) Acc (↑) Comm. (↓) Acc (↑) Comm. (↓)

C
IF

A
R

-1
00 FedNCM [29] 41.5±0.1 5.9 55.6±0.1 14.8 55.2±0.1 8.9

Fed3R [11] 56.9±0.1 110.2 62.7±0.1 670.1 73.9±0.1 244.8
FedCOF (Ours) 56.1±0.2 5.9 63.5±0.1 14.8 73.2±0.1 8.9

FedCOF Oracle (Full Covs) 56.4±0.1 3015.3 63.9±0.1 18823.5 73.8±0.1 6780.0

IN
-R

FedNCM [29] 23.8±0.1 7.1 37.6±0.2 17.8 32.3±0.1 10.7
Fed3R [11] 37.6±0.2 111.9 46.0±0.3 673.1 51.9±0.2 246.6

FedCOF (Ours) 37.8±0.4 7.1 47.4±0.1 17.8 51.8±0.3 10.7
FedCOF Oracle (Full Covs) 38.2±0.1 3645.7 48.0±0.3 22758.8 52.7±0.1 8197.4

C
U

B
20

0 FedNCM [29] 37.8±0.3 4.8 58.3±0.3 12.0 75.7±0.1 7.2
Fed3R [11] 50.4±0.3 109.6 58.6±0.2 667.3 77.7±0.1 243.1

FedCOF (Ours) 53.7±0.3 4.8 62.5±0.4 12.0 79.4±0.2 7.2
FedCOF Oracle (Full Covs) 54.4±0.1 2472.1 63.1±0.5 15432.7 79.6±0.2 5558.6

C
ar

s

FedNCM [29] 19.8±0.2 5.4 30.0±0.1 13.5 26.2±0.4 8.1
Fed3R [11] 39.9±0.2 110.2 41.6±0.1 668.8 47.9±0.3 244.0

FedCOF (Ours) 44.0±0.3 5.4 47.3±0.5 13.5 52.5±0.3 8.1
FedCOF Oracle (Full Covs) 44.6±0.1 2767.3 47.2±0.3 17275.7 53.1±0.1 6222.5

iN
at

-1
20

K FedNCM [29] 21.2±0.1 111.8 36.0±0.1 279.5 53.9±0.1 167.7
Fed3R [11] 32.1±0.1 9837.3 41.5±0.1 61064.1 62.5±0.1 22050.2

FedCOF (Ours) 32.5±0.1 111.8 44.1±0.1 279.5 63.1±0.1 167.7
FedCOF Oracle (Full Covs) 32.4±0.1 57k 43.6±0.1 358k 62.9±0.1 128k

significantly ranging from 0.3% to 21% across all datasets. However, Fed3R requires a higher
communication cost compared to FedNCM. In real-world iNat-120K benchmark, Fed3R needs 61k
MB compared to 280 MB for FedNCM (see Figure 1), which is 218 times higher. FedCOF performs
better than Fed3R in most settings despite having the same communication cost as FedNCM. FedCOF
achieves similar performance as the oracle setting using aggregated class covariances requiring very
high communication, which validates the effectiveness of the proposed covariance estimator.

FedCOF maintains similar accuracy with Fed3R on CIFAR-100 and ImageNet-R, with an improve-
ment of about 1% when using MobileNetv2. FedCOF outperforms Fed3R on CUB200 and Cars. On
CUB200, FedCOF outperforms Fed3R by 3.3%, 3.9% and 2.2% using SqueezeNet, MobileNetv2
and ViT-B/16 respectively. FedCOF improves over Fed3R in the range of 4.1% to 5.7% on Cars. On
iNat-120K, FedCOF improves over Fed3R by 0.4%, 2.6% and 0.6% using different models. When
comparing FedCOF with FedNCM – both with equal communication costs and same strategy in
clients – one can observe that the usage of second order statistics derived only from the class means
of clients leads to large performance gains, e.g. 24% using SqueezeNet and 26% using ViT-B/16
on Cars, above 8% using all architectures on large-scale iNat-120K. We also adapt CCVR [35] for
classifier initialization in Appendix K and show that FedCOF outperforms CCVR.

Comparison with communication-efficient methods. We consider the recent Probabilistic Fed-
erated Prompt-Tuning (PFPT) approach that aggregates trainable prompt parameters from clients
and tunes them in a federated manner while keeping the backbone fixed [54]. We compare PFPT,
FedAvg-PT, and FedProx-PT (prompt-tuning variants of FedAvg and FedProx) with the proposed
FedCOF. Similar to PFPT [54], we use a pre-trained ViT-B/32, assign class samples to clients using a
Dirichlet distribution (α = 0.1), and use 3 random seeds. We use the same training hyperparameters
as PFPT. We show in Table 4 that FedCOF is much more communication efficient compared to PFPT
and achieves higher performance without any training. We also observe that prompt-tuning methods
perform poorly on fine-grained datasets. We discuss more on this in Appendix H.

Table 4: Comparison of FedCOF with federated prompt-tuning methods using ViT-B/32.
CIFAR-100 IN-R CUB200 Cars

Method Acc (↑) Comm. (↓) Acc (↑) Comm. (↓) Acc (↑) Comm. (↓) Acc (↑) Comm. (↓)
FedAvg-PT [54] 74.5±0.5 884.7 47.6±1.3 1622.0 37.0±2.0 1622.0 13.6±1.7 1592.5
FedProx-PT [54] 73.6±0.4 884.7 47.9±0.5 1622.0 38.5±0.8 1622.0 13.7±1.5 1592.5

PFPT [54] 75.1±0.5 846.5 50.7±0.2 1794.4 38.6±0.9 1765.5 12.9±1.1 1736.1
FedCOF (Ours) 75.3±0.1 8.9 54.9±0.2 10.7 65.0±0.1 7.2 50.4±0.1 8.1
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Figure 3: Performance comparison when initializing with different methods and fine-tuning with
FedAdam [42] and FedAvg [37]. We also compare with FedAdam and FedAvg using a pre-trained
backbone and random classifier initialization. The training-free initialization stages are shown as
dotted lines and stars represents the start of fine-tuning stages. Accuracies are averaged over 3 seeds.

Comparison with full fine-tuning methods. We compare training-free methods with FL baselines
like FedAvg and FedAdam with randomly initialized classifier and pre-trained backbone in Table 5.
We use adaptive optimizer, FedAdam [42] since it performs better than most other optimizers as
shown in [38]. Without any training, FedCOF outperforms FedAvg in all settings and FedAdam
by 7.3% on CUB200 and 2.2% on Cars, and achieves competitive performance in ImageNet-R. We
show in Figure 3 how FedCOF starts from a very high accuracy compared to FedAdam and further
improves on fine-tuning. We provide more experiments with pre-trained ResNet-18 in Appendix K.

Table 5: Comparison with training-based FL base-
lines (FedAvg and FedAdam) using pre-trained
SqueezeNet. For training-based methods, we con-
sider 100 rounds of training for fair comparison and
report accuracy of 3 random seeds.

Method Training ImageNet-R CUB200 Cars
FedAvg ! 30.0±0.6 30.3±6.7 24.9±1.6

FedAdam ! 38.8±0.6 46.4±0.8 41.8±0.6
FedNCM % 23.8±0.1 37.8±0.3 19.8±0.2
Fed3R % 37.6±0.2 50.4±0.3 39.9±0.2

FedCOF (Ours) % 37.8±0.4 53.7±0.3 44.0±0.3
FedNCM+FedAdam ! 44.7±0.1 50.2±0.2 48.7±0.2
Fed3R+FedAdam ! 45.9±0.3 51.2±0.3 47.4±0.4

FedCOF+FedAdam ! 46.0±0.4 55.7±0.4 49.6±0.6

Analysis of fine-tuning and linear probing.
While FedCOF achieves high accuracy with-
out training, we show in Figure 3 that further
fine-tuning the model with FL achieves bet-
ter and faster convergence compared to fed-
erated optimization from scratch. We show
the performance of fine-tuning after training-
free classifier initialization in Figure 3. These
training-free methods end after all clients ap-
pear at least once to share their local statistics.
We fine-tune the models after FedCOF and
Fed3R for 100 rounds since they achieve fast
convergence, while we train for 200 rounds for
FedAdam, FedAvg, and fine-tuning after FedNCM which takes longer to converge. Fine-tuning after
FedCOF starts at a higher accuracy and converges faster compared to FedNCM. Although FedCOF
and Fed3R converge similarly on ImageNet-R, FedCOF+FedAdam achieves better accuracy than
Fed3R+FedAdam on CUB200 and Cars. We see in Table 5 that all training-free approaches followed
by fine-tuning outperform FedAdam and FedAvg with random classifier initialization.

Following [29] and [38], we perform federated linear probing (LP) of the models using FedAvg after
classifier initialization with training-free methods. In FedAvg-LP, we perform FedAvg and learn only
the classifier weights of all client models. Linear probing requires much less computation compared
to fine-tuning the entire model and were found to be effective with pre-trained models. We observe
in Figure 4 that linear probing after FedCOF improves significantly compared to FedNCM and Fed3R
using ViT-B/16 on Cars and SqueezeNet on iNat-120K. On the real-world dataset iNat-120K, FedAvg-
LP with random classifier initialization achieves 27.3% after 5000 rounds while FedCOF+FedAvg-Lp
achieves 34% in less than 1000 rounds. We plot accuracy versus communication in Figure 4 (center)
to demonstrate the advantage of FedCOF over other methods. We discuss more in Appendix K.

Impact of number of clients and data heterogeneity. We analyze in Figure 5 (left), the performance
of FedCOF with varying number of clients and data heterogeneity. We observe that the performance
of FedCOF improves with increasing number of clients and decreasing heterogeneity. This is due to
the fact that more clients provides more class means and more uniform data distribution gives better
representative local means. While more clients are favourable for FedCOF, it still performs well and
outperforms FedNCM significantly in the setting with 10 clients and high data heterogeneity.

Multiple class means per client. We analyze FL settings with fewer clients ranging from 10 to
50 in Figure 5 (center) and show that sharing multiple class means from each client improves the
accuracy. Using only 10 clients, sharing 2 class means per client improves the accuracy by 2.6%.
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Figure 4: Performance of different classifier initialization methods when linear-probing with Fe-
dAvg [37]. FedAvg-LP (in blue) uses random classifier initialization and a pre-trained backbone. The
training-free initialization stage is shown in dotted lines, stars represents the start of linear probing.
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Figure 5: Ablation experiments: (left) Change in performance with varying number of clients and
data heterogeneity. (center) Sharing multiple class means per client improves FedCOF performance.
(right) Impact of shrinkage with varying number of clients and sampled means per client.

Impact of shrinkage. We show in Figure 5 (right) that using shrinkage improves the covariance esti-
mates thereby improving the accuracy. We observe that shrinkage consistently improves performance,
especially when the number of sampled means is small. When the number of means is low relative to
the feature dimension (d = 512 in SqueezeNet), the covariance estimate becomes ill-conditioned, and
shrinkage stabilizes it. However, as more class means are sampled per client or the number of clients
increases, the benefit of shrinkage diminishes, since the total number of means approaches the feature
dimension, making the estimate more stable. We present more ablation studies in Appendix L.

6 Conclusion

In this work we proposed FedCOF, a novel training-free approach for federated learning with pre-
trained models. By leveraging the statistical properties of client class sample means, we showed
that second-order statistics can be estimated using only class means from clients, thus reducing
communication costs. We derived a provably unbiased estimator of population class covariances,
enabling accurate estimation of a global covariance matrix. By applying shrinkage to the estimated
class covariances and removing between-class scatter matrices, the server can effectively use this
global covariance to initialize a global classifier. Our experiments demonstrated that FedCOF
outperforms FedNCM [29] by significant margins while maintaining the same communication cost.
Additionally, FedCOF delivers competitive or even superior results to Fed3R [11] across model
architectures and benchmarks while substantially reducing communication costs. Finally, we showed
that FedCOF outperforms federated prompt-tuning methods and serves as a more effective starting
point for improving the convergence of federated fine-tuning and linear probing methods.

Limitations. The quality of our estimator depends on the number of clients, as shown in Figure 5
where using multiple class means per client helps with fewer clients. Another limitation is the
assumption that samples of the same class are iid across clients, which is, however, an assumption
underlying most of federated learning. We discuss the bias in our estimator in non-iid settings
in Appendix G.
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Justification: We state our main contributions in the abstract and Section 1.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the proposed estimator in Section 6. We exten-
sively analyze them in Appendix G.
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only tested on a few datasets or with a few runs. In general, empirical results often
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address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide full derivations and assumptions for our propositions, including
proofs in Section 4.2, Section 4.3, Appendix B, Appendix C, Appendix D, and Appendix G.
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• The answer NA means that the paper does not include theoretical results.
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referenced.
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• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all experimental details needed to reproduce the results in Section 5,
Appendix H, and Appendix J.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code will be made publicly available in Github.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all training and test details of the datasets in Section 5, Appendix J,
and Appendix L.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard deviations of the accuracy values in our experiments in
Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mention the GPU resources used for our experiments in Appendix J.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully checked and ensured compliance with the NeurIPS code of
ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the impact of the proposed method in Appendix M.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work involves no release of models or data that pose a risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite existing assets and respect their usage licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work does not involve the release of models or datasets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing was involved in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were involved and the work requires no IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Scope and Summary of Notation

These appendices provide additional information, proofs, experimental results, and analyses that
complement the main paper. For clarity and convenience, here we first summarize the key notations
used throughout the paper:

• N : total number of samples.

• K: number of clients.

• C: number of classes.

• d: dimensionality of the feature space.

• nk,c: number of samples from class c assigned to client k.

• Nc =
∑K

k=1 nk,c: total number of samples in class c.

• µ̂g, µ̂c ∈ Rd: empirical global mean and class mean for class c, respectively.

• µc ∈ Rd: population mean of class c.

• Ŝc ∈ Rd×d: empirical sample covariance for class c.

• Σc ∈ Rd×d: population covariance for class c.

• Σ̂c ∈ Rd×d: our unbiased estimator of the population covariance Σc employing only client
means.

• F ∈ Rd×N : feature matrix, where each column F j ∈ Rd is a feature vector, for j =
1, . . . , N .

• F j
k,c ∈ Rd: j-th feature vector from class c assigned to client k.

• F k,c ∈ Rd: sample mean of the feature vectors for class c on client k, treated as a random
vector. A specific realization of this random vector is denoted by µ̂k,c.

• Var[F k,c] = Cov[F k,c, F k,c] represents the covariance matrix of the random vector F k,c.

B Expectation and Variance of the Sample Mean

Let {F j
k,c}

nk,c

j=1 be a random sample from a multivariate population with mean µc and covariance Σc,
where F j

k,c is the j-th feature vector of class c assigned to the client k and nk,c is the number of
elements of class c in the client k. Assuming that the per-class features F j

k,c in each client are iid in
the initialization, then the sample mean of the features for class c

F k,c =
1

nk,c

nk,c∑
j=1

F j
k,c, (9)

is distributed with mean and covariance given by:

E[F k,c] = µc Var[F k,c] =
Σc

nk,c
(10)

Proof. To prove this, we fix the class c and omit the dependencies on c for simplicity. Thus, we write
nk,c = nk, F j

k,c = F j
k , F k,c = F k, and µc = µ, Σc = Σ.

Since {F j
k}

nk
j=1 is a random sample from a multivariate distribution with mean µ and covariance Σ,

and the per-class features F j
k in each client are i.i.d at initialization, it follows that:

E[F j
k ] = µ Var[F j

k ] = Σ, ∀j (11)
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By computing the expectation of F k and using the linearity of expectation, we obtain:

E[F k] = E[
1

nk

nk∑
j=1

F j
k ] =

1

nk
E[F 1

k ] + . . .+
1

nk
E[Fnk

k ] =
1

nk
(nkµ) = µ,

where in the last equality we used Equation (11). Thus the expectation of the sample mean is µ,
which completes the first part of the proof.

Next, we show that the variance of the sample mean is Σ
nk

. By computing the variance of F k and
using the fact that the variance scales by the square of the constant, we obtain:

Var[F k] = Var[
1

nk

nk∑
j=1

F j
k ] =

1

n2
k

(
Var[F 1

k ] + . . .+Var[Fnk

k ]
)
+

1

n2
k

nk∑
i=1

nk∑
j=1
j ̸=i

Cov[F i
k, F

j
k ].

By the independence assumption of {F j
k}

nk
j=1, the cross terms Cov[F i

k, F
j
k ] = 0 for i ̸= j. Apply-

ing Equation (11), we have:

Var[F k] =
1

n2
k

(
Var[F 1

k ] + . . .+Var[Fnk

k ]
)
=

1

n2
k

(nkΣ) =
Σ

nk

C Proof of Proposition 1

Proposition 1. Let K be the number of clients, each with nk,c features, and let C be the total
number of classes. Let µ̂c =

1
Nc

∑Nc

j=1 F
j be the unbiased estimator of the population mean µc and

Nc =
∑K

k=1 nk,c be the total number of features for a single class. Assuming the features for class c
are iid across clients at initialization, the estimator

Σ̂c =
1

K − 1

K∑
k=1

nk,c(F k,c − µ̂c)(F k,c − µ̂c)
⊤ (12)

is an unbiased estimator of the population covariance Σc, for all c ∈ 1, . . . , C.

Proof. To prove this, we fix the class c and omit the dependencies on c for clarity. So we write
nk,c = nk, F k,c = F k, Nc = N , µ̂c = µ̂, Σ̂c = Σ̂, µc = µ, and Σc = Σ. By the definition of an
unbiased estimator, we need to show that:

E[Σ̂] = E

[
1

K − 1

K∑
k=1

nk(F k − µ̂)(F k − µ̂)⊤

]
= Σ.

By the linearity of the expectation, the definition of sample mean F k = 1
nk

∑nk

j=1 F
j
k , and the

definition of global class mean µ̂ = 1
N

∑K
k=1

∑nk

j=1 F
j
k , we have:

E[Σ̂] =
1

K − 1

(
K∑

k=1

nkE[F kF
⊤
k ]−

K∑
k=1

nkE[F kµ̂
⊤]−

K∑
k=1

nkE[µ̂F
⊤
k ] +

K∑
k=1

nkE[µ̂µ̂⊤]

)

=
1

K − 1

 K∑
k=1

nkE[F kF
⊤
k ]− 2E[(

K∑
k=1

nk∑
j=1

F j
k )µ̂

⊤] +

K∑
k=1

nkE[µ̂µ̂⊤]


=

1

K − 1

(
K∑

k=1

nkE[F kF
⊤
k ]− 2NE[µ̂µ̂⊤] +

K∑
k=1

nkE[µ̂µ̂⊤]

)
. (13)

By applying the variance definition, along with the expectation and variance of the sample mean (see
Equation (10)), we obtain:

E[F kF
⊤
k ] = Var[F k] + E[F k]E[F k]

⊤ =
Σ

nk
+ µµ⊤. (14)
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Now, by considering the right term in Equation (13), since µ̂ is an unbiased estimator of the population
mean, then E[µ̂] = µ. Moreover, since we assume that the features for a single class across clients
are i.i.d at initialization, we can use re-use the result in Equation (10) by considering the all class
features as a random sample of size N from a population with mean µ and variance Σ. Consequently,
the global sample mean µ̂ is has variance Var[µ̂] = Σ

N . Then

E[µ̂µ̂⊤] = Var[µ̂] + E[µ̂]E[µ̂]⊤ =
Σ

N
+ µµ⊤. (15)

By using Equation (14) and Equation (15) in Equation (13), and recalling that N =
∑K

k=1 nk, we
obtain:

E[Σ̂] =
1

K − 1

(
K∑

k=1

nk(
Σ

nk
+ µµ⊤)− 2N(

Σ

N
+ µµ⊤) +

K∑
k=1

nk(
Σ

N
+ µµ⊤)

)

=
1

K − 1
(KΣ+ µµ⊤N − 2Σ− 2Nµµ⊤ + (

Σ

N
+ µµ⊤)N) =

1

K − 1
(K − 1)Σ = Σ.

D Proof of Proposition 2

Proposition 2. Let F ∈ Rd×N be a feature matrix with empirical global mean µ̂g ∈ Rd, and
Y ∈ RN×C be a label matrix. The optimal ridge regression solution W ∗ = (G+ λId)

−1B, where
B ∈ Rd×C and G ∈ Rd×d can be written in terms of class means and covariances as follows:

B = [µ̂cNc]
C
c=1 , (16)

G =

C∑
c=1

(Nc − 1)Ŝc +

C∑
c=1

Nc(µ̂c − µ̂g)(µ̂c − µ̂g)
⊤ +Nµ̂gµ̂

⊤
g (17)

where the first two terms
∑C

c=1(Nc − 1)Ŝc and
∑C

c=1 Nc(µ̂c − µ̂g)(µ̂c − µ̂g)
⊤ represents the

within-class and between class scatter respectively, while µ̂c, Ŝc and Nc, denote the empirical mean,
covariance and sample size for class c, respectively.

Proof. The first part, regarding Equation (16), follows directly. From the ridge regression solution,
B = FY , which is obtained by summing the features for each class and arranging them into the
columns of a matrix. This results in the product of class means and samples per class.

Now, for computing the matrix G, we proceed with the definition of the global sample covariance:

Ŝ =
1

N − 1
(F − F )(F − F )⊤ =

1

N − 1

(
FF⊤ − FF

⊤ − FF⊤ + F F
⊤)

,

where F =
(

1
N

∑N
j=1 F

j
)
1⊤ = µ̂g1

⊤ ∈ Rd×N is the matrix obtained by replicating the global

mean N times in each column and 1 ∈ RN×1 is a column vector of ones. Recalling that G = FF⊤,
we have:

Ŝ =
1

N − 1
(G− F1µ̂⊤

g − µ̂g1
⊤F⊤ + µ̂g1

⊤1µ̂⊤
g ) =

1

N − 1
(G− 2F1µ̂⊤

g +Nµ̂gµ̂
⊤
g )

since F1µ̂⊤
g = µ̂g1

TF⊤ and 1T1 = N .

Now, since F1 =
∑N

j=1 F
j , we can obtain the matrix G as:

G = (N−1)Ŝ+2

 N∑
j=1

F j

 µ̂⊤
g −Nµ̂gµ̂

⊤
g = (N−1)Ŝ+2Nµ̂gµ̂

⊤
g −Nµ̂gµ̂

⊤
g = (N−1)Ŝ+Nµ̂gµ̂

⊤
g

(18)
It is a well known result that the global covariance can be expressed as:

Ŝ =
1

N − 1

(
C∑

c=1

(Nc − 1)Σ̂c +

C∑
c=1

Nc(µ̂c − µ̂g)(µ̂c − µ̂g)
T

)
,
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Replacing the global covariance Ŝ in Equation (18), we obtain the final expression for G as:

G =

C∑
c=1

(Nc − 1)Ŝc +

C∑
c=1

Nc(µ̂c − µ̂g)(µ̂c − µ̂g)
⊤ +Nµ̂gµ̂

⊤
g

E Sampling Multiple Class Means per Client

From a theoretical perspective, although the estimator Σ̂c is unbiased in Equation (5), this only
ensures that its expected value equals the true covariance Σc – not that any individual estimate is
accurate. Its variance still depends on the number of independent means K sampled – that is the
number of clients in the federation K which contains class c.

Therefore, increasing K leads to a tighter concentration of Σ̂c around its expectation, reducing the
overall mean square error (MSE) – the sum of variance and squared bias (which remains zero since
the estimator is unbiased) – between the estimator and the true covariance matrix. Moreover, where
the number of clients is small relative to the feature dimension d, the estimate may be ill-conditioned.
The shrinkage term γId in Equation (6) improves numerical stability in these settings, trading a small
amount of bias for a significant reduction in variance – even when only a few clients are available.

Sampling strategy. We propose using a simple multiple mean sampling strategy following sampling
without replacement. We consider the number of means M to sample as a fixed number which is
a hyperparameter. For each class, we take disjoint random sets from nk,c samples in a client and
compute the mean for these subsets. We take disjoint sets to avoid computing similar sample means.
The only condition we enforce is that clients use atleast 2 samples to compute a mean. If a client
does not have atleast 2M samples, we send less than M sample means. For instance, if a client has 3
samples, we compute and share a single mean.

We observe that the proposed sampling approach improves performance. However, more sophisticated
sampling approaches could be employed if the user is interested in improving performance in FL
settings with very few clients. One approach could be sampling means based on the number of
samples nk,c instead of using a fixed number of means to sample from every client. If a client has
more samples, it could share more sample means and this would thus share more means overall and
improve the covariance estimates. Future work could optimize this multiple mean sampling approach
to better suit fewer client FL settings.

F On Excluding Between-class Scatter

Intuitively, to represent the feature distribution of each class we do not really need to consider the
relationships between different classes which represent the distribution of the overall dataset since our
goal is to estimate the class-specific classifier weights using these covariances. Based on this intuition,
we propose to remove the between-class scatter from Equation (7) and initialize the classifier weights
using only the respective within-class scatter matrices.

We also analyze in Table 6 using the centralized setting how the different scatter matrices affect over-
fitting of the model. We observe that, while both methods achieve similarly high training accuracies,
Ridge Regression consistently underperforms on the test set. This suggests that incorporating Gbtw
introduces an overfitting effect, as the classifier learns directions that do not transfer well to unseen
samples.

Finally, we also empirically analyze in Table 7 the impact of removing the between-class covariances
in a Federated scenario using SqueezeNet. Here in the FL setup we again clearly see the negative
effect of incorporating between-class scatter statistics.

G Bias of the Estimator with non-iid Client Features

In Appendix C we showed that, under the assumption that the per-class features are iid across clients,
the proposed estimator is an unbiased estimator. In this section, we theoretically quantify the bias
when the i.i.d assumption is violated.
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Table 6: Comparison of classifiers across datasets with and without Gbtw in the centralized setting

.

Classifier Gwith Gbtw Dataset Train Acc Test Acc
Ridge Regression ! ! CIFAR-100 60.0 57.1

Ours ! % CIFAR-100 60.4 57.3
Ridge Regression ! ! Imagenet-R 52.8 37.6

Ours ! % Imagenet-R 53.4 38.6
Ridge Regression ! ! CUB200 92.0 50.4

Ours ! % CUB200 91.3 53.7
Ridge Regression ! ! Cars 85.9 41.4

Ours ! % Cars 86.2 44.8

Table 7: Performance comparison of different FL setups using Gbtw and Gwith across datasets.

FL Setup CIFAR-100 ImageNet-R CUB200 CARS
Using Gbtw 52.8 34.8 49.7 33.7

Using Gbtw + Gwith 56.3 36.8 51.6 42.4
Using Gwith (Ours) 56.3 37.2 53.5 44.6

Under the i.i.d. assumption, the single class features assigned to clients can be treated as random
samples from the same population distribution with mean µc and covariance Σc. For simplicity,
focusing on a single class and dropping the class subscript c, the population distribution has mean µ
and covariance Σ. As a result, recalling Equation (14), we can write:

E[F kF
⊤
k ] = Var[F k] + E[F k]E[F k]

⊤ =
Σ

nk
+ µµ⊤,

where nk is the number of samples assigned to client k, and F k is the sample mean for client k

Now, if the i.i.d assumption is violated the local features assigned to each client can be viewed as
random samples drawn from different client population distributions, each characterized by a mean
µk and covariance Σk, with µi ̸= µj and Σi ̸= Σj for i ̸= j, and i, j = 1, . . . ,K. In this case:

E[F kF
⊤
k ] = Var[F k] + E[F k]E[F k]

⊤ =
Σk

nk
+ µkµ

⊤
k . (19)

To compute the expectation of the estimator E[Σ̂], we follow the same procedure used to prove
proposition in Appendix C up to Equation (13):

E[Σ̂] =
1

K − 1

(
K∑

k=1

nkE[F kF
⊤
k ]− 2NE[µ̂µ̂⊤] +

K∑
k=1

nkE[µ̂µ̂⊤]

)
. (20)

Assuming the global feature dataset, regardless of client assignment, is a random sample from the
population with mean µ and covariance Σ, we can write:

E[µ̂µ̂⊤] = Var[µ̂] + E[µ̂]E[µ̂]⊤ =
Σ

N
+ µµ⊤. (21)
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Substituting Equation (21) and Equation (19) into Equation (20), and recalling that N =
∑K

k=1 nk,
we obtain:

E[Σ̂] =
1

K − 1

(
K∑

k=1

nk(
Σk

nk
+ µkµ

⊤
k )− 2N(

Σ

N
+ µµ⊤) +

K∑
k=1

nk(
Σ

N
+ µµ⊤)

)

=
1

K − 1

(
K∑

k=1

nk(
Σk

nk
+ µkµ

⊤
k )− Σ−Nµµ⊤

)

=
1

K − 1

K∑
k=1

(Σk − Σ

K
) +

1

K − 1

(
K∑

k=1

nkµkµ
⊤
k −

K∑
k=1

nkµµ
⊤

)

=
1

K − 1

K∑
k=1

(Σk − Σ

K
) +

1

K − 1

K∑
k=1

nk(µkµ
⊤
k − µµ⊤)

=
1

K − 1

K∑
k=1

(Σk − Σ

K
) +

1

K − 1

K∑
k=1

nk(µk − µ)(µk − µ)⊤,

where in the last step we used that
∑K

k=1 nkµk = Nµ.

The bias of the estimator is thus given by:

Bias(Σ̂) = E[Σ̂]− Σ =
1

K − 1

K∑
k=1

(Σk − Σ) +
1

K − 1

(
K∑

k=1

nk(µk − µ)(µk − µ)⊤

)
. (22)

Note that if each client population covariance Σk is equal to the global population covariance Σ, and
the mean of each client µk is equal to the population mean, then the bias is zero (i.e., the estimator
is unbiased). However, the bias formula reveals that when the distribution of a class within a client
differs from the global distribution of the same class, our estimator introduces a systematic bias. This
situation can arise in the feature-shift setting, in which each client is characterized by a different
domain. We next evaluate FedCOF under the feature-shift setting to quantify how this bias affects
performance in this specific scenario.

G.1 Experiments on Feature Shift Settings.

Table 8: Comparison of different training-free
methods using MobileNetV2 on the feature shift
setting on DomainNet. We show the total commu-
nication cost (in MB) from all clients to server.

Method Acc (↑) Comm. (↓)
FedNCM 65.8 0.3
Fed3R 81.9 39.6

FedCOF 74.1 0.3
FedCOF (2 class means per client) 76.5 0.6

FedCOF (10 class means per client) 78.8 3.1

Following [33], we perform experiments with
MobileNetv2 in a non-iid feature shift setting
on the DomainNet [40] dataset. DomainNet
contains data from six different domains: Cli-
part, Infograph, Painting, Quickdraw, Real, and
Sketch. We use the top 10 most common classes
of DomainNet for our experiments following
the setting proposed by [33]. We consider six
clients where each client has i.i.d. data from one
of the six domains. As a result, different clients
have data from different feature distributions. We show in Table 8 how training-free methods perform
in feature shift settings and the accuracy to communication trade-offs.

Fed3R achieves better overall performance then FedCOF, likely due to its use of exact class covariance,
avoiding the bias that FedCOF introduces. However, FedCOF achieves comparable results while
significantly reducing communication costs. FedNCM perform worse than FedCOF at the same
communication budget. When we increase the number of means sampled from each client, the
performance of our approach improves. This is due to the fact that our method suffers with low
number of clients (only 6 in this experiments) and sampling multiple means helps.

While non-iid feature shift settings have been studied in some papers not using pre-trained models,
using this setting with pre-trained models works a bit differently. When using a pre-trained model,
the generalization capabilities of the pre-trained model can help in moving the distribution of class
features across clients towards an iid feature distribution even if the class distribution across clients

27



is non-iid at the image level. We believe that more comprehensive analysis of feature-shift settings
when using pre-trained models requires more extensive benchmarks with higher number of clients
and could be an interesting direction to explore in future works.

H Communication Costs

When computing communication costs we consider that the pre-trained models are on the clients
similar to [11] and do not need to be communicated. All parameters are considered to be 32-bit
floating point numbers (i.e. 4 bytes) in all our analyses and experiments.

For training-free methods, each client sends its local statistics to the server only once, as in [29, 11].
In the multi-round federated learning setting, this can be efficiently implemented by ensuring on the
client-side that each client only shares its local statistics during its first participation round. This
avoids repeated communication of statistics from clients for all training-free methods. Following [11],
the communication from server to client is not considered since the clients does not need to receive
any updates from the server as the client models are not updated in the training-free initialization of
the global classifier. Thus, the communication cost is the same for a single round setting with full
client participation and the setting with multiple rounds having partial client participation in each
round.

Let Ck denote the number of classes present in client k. Due to the non-iid Dirichlet data distribution,
Ck < C, where C is the total number of classes in the dataset. As a result, the communication cost
varies across clients. Defining M =

∑K
k=1 Ck as the total number of class means shared from the K

clients and assuming that each class mean is a d-dimensional feature vector, the communication cost
of each evaluated approach is given by:

• FedNCM shares a total of M means from K clients. Cost = Md · 32.
• Fed3R shares a total of M sum of class features and a total of K matrices of d2 dimension-

ality from K clients. Cost = (Md+Kd2) · 32.
• FedCOF shares a total of M means from K clients. Cost = Md · 32.
• CCVR and FedCOF-Oracle shares a total of M means and M covariance matrices of d2

dimensionality from K clients. Cost = M · (d+ d2) · 32.

For the non-iid sampling in experiments reported in Table 3, the values of M for CIFAR-100,
ImageNet-R, CUB200, Cars and iNat-120K are 2870, 3470, 2353, 2634 and 54590, respectively.

Instead, for federated finetuning, the communication cost is calculated as follows. Let E, C and
H = d ·C denote the sizes of the feature extractor, the total number of classes and the classifier head,
respectively. Assuming that s < K is the number of clients participating in each round and T is
the total number of communication rounds, the communication cost for federated full-finetuning is
2 · (E + d · C) · T · s · 32 and the cost for federated linear probing will be 2 · d · C · T · s · 32.

For federated prompt-tuning methods [54], considering the classifier weights H = dC, T rounds of
communication, and s clients per round, the communication costs are:

• FedAvg-PT and FedProx-PT share the classifier weights H = d ·C and the fixed size prompt
pool P for each client of size d at each round. Cost = 2 · (d · C + P · d) · T · s · 32.

• PFPT shares the classifier weights H = d · C and a variable size prompt pool Pi for each
client at each round i. Considering the sum of all Pi across all T rounds as

∑T
i=1 Pi, the

communication cost is 2 · (d · C · T + d ·
∑T

i=1 Pi) · s · 32.

For the experiments reported in Table 4, we follow the same training settings as [54] and train for
120 rounds with s = 10 clients participating per round. We use a fixed prompt pool size P = 20
for FedAvg-PT and FedProx-PT and a variable prompt pool size which is optimized over rounds
for PFPT. The sums of the variable prompt pool sizes

∑T
i=1 Pi across all rounds for CIFAR-100,

ImageNet-R, CUB200 and Cars are 1777, 5205, 4736 and 4736 respectively.

Using PFPT [54] on CIFAR-100, the prompt pool size starts from 20 and ends at 10 after 120
rounds leading to improved performance and reduced communication compared to FedAvg-PT and
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Figure 6: Performance of FedCOF with noisy class statistics on CIFAR-100 using SqueezeNet. The
number of clients is fixed at 100 and classes are distributed using a Dirichlet distribution with α = 0.1.
Results are averaged over five random seeds, each generating different noise in client statistics, and the
standard deviation is reported. FedCOF demonstrates robustness to uniform, Gaussian, and Laplace
perturbations in class statistics, with performance showing a slight drop as noise, parameterized by ϵ,
increases. Lower ϵ corresponds to higher noise levels in the class statistics.

FedProx-PT. This is consistent with the results from [54]. However, we observe in our experiments
on out-of-distribution datasets like ImageNet-R and fine-grained datasets like CUB200 and Cars that
the prompt pool size increases over rounds leading to increased communication costs with respect to
FedAvg-PT and FedProx-PT. We also see in Table 4 that all existing prompt-tuning methods performs
very poorly on fine-grained datasets like CUB200 and Cars.

I Improving Privacy Preservation in FedCOF

In this section we discuss additional privacy techniques to prevent the sharing of client class-wise
count statistics and class means.

I.1 Adding Random Noise to Protect Class-wise Statistics.

Our method requires transmitting class-wise statistics to compute the unbiased estimator of the popu-
lation covariance (Equation (12)) and classifier initialization, similar to other methods in federated
learning [29, 35]. In general, transmitting the class-wise statistics may raise privacy concerns, since
each client could potentially expose its class distribution. Inspired by differential privacy [10], we
propose perturbing the class-wise statistics of each client with different types and intensities of noise,
before transmission to the global server. This analysis allows us to evaluate how robust FedCOF is to
variations in class-wise statistics and whether noise perturbation mechanisms can effectively hide the
true client class statistics. Specifically, we propose perturbing the class-wise statistics as follows:

ñk,c = max(nk,c + σnoise
ϵ , 0) (23)

where σnoise
ϵ is noise added to the statistics, and ϵ is a parameter representing the noise intensity. The

max operator clips the class statistics to zero if the added noise results in negative values, which
is expected to happen in federated learning with highly heterogeneous client distributions. When
clipping is applied, the client does not send the affected class statistic and class mean, and the server
excludes them from the computation of the unbiased estimator.

We consider three types of noise:

• Uniform noise: σunif
ϵ ∼ U(−(1 − ϵ)nk,c,+(1 − ϵ)nk,c), proportional to the real class

statistics.
• Gaussian noise: σgauss

ϵ ∼ N (0, 1
ϵ ), independent of the real class statistics.

• Laplacian noise σlaplace
ϵ ∼ L(0, 1

ϵ ), which is also independent of the real class statistics.

Lower ϵ values correspond to higher levels of noise in the statistics.

In Figure 6, we show that the performance of FedCOF is robust with respect to the considered
noise perturbation, varying the intensity of ϵ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. These results suggest that a
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Figure 7: Class frequency distributions for a single client under different noise types: uniform
noise (left) and Laplacian noise (right) on CIFAR-100. Both noise types are applied to the real
class statistics with the highest noise intensity (ϵ = 0.1). The bar heights represent the average
class frequencies, and the error bars indicate the standard deviation across 5 seeds. Real class-wise
frequencies and their noisy counterparts are shown for comparison.

differential privacy mechanism can be implemented to mitigate privacy concerns arising from the
exposure of client class-wise frequencies. In Figure 7, we provide a qualitative overview of how the
proposed Laplacian and uniform noise perturbation affect class-wise distributions.

I.2 FedCOF with Secure Aggregation Protocols

To incorporate secure aggregation protocols with FedCOF, we propose to use pairwise masking
between clients following [3]. Each client i generates a random noise vector zi,j for every other
client j. Then, each of these clients i computes a perturbation vector pi,j = zi,j − zj,i. Similarly,
pj,i = zj,i−zi,j resulting in pj,i = −pi,j . These perturbation vectors are added to the client statistics
before sharing them to the server. When all client statistics are added in the server, the noise cancels
out across clients and the server can use the aggregate statistics.

To use such a secure aggregation protocol with FedCOF, the communication cost will increase and
become similar to Fed3R. We proceed in two steps:

1. Secure aggregation of class means and counts. In this phase, each client sends only class means
and counts, adding perturbation vectors to the means and perturbation scalars to the counts to
ensure privacy. The server then computes the global class means from the aggregated statistics
and sends them back to the clients. Specifically each client k sends:

uk,c = qk + nk,c, vk,c = pk + µk,c × nk,c,

where nk,c and µk,c are the original class counts and means; pk =
∑

i∈K,i̸=k pk,i is the total

perturbation vector for client k, and
∑K

k=1 pk = 0 (similarly qk is a perturbation scalar such that∑K
k=1 qk = 0).

The server aggregates these quantities, and since the perturbations cancel out, it can compute:

µc =

∑K
k=1 vk,c∑K
k=1 uk,c

, Nc =

K∑
k=1

uk,c,

and sends (µc, Nc) back to all clients.

2. Secure aggregation of class-covariance terms. Each client computes

sk,c = (Nc − 1)nk,c(µk,c − µc)(µk,c − µc)
⊤,
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and forms

Sk =

C∑
c=1

sk,c +Mk,

where Mk is a random matrix such that
∑K

k=1 Mk = 0.
After receiving all Sk, the server sums them, and since the noise terms cancel out, it obtains:

K∑
k=1

Sk =

K∑
k=1

C∑
c=1

(Nc − 1)nk,c(µk,c − µc)(µk,c − µc)
⊤.

The final global matrix is then estimated as:

Ĝ =
1

K−1

(
K∑

k=1

Sk +

C∑
c=1

K(Nc − 1)γId

)
+Nµgµ

T
g

=
1

K−1

(
K∑

k=1

C∑
c=1

(Nc − 1)nk,c(µk,c−µc)(µk,c−µc)
⊤

)
+

K

K − 1

C∑
c=1

(Nc − 1)γId+Nµgµ
⊤
g

=

C∑
c=1

(Nc − 1)

[
1

K − 1

K∑
k=1

nk,c(µk,c − µc)(µk,c − µc)
⊤ + γId

]
+Nµgµ

⊤
g .

where N =
∑C

c=1 Nc and µg =
∑C

c=1 µc

N . This results in the exact same formulation of the matrix
Ĝ as computed in the proposed FedCOF.

Although this increases training-free communication costs which becomes equivalent to Fed3R,
FedCOF offers benefits in terms of accuracy and faster convergence which also reduces overall
communication costs when fine-tuning after FedCOF initialization.

J Dataset and Implementation Details

Datasets. We use the following five datasets in our paper:

• CIFAR-100 has 100 classes provided in 50k training and 10k testing images.

• ImageNet-R (IN-R) is composed of 30k images covering 200 ImageNet classes. ImageNet-
R [16] is an out-of-distribution dataset and proposed to evaluate out-of-distribution gen-
eralization using ImageNet pre-trained weights. It contains data with multiple styles like
cartoon, graffiti and origami which is not seen during pre-training.

• CUB200 is a fine-grained dataset and has 200 classes of different bird species provided in
5994 training and 5794 testing images.

• Stanford Cars has 196 classes of cars with 8144 training images and 8041 test images.

• iNaturalist-Users-120k [17] is a real-world, large-scale dataset [48] proposed by [17] for
federated learning and contains 120k training images of natural species taken by citizen
scientists around the world, belonging to 1203 classes spread across 9275 clients.

In datasets like ImageNet-R and CARS, we also face class-imbalanced situations where there is a
significant class-imbalance at the global level.

Implementation Details. Here, we provide details on learning rate (lr) used for all fine-tuning
experiments with FedAdam. For ImageNet-R and Stanford Cars, we use a lr of 0.0001 for both server
and clients for FedNCM, Fed3R and FedCOF initializations. For CUB200, we use a server lr of
0.00001 and client lr of 0.00005 for Fed3R and FedCOF, while for FedNCM, we use a higher lr of
0.0001 for clients. For random classifier initialization with all datasets, we use a higher lr of 0.001 for
clients and lr of 0.0001 for server. We use 1 local epoch, for all fine-tuning experiments on 4 datasets.
After training-free classifier initialization, we fine-tune the models for 100 rounds. When starting
from random classifier initialization, we train more for 200 rounds. When training with FedAvg and
random classifier initialization, we use a client lr of 0.005 for all datasets other than inat-120K.
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For the linear probing (LP) experiments for the 4 datasets other than iNat-120K, with FedAvg we
train for 200 rounds with 1 local epoch and use a client lr of 0.01 and server lr of 1.0 for FedNCM.
For Fed3R and FedCOF initializations, we use a client lr of 0.001 and a server lr of 1.0. For LP
experiments on iNat-120K, we use 3 local epochs, 30% client participation and train for 5000 rounds.
For iNat-120K, we use a client lr of 0.001 for FedAvg-LP without classifier initialization, a client lr
of 0.0005 for FedNCM and client lr of 0.00001 for Fed3R and FedCOF.

We use one Nvidia RTX 6000 GPU for all our experiments.

The FedCOF Oracle (Sharing Full Covariances). Similar to CCVR [35], we aggregate the class
covariances from clients as follows:

Σ̂c =

K∑
k=1

nk,c − 1

Nc − 1
Σ̂k,c +

K∑
k=1

nk,c

Nc − 1
µ̂k,cµ̂

T
k,c −

Nc

Nc − 1
µ̂cµ̂

T
c . (24)

For the oracle setting of FedCOF, we use the aggregated class covariance from Equation (24) and apply
shrinkage to obtain Σ̂c + γId and use it in Equation (8) instead of using our estimated covariances.

K Additional Experiments

Adapting CCVR for Classifier Initialization.

Table 9: Comparison of FedCOF with CCVR across different datasets and models.

Dataset Method SqueezeNet (d=512) MobileNetv2 (d=1280) ViT-B/16 (d=768)
Acc (↑) Comm. (↓) Acc (↑) Comm. (↓) Acc (↑) Comm. (↓)

CIFAR-100 CCVR 57.5±0.2 3015.3 59.6±0.2 18823.5 72.3±0.2 6780.0
FedCOF (Ours) 56.1±0.2 5.9 63.5±0.1 14.8 73.2±0.1 8.9

IN-R CCVR 36.4±0.2 3645.7 41.9±0.2 22758.8 49.3±0.2 8197.4
FedCOF (Ours) 37.8±0.4 7.1 47.4±0.1 17.8 51.8±0.3 10.7

CUB200 CCVR 51.2±0.1 2472.1 61.6±0.2 15432.7 78.7±0.4 5558.6
FedCOF (Ours) 53.7±0.3 4.8 62.5±0.4 12.0 79.4±0.2 7.2

Cars CCVR 40.9±0.4 2767.3 36.0±0.4 17275.7 49.4±0.4 6222.5
FedCOF (Ours) 44.0±0.3 5.4 47.3±0.5 13.5 52.5±0.3 8.1

Table 10: Performance comparison of different
initialization methods followed by FedAdam opti-
mization for 100 rounds of training.

Method ImageNet-R CUB200 Cars

FedNCM+FedAdam 44.7±0.1 50.2±0.2 48.7±0.2
CCVR+FedAdam 44.6±0.3 51.5±0.2 47.9±0.1
Fed3R+FedAdam 45.9±0.3 51.2±0.3 47.4±0.4
FedCOF+FedAdam 46.0±0.4 55.7±0.4 49.6±0.6

Since CCVR [35] was originally proposed to
calibrate classifiers after training, we adapt it
to our setting and use it as an initialization
method. CCVR is similar to the FedCOF Oracle
in terms of communication cost as it shares class
means and covariances from all clients to the
server. CCVR aggregates the class covariances
and means to obtain a global class distribution
at the server, and then trains a linear classifier
on Gaussian features sampled from aggregated
class distributions from clients. We show in Ta-
ble 9 that the proposed FedCOF outperforms CCVR in most settings despite having significantly
lower communication cost.

We also show in Table 10 that FedCOF initialization is better for further fine-tuning using a pre-trained
SqueezeNet that we finetune with FedAdam for 100 rounds after different initialization methods.

Linear probing after initialization experiments. We show in Figure 8 that linear probing after
FedCOF classifier initialization improves the accuracy significantly compared to FedNCM and is
marginally better than Fed3R initialization across three datasets using SqueezeNet.

Comparison of training-free methods with linear probing. We also compare with our approach
with the training-based federated linear probing without any initialization (where we perform FedAvg
and learn only the classifier weights of models) and show in Table 11 that FedCOF is more robust and
communication-efficient compared to federated linear probing across several datasets. We follow the
same settings as in Table 3. For first 4 datasets, we perform federated linear probing for 200 rounds

32



0 25 50 75 100 125 150 175 200
Rounds

40

45

50

55

60

Ac
cu

ra
cy

 (%
)

CIFAR100 - SqueezeNet

FedAvg
FedNCM
FedNCM+FedAvg (LP)
Fed3R
Fed3R+FedAvg (LP)
FedCOF
FedCOF+FedAvg (LP)

0 25 50 75 100 125 150 175 200
Rounds

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

Ac
cu

ra
cy

 (%
)

ImageNet-R - SqueezeNet

FedAvg
FedNCM
FedNCM+FedAvg (LP)
Fed3R
Fed3R+FedAvg (LP)
FedCOF
FedCOF+FedAvg (LP)

0 25 50 75 100 125 150 175 200
Rounds

20

25

30

35

40

45

50

55

Ac
cu

ra
cy

 (%
)

CUB200 - SqueezeNet

FedAvg
FedNCM
FedNCM+FedAvg (LP)
Fed3R
Fed3R+FedAvg (LP)
FedCOF
FedCOF+FedAvg (LP)

Figure 8: Analysis of the performance with federated linear probing using FedAvg [37].

Table 11: Comparison of different training-free methods using SqueezeNet with training-based
Fed-LP (federated linear probing with FedAvg [37] starting with pre-trained model and random
classifier initialization) across 5 random seeds. FedNCM, Fed3R and the proposed FedCOF does not
involve any training. We show the total communication cost (in MB) from all clients to server. The
best results from each section are highlighted in bold.

CIFAR-100 ImageNet-R CUB200 CARS iNat-120K
Method Acc (↑) Comm. (↓) Acc (↑) Comm. (↓) Acc (↑) Comm. (↓) Acc (↑) Comm. (↓) Acc (↑) Comm. (↓)
Fed-LP 59.9±0.2 2458 37.8±0.3 4916 46.8±0.8 4916 33.1±0.1 4817 28.0±0.6 1.6×106

FedNCM 41.5±0.1 5.9 23.8±0.1 7.1 37.8±0.3 4.8 19.8±0.2 5.4 21.2±0.1 111.8
Fed3R 56.9±0.1 110.2 37.6±0.2 111.9 50.4±0.3 109.6 39.9±0.2 110.2 32.1±0.1 9837.3

FedCOF (Ours) 56.1±0.2 5.9 37.8±0.4 7.1 53.7±0.3 4.8 44.0±0.3 5.4 32.5±0.1 111.8

with 30 clients per round using FedAvg with a client learning rate of 0.01. For iNat-120k, we train
more for 5000 rounds.

Impact of using pre-trained models. To quantify impact of using pre-trained models we performed
experiments using a randomly initialized model and show in Table 12 that federated training using a
pre-trained model significantly outperforms a randomly initialized model using standard methods
like FedAvg and FedAdam on CIFAR-10 and CIFAR-100.

Table 12: Impact of using a pre-trained SqueezeNet with different federated learning methods on
CIFAR-10 and CIFAR-100. We show the total communication cost (in MB). We train a total of 100
clients with 30 clients per round for 200 rounds in non-iid settings with a Dirichlet distribution of 0.1.
When starting from random initialization (no pre-training), we train for 400 rounds.

CIFAR-10 CIFAR-100
Method Pre-trained Acc (↑) Comm. (↓) Acc (↑) Comm. (↓)
FedAvg × 37.3 74840 23.9 79248

FedAdam × 60.5 74840 44.3 79248
FedAvg ✓ 84.7 37420 56.7 39624

FedAdam ✓ 85.5 37420 62.5 39624

Experiments with ResNet-18. We perform experiments with pre-trained ResNet-18 in Table 13.
For FedAvg and FedAdam, we train for 200 rounds with 30 clients per round. For FedAvg, we train
with a client learning rate of 0.001 and server learning rate of 1.0. For FedAdam, we train with a
client learning rate of 0.001 and a server learning rate of 0.0001. We show that fine-tuning after
FedCOF classifier initialization for 100 rounds outperforms competitive FL methods like FedAdam
(which are trained for 200 rounds) by 2.5% on CIFAR-100 and 5.1% on ImageNet-R. The improved
performance with FedCOF initialization validates the effectiveness of the proposed method, as it
reduces communication and computation costs by half compared to FedAdam and FedAvg and still
outperforms them.

33



Table 13: Comparison of different training-free methods using pre-trained ResNet-18 for 100 clients
with training-based federated learning baselines FedAvg [37] and FedAdam [42] starting from a
pre-trained model. We train for 200 rounds for FedAvg and FedAdam which uses pre-trained
backbone and random classifier initialization. FedNCM, Fed3R and the proposed FedCOF do not
involve any training. We also show the performance of fine-tuning with FedAdam after classifier
initialization. For fine-tuning experiments we only train for 100 rounds after initialization. We show
the total communication cost (in MB) from all clients to server. The best results from each section
are highlighted in bold.

CIFAR-100 ImageNet-R
Method Acc (↑) Comm. (↓) Acc (↑) Comm. (↓)
FedAvg 67.7 538k 56.0 541k

FedAdam 74.4 538k 57.1 541k
FedNCM 53.8 5.9 37.2 7.1
Fed3R 63.5 110.2 45.9 111.9

FedCOF (Ours) 63.3 5.9 46.4 7.1
FedNCM+FedAdam 75.7 269k 60.3 271k
Fed3R+FedAdam 76.8 269k 60.6 271k

FedCOF+FedAdam 76.9 269k 62.2 271k

1 2 3 4
Number of means shared per class per client
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Figure 9: (left) Analysis of FedCOF performance with multiple class means per client on ImageNet-R.
(center) Total number of means per class on average that are used to estimate the covariance for
FedCOF in Figure 9 (left). (right) Performance comparison of FedCOF with full, diagonal, and
spherical covariance matrix communication.

L Additional Ablations

Sampling multiple class means. We perform multiple class means sampling per client using
ImageNet-R and show in Figure 9 (left) that using FedCOF with more class means shared from
each client improves the performance. We also show in Figure 9 (center) the total number of means
used per class on an average in Figure 9 (left) to perform the covariance estimation. The number
of means used to estimate each class covariance is less than the total number of clients due to the
class-imbalanced or dirichlet distribution used to sample data for clients. This is due to the fact that
not all classes are present in all clients.

In most settings we observe that the largest performance improvement occurs when increasing the
number of class means per client in scenarios with fewer clients. For instance, with only 10 clients,
accuracy improves from 33.1% to 37.0% when increasing from 1 to 4 means per client. In contrast,
when 50 clients are available, the improvement is marginal (from 37.4% to 37.8%). This trend is
consistent with the theoretical insights in Appendix E: when fewer clients are available, sampling
more means per client increases the number of independent statistics, thereby reducing variance and
improving the quality of the covariance estimate.

Communicating diagonal or spherical covariances. While communicating diagonal or spherical
covariances (mean of the diagonal covariance) from clients to server and then estimating the global
class covariance from them can significantly reduce the communication cost, such estimates of global
class covariance is poor compared to FedCOF. We show in Figure 9 (right) that FedCOF outperforms
these covariance sharing baselines when communicating spherical or diagonal covariances.
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Table 14: Ablation showing the impact of using shrinkage
in FedCOF using a pre-trained SqueezeNet.

Dataset γ = 0 γ = 0.01 γ = 0.1 γ = 1 γ = 10

ImageNet-R 36.53 36.98 36.96 37.25 36.07
CUB200 51.08 51.07 51.81 53.57 53.50

Impact of Shrinkage. We analyze the
impact of shrinkage on the estimated
class covariances in FedCOF when us-
ing a pre-trained SqueezeNet in Table 14.
We use a shrinkage γ = 1 for our
experiments with SqueezeNet and ViT-
B/16. We observe that shrinkage yields
marginal improvement for ImageNet-R and a bit more significant improvement in accuracy of 2.5%
on CUB200. This can be attributed to the few-shot settings where the covariance estimation is not
very good due to the lack of data and thus fewer clients having access to each of the classes. The
use of shrinkage in FedCOF stabilizes and improves the covariance estimation leading to improved
accuracy especially in few-shot settings.

Severe imbalance settings. We further evaluate FedCOF in settings with more severe class imbalance
or heterogeneity across clients (Dirichlet distribution with α = 0.05, 0.01) in Table 15 and show that
the performance of FedCOF drops a bit with very severe heteregeneity as expected.

Table 15: Analysis of FedCOF performance across settings with varying heterogeneity.

Class means shared ImageNet-R (100 clients) Cars (100 clients)
per client α = 0.5 α = 0.1 α = 0.05 α = 0.01 α = 0.5 α = 0.1 α = 0.05 α = 0.01

1 38.4 37.3 36.4 33.5 45.0 44.5 43.1 39.9
2 38.2 37.8 37.4 35.9 44.9 44.5 43.8 42.5
3 38.1 37.5 37.5 36.7 44.9 44.7 44.2 43.2
4 38.3 37.7 38.2 37.4 45.1 44.9 44.4 43.6

Table 16: Total means shared per class on average (the
number of clients each class is present in, on average).

Dataset α = 0.5 α = 0.1 α = 0.05 α = 0.01
ImageNet-R 36.1 17.4 11.7 4.0

Cars 24.5 13.4 9.6 3.6

We show the impact of class imbalance in
different settings in Table 16. Using the most
extreme setting (α = 0.01), each class is
present on 4 clients on an average. Although
the extreme settings are less unrealistic, we
analyze and evaluate FedCOF in those set-
tings. For instance, the drop in performance
of FedCOF on Cars from 44.5 to 39.9 is due to the fact that the global covariance is estimated from
around 3.6 sample means instead of around 13.4 sample means. This scenario faces the same issue as
fewer clients due to the severe class imbalance. Here, we show that sampling multiple class means
per client improves the performance in the extreme settings mitigating the bias in these settings.

M Impact Statement

In this paper we propose a highly communication-efficient method for federated learning which
exploits pre-trained feature extractors. Reducing communication between clients and the central
server is a critical aspect of federated learning to enhance its application in practical scenarios. The
proposed method is training-free and thus does not require extensive training or incur excessive
computational costs across all client devices like training-based federated learning methods. Our
method drastically reduces communication while achieving similar or even better accuracy compared
to existing approaches. The proposed initialization can be used with different federated fine-tuning
approaches. We believe that our work will advance federated learning applications and make them
more efficient.
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