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ABSTRACT

The deployment of reinforcement learning (RL) agents in real-world tasks is
frequently hampered by performance degradation caused by mismatches between
the training and target environments. Distributionally Robust RL (DR-RL) offers a
principled framework to mitigate this issue by learning a policy that maximizes
worst-case performance over a specified uncertainty set of transition dynamics.
Despite its potential, existing DR-RL research faces two key limitations: reliance
on prior knowledge of the environment – typically access to a generative model
or a large offline dataset – and a primary focus on tabular methods that do not
scale to complex problems. In this paper, we bridge these gaps by introducing an
online DR-RL algorithm compatible with general function approximation. Our
method learns an optimal robust policy directly from environmental interactions,
eliminating the need for prior models or offline dataset, enabling application to
complex, high-dimensional tasks. Furthermore, our theoretical analysis establishes
a near-optimal sublinear regret for the algorithm under the total variation uncertainty
set, demonstrating that our approach is both sample-efficient and effective.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a powerful paradigm for solving sequential
decision-making problems. A central paradigm of RL is online learning, where an agent learns an
optimal policy through direct trial-and-error interactions with an unknown environment, without
relying on pre-collected datasets or high-fidelity simulators. This learning scheme has fueled
significant achievements in complex simulator-based tasks, including video games (Silver et al., 2016;
Zha et al., 2021; Berner et al., 2019; Vinyals et al., 2017) and generative AI (Ouyang et al., 2022;
Cao et al., 2023; Black et al., 2023; Uehara et al., 2024; Zhang et al., 2024; Du et al., 2023; Cao
et al., 2024). However, a critical vulnerability lies at the heart of conventional online RL algorithms.
Vanilla RL typically optimizes an agent’s policy under the implicit assumption that the environment’s
dynamics, while stochastic, are fixed and unchanging. In other words, the environment encountered
during training is presumed identical to the one at deployment – an assumption often violated in
practice and risky for real-world applications. An agent trained in this manner can become highly
specialized to the exact conditions experienced during training, leading to a brittle policy that is
dangerously unprepared for even minor variations. When deployed in dynamic settings such as
autonomous driving (Kiran et al., 2021) or healthcare (Wang et al., 2018), an agent may confront
unforeseen shifts, like a sudden change in road friction due to weather. A standard RL agent, never
having been trained to consider such possibilities, may suffer a catastrophic drop in performance,
leading to unsafe or costly outcomes.

The core of this issue is that vanilla online RL merely optimizes for expected performance within
the training environment, but fails to account for potential perturbations or model mismatch upon
deployment. Distributionally robust RL (DR-RL) (Iyengar, 2005; Pinto et al., 2017; Hu et al.,
2022) offers a promising solution by instead optimizing for the worst-case performance over a
pre-defined uncertainty set that captures potential model mismatches. By doing so, DR-RL can learn
policies that are inherently resilient to environmental shifts, achieving reliable and safe performance
even when encountering new conditions post-deployment (Goodfellow et al., 2014; Vinitsky et al.,
2020; Abdullah et al., 2019; Hou et al., 2020; Rajeswaran et al., 2017; Atkeson & Morimoto, 2003;
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Morimoto & Doya, 2005; Huang et al., 2017; Kos & Song, 2017; Lin et al., 2017; Pattanaik et al.,
2018; Mandlekar et al., 2017). Online DR-RL (He et al., 2025; Liu et al., 2024; Liu & Xu, 2024b; Lu
et al., 2024; Ghosh et al., 2025), where the agent directly interacts with the unknown environment
but optimizes for the worst-case over some uncertainty set, hence provides a promising approach to
overcome the aforementioned issues of online RL and enhance robustness against model mismatches.

Despite its potential, online DR-RL faces two theoretical challenges. The first is due to the off-target
nature of the objective: training data are generated by nominal dynamics, while robustness is evaluated
against worst-case dynamics. The targeted worst-case environment generally differs from the training
environment, hence the agent must solve an off-dynamic learning problem (Eysenbach et al., 2020;
Liu & Xu, 2024a; Holla, 2021). This can result in an information bottleneck, as samples critical for
the target environment may never be observed under the dynamics with which the agent interacts
(Lu et al., 2024; Ghosh et al., 2025). Moreover, because the online agent interacts directly with
the world, naive exploration that could lead to severe, undesirable consequences is forbidden. This
imposes a crucial constraint: the agent must maintain safe and satisfactory performance, even under
its worst cases, throughout the entire learning process. Due to these challenges, existing DR-RL
mostly assume access to additional data sources, such as a generative model that can freely generate
samples (Panaganti & Kalathil, 2022; Xu et al., 2023; Shi et al., 2023), or a comprehensive offline
dataset covering the relevant dynamics (Blanchet et al., 2023; Shi & Chi, 2024; Tang et al., 2024;
Wang et al., 2024c; Liu & Xu, 2024a; Panaganti et al., 2022; Wang et al., 2024a) , and more recently
hybrid regimes that combine a large offline dataset with limited online interaction (Panaganti et al.,
2024). Yet in many practical scenarios, such simulators or datasets are unavailable or prohibitively
expensive to create, necessitating online DR-RL.

The second challenge is its poor scalability. Most existing DR-RL algorithms are designed for
small-scale, tabular problems. Real-world applications, however, often involve vast state-action
spaces that render these methods impractical. In standard RL, function approximation techniques
(Mnih et al., 2013; Silver et al., 2016; Kober et al., 2013; Li et al., 2016), where a low-dimensional
function class is used to approximate the value functions, is the key technique for scaling up to large
problems. Yet, its application to DR-RL raises significant theoretical challenges. Due to the inherent
model mismatch, the existence of an accurate, low-dimensional approximation of the worst-case
value function is not guaranteed. For instance, there may not exist a linear function that properly
approximates the worst-case value function (Tamar et al., 2014). Existing attempts to bridge this gap
often rely on strong, unverifiable assumptions, such as a small discount factor (Xu & Mannor, 2010;
Zhou et al., 2024; Badrinath & Kalathil, 2021) or the environment being modeled as a linear MDP
(Ma et al., 2022; Liu & Xu, 2024b;a; Liu et al., 2024; Wang et al., 2024a).

These two gaps naturally lead to one fundamental question: Can we develop a sample-efficient
online DR-RL algorithm scaling up to large problems, under minimal structural assumptions?

In this paper, we answer this question by developing an online DR-RL framework with general
function approximation and by deriving finite-sample convergence guarantees. Our main contributions
are summarized as follows.

(1) First sample-efficient algorithm for online DR-RL with general function approximation. We
develop Robust Fitted Learning with TV-Divergence Uncertainty Set (RFL-TV), the first algorithm
for purely online DR-RL with general function approximation under TV-divergence uncertainty sets.
RFL-TV integrates optimism for exploration into a fitted-learning scheme via a novel functional
reformulation of the robust Bellman operator. Instead of standard state–action-wise bonuses as in
tabular UCB methods, we use this reformulation to construct a global uncertainty quantifier over
the function class, which aggregates estimation error more effectively and guides exploration. This
yields a computationally efficient algorithm suitable for large-scale problems and, to the best of our
knowledge, the first polynomial-time, polynomial-sample algorithm for purely online DR-RL beyond
tabular and offline/hybrid settings.

(2) Robust coverability as the fundamental complexity measure. We introduce the robust
coverability coefficient Crcov, defined as the worst-case ratio between adversarial and nominal
visitation measures across policies and time steps. Although a similar term is also studied in
(Panaganti et al., 2024) for hybrid setting, our studies reveals its necessity in pure online setting with
function approximation, which captures the intrinsic “information deficit” of learning a worst-case
policy from nominal data. We show that (i) natural fail-state assumptions imply Crcov <∞, and (ii)
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Crcov fully characterizes the sample complexity of online DR-RL, in direct analogy to—but strictly
weaker than—classical coverability and concentrability conditions.

(3) Dual robust fitted learning and global confidence sets. We construct a dual robust Bellman
residual based on a functional optimizer g and use it to build global confidence sets over value
functions. Unlike tabular UCB methods and non-robust GOLF, which use per–state–action bonuses,
RFL-TV maintains a single least-squares objective on the dual residual that simultaneously (i)
approximates the worst-case Bellman operator and (ii) serves as a global uncertainty quantifier for
exploration. This dual-driven robust fitted learning mechanism is specific to the DR-RL setting and
contrasts with offline DR-RL methods, where the dual is analyzed under a fixed data distribution and
not used to drive exploration.

(4) Sharp regret and sample-complexity guarantees (general and linear settings). We show that
RFL-TV finds an ε-optimal robust policy with sample complexity Õ

(
H5
(
min{H,σ−1}

)2
Crcovε

−2
)

,
up to logarithmic factors, plus an additive term linear in the dual approximation error. This bound is
the first polynomial-order guarantee for robust online learning with general function approximation.
It is independent of |S| and |A|, demonstrating scalability to large or continuous spaces, with
the cost of higher state-space dependence on H and σ−1 compared to existing online DR-RL
results. Moreover, in d-dimensional linear TV-RMDPs our analysis specializes to a regret bound
Õ
(
H2 min{H,σ−1}

√
C2

rcovd
2K
)
, which is near-optimal compared to the minimax lower bound

(Liu et al., 2024), highlighting the sharpness of our theory.

2 RELATED WORK

We discuss most related DR-RL works here, and defer the discussion of non-robust RL to Appendix.

Tabular DR-RL: DR-RL is mostly studied under the tabular setting. A substantial body of DR-RL
has been developed under the generative-model setting (Clavier et al., 2023; Liu et al., 2022; Panaganti
& Kalathil, 2022; Ramesh et al., 2024; Shi et al., 2023; Wang et al., 2023a;b; 2024b; Xu et al., 2023;
Yang et al., 2022; 2023; Badrinath & Kalathil, 2021; Li et al., 2022b; Liang et al., 2023), where the
agent is assumed to have access to a simulator or a comprehensive offline dataset (Blanchet et al.,
2023; Shi & Chi, 2024; Zhang et al., 2023; Liu & Xu, 2024a; Wang et al., 2024c;a). Recently, limited
number of online DR-RL studies are developed (Dong et al., 2022; Wang & Zou, 2021; Lu et al.,
2024; He et al., 2025; Ghosh et al., 2025). The information bottleneck discussed is addressed through
adopting some technical assumptions, and sample efficient algorithms are derived. However, all of
these works are model-based or value-based, suffering from poor scalability to large-scale problems.

DR-RL with Function Approximation: Existing theoretical DR-RL with function approximation
largely focuses on linear function classes. However, these classes are generally not closed under the
robust Bellman operator, so approximation guarantees cannot be ensured. To circumvent this, most
works impose strong structural assumptions on the underlying robust MDP—such as a small discount
factor (Xu & Mannor, 2010; Tamar et al., 2014; Zhou et al., 2024) or a linear robust MDP model
(Ma et al., 2022; Liu & Xu, 2024b;a; Liu et al., 2024; Wang et al., 2024a)—assumptions that are
difficult to verify in practice. In contrast, we work with a broader, general function class to avoid
these restrictions. General function approximation for DR-RL has so far been studied mainly in
(Panaganti et al., 2022; 2024), which use a functional optimization approach but focus on offline
or hybrid data settings with global coverage and thus avoid the exploration challenges of our fully
online setting; moreover, (Panaganti et al., 2024) studies regularized robust MDPs, which differ from
the DR-RL formulation considered here.

3 PRELIMINARIES AND PROBLEM FORMULATION

3.1 DISTRIBUTIONALLY ROBUST MARKOV DECISION PROCESS (RMDPS).

Distributionally robust RL can be formulated as an episodic finite-horizon RMDP (Iyengar, 2005),
represented by M := (S,A, H,P, r), where the set S = {1, . . . , S} is the finite state space,
A = {1, . . . , A} is the finite action space, H is the horizon length, r = {rh : S ×A → [0, 1]}Hh=1 is
the collection of reward functions, and P = {Ph}Hh=1 is an uncertainty set of transition kernels. At
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step h, the agent is at state sh and takes an action ah, receives the reward rh(sh, ah), and is transited
to the next state sh+1 following an arbitrary transition kernel Ph(·|sh, ah) ∈ Ph.

We consider the standard (s, a)-rectangular uncertainty set with divergence ball-structure (Wiesemann
et al., 2013). Specifically, there is a nominal transition kernel P ⋆ = {P ⋆

h}Hh=1, where each P ⋆
h :

S ×A → ∆(S)1. The uncertainty set, centered around the nominal transition kernel, is defined as
P = Uσ(P ⋆) =

⊗
(h,s,a)∈[H]×S×A Uσ

h (s, a), and Uσ
h (s, a) ≜

{
P ∈ ∆(S) : D(P, P ⋆

h (·|s, a)) ≤
σ
}

, containing all the transition kernels that differ from P ⋆ up to some uncertainty level σ ≥ 0,
under some probability divergence functions (Iyengar, 2005; Panaganti & Kalathil, 2022; Yang et al.,
2022). Specifically, in this paper, we mainly consider uncertainty sets specified by total-variation
(TV) (Sason & Verdú, 2016), as defined below, and refer to the RMDP defined as an TV-RMDP.
Definition 1 (TV-Divergence Uncertainty Set). For each (s, a) pair, the uncertainty set is defined as:

Uσ
h (s, a) ≜

{
P ∈ ∆(S) : DTV

(
P, P ⋆

h (·|s, a)
)
≤ σ

}
, (1)

where for p, q ∈ ∆(S), DTV

(
p, q
)
= 1

2

∑
s′∈S
|p(s′)− q(s′)| is the TV-divergence.

3.2 POLICY AND ROBUST VALUE FUNCTION

The agent’s strategy of taking actions is captured by a Markov policy π := {πh}Hh=1, with πh : S →
∆(A) for each step h ∈ [H], where πh(·|s) is the probability of taking actions at the state s in step h.
In RMDPs, the performance of a policy is captured by the worst-case performance, defined as the
robust value functions. Specifically, given any policy π and for each step h ∈ [H], the robust value
function and the robust state-action value function are defined as the expected accumulative reward
under the worst possible transition kernel within the uncertainty set:

V π,σ
h (s) ≜ inf

P∈Uσ(s,a)
Eπ,P

[ H∑
t=h

rt(st, at)
∣∣∣sh = s

]
, (2)

Qπ,σ
h (s, a) ≜ inf

P∈Uσ(s,a)
Eπ,P

[ H∑
t=h

rt(st, at)
∣∣∣sh = s, ah = a

]
,

where the expectation is taken with respect to the state-action trajectories induced by policy π under
the transition P .

The goal of DR-RL is to find the optimal robust policy π⋆ := {π⋆
h} that maximizes the robust value

function, for some initial state s1:

π⋆ ≜ argmax
π∈Π

V π,σ
1 (s1), (3)

where Π is the set of policies. Such an optimal policy exists and can be obtained as a deterministic
policy (Iyengar, 2005; Blanchet et al., 2023). Moreover, the optimal robust value functions (denoted
by Q⋆,σ

h , V ⋆,σ
h ), which are the corresponding robust value functions of the optimal policy π⋆, are

shown to be the unique solution to the robust Bellman equations:

Q⋆,σ
h (s, a) = rh(s, a) + EUσ

h (s,a)

[
V ⋆,σ
h+1

]
, V ⋆,σ

h (s) = max
a∈A

Q⋆,σ
h (s, a), (4)

where EUσ
h (s,a)

[
V ⋆,σ
h+1

]
≜ infPh∈Uσ

h (s,a) Es′∼Ph(·|s,a)
[
V ⋆,σ
h+1(s

′)
]
.

On the other hand, for any policy π, the corresponding robust value functions also satisfy the following
robust Bellman equation for π ((Blanchet et al., 2023, Proposition 2.3)):

Qπ,σ
h (s, a) = rh(s, a) + EUσ

h (s,a)

[
V π,σ
h+1

]
, V π,σ

h (s) = Ea∼πh(·|s) [Q
π,σ
h (s, a)] . (5)

3.3 ONLINE DISTRIBUTIONALLY ROBUST RL

In this work, we study distributionally robust RL in an online setting, where the agent’s goal is to
learn the robust-optimal policy π⋆ defined in eq. 3 by interacting with the nominal environment P ⋆

1∆(·) denotes the probability simplex over the space.
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over K ∈ N episodes. At the start of episode k, the agent observes the initial state sk1 , selects a policy
πk based on its history, executes πk in P ⋆ to collect a trajectory, and then updates its policy for the
next episode. In the online setting, agents cannot freely explore, but instead need to minimize the
risk of consequences (under the worst-case) during learning. Hence, the goal is to minimize the
cumulative robust regret over K episodes, defined as

Regret(K) ≜
K∑

k=1

[
V ⋆,σ
1 (sk1)− V

πk,σ
1 (sk1)

]
. (6)

Note that this robust regret extends the regret in standard MDP (Auer et al., 2008) by measuring the
cumulative robust value gap between the optimal policy π⋆ and the learner’s policies {πk}Kk=1.

We also evaluate performance through sample complexity, defined as the minimum number of samples
T = KH needed to learn an ε-optimal robust policy π̂ that satisfies

V ⋆,σ
1 (s1)− V π̂,σ

1 (s1) ≤ ε. (7)

4 ROBUST BELLMAN OPERATOR WITH FUNCTION APPROXIMATION

In this section, we highlight the challenges of online RL and give a step-by-step approach to overcome
these challenges.

Functional approximation. When the state–action space is large, learning robust policies from
interaction alone is computationally challenging. To address this, we adopt the function approximation
technique, where we use a general function class F = {Fh}Hh=1 where Fh contains some functions
f : S × A → [0, H], to approximate the robust value function Q⋆,σ

h . This function class can be
a parametric class with low-dimension parameters, e.g., neural network, to significantly reduce
the computation and improve sample efficiency. To ensure effective learning with these function
classes, prior work has identified structural conditions that they must satisfy (Russo & Van Roy,
2013; Jiang et al., 2017; Sun et al., 2019; Wang et al., 2020b; Jin et al., 2021; Panaganti et al., 2022).
These conditions regulate how the functional class F interacts with the RMDP dynamics. The most
commonly used assumptions are the representation conditions, which require that F is expressive
enough to capture the robust value functions of interest. More specifically, the optimal robust
Q-function Q⋆,σ ∈ F (known as realizability) and closure under the robust Bellman operator, namely
T σ
h Fh+1 ⊆ Fh (known as completeness). Following standard studies of function approximation

in RL (Jin et al., 2021; Xie et al., 2022; Panaganti et al., 2022; Wang et al., 2019), we adopt the
following completeness assumption.
Assumption 1 (Completeness). For all h ∈ [H], we have T σ

h fh+1 ∈ Fh for all fh+1 ∈ Fh+1.

Per Assumption 1, F is closed under the robust Bellman operator T σ. Note that, different from
standard function approximation RL studies, we do not assume the realizability (Q⋆,σ ∈ F). We
highlight that realizability may be restricted in RMDPs, for instance, when F is a linear function
class, since the optimal robust value function may not be linear, additional assumptions like linear
RMDPs are needed to ensure realizability (Ma et al., 2022; Liu & Xu, 2024b;a; Liu et al., 2024;
Wang et al., 2024a; Ma et al., 2022).

Support shifting issue. In RMDPs with a TV-divergence uncertainty set, we face a unique support
shifting issue. When the worst-case transition kernel Pω and the nominal kernel P ⋆ have different
support, states that will be visited under the worst-case may never be visited under the nominal kernel,
thus the agent cannot get samples from these states, resulting in an information bottleneck. Notably,
the sample complexity of RMDPs with this issue can be exponentially large (Lu et al., 2024). To
overcome this challenge, we follow prior work and adopt a standard fail-states assumption (Lu et al.,
2024; Liu et al., 2024; Liu & Xu, 2024b; Panaganti et al., 2022) to enable sample-efficient robust RL
through interactive data collection.
Assumption 2 (Failure States). For a TV-RMDP, there exists a set of failure states SF ⊆ S, such
that rh(s, a) = 0, and P ⋆

h (s
′|s, a) = 0, ∀a ∈ A,∀s ∈ SF ,∀s′ /∈ SF .

Note that this issue does not exist in offline or generative model settings, as the coverage assumption
directly ensures the inclusion of the worst-case kernel support.
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To better understand the necessity of this assumption, we introduce an intrinsic metric based on
visitation measures in both the nominal and the worst-case environments as follows.
Definition 2 (Visitation measure (He et al., 2025)). Under TV-RMDP, for any policy π, we denote
the worst transition kernel by Pω,π

h (·|s, a) ≜ argminPh∈Uσ
h (s,a) EPh

[V π,σ
h+1](s, a). Furthermore, at

step h ∈ [H], we define dπh(·) as the visitation measure on S induced by the policy π under Pω,π,
and µπ

h(·) as the visitation measure on S induced by the policy π under P ⋆.

Inspired by offline learning (Agarwal et al., 2019; Chen & Jiang, 2019; Wang et al., 2020a; Xie et al.,
2021), we further introduce a term to capture the ratio of the visitation measure between the nominal
and worst-transition kernels.
Definition 3 (Robust Coverability). Under Definition 2, we define

Crcov := sup
π∈Π,h∈[H]

∥∥dπh/µπ
h

∥∥
∞ ,

as the maximum ratio between the worst-case visitation measure and the nominal visitation measure.

When Crcov =∞, there exists some state that is visited under the worst-case kernel but not under the
nominal kernel. Thus, no data can be obtained for that state, resulting in the support shifting issue.
As illustrated in (He et al., 2025), an online learning algorithm is efficient only if the coverability
measure Crcov <∞, which, however, does not generally hold in TV cases. However, we show that
the failure state Assumption 2 guarantees the finiteness of the robust coverability, thereby providing
a necessary condition for efficient online learning algorithms. In this sense, our robust coverability
condition plays a role analogous to the offline/hybrid coverage notions in (Panaganti et al., 2022;
2024), but is tailored to a different regime: their coverage constants compare robust occupancies to
a fixed offline behavior distribution µ, whereas Crcov compares robust occupancies to the nominal
online occupancies induced by the learner’s policy, specifically for online settings.

Empirical robust Bellman operator and functional optimization. Recall from eq. 5 that the
robust value function is characterized as the fixed point of the robust Bellman operator. Hence,
computing an optimal robust policy amounts to computing this fixed point. Directly evaluating the
operator, however, is intractable: the mapping EUσ

h (s,a)[·] requires, for each (s, a), an optimization
over an S–dimensional TV-uncertainty set, which quickly becomes prohibitive.

To address these issues, we construct an efficient empirical solution and adapt the approach in
(Panaganti et al., 2022) to avoid pointwise scalar optimization by rewriting the problem as a single
optimization over functions. Namely, we consider the probability space (S ×A,Σ(S ×A), µ), let
L1(µ) denote the space of absolutely integrable dual functions, and consider the dual loss

Dualloss(g; f) = E(s,a)∼µ

[
Es′∼P⋆

s,a
[(g(s, a)−max

a′
f(s′, a′))+]− (1− σ)g(s, a)

]
, (8)

and its optimization is equivalent to the robust Bellman operator (Panaganti et al., 2022):

inf
g∈L1(µ)

Dualloss(g; f) = E(s,a)∼µ

[
EUσ

h (s,a)[f ]
]
. (9)

We now construct an empirical dual loss D̂ualloss(g; f) through a dataset, and obtain an approximate
dual minimizer by solving infg∈L1(µ) D̂ualloss(g; f). For efficiency, we instead optimize over
another function class G = {g : S ×A → [0, 2H/σ]} used to approximate the dual variables, which
satisifies the following realizability assumption (deferred to Appendix C). We then approximate the
robust Bellman operator for a given f and dataset D as g

f
= argming∈G D̂ualloss(g; f), and then

define the empirical robust Bellman operator

(T σ
g f)(s, a) ≜ r(s, a)− Es′∼P⋆

s,a
[(g(s, a)−max

a′
f(s′, a′))+]

)
− (1− σ)g(s, a). (10)

The next lemma quantifies how well T σ
g
f

approximates T σ in an L1 sense.

Lemma 1. Let π be any policy, and let µπ
h denote the visitation measure on S ×A at step h induced

by π under P ⋆. Suppose D is a dataset collected by running π. Then, for any δ ∈ (0, 1), with
probability at least 1− δ,

sup
f∈F

∥∥T σf − T σ
g
f
f
∥∥
1,µπ = O

(
Hmin{H, 1/σ}

√
2 log

(
8|G||F|/δ

)/
|D|+ ξdual

)
. (11)
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A similar result is derived for a fixed distribution (the offline dataset distribution) in (Panaganti et al.,
2022; 2024), whereas we show it simultaneously hold for any policy and its induced distribution.
Lemma 1 shows that our empirical functional optimization yields a uniformly accurate approximation
to the robust Bellman operator under the L1(µπ) norm. Crucially, the error is controlled globally
with respect to the visitation measure µπ , rather than pointwise in (s, a). This global control is what
we leverage later to define our robust confidence sets and the global error term that drives the design
and analysis of our main algorithm.
Remark 1 (Relation to φ-regularized RMDPs (Panaganti et al., 2024)). Assumption 3 and Lemma 1
build on the dual functional machinery first developed by (Panaganti et al., 2022) and subsequently
employed by (Panaganti et al., 2024) for φ-regularized RMDPs in a hybrid setting, where the policy
value includes a Lagrangian penalty λ with λ > 0 and the guarantees scale with (λ+H). Although
the φ-regularized RMDPs recovers the standard RMDPs with λ = 0, our result cannot be obtained
directly. This is due to that, the analysis in (Panaganti et al., 2024) is carried out explicitly for λ > 0
and we cannot set λ = 0 in their analysis to obtain ours.

5 ROBUST FITTING LEARNING ALGORITHM

We then utilize our previous constructions and propose our Robust Fitted Learning (RFL) algorithm.

Algorithm 1: Robust Fitted Learning with TV-Divergence Uncertainty Set (RFL-TV)

1: Input: Function class F , Dual Function class G, β > 0, σ > 0.
2: Initialize: F (0) ← F , D(0)

h ← ∅ ∀h ∈ [H]
3: for episode k = 1, 2, . . . ,K do
4: Set f (k) ← argmaxf∈F(k−1) f(s1, π

f
1 (s1)) and π(k) ← πf(k)

5: Execute π(k) and obtain a trajectory (s
(k)
1 , a

(k)
1 , r

(k)
1 ), . . . , (s

(k)
H , a

(k)
H , r

(k)
H )

6: Update dataset: D(k)
h ← D(k−1)

h ∪ {(s(k)h , a
(k)
h , s

(k)
h+1)} ∀h ∈ [H]

7: F (k)
H ← {0}

8: for h = H − 1, ..., 1 do
9: Update the confidence set, with notations defined in eq. 12:

F (k)
h ←

{
f ∈ Fh : L

(k)
h (fh, fh+1, gfh+1

)− min
f ′
h∈Fh

L
(k)
h (f ′h, fh+1, gfh+1

) ≤ β,∀fh+1 ∈ F (k)
h+1

}
10: end for
11: end for
12: Output: π̄ = unif(π(1:K)). For PAC guarantee only.

Our algorithm follows the standard fitting learning structure. In each step h, we will construct a
confidence set F (k) (Line 9) based on the fitted error under the robust Bellman operator to ensure the
inclusion of Q⋆,σ ∈ F (k). As discussed, we utilize our functional optimization based loss function
and the error bound in Lemma 1 to construct the set. Namely, given a function f , we first solve the
dual-variable approximation through the empirical functional optimization loss as

g
f
≜ argmin

g∈G

∑
(s,a,s′)∈D(k)

h

(
g(s, a)−max

a′∈A
f(s′, a′)

)
+
− (1− σ)g(s, a). (12)

We further capture the empirical robust Bellman error L(k)
h (f ′, f, g) via our functional optimization:∑

(s,a,r,s′)∈D(k)
h

{
f ′(s, a)− r −

(
g(s, a)−max

a′∈A
f(s′, a′)

)
+
+ (1− σ)g(s, a)

}2

.

Notably, due to the large-scale of the problem, we construct the confidence set of function classes
in a global fashion that entails optimizing over fh for all steps h ∈ [H] simultaneously (Zanette
et al., 2020), instead of constructing error qualifications for each state-action pair as in tabular UCB
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approaches. More specifically, the confidence set is constructed by considering all the functions that
not only minimize the squared robust Bellman error on the collected transition data D(k)

h in terms of
the dual variable function, but also any function whose loss is only slightly larger than the optimal
loss over the functional class Fh. We will later design an error quantification error β, to ensure that
Q⋆,σ ∈ F (k) with high probability. With the function confidence set which contains Q⋆,σ, we then
adopt the optimism principle and choose π(k) = πf(k)

based on the robust value function f (k) ∈ F (k)

with the most optimistic estimate f1(s1, π
(k)
1 (s1)) for the total reward. This will ensure the optimism

of our algorithm, and balance the exploration and exploitation.

Algorithmic novelties. While the overall template of “optimism + fitted value iteration” is
reminiscent of GOLF (Xie et al., 2022), our setting differs fundamentally from both non-robust
RL and offline DR-RL, and this is reflected in the design of RFL-TV. The datasets D(k)

h are
generated under different policies across episodes, so there is no single policy π with D(k)

h ∼ µπ,
and the fixed-distribution error quantification in Lemma 1 cannot be applied directly. Instead, we
implement an optimistic, dual-driven fitted scheme in which a value–dual pair (f, g) is learned
online: the dual network g both approximates the TV-robust Bellman operator and acts as a global
uncertainty quantifier that defines optimistic confidence sets over F and guides exploration under
this non-stationary data. The resulting regret decomposition and confidence bounds exploit the
robust coverability coefficient Crcov (Definition 3) to control the mismatch between the evolving
on-dynamics distribution and the worst-case kernel Pω. This dual-based, coverability-aware
realization of “optimism + fitted value iteration” contrasts with GOLF’s squared non-robust Bellman
error (Xie et al., 2022) and with offline RFQI-style robust methods (Panaganti et al., 2022), where
data come from a fixed distribution and the dual is not used to drive online exploration.

6 THEORETICAL GUARANTEES

We then develop the theoretical guarantees of our algorithm.

Theorem 1. For any δ ∈ (0, 1], we set β = O
(
min{H, 1/σ} log

(
KH |F||G|

δ

))
. Then under

Assumption 1, 2, and 3, there exists an absolute constant c such that with probability at least 1− δ, 2

Regret(K) ≤ O
(√

C2
rcovH

4(min{H, 1/σ})2 log
(
KH |F||G|δ−1

)
K + Crcovξdual

)
.

Proof-sketch. Our proof has two main ingredients: (i) a reduction of robust regret to a sum of
robust average Bellman errors under a worst-case kernel, and (ii) uniform control of these Bellman
errors via the dual-based empirical operator and robust coverability.

Step 1: From regret to robust average Bellman error. By Assumption 1 and the construction of
the confidence sets, the optimistic estimates f (k) satisfy f (k)h ≥ Q⋆,σ

h pointwise for all k, h with
high probability. Using the robust Bellman equation and the worst-case kernel Pω in Definition 2,
Lemma K.1 shows that the robust regret can be written as a sum of robust average Bellman errors:

Regret(K) ≤
K∑

k=1

H∑
h=1

εσTV

(
f (k), π

(k)
f , h;Pω

)
,

where εσTV is some robust Bellman error and is defined in eq. 17. Notably, different from offline
robust RL (Panaganti et al., 2022) and non-robust ones, our robust Bellman error is defined under
the worst-case occupancy measure, which depends on the learner’s greedy policy π(k)

f and the
corresponding worst-case kernel Pω . Both of them are changing during algorithms, and we need to
tackle such distribution shift among episodes.

Step 2: Dual-based decomposition and bounds via coverability. Our strategy is to utilize the
coverability to derive a uniform upper bound of the errors. For each (k, h), we add and subtract the

2We assume for simplicity that |F|, |G| < ∞, but our result can be directly extended to the general infinite
case with a standard finite coverage technique (Xie et al., 2022; Panaganti et al., 2022).
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dual-based empirical operator T σ
g (eq. 10) and decompose (eq. 19 and eq. 20): Regret(K) ≤ I+II ,

where I aggregates the Bellman residuals f (k)h − T σ
g
f(k)

f
(k)
h+1, and II aggregates the approximation

error T σ
g
f(k)

f
(k)
h+1 − T σf

(k)
h+1. Since f (k) and g(k) minimize a global least-squares loss, Lemma K.2

shows that the empirical squared Bellman residuals contributing to I are bounded by O(β) on the
observed data. A concentration type analysis then implies

I ≤ O
(
HCrcov min{H,σ−1}+H

√
Crcov · βK logK

)
.

For II, Lemma 1 provides a uniform bound on T σf − T σ
gf
f for all f ∈ F and policies π. Robust

coverability (Definition 3) is then used to transfer this control from the nominal visitation µπ
h to the

worst-case visitation under Pω , resulting in

II = O
(
CrcovH

2 min{H,σ−1}
√

2K log
(
8|G||F|KH/δ

)
+ Crcovξdual

)
.

Combining the bounds on I and II and setting β as in Theorem 1 hence implies the regret bound.

Our result is the first polynomial regret of robust online learning with general function approximation.
It is free from the problem scales and hence enjoys better scalability. Our result is also comparable
against the ones under offline/hybrid setting with general function approximation in (Panaganti et al.,
2022; 2024), hence our algorithm can efficient learn RMDPs even without any pre-collected dataset.
Remark 2. We developed our results in terms of robust coverability, a notion also used and studied
in non-robust learning (Xie et al., 2022). There is also a line of work in online RL that employs
complexity measures such as Bellman rank (Jiang et al., 2017; Du et al., 2021) and BE dimension
(Jin et al., 2021), and we expect our analysis could similarly be adapted to these notions.

Technical novelties in the analysis. Our analysis departs substantially from both non-robust online
RL (Xie et al., 2022) and offline/hybrid robust RL with function approximation (Panaganti et al.,
2022; 2024). First, we learn a dual-based robust Bellman operator from on-dynamics data, but must
certify performance under the worst-case kernel Pω, so the dual optimization error is measured
under nominal visitation while regret is defined under robust occupancy. To bridge this mismatch, we
introduce the robust coverability coefficient Crcov, which uniformly bounds density ratios between
worst-case and nominal occupancies across episodes and time steps, and use it to propagate a single
global dual error through the regret analysis. Second, unlike analyses that work with a fixed Bellman
operator and only control approximation error in the value class F , our confidence bounds must
simultaneously handle errors in both F and the dual class G in the backup T σ

gf
, requiring a new

dual optimization error lemma and a careful treatment under evolving on-policy distributions. Third,
our regret decomposition explicitly ties these dual-based Bellman residuals to cumulative robust
visitation, cleanly separating algorithmic quantities (exploration scale β, dual error ξdual) from the
structural property Crcov of the underlying RMDP.

By contrast, the offline robust RL analysis of Panaganti et al. (2022) assumes a static dataset drawn
from a distribution satisfying a strong global concentratability condition that uniformly covers all
policies and kernels in the uncertainty set, allowing all functional errors to be controlled under a single
reference measure. In our fully online setting no such dataset exists: the data distributions µπk evolve
with learning, and the mismatch between nominal and worst-case kernels invalidates any global
coverage assumption and forces an episode- and time-dependent analysis. Our robust coverability
coefficient Crcov is therefore a weaker, more local notion than the global concentratability used in
the offline setting, yet our results show that it already suffices to obtain sample-efficient exploration
guarantees in online distributionally robust RL.

As an immediate corollary, we obtain the sample complexity for learning an ε-optimal policy with
RFL-TV by applying a standard online-to-batch conversion (Cesa-Bianchi et al., 2001).
Corollary 1 (Sample Complexity). Under the same setup in Theorem 1, with probability at least
1− δ, the sample-complexity of RFL-TV to obtain an ε-optimal robust policy is

T = KH = O
(
H5(min{H,σ−1})2C2

rcov log
(
T |F||G|δ−1

)
ε−2 + Crcovξdualε

−1
)

Our bound is independent of S andA, indicating scalability to large state and action spaces. Moreover,
as we shall discuss later, the dependences on other parameters, H,σ, ε, are also tight and near-optimal.
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Remark 3. We note that our results are obtained for a fixed uncertainty set level σ. However, when
σ is varying, the required function class |Fσ| can also change and depend on σ. Nevertheless, note
that supσ |Fσ| is upper bounded by the tabular function class, which is independent from σ.

We note that the minimax lower bound for general function approximation based RL is generally
unattainable, due to the richness of function classes, even for non-robust setting. Thus to justify the
tightness of our results, we compare our results with prior works, especially under two reductions:
tabular and linear cases. A comprehensive comparison can be found in Table 1.
Remark 4 (Tabular). Our result can be reduced to the finite tabular case by taking F and G to be the
full spaces of bounded functions S ×A → [0, H] and S ×A → [0, 2H/σ], so that the entropy terms
satisfy log |F|, log |G| = Õ(SA) (Jin et al., 2021). Substituting these quantities into Theorem 1 yields
a tabular regret bound of order Õ

(√
C2

rcovH
4(min{H, 1/σ})2 SAK

)
. Comparing with results with

a similar coverage notion (He et al., 2025), which has a regret of Õ
(√
CvrH4S3AK

)
, our algorithm

has a better dependence on S and a worse dependence on H , which indicating the scalability of our
method. Moreover, our algorithm has more applicability with general function approximation.
Remark 5 (Linear TV-RMDPs). As another special case, we specialized our results to the
d-rectangular linear RMDPs (Ma et al., 2022; Liu et al., 2024) in Appendix D. In particular, when
the robust Bellman operator is linear in a d-dimensional feature map, we adapted the analysis of
Theorem 1 and show that RFL-TV attains Regret(K) = Õ

(√
C2

rcovH
4(min{H, 1/σ})2 d2K

)
.

Moreover, we show in Lemma K.4 that Crcov ≤ O(d), hence the sample complexity is
Õ
(
d4H5(min{H, 1/σ})2ε−2

)
. Such a result is O(d2H2)-worse than the online learning in linear

robust MDPs in (Liu et al., 2024), and O(d2H3)-worse than the minimax lower bound (Liu et al.,
2024). However, our results hold for more general non-linear function classes.

Setting Online / Hybrid Robustness Sample complexity

General Online, (Xie et al., 2022) No Õ
(
CcovH

3 log(|F|/δ)ε−2
)

Online, RFL-TV (ours), Thm. 1 Yes Õ
(
C2

rcovH
5(min{H, 1/σ})2 log(|F||G|/δ)ε−2

)
Lower Bound N/A N/A

Tabular

Online, (Azar et al., 2017) No Õ
(
SAH4ε−2

)
Online, (Lu et al., 2024) Yes Õ

(
min{H,σ−1}SAH3ε−2

)
Online, (He et al., 2025) Yes Õ

(
CvrS

3AH5ε−2
)

Online, RFL-TV (ours), Thm. 1 Yes Õ
(
C2

rcovH
5(min{H, 1/σ})2SAε−2

)
Lower Bound (Lu et al., 2024) Yes Ω̃

(
H3 min{H, 1/σ}SAε−2

)
Linear

Online, (He et al., 2023) No Õ
(
d2H4ε−2

)
Online, (Liu et al., 2024) Yes Õ

(
d2H3(min{H, 1/σ})2ε−2

)
Hybrid, (Panaganti et al., 2024) Yes Õ

(
max{C2(π⋆), 1} d3H3(λ+H)2ε−2

)
Online, RFL-TV (ours), Thm. 2 Yes Õ

(
C2

rcovH
5(min{H, 1/σ})2d2ε−2

)
Lower Bound (Liu et al., 2024) Yes Ω̃

(
d2H2(min{H, 1/σ})2ε−2

)
Table 1: Comparison under general-function, tabular, and linear settings.

7 CONCLUSION

In this work, we introduced RFL-TV, a DR-RL algorithm with general function approximation under
TV-uncertainty set for a purely online setting. The algorithm implements a fitted robust Bellman
update via a functional optimization and replaces state-action bonuses with a global uncertainty
quantifier that more effectively guides exploration. We also identified robust coverability Crcov as the
structural condition that governs learnability, yielding sharp, scalable sample-efficiency guarantees.
We further developed a regret bound of our algorithm that does not scale with problem scales,
implying the efficiency and scalability of our method. Reducing to both tabular and d-rectangular
linear RMDP cases, our results are both tight and near-optimal against existing works and minimax
lower bounds, implying the tightness and near-optimality of our results. Our hence algorithm stands
for the first purely online, sample efficient algorithm for large scale DR-RL.
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A RELATED WORKS: NON-ROBUST RL WITH FUNCTIONAL APPROXIMATION

Function approximation has been widely studied in non-robust RL. While extensive studies are
developed for offline RL with general function approximation, e.g., (Zhan et al., 2022; Jiang & Xie,
2024; Wang et al., 2020a), we mainly discuss online RL here, which requires the agent to explore
while learning actively.

A foundational direction is the development of complexity measures that capture when online RL
with function approximation is tractable. The Eluder dimension (Li et al., 2022a; Russo & Van Roy,
2013) provides a measure of the sequential complexity of a function class. Online RL algorithms have
been developed that use optimism based on confidence sets constructed around the true value function,
and the size of these confidence sets and the magnitude of the exploration bonus are constructed
based on the Eluder dimension (Wang et al., 2020b).

Since the Eluder dimension merely captures the complexity of the function class in isolation, other
measures have been proposed that capture the interaction betweenF and the MDP dynamics. Bellman
rank (Jiang et al., 2017) and Witness rank (Sun et al., 2019) are later then developed to capture these
interactions, and are later unified by the Bellman–Eluder dimension Jin et al. (2021). It directly
measures the complexity relevant to value-based RL, i.e., the difficulty of learning to minimize
Bellman errors.

More recently, attention has turned to coverage conditions as the key lens for understanding
learnability in online RL. (Xie et al., 2022) introduced the notion of coverability, which provides a
sharp characterization of when exploration with function approximation is sample-efficient. Their
results demonstrate that coverability is both necessary and sufficient, thereby subsuming earlier
assumptions such as concentrability or bounded Bellman rank. Complementary hardness results
(Foster et al., 2021; Du et al., 2021) show that, without such structural or coverage conditions, online
RL in rich-observation environments may require exponentially many samples, highlighting the limits
of tractability.

Our work situates itself in this online regime, explicitly addressing exploration rather than assuming
exploratory data. However, the non-robust guarantees above do not transfer directly to our robust
setting. Robust RL replaces a single nominal kernel with an uncertainty set and a worst-case Bellman
operator, which breaks several conveniences used by non-robust analyses: (i) Bellman errors are
non-linear and invalidates the usual variance-style error accounting: In non-robust RL, the kernel is
fixed so the Bellman error can be captured through standard concentration inequalities; However, in
robust case, the error propagation requires “functional transfer” between value functions and the dual
variables to be quantified; (ii) Confidence sets and bonuses must control both sampling noise and
adversarial model shift induced by the worst-case kernel: In non-robust RL, the confidence set only
considers data limitations, whereas we additionally consider the uncertainties from the uncertainty
set; (iii) Since the mismatch between the nominal and the worst-case kernels, our analysis requires
additional structural notions (e.g., coverability) to capture such mismatches. We thus develop new
concentration arguments that commute with the supremum over models, and new pessimism/optimism
couplings to control duality gaps. In short, our robust online RL introduces adversarial model coupling
and functional transfer effects that require genuinely different analysis and algorithmic design, which
are not directly achievable from the non-robust studies.

B NUMERICAL EXPERIMENTS

B.1 EXPERIMENTAL SETUP ON CARTPOLE

Environment. We consider the standard CartPole-v1 benchmark with a discrete action space.
The state s ∈ R4 contains the cart position, cart velocity, pole angle, and pole angular velocity,
and the action space is A = {0, 1}, corresponding to applying a fixed horizontal force to the left
or right. Episodes terminate either when the pole falls beyond the allowed angle or when the time
limit is reached (maximum horizon H = 500). Rewards are the standard per-step rewards from the
environment, and the agent aims to maximize the undiscounted return over each episode.

Robustness evaluation. We are interested in how the learned policies behave under several kinds
of mismatch between training and test conditions. Policies are always trained on the nominal
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environment and are evaluated under the following perturbation families, applied only at evaluation
time:

• Action perturbation. At each time step, with probability ρ ∈ [0, 1] the environment ignores
the agent’s action and instead executes a uniformly random action in A. We evaluate over a
grid of perturbation levels and, for the plots in the main text, we focus on

Γact = {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0},

where ρ = 0 corresponds to the nominal case (used internally for sanity checks but not
always displayed in the figures).

• Force-magnitude perturbation. The horizontal push force applied in the dynamics is
multiplied by a scalar factor ηforce. We evaluate the learned policies on a finite set of scale
values ηforce ∈ Γforce that includes values

Γforce = {0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0},

where smaller values correspond to progressively weaker control inputs, and ηforce = 1.0 is
the nominal strength (used for training but not repeated in this sweep).

• Pole-length perturbation. The physical pole length is multiplied by a scalar factor ηlen. At
the configuration level, we specify the effective evaluation grid as

Γlen = {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0},

covering shorter and longer poles relative to the nominal length.

In all settings, training is performed on the nominal environment (ρ = 0, ηforce = 1, ηlen = 1), while
robustness is measured by evaluating the final policy on perturbed environments from the above
families. Unless otherwise stated, each reported return corresponds to the average over 20 evaluation
episodes and 3 independent random seeds {0, 1, 2}; we also plot 95% confidence intervals computed
across seeds and episodes.

Practical RFL-TV agent. For CartPole we use a purely value-based implementation of RFL-TV
with a discrete action space. The agent maintains two Q-networks Q1, Q2 (for Double Q-learning)
and their target copies Q̄1, Q̄2, together with a dual network g and its target copy ḡ. All networks are
multilayer perceptrons with ReLU activations:

• Q-networks. We maintain two Q-networksQ1 andQ2. Each network takes the state s ∈ R4

as input and outputs a vector in R|A|, one value per discrete action (|A| = 2 for CartPole).
The architecture is a two-layer fully connected MLP with hidden sizes (128, 128) and ReLU
activations, followed by a linear output layer. The scalar value Qi(s, a) is obtained by
indexing the corresponding component of this output vector.

• Dual network. The dual function g(s, a) is parameterized by a network with the same
backbone as the Q-networks: it takes s ∈ R4 as input, passes it through two fully connected
ReLU layers with (128, 128) units, and produces a vector in R|A|, one value per action.
The output is passed through a sigmoid and scaled so that g(s, a) ∈ [0, 10] for all (s, a),
enforcing non-negativity and preventing numerical blow-up in the dual updates.

Training protocol and robustness hyper-parameters. RFL-TV is trained off-policy on
CartPole-v1 using a replay buffer and an ε-greedy exploration strategy. Unless otherwise
specified, we fix the discount factor to γ = 0.99 and use soft target updates with rate τ = 0.005 for
all target networks. Transitions are stored in a replay buffer of size 2× 105, from which we sample
mini-batches of size 256 and perform one gradient update per environment step. The Q-networks and
dual network are optimized with Adam at a learning rate of 3 × 10−4. Exploration uses ε-greedy
action selection, where the exploration rate is initialized at εstart = 1.0 and decayed linearly to
εend = 0.05 over the first 200 episodes, and then held fixed at 0.05 for the remainder of training.
Each configuration is trained for K = 500 episodes, and we report performance statistics over three
random seeds {0, 1, 2}. The robust RFL-TV backup is parameterized by a TV-radius σ ∈ [0, 1] and a
slack parameter β ≥ 0 that controls how strictly the dual constraint is enforced. On CartPole, we
sweep σ ∈ {0.0, 0.2, 0.3, 0.4, 0.5, 0.6} and treat the slack parameter β as a scalar hyperparameter

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 2: Training hyper-parameters for RFL-TV on CartPole-v1.

Parameter Symbol Value
Discount factor γ 0.99
Target update rate τ 0.005
Replay buffer size |D| 2× 105 transitions
Mini-batch size B 256
Q-network learning rate lrQ 3× 10−4

Dual-network learning rate lrg 3× 10−4

Exploration start εstart 1.0
Exploration end εend 0.05
Epsilon decay horizon Tε 200 episodes
Gradient updates per step – 1
Training episodes K 500
Evaluation episodes per configuration – 20
Random seeds – {0, 1, 2}
TV-robustness radii σ {0.0, 0.2, 0.3, 0.4, 0.5, 0.6}
Slack parameter β {0.0, 0.5, 1.0}

Table 3: Network architectures for RFL-TV on CartPole.

Network Hidden layers
Q-network Q1, Q2 (128, 128) (ReLU)
Dual network g (default) (128, 128) (ReLU)
Dual network g (capacity sweep) (64, 64)/ (128, 128)/ (256, 256) (ReLU)

controlling how strictly we enforce the dual Bellman constraint. After normalizing rewards and values
so that the dual residual has typical scale O(1), we sweep β ∈ {0.0, 0.5, 1.0}, spanning hard (β = 0)
to moderately relaxed (β = 1) constraints, and report the best-performing setting. In our experiments,
the best choice is β = 0.0 under action perturbations and β = 0.5 under force-magnitude and
pole-length perturbations. The numerical values of all optimization hyper-parameters and network
architectures are summarized in Tables 2 and 3.

Practical RFL-TV update (CartPole, discrete). For completeness, Algorithm 2 summarizes
the training loop for the discrete practical RFL-TV agent used in the CartPole experiments. The
pseudocode follows our implementation: we use Double Q-learning with a dual network that
approximates the robust inner optimization under total variation, and we incorporate the slack
parameter β by clipping the dual residual inside a quadratic penalty.

B.2 RFL-TV VS. FUNCTIONAL APPROXIMATION BENCHMARKS: GAINS UNDER SHIFT

Figure 1 compares RFL-TV to three function-approximation baselines: DQN, the value-function
method GOLF (Xie et al., 2022), and a dual-augmented variant GOLF-DUAL, which shares the same
dual architecture as RFL-TV but is run with σ = 0. All three baselines are trained without explicit
distributional robustness and thus correspond to the non-robust (σ = 0) setting. For RFL-TV, we fix
the uncertainty radius to the value that achieves the best nominal CartPole performance on our σ grid,
selecting σ = 0.6 for action perturbations, σ = 0.5 for force-magnitude perturbations, and σ = 0.5
for pole-length perturbations.

Across all three perturbation families, RFL-TV (with its best-performing σ > 0) consistently
dominates the non-robust functional approximation baselines. Under action perturbations, for
moderate noise levels ρ ∈ [0.2, 0.5], RFL-TV achieves roughly 30–60% higher average return than
DQN and about 15–30% higher than the best non-robust value-based baseline, with performance
at ρ ≈ 0.3 nearly twice that of DQN. For force-magnitude shifts of 40–80% from nominal,
RFL-TV maintains average returns of roughly 150–400, while DQN stays below about 260 and
GOLF/GOLF-DUAL lie mostly in the 60–380 range, corresponding to roughly ≈ 1.5–3× higher
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Algorithm 2: Practical RFL-TV for CartPole

1: Inputs: TV radius σ, slack β, discount γ, target rate τ , batch size B, episodes K, horizon H ,
exploration schedule (εstart, εend,Kdecay).

2: Initialize replay buffer D ← ∅.
3: Initialize Q-networks Q1, Q2 and dual network g; set target networks Q̄i ← Qi for i = 1, 2 (and

optionally ḡ ← g).
4: for k = 1, . . . ,K do
5: Set εk by linearly decaying from εstart to εend over Kdecay episodes, then clamping.
6: Reset environment and observe s0.
7: for t = 0, . . . ,H − 1 do
8: With prob. εk sample at uniformly; otherwise

at = argmax
a

min{Q1(st, a), Q2(st, a)}.

9: Execute at, observe (rt, st+1, dt), and store (st, at, rt, st+1, dt) in D.
10: if |D| ≥ B then
11: Sample minibatch {(s, a, r, s′, d)}Bj=1 from D.

*** Target value (Double Q) ***
12: Compute Q̄i(s

′, ·), i = 1, 2, and update

vnext(s
′) = max

a′
min{Q̄1(s

′, a′), Q̄2(s
′, a′)}.

*** Dual update with slack β ***
13: Evaluate g(s, a) and define

dual term(s, a) =
(
g(s, a)− vnext(s

′)
)
+
− (1− σ) g(s, a).

14: Compute residual

rdual(s, a) =
∣∣dual term(s, a)

∣∣− β, r̃dual(s, a) = max{rdual(s, a), 0},

and minimize
Lg = E

[
r̃dual(s, a)

2
]

w.r.t. the parameters of g (one gradient step).
*** Q-update using updated g ***

15: Recompute

dual termnew(s, a) =
(
g(s, a)− vnext(s

′)
)
+
− (1− σ) g(s, a),

and form targets

y = r + (1− d) γ
(
vnext(s

′) + dual termnew(s, a)
)
.

16: Compute Qi(s, a), i = 1, 2, and minimize

LQ = E
[
(Q1(s, a)− y)2 + (Q2(s, a)− y)2

]
w.r.t. the parameters of Q1, Q2 (one gradient step).

17: Soft-update targets: Q̄i ← (1− τ) Q̄i + τ Qi, i = 1, 2,
and optionally: ḡ ← (1− τ) ḡ + τ g.

18: end if
19: if dt = 1 then
20: break
21: end if
22: end for
23: end for
24: Return greedy policy: π(s) = argmaxa min{Q1(s, a), Q2(s, a)}.
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returns than DQN at severe shifts (≥ 60%) and typically a 5–15% gain over the GOLF baselines
around the 40–50% shift region. For pole-length changes between 25% and 200% of nominal,
RFL-TV stays near 500 reward throughout, while the best non-robust baseline ranges between ≈ 330
and 480, yielding about 5–50% higher return depending on the shift. Overall, for a fixed function class,
turning on robustness in the Bellman update (via σ > 0 and the dual term) yields substantially better
robustness to both action noise and dynamics misspecification than any of the non-robust functional
approximation baselines. These trends also highlight that robustness is inherently σ-dependent: for a
fixed training robustness level, performance eventually degrades as the test-time perturbation grows,
so maintaining high returns under stronger shifts typically requires training with a larger σ and, in
practice, possibly a more expressive function class.
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Figure 1: RFL-TV vs. Functional Approximation Algorithms

B.3 RFL-TV VS. ONLINE TABULAR TV-RMDP

Figure 2 evaluates how closely our practical RFL-TV implementation matches an ideal TV-robust
planner by comparing it to OPROVI-TV (Lu et al., 2024), a tabular algorithm that exactly solves the
TV-robust Bellman equations for a given radius σ. Although OPROVI-TV is restricted to small state
spaces such as CartPole, it serves as a strong oracle-style baseline for TV-robust planning. In contrast,
our practical RFL-TV implementation operates with neural function classes and sample-based updates,
so its per-iteration computational cost depends on the network sizes, batch size, and action-space
cardinality A, but not on the number of states S, making it applicable to large-scale problems where
typically S ≫ A. Across action perturbations and dynamics perturbations (force magnitude and
pole length), RFL-TV with σ ∈ {0.4, 0.6} consistently matches, and often exceeds the returns of
OPROVI-TV at the same σ.

For action perturbations (random-action probability ρ ∈ [0.3, 0.7]), RFL-TV with σ = 0.6 achieves
between roughly 100% and 400% higher average return than OPROVI-TV, while σ = 0.4 yields
gains on the order of 30%–200% depending on the noise level; the two methods converge to similar
near-random performance only as ρ approaches 1. Under force-magnitude perturbations, RFL-TV
with σ = 0.6 improves over OPROVI-TV by about 100%–300% at large changes (40%–80%
deviation from nominal), and σ = 0.4 still offers roughly 30%–150% gains. For pole-length
perturbations, RFL-TV with σ = 0.6 maintains returns that are typically 150%–300% higher than
the tabular baseline over most of the tested range, whereas σ = 0.4 yields about 30%–150%
improvements. Overall, these trends indicate that a simple two-layer ReLU MLP (with 128–256
hidden units for both Q and dual networks) can closely track—and often outperform—the robust value
structure computed by an exact tabular TV-RMDP solver, while enjoying computational complexity
that scales with network size and A rather than S, which is particularly advantageous in regimes
where S ≫ A.

B.4 BALANCING ROBUSTNESS RADIUS AND DUAL-NETWORK CAPACITY

Figure 3 examines how the TV robustness radius σ and the dual-network width ξdual jointly shape the
performance of RFL-TV. For each perturbation family (action noise, force–magnitude scaling, and
pole–length scaling), we vary ξdual over two-layer MLPs with hidden sizes (64, 64), (128, 128), and
(256, 256) and evaluate RFL-TV for σ ∈ {0.2, 0.4, 0.6} at a representative perturbation level. Note
that enlarging the dual hidden size can only decrease the approximation gap ξdual to the ideal dual
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Figure 2: RFL-TV vs. OPROVI-TV (Tabular).

optimizer; in other words, we can view the dual width as a structural knob that monotonically reduces
the realizability constant ξdual. Across all three families, increasing the dual capacity markedly
improves robustness: moving from (64, 64) to (256, 256) yields roughly 40%–120% higher average
return under action perturbations, about 50%–180% gains for force–magnitude shifts, and roughly
100%–250% gains for pole–length perturbations. At any fixed ξdual, larger robustness radii clearly
help: compared to σ = 0.2, using σ = 0.6 improves returns by about 60%–160% under action noise,
30%–80% under force–magnitude changes, and 50%–150% under pole–length changes, with σ = 0.4
typically lying in between. This behaviour is natural: when σ is too small, the uncertainty set remains
close to the nominal dynamics and the dual term contributes less, so the policy tends to overfit to the
unperturbed environment and degrades sharply under shift. Larger radii (σ ≈ 0.4–0.6), together with
a sufficiently expressive dual network, force the optimizer to hedge against adversarial transitions,
leading to policies that are more conservative around failure modes yet still high-reward under the
moderately perturbed environments we evaluate on. In practice, these results suggest a simple tuning
recipe: increase ξdual until the robust return curve flattens, and select σ in a moderate range where
performance gains saturate (here around 0.4–0.6), thereby jointly controlling approximation quality
and the strength of robustness.
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Figure 3: RFL-TV: uncertainty level σ vs. Uniform dual-approximation error ξdual.

C PROOF OF THE MAIN RESULTS

Assumption 3 ((Panaganti et al., 2022; 2024)). For all f ∈ F and any policy π, there exists a
uniform constant ξdual such that

inf
g∈G

Dualloss(g; f)− inf
g∈L1(µπ)

Dualloss(g; f) ≤ ξdual,

where µπ is the visitation distribution induced by π under P ⋆.

This assumption is not restrictive. Specially, note that L1 can be approximated by deep/wide neural
networks (Goodfellow et al., 2016), which ensures Assumption 3 with such neural network classes.

We denote the robust Bellman operator as

[T σf ](s, a) = r(s, a)− inf
η∈[0,2H/σ]

{
Es′∈P⋆

h (s,a)

[(
η −max

a′
f(s′, a′)

)
+

]
−
(
1− σ

)
η

}
. (13)
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And we define the empirical duality loss as:

D̂ualloss(g; f) =
∑

(s,a,s′)∼D

(
(g(s, a)−max

a′
f(s′, a′))+ − (1− σ)g(s, a

)
, (14)

C.1 PROOF OF THEOREM 1

Proof. We will now prove Theorem 1. To prove this, we first highlight the role of robust coverability,
as defined in Definition 3, in limiting the complexity of exploration.

• Equivalence between robust coverability and cumulative visitation. A key idea
underlying the proof of Theorem 1 is the equivalence between robust coverability and
a quantity we term cumulative visitation under the worst-transition kernel Pω as defined in
Definition 2. We define the cumulative visitation as given below:

Definition 4 (Cumulative Visitation). We define the cumulative visitation at step h as

Ccv
h :=

∑
(s,a)∈S×A

sup
π∈Π

dπ,P
ω

h (s, a). (15)

The cumulative visitation Ccv
h reflects the variation in visitation probabilities under the

worst-kernel for policies in the class Π. More specifically, it captures the total worst-case
probability mass that policies in Π can allocate across the state-action space, under all
admissible transition kernels. When this quantity is low, it indicates that policies in Π largely
overlap in the regions they visit, limiting exploration complexity. Conversely, a high value
implies that policies can spread mass across disjoint state-action pairs, making exploration
harder. By Lemma T.3, we have

Crcov = max
h∈[H]

Ccv
h . (16)

• Relate Regret to Robust Average Bellman Error: According to Assumption 1, we can
guarantee f (k) is optimistic. Based on this optimistic algorithm, we will now relate the
regret to the robust average Bellman error under the learner’s sequence of policies.

For any Markov kernel Q = {Qh(· | s, a)}Hh=1 ∈ P and by the definition of the occupancy

measure of (sh, ah) as dπ
f ,Q

h induced by πf and Q, we define the robust average Bellman
error at level h by

εσTV (f, π
f , h;Q) := E

(sh,ah)∼dπf ,Q
h

[
fh(sh, ah)− [T σ

h fh+1](sh, ah)

]
. (17)

By applying Lemma K.1 and by denoting dπ
f(k)

,Pω

:= d(k),P
ω

, we can relate regret to the
robust average Bellman error as

Regret(K) ≤
K∑

k=1

H∑
h=1

E
(sh,ah)∼d

(k),Pω

h

[
f
(k)
h (sh, ah)− [T σ

h f
(k)
h+1](sh, ah)

]
,

=

K∑
k=1

H∑
h=1

E
(sh,ah)∼d

(k),Pω

h

[
f
(k)
h (sh, ah)−

[
T σ
g
f
(k)
h+1

,hf
(k)
h+1

]
(sh, ah)

+

[
T σ
g
f
(k)
h+1

,hf
(k)
h+1

]
(sh, ah)− [T σ

h f
(k)
h+1](sh, ah)

]
,

= I + II, (18)
where we denote

I :=

K∑
k=1

H∑
h=1

E
(sh,ah)∼d

(k),Pω

h

[
f
(k)
h (sh, ah)−

[
T σ
g
f
(k)
h+1

,hf
(k)
h+1

]
(sh, ah)

]
. (19)

II :=

K∑
k=1

H∑
h=1

E
(sh,ah)∼d

(k),Pω

h

[ [
T σ
g
f
(k)
h+1

,hf
(k)
h+1

]
(sh, ah)− [T σ

h f
(k)
h+1](sh, ah)

]
. (20)
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• Bound of II via Robust Coverability: To bound II, let us define ∆k,h as

∆k,h(s, a) :=
[
T σ
ĝ
f
(k)
h+1

,hf
(k)
h+1

]
(s, a)−

[
T σ
h f

(k)
h+1

]
(s, a).

Then, II can be written as

II :=

K∑
k=1

H∑
h=1

E
(sh,ah)∼d

(k),Pω

h

[∆k,h(sh, ah)] . (21)

To bound the term II, we follow the following steps:

Step 1: Density ratio control. By Holder’s inequality and using hte fact that E[X] ≤ E[|X|],
for any µπ

h ∈ ∆(S ×A), we get

E
d
(k),Pω

h

[∆k,h] ≤
∥∥∥∥d

(k),Pω

h

µπ
h

∥∥∥∥
∞
∥∆k,h∥1,µπ

h
, (22)

where ∥ϕ∥1,µπ :=
∑

s,a µ
π(s, a)|ϕ(s, a)|. According to Definition 3, we have∥∥∥∥d

(k),Pω

h

µπ
h

∥∥∥∥
∞
≤ Crcov. (23)

Step 2: Apply Lemma K.3. By Lemma K.3, applied with µπ
h and f = f

(k)
h+1 and by the

choice of ξdual as ξdual/KH , and using a union bound over (k, h), we obtain

∥∆k,h∥1,µπ
h
= O

H
σ

√√√√2 log
(
8|G||F|KH/δ

)
|D(k)

h |
+
ξdual
KH

 . (24)

Step 3: Combine bounds. Hence, by combining eq. 22, eq. 23 and eq. 24, we get

E
d
(k),Pω

h

[∆k,h] = O

Crcov
H

σ

√√√√2 log
(
8|G||F|KH/δ

)
|D(k)

h |
+ Crcov

ξdual
KH

 . (25)

Step 4: Summing over k, h ∈ [K]× [H]. Summing the bound in eq. 25 over k ∈ [K] and
h ∈ [H] yields the desired result:

II = O

Crcov
H

σ

√
2 log

(
8|G||F|KH

δ

) K∑
k=1

H∑
h=1

1√
|D(k)

h |
+ Crcovξdual

 . (26)

Step 5: Final Bound of II. By the update rule of RFL-TV, we have

D(k)
h ← D(k−1)

h ∪ {(s(k)h , a
(k)
h , s

(k)
h+1)} ∀h ∈ [H].

Therefore, in each episode k, exactly one sample appended to each step h in the dataset,
hence |D(k)

h | = |D
(0)
h |+ k = k.

Since, f(k) = k−1/2 is decreasing on [1,∞) and f(1) = 1, the term
∑K

k=1

∑H
h=1

1√
|D(k)

h |
in eq. 26 can be bounded by the following intergral, as

K∑
k=1

H∑
h=1

1√
|D(k)

h |
=

K∑
k=1

H∑
h=1

1√
k
≤ H

(
1 +

∫ K

1

dx√
x

)
= 2H

√
K −H ≤ 2H

√
K.

(27)

Applying eq. 27 in eq. 26, we get the final bound as

II = O

(
Crcov

H2

σ

√
2K log

(
8|G||F|KH

δ

)
+ Crcovξdual

)
. (28)
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• Bound of I via Robust Coverability: Before we bound I, we first define the robust Bellman
error w.r.t. T σ

g f as

δ
(k)
h (·, ·) := f

(k)
h (·, ·)−

[
T σ
g
f
(k)
h+1

,hf
(k)
h+1

]
(·, ·). (29)

Then, I can be written as

I :=

K∑
k=1

H∑
h=1

E
(sh,ah)∼d

(k),Pω

h

[
δ
(k)
h (sh, ah)

]
. (30)

We denote the expected number of times of visiting (s, a) before episode k under the

worst-transition kernel Pω as d̃(k)h ≡ dπf(k)

h , and is defined as

d̃
(k)
h (s, a) :=

k−1∑
i=1

d
(i),Pω

h (s, a). (31)

That is, d̃(k)h is the unnormalized average of all state visitations encountered prior to episode
k, and µπ

h is the visitation measure under nominal-kernel P ⋆ for step h. Throughout the
proof, we perform a slight abuse of notation and write

E
d̃
(k)
h

[f ] :=

k−1∑
i=1

E
d
(i),Pω

h

[f ] for any function f : X ×A → R.

Step 1: Robust optimism. Under the Assumption 1 and the construction of the confidence
set F (k), the following Lemma K.2, will guarantee that with probability at least 1− δ, for
all k ∈ [K]:

Q⋆,σ ∈ F (k) and
∑
(s,a)

d̃
(k)
h (s, a)

(
δ
(k)
h (s, a)

)2 ≤ O(β). (32)

Step 1: Conservative Burn-in Phase Construction. We introduce the notion of a “burn-in”
phase for each state–action pair (s, a) ∈ S ×A by defining

τh(s, a) = min
{
t
∣∣ d̃(t)h (s, a) ≥ Crcov · µπ

h(s, a)
}
, (33)

which captures the earliest time at which (s, a) has been explored sufficiently; we refer to
k < τh(s, a) as the burn-in phase for (s, a). In other words, τh(s, a) guarantees that no
matter which kernel in the uncertainty set we are facing, the state–action pair (s, a) has
received enough coverage.

Going forward, let h ∈ [H] be fixed. We decompose regret into contributions from the
burn-in phase for each state–action pair, and contributions from pairs which have been
explored sufficiently and reached a stable phase “stable phase”:

I =

K∑
k=1

H∑
h=1

E
(s,a)∼d

(k),Pω

h

[
δ
(k)
h (s, a) I{k < τh(s, a)}

]
︸ ︷︷ ︸

conservative burn-in phase

(34)

+

K∑
k=1

H∑
h=1

E
(s,a)∼d

(k),Pω

h

[
δ
(k)
h (s, a) I{k ≥ τh(s, a)}

]
︸ ︷︷ ︸

stable phase

. (35)

We will not show that every state–action pair leaves the conservative burn-in phase. Instead,
we use robust coverability to argue that the contribution from pairs that have not left this
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phase is small on average. In particular, we use that |δ(k)h | ≤ [0, c3H/σ] to bound the factor,
as follows

E
(s,a)∼d

(k),Pω

h

[
δ
(k)
h (s, a) I{k < τh(s, a)}

]
≤ c3

H

σ

∑
s,a

d
(k),Pω

h (s, a)I{k < τh(s, a)}.

(36)

Plugging eq. 36 in the conservative burn-in phase term of eq. 34, we get
K∑

k=1

H∑
h=1

E
(s,a)∼d

(k),Pω

h

[
δ
(k)
h (s, a) I{k < τh(s, a)}

]
(a)

≤ c3
H

σ

K∑
k=1

H∑
h=1

d
(k),Pω

h (s, a)I{k < τh(s, a)}

= c3
H

σ

H∑
h=1

∑
s,a

∑
k<τh(s,a)

d
(k),Pω

h (s, a)

(b)
= c3

H

σ

H∑
h=1

∑
s,a

d̃
τh(s,a)
h (s, a)

= c3
H

σ

H∑
h=1

∑
s,a

{
d̃
τh(s,a)−1
h (s, a) + d

τh(s,a)−1,Pω

h (s, a)

}
(c)

≤ c3
H

σ

H∑
h=1

∑
s,a

{
2Crcov µ

π
h(s, a)

}
(d)
= c3

H2

σ
Crcov. (37)

The ineq. (a) is due to the fact supP
∑

x gx(P ) ≤
∑

x supP gx(P ); the equality (b) is
by the definition of d̃ τh(s,a)

h (s, a) by eq. 31; ineq. (c) is due to eq. 33 and by the fact
d
τh(s,a)−1,Pω

h (s, a) ≤ Crcov µ
π
h(s, a).

For the stable phase, we apply change-of-measure as follows:
K∑

k=1

H∑
h=1

E
(s,a)∼d

(k),Pω

h

[
δ
(k)
h (s, a) I{k ≥ τh(s, a)}

]
=

K∑
k=1

H∑
h=1

∑
s,a

d
(k),Pω

h (s, a)
( d̃(k)h (s, a)

d̃
(k)
h (s, a)

)1/2
δ
(k)
h (s, a) I{k ≥ τh(s, a)}

≤
K∑

k=1

H∑
h=1

∑
s,a

d
(k),Pω

h (s, a)
( d̃(k)h (s, a)

d̃
(k)
h (s, a)

)1/2
δ
(k)
h (s, a) I{k ≥ τh(s, a)}

≤
H∑

h=1

(
K∑

k=1

∑
s,a

(
I{t ≥ τh(x, a)}, d(k),P

ω

h (s, a)
)2

d̃
(k)
h (s, a)︸ ︷︷ ︸

(A): extrapolation error

)1/2( K∑
k=1

∑
s,a

d̃
(k)
h (s, a)

(
δ
(k)
h (s, a)

)2
︸ ︷︷ ︸

(B): in-sample squared Bellman error

)1/2

,

(38)

where the last inequality is Cauchy–Schwarz.

Using part (b) of Lemma K.2, we bound the in-sample error (B) by

(B) ≤ O(
√
βK). (39)

Bounding the extrapolation error using robust coverability. We control the
extrapolation error (A) via robust coverability. We use the following scalar variant of
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the elliptic potential lemma of (Lattimore & Szepesvári, 2020) (proved in (Xie et al., 2022,
Lemma 4)).

We bound (A) on a per-state basis and invoke robust coverability (and the equivalence to
cumulative visitation) so that potentials from different (s, a) pairs aggregate well. From the
definition of τh in eq. 33, for all t ≥ τh(s, a) we have d̃(k)h (s, a) ≥ Crcovµ

π
h(s, a), which

implies d̃(k)h (s, a) ≥ 1
2

(
d̃
(k)
h (s, a) + Crcovµ

π
h(s, a)

)
. Thus,

(A) =

√√√√ K∑
k=1

∑
s,a

(
I{k ≥ τh(s, a)}d(k),P

ω

h (s, a)
)2

d̃
(k)
h (s, a)

≤

√√√√2

K∑
k=1

∑
s,a

d
(k),Pω

h (s, a) · d(k),P
ω

h (s, a)

d̃
(k)
h (s, a) + Crcov · µπ

h(s, a)

≤

√√√√2

K∑
k=1

∑
s,a

max
ℓ∈[K]

d
(l),Pω

h (s, a)
d
(k),Pω

h (s, a)

d̃
(k)
h (s, a) + Crcov · µπ

h(s, a)

≤

√√√√2

(
max

(s,a)∈S×A

K∑
k=1

d
(k),Pω

h (s, a)

d̃
(k)
h (s, a) + Crcov · µ⋆

h(s, a)

)(∑
s,a

max
l∈[K]

d
(l),Pω

h (s, a)

)
≤ O

(√
Crcov logK

)
, (40)

where the last line uses Lemma T.5 and Lemma T.3.

To conclude, substitute eq. 39 and eq. 40 into eq. 38 to obtain
K∑

k=1

H∑
h=1

E
(s,a)∼d

(k),Pω

h

[
δ
(k)
h (s, a) I{k ≥ τh(s, a)}

]
≤ O

(
H
√
Crcov · βK logK

)
. (41)

By applying eq. 37 and eq. 41 in eq. 34, we get

I ≤ O
(
H2

σ
Crcov +H

√
Crcov · βK logK

)
. (42)

Therefore, by applying eq. 42 and eq. 28 in eq. 18, we get

Regret(K) ≤ O
(
H2

σ
Crcov +H

√
Crcov · βK logK + Crcov

H2

σ

√
2K log

(
8|G||F|KH

δ

)
+ Crcovξdual

)
.

This concludes the proof of Theorem 1.

D SPECIALIZATION TO LINEAR TV-RMDP

We now show that our regret bound for general functional approximation specializes to a
near–dimension-optimal bound when the robust value function admits a linear representation, in the
spirit of the d-rectangular linear RMDP framework of (Ma et al., 2022) and (Liu et al., 2024).
Assumption 4 (d-Rectangular Linear TV-RMDP). There exists a known feature map ϕh : S ×A →

Rd for each h ∈ [H] with
d∑

i=1

ϕh,i(s, a) = 1 and ϕh,i(s, a) ≥ 0 for any (i, s, a) ∈ [d]× S ×A such

that:

(i) (Linear nominal model.) The reward and nominal kernel are linear:

rh(s, a) = ϕh(s, a)
⊤θh, P ⋆

h (· | s, a) = ϕh(s, a)
⊤ ν⋆

h(·),
for some unknown probability measures {ν⋆

h}Hh=1 over S and known vectors {θh}Hh=1 with
∥θh∥2 ≤

√
d.
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(ii) (d-rectangular TV uncertainty set.) For each step h and feature index i ∈ [d] we can
parameterize our uncertainty set P by {ν⋆

h}Hh=1, and thereby, can be defined as P =
Uσ(P ⋆) =

⊗
(h,s,a)∈[H]×S×A Uσ

h (s, a;ν
⋆
h), where Uσ

h (s, a;ν
⋆
h) is defined as

Uσ
h (s, a;ν

⋆
h) ≜

{ d∑
i=1

ϕh,i(s, a)νh,i(·) : νh,i ∈ ∆(S) and DTV (νh,i, ν
⋆
h,i(·|s, a)) ≤ σ

}
.

This is the TV analogue of the d-rectangular linear RMDP of (Liu et al., 2024, Sec. 3.2), specialized
to TV divergence.

Linear function classes induced by the d-Rectangular linear TV-RMDP. Under the linear
TV-RMDP structure in Assumption 4, we specialize our general functional classF and dual functional
class G used by RFL-TV as linear function classes with a common feature map ϕh : S ×A → Rd,
and are denoted as follows:

F lin := {F lin
h }Hh=1, where F lin

h :=
{
fh : fh(s, a) = ϕh(s, a)

⊤wh, wh ∈ Rd
}
, (43)

Glin := {Glinh }Hh=1, where Glinh :=
{
gh : gh(s, a) = ϕh(s, a)

⊤uh, uh ∈ Rd
}
. (44)

The classF lin is used to approximate robustQ–functions, while Glin parameterizes the dual variables
appearing in the TV–robust Bellman operator (via the functional dual loss in Eq. 8)[See Sec. 4 for
the definition of the dual loss and its empirical counterpart].

Lemma 2 (Linear realizability and completeness). Suppose the linear RMDP satisfies Assumption 4.
Then:

(i) Linear realizability of Qπ,σ and Q⋆,σ. For any Markov policy π and any σ ≥ 0, there
exist vectors wπ,σ

1 , . . . ,wπ,σ
H ∈ Rd such that for all h ∈ [H],

Qπ,σ
h (s, a) = ϕh(s, a)

⊤wπ,σ
h , ∀(s, a) ∈ S ×A, (45)

and, in particular, for the robust-optimal policy π⋆ there exist w⋆,σ
1 , . . . ,w⋆,σ

H with

Q⋆,σ
h (s, a) = ϕh(s, a)

⊤w⋆,σ
h , ∀(s, a), h ∈ [H]. (46)

Hence Qπ,σ, Q⋆,σ ∈ F lin.

(ii) Closure under the robust Bellman operator. Let f ∈ F lin with component functions
fh(s, a) = ϕh(s, a)

⊤wh. Then, for each h ∈ [H] there exists w′
h ∈ Rd such that the robust

Bellman backup satisfies

[T σ
h fh+1](s, a) = rh(s, a) + EP∈Uσ,h(s,a)

[
Vh+1(s

′)
]

= ϕh(s, a)
⊤w′

h, ∀(s, a), (47)

so that T σ
h fh+1 ⊆ F lin

h for all h.

(iii) Linear dual representation. For any f ∈ F lin, the dual minimizer g⋆f that attains the
pointwise TV dual can be chosen in Glin, i.e., there exist uf

1 , . . . ,u
f
H ∈ Rd such that

g⋆f,h(s, a) = ϕh(s, a)
⊤uf

h, ∀(s, a), h ∈ [H]. (48)

Consequently, the dual realizability error ξdual defined in Assumption 3 is zero when we
take Glin ≡ L1(µπ).

Proof. (i) Linear realizability of Qπ,σ and Q⋆,σ. The linear robust MDP literature (e.g., (Ma et al.,
2022, Prop. 3.2 and Lem. 4.1) and (Liu et al., 2024, Sec. 3.2)) implies that both the robust Bellman
operator and the robust value functions preserve linearity in ϕh, yielding 45–47, the nominal kernel
and all kernels in the TV uncertainty set are linear mixtures of the base measures {νh}Hh=1, and the
reward is linear in ϕh.
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(ii) Closure under T σ
h . Let f ∈ F lin with fh+1(s, a) = ϕh+1(s, a)

⊤wh+1. Define the value
Vh+1(s) = max

a∈A
fh+1(s, a). By the d-rectangular structure, any P ∈ Uσ

h (s, a) can be written as

P (· | s, a) =
∑d

i=1 ϕh,i(s, a) νh,i(·) with νh,i ∈ Uσ
h (s, a;ν

⋆
h). Thus

inf
Ph∈Uσ

h (s,a)
Es′∼Ph(·|s,a)

[
V π,σ
h+1(s

′)
]
= inf

νh,1,...,νh,d

d∑
i=1

ϕh,i(s, a)Es′∼µh,i
[Vh+1(s

′)] (49)

=

d∑
i=1

ϕh,i(s, a) inf
νh,i∈Uσ

h (s,a;ν⋆
h)
Es′∼νh,i

[Vh+1(s
′)] (50)

=

d∑
i=1

ϕh,i(s, a) ζh,i(wh+1), (51)

where each scalar ζh,i(wh+1) depends only on Vh+1 (and hence on wh+1) and the local TV ball at
index i. We therefore obtain

[T σ
h fh+1](s, a) = ϕh(s, a)

⊤θh + ϕh(s, a)
⊤ζh(wh+1) = ϕh(s, a)

⊤w′
h, (52)

with w′
h := θh + ζh(wh+1). This yields 47 and shows that T σ

h {h+1 ⊆ F lin
h .

(iii) Linear dual representation. Fix any f ∈ F lin and (s, a, h). The TV dual expression for the
robust Bellman operator (Eq. 13) writes the inner worst-case expectation as a one-dimensional convex
optimization problem in a scalar dual variable η. Under the linear RMDP structure, P ⋆

h (· | s, a) =∑d
i=1 ϕh,i(s, a)ν

⋆
h,i, so the dual term is a weighted sum over coordinates i, and the optimal dual

variable can be decomposed into coordinate-wise scalar duals η⋆h,i associated with each base measure
ν⋆h,i (see, e.g., the TV dual derivation in (Liu et al., 2024, Sec. 3.2). This yields an optimal dual
function of the form

g⋆f,h(s, a) =

d∑
i=1

ϕh,i(s, a) η
⋆
h,i = ϕh(s, a)

⊤uf
h (53)

for some uf
h ∈ Rd. Collecting these across h we obtain g⋆f ∈ Glin as in 48. In particular, the

infimum in the dual representation is attained within Glin, so the dual realizability error ξdual defined
in Assumption 3 is zero when we set Glin ≡ L1(µπ).

Assumption 5 (Finite linear covering). For ε0 = 1/K, the union classH = F lin ∪ Glin admits a
finite ε0-cover in ∥ · ∥∞ such that

logNH(ε0) ≤ codH log
(
coK

)
(54)

for some absolute constant co > 0.

This bound follows from standard metric-entropy results for linear predictors on a bounded domain
(see, e.g., (Shalev-Shwartz & Ben-David, 2014, Thm. 14.5)). In our setting, the feature vectors satisfy
the simplex constraints

∑
i ϕh,i(s, a) = 1 and ϕh,i(s, a) ≥ 0 for all (s, a, h), which immediately

implies |ϕh(s, a)|2 ≤ 1. Together with the fact that the parameter vectors of F lin and Glin are
restricted to a bounded ball, this ensures that every function in the union class H = F lin ∪ Glin
behaves as a linear predictor in an ambient space of dimension dlin = dH , yielding a covering-number
bound of the form logNH(ε0) ≤ codH log

(
co/ε0

)
for some absolute constant co.

Theorem 2 (Regret of RFL-TV in linear TV-RMDP). For any δ ∈ (0, 1], we set

β = O
(
min{H, 1/σ}

(
d2H log

(
dKH/δ

)))
in RFL-TV. Then under Assumption 1–5, there exists an absolute constant C > 0 such that with
probability at least 1− δ, it holds that

Regret(K) = O
(√

C2
rcovH

4(min{H, 1/σ})2 d2K log
(

dHK
δ

))
.
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Comparison with non-robust linear MDP. In the standard (non-robust) linear MDP setting,
UCRL–VTR+ and its refinements (Zhou et al., 2020; Jin et al., 2020; He et al., 2023) attain the
minimax regret rate Õ

(√
d2H3K

)
. For linear TV-RMDP (with σ = 0), RFL-TV instead guarantees

Õ
(√

C2
rcovd

2H6K
)
. Thus, our bound matches the optimal dependence on the feature dimension d

and the number of episodes K, but incurs an additional polynomial factor in the horizon H and a
multiplicative dependence on the robust coverage coefficient Crcov, reflecting the extra difficulty of
controlling robust Bellman errors under partial coverage. Accordingly, we do not claim minimax
optimality in (H,Crcov).

Comparison with linear RMDPs. On the robust side, several recent works study DR-RL with
linear structure, but under settings that are fundamentally different from our online setting. (Ma
et al., 2022) and (Wang et al., 2024a) analyse offline DR-RL with linear function approximation and
obtain value-estimation rates of order Õ(

√
d/N) or Õ(

√
d3/N) depending on coverage, where N

is the number of trajectories. In the online setting, (Liu & Xu, 2024b) and (Liu et al., 2024) study
d-rectangular linear RMDPs where the agent interacts online with a nominal (source) environment but
the performance criterion is the worst-case value over a perturbed (target) environment, and attains
regret rate Õ

(√
d2H2(min{H, 1/σ})2K

)
together with an information-theoretic lower bound that

is optimal in (d,K, σ) up to a
√
H factor (Liu et al., 2024). (Panaganti et al., 2024) consider a

different hybrid setting for φ-divergence RMDPs with general function approximation, and derive
performance guarantees that scale with an appropriate complexity measure of the value-function
class, leveraging both an offline dataset and online interaction with a nominal model.

By contrast, in the d-rectangular linear setting, Theorem 2 shows that RFL-TV achieves the regret

bound of order Õ
(√

C2
rcovH

4
(
min{H, 1/σ}

)2
d2K

)
. In moderate coverage regimes, where

the data distribution provides good on-dynamics coverage and Crcov = O(1), this simplifies to
Õ
(
H2 min{H, 1/σ}

√
d2K

)
, which is optimal in its dependence on (d,K, σ) and matches the

linear RMDP minimax lower bounds of Liu et al. (2024) up to an additional O(
√
H3) factor in the

horizon. In hard coverage regimes, where the on-dynamics data poorly covers the robustly relevant
state–action space, our coverability analysis in Lemma K.4 allows Crcov to scale as Crcov = O(d),
and the regret bound deteriorates to Õ

(
H2 min{H, 1/σ}

√
d4K

)
. Such a result is O(d2H2)-worse

than the online learning in linear robust MDPs in (Liu et al., 2024), and O(
√
d2H3)-worse than the

minimax lower bound (Liu et al., 2024). This yields a dimension dependence consistent with existing
minimax lower bounds while explicitly quantifying the price of poor coverage via Crcov. Closing the
remaining

√
H3 gap in the horizon dependence and establishing matching lower bounds for online

DR-RL with general function approximation (recovering the linear RMDP lower bounds as a special
case) remain important directions for future work.

Remark 6. (Panaganti et al., 2024) studies a hybrid φ-regularized RMDP that combines an offline
dataset with online interactions. Under approximate value and dual realizability, a bilinear model
of dimension d, and an offline concentratability coefficient C(π⋆), they obtain a suboptimality

bound of order O
(
max{C(π⋆), 1} (λ + H)

√
d3H2K

)
. By contrast, we specialize our general

theorem to a d-rectangular linear TV-RMDP and show that RFL-TV achieves robust regret
Õ
(√

C2
rcovH

4(min{H, 1/σ})2 d2K
)

, which is better than the one in (Panaganti et al., 2024).
This comparison implies our algorithm achieves a tighter sample complexity, even without any prior
collected offline dataset.

We also highlight that, conceptually, the two setups address different questions and are not directly
comparable. (Panaganti et al., 2024) analyze a regularized robust objective in a hybrid offline–online
regime, where the parameter λ controls a trade-off induced by a φ-regularizer and the guarantees
depend on offline coverage through C(π⋆). In contrast, we study a constrained TV-RMDP in a purely
online (off-dynamics) setting, where robustness is enforced via an explicit divergence ball of radius
σ around the nominal model and performance is measured by cumulative regret with respect to the
unconstrained TV-robust value. Our general theorem Theorem 1 applies to arbitrary parametric
function classes.
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D.1 PROOF OF THEOREM 2

Proof. We recall the proof of Theorem 1 and show how it specializes under the linear TV-RMDP
structure in Assumption 4 together with the linear function classes F lin,Glin defined in
equation 43–equation 44.

Step 1: Starting point from the general regret proof. By the definition of robust regret in 6 and
following the prrof lines 17-20, the robust regret can be decomposed as

Regret(K) ≤ I + II, (55)

where I is the Bellman-error term 19 term and II is the Dual-approximation term 20 term.

By 42 and 28, we can bound I and II, respectively, as

I ≤ O
(
Crcov

H2

σ
+H

√
Crcov βK logK

)
(56)

II ≤ O
(
Crcov

H2

σ

√
K log

(8|F||G|KH
δ

)
+ Crcov ξdual

)
, (57)

The factor log(|F||G|) here comes from the union bounds over the function classes in the
concentration arguments, and ξdual is the dual realizability bias in Assumption 3.

Our goal is to rerun these two bounds when we instantiate F = F lin and G = Glin under the linear
TV-RMDP structure.

Step 2: Consequences of the linear TV-RMDP structure. For better clarity, we work under the
exact dual realizability condition, and we set ξdual = 0 for simplicity of proof 3.

Under Assumption 4, the linear classes F lin,Glin together with Lemma 2 guarantee that all structural
assumptions used in Theorem 1 remain valid when we instantiate the analysis with the linear
TV-RMDP; the only resulting changes are as follows:

• The complexity term log(|F||G|) is replaced by a covering-number bound for the union class
H ≜ F lin∪Glin. By Assumption 5, for ε0 = 1/K, the union classH = F lin∪Glin admits
an ε0-cover in ∥ · ∥∞ with logNH(ε0) ≤ c0 dH log(c0K), for some absolute constant
c0 > 0 (Shalev-Shwartz & Ben-David, 2014).

• The dual bias term Crcovξdual drops out.

The robust coverability constantCrcov is unchanged, as it only depends on the failure-state assumption
and the dynamics, not on the parametric structure of F and G. Moreover, each stage h behaves
as a d-dimensional linear class, and the full horizon class H has ambient dimension dH , yielding
equation 54.

Step 4: Bounding II in the linear case. The derivation of the general bound equation 57 for II
(Lemma K.3) uses ERM generalization bound Lemma T.1 and a union bound over all episodes, time
steps, and function pairs (f, g) ∈ F × G. In the linear case, we instead apply the same argument to a
finite ε0-net ofH.

More precisely, fix ε0 = 1/K and let H0 ⊂ H be a minimal ε0-net under ∥ · ∥∞, such that
|H0| = NH(ε0). We then repeat the concentration analysis of Lemma T.1, but take the union bound
over the finite set (k, h, φ) ∈ [K] × [H] × H0 instead of (k, h, f, g) ∈ [K] × [H] × F × G. The
approximation error between any f ∈ H and its nearest neighbor f ′ ∈ H0 is at most ε0 in ∥ · ∥∞ and

3By Lemma 2(iii), when we instantiate RFL-TV with the linear dual class Glin, the dual minimizer of the TV
robust Bellman operator is exactly realizable, so the dual approximation error in Assumption 3 vanishes and we
have ξdual = 0. For clarity, we therefore focus on this exact-realizability case in the sequel. If one instead works
with a dual class that only approximately realizes the optimal dual (so ξdual > 0), the same proof strategy goes
through with an additional additive term of order Crcov ξdual propagating from the bound on II (cf. 28) into
the final regret bound; no other part of the argument needs to be modified, and the dependence on (K, d,H, σ)
remains unchanged.
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hence contributes only an o(1) term in K to the final regret bound, which we absorb into the big–O
notation.

Therefore, following the same steps of the proof of Lemma K.3 and setting ξdual = 0, we conclude
that in the linear case equation 57 becomes

II ≤ O
(
Crcov

H2

σ

√
K log

(8NH(ε0)KH

δ

))
. (58)

By covering-number bound equation 54, we obtain

log
(8NH(ε0)KH

δ

)
≤ c1dH log(c1K) + log

(
c2KH

δ

)
=: LK , (59)

for some absolute constants c1, c2 > 0. Hence, by applying 59 in 58, we get

II ≤ O
(
Crcov

H2

σ

√
K LK

)
, LK = dH log(c1K) + log

(
c2KH

δ

)
. (60)

Step 5: Bounding I in the linear case and choice of β. We now revisit the bound equation 56 on
I. In the linear case, we again cover the union classH0 ⊂ H by a finite ε0-net under ∥ · ∥∞, such that
|H0| = NH(ε0), where we set ε0 = 1/(KH). Therefore, following the same steps of the proof of
Lemma K.2 and using the same Freedman–cover argument as in Lemma T.4, but union-bounding
over the finite set NH(ε0) instead of F ∪ G, we obtain the same form of result with the complexity
term log(|F||G|) replaced by logNH(ε0). In particular, for ε0 = 1/(KH), Assumption 5 implies
that logNH(ε0) has the same order as in equation 54, so choosing

β = O
(
(min{H, 1/σ})2

(
d2H log(c1K) + log

(
c2KH/δ

)))
= O

(
(min{H, 1/σ})2LK

)
(61)

is sufficient to reproduce the general bound equation 56, with the same constants as in Theorem 1.
Substituting equation 61 into equation 56 yields

I ≤ O
(
Crcov

H2

σ
+H

√
Crcov βK logK

)
= O

(
Crcov

H2

σ
+H

√
Crcov (min{H, 1/σ})2LK K logK

)
= O

(
Crcov

H2

σ
+H

√
Crcov(min{H, 1/σ})2K LK logK

)
. (62)

Step 6: Combining the bounds of I and II. Combining equation 55, equation 60, and equation 62,
we obtain

Regret(K) ≤ O
(
Crcov

H2

σ
+H

√
Crcov(min{H, 1/σ})2K LK logK + Crcov

H2

σ

√
K LK

)
.

(63)

The additive term CrcovH
2/σ is lower order than the

√
K terms and can be absorbed into the leading

big–O term. Also, since K ≥ 2, dH ≥ 1 and δ ∈ (0, 1], we have dHK
δ ≥ K and dHK

δ ≥ 1
δ , so

logK ≤ log(dHK/δ) and log(1/δ) ≤ log(dHK/δ), Using these facts and absorbing constants into
c3 > 0, we obtain

LK ≤ c3

(
d2H + log 1

δ

)
log
(

dHK
δ

)
.

Moreover, logK ≤ log(dHK/δ), hence√
LK logK ≤ c4

√
d2H + log 1

δ log
(

dHK
δ

)
= O

(√
d2H log dHK

δ

)
,

where we used that log(dHK/δ) dominates
√
log(1/δ) and absolute constants c4. Plugging this into

equation 63, we deduce that

Regret(K) ≤ O
(√

C2
rcovH

4(min{H, 1/σ})2 d2K log
(

dHK
δ

))
,

which proves the claim.
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D.2 KEY LEMMAS

Lemma K.1 (Robust Value function error decomposition). Consider an RMDP using the
TV-divergence uncertainty set as defined in eq. 1 where we define V f := E[f1(s1, πf

1 (s1))] and

V πf ,Q := Ea1:H∼πf ,sh+1∼Qh

[∑H
h=1 rh(sh, ah)

]
. Then, under Assumption 1 and Definition 2, we

define the robust average Bellman error εσTV (f, π
f , h;Pω) as given in eq. 17. Then, we can bound

the regret as given in eq. 6 as,

Regret(K) ≤
K∑

k=1

H∑
h=1

εσTV (f
(k), πf(k)

, h;Pω). (64)

Proof. Fix any kernel Q ∈ P . Let us denote ψf (s′) := maxa′∈A f(s
′, a′). By definition of T σ

h f in
eq. 13, we get

[T σ
h fh+1](s, a) = rh(s, a) + inf

P∈Uσ
h (s,a)

EP

[
ψf
h+1

]
≤ rh(s, a) + Es′∼Qh(·|s,a)[ψ

f
h+1(s

′)]. (65)

Thus, from eq. 65 we get

fh(s, a)− [T σ
h fh+1](s, a) ≥ fh(s, a)− rh(s, a)− Es′∼Qh

[ψf
h+1(s

′) ]. (66)

Taking expectation under dπ
f ,Q

h and summing over h gives

H∑
h=1

εσTV(f, π
f , h;Q) ≥

H∑
h=1

E
(sh,ah)∼dπf ,Q

h

[
fh(sh, ah)− rh(sh, ah)− EQh

[ψf
h+1]

]
. (67)

The right-hand side of eq. 67 follows the same proof-lines as in (Jiang et al., 2017, Lemma 1),
yielding

H∑
h=1

εσTV(f, π
f , h;Q) ≥ V f − V πf ,Q. (68)

Finally, if Q is a worst–case kernel for πf , i.e., Q ≡ Pω then for each (s, a, h),

Es′∼Pω
h (·|s,a)[ψ

f
h+1(s

′)] := Es′∼Qh(·|s,a)[ψ
f
h+1(s

′)] = inf
P∈Uh(s,a)

EP [ψ
f
h+1(s

′)],

so the inequality becomes equality. In this case,

H∑
h=1

εσTV(f, π
f , h;Q) = V f − V πf ,Pω

.

Now, under the worst-transition kernel Pω, we have V π(k),σ
1 (s1) = V π(k),Pω

1 (s1). Furthermore,
according to Assumption 1, we can guarantee that f (k) is optimistic in episode k. Using these fact,
we can say that V ⋆,σ

h (s) ≤ V f(k)

h (s). Therefore, we can write

Regret(K) =

K∑
k=1

V ⋆,σ
1 (s1)− V π(k),σ

1 (s1)

≤
K∑

k=1

V f(k)

1 (s1)− V π(k),Pω

1 (s1)

≤
K∑

k=1

H∑
h=1

εσTV(f
(k), πf(k)

, h;Pω) [By eq. 68].

This concludes the proof of Lemma K.1.
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Lemma K.2. Suppose Assumption 1 holds. Then if β > 0 is selected as in Theorem 1, then with
probability at least 1− δ, for all k ∈ [K], RFL-TV satisfies

(a) Q⋆,σ ∈ F (k).

(b)
∑
(s,a)

d̃
(k)
h (s, a)

(
δ
(t)
h (s, a)

)2 ≤ O(β).
Proof. The proof follows the same structure as the non-robust argument (Jin et al., 2021, Lemma
39 and 40) and (Xie et al., 2022, Lemma 15) (martingale concentration via Freedman’s inequality
plus a finite cover of the functional class), with two robust-specific ingredients: (i) the dual scalar
representation of the TV worst-case expectation and (ii) the use of the dual pointwise integrand as a
sample target. We derive the complete proof as follows.

☞ Proof of ineq. (b) To show ineq. (b), we will focus on the proof-lines of (Jin et al., 2021,
Lemma 39) and (Xie et al., 2022, Lemma 15 (2)). We first fix (k, h, f) tuple, where
an episode k we consider a function f (k) = {f (k)1 , . . . , f (k)H} ∈ F . Let us denote
ψk(s) := ψf

fk
h+1

(s) such that ψk(sh+1) := f
(k)
h+1(sh+1, π

(k)
h+1(sh+1)), and we assume

∥f∥∞, ∥ψf∥∞ ≤ H (this is the boundedness assumption used throughout). We consider
the filtration induced as

H(k)
h = {si1, ai1, ri1, . . . , siH}k−1

i=1

⋃
{sk1 , ak1 , rk1 , . . . , skh, akh}

as the filtration containing the history up to the episode k at step h.

We obtain g
fh
∈ [0, 2H/σ] as a measurable minimizer of eq. 14 that satisfies Assumption 3.

For the trajectory of episode k, we define

Z
(k)
h (f, g

f
) :=

(
g
f
(k)
h+1

(skh, a
k
h)− ψ

f(k)

h+1(s
k
h, a

k
h)
)
+
− (1− σ)g

f
(k)
h+1

(skh, a
k
h), (69)

such that
∣∣∣Z(k)

h (f, g
f
)
∣∣∣ ≤ 5H/σ and

E
[
Z

(k)
h (g

f
, f)
∣∣∣H(k)

h

]
=

[
T σ
g
f
(k)
h+1

,hf
(k)
h+1

]
(skh, a

k
h)− r

(k)
h (skh, a

k
h). (70)

For each episode k and step h, we define the martingale difference as

X
(k)
h (f, g

f
) :=

(
f
(k)
h (skh, a

k
h)− r

(k)
h (skh, a

k
h)− Z

(k)
h (f (k), g

f(k))

)2

−
([
T σ
g
f
(k)
h+1

,hf
(k)
h+1

]
(skh, a

k
h)− r

(k)
h (skh, a

k
h) + Z

(k)
h (f (k), g

f(k))

)2

, (71)

such that we have
∣∣∣X(k)

h (f, g
f
)
∣∣∣ ≤ c1

(
Hmin{H, 1/σ}

)2
, where c1 > 0 is an absolute

constant. Moreover,

E
[
X

(k)
h (f, g

f
)
∣∣∣H(k)

h

]
=

(
δ
(k)
h (skh, a

k
h)

)2

Var

[
X

(k)
h (f, g

f
)
∣∣∣H(k)

h

]
≤ c2

(
Hmin{H, 1/σ}

)2
E
[
X

(k)
h (f, g

f
)
∣∣∣H(k)

h

]
, (72)

where c1, c2 > 0 are absolute constants.

Therefore, by Freedman’s inequality as given Lemma T.4, we can write∣∣∣∣∣
K∑

k=1

(
X

(k)
h (f, g

f
)− E

[
X

(k)
h (f, g

f
)
])∣∣H(k)

h

∣∣∣∣∣ ≤ O
(√√√√log(1/δ)

K∑
k=1

E
[
X

(k)
h (f, g

f
)
∣∣∣H(k)

h

]
+ log(1/δ)

)
.

(73)
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Now, let us consider Xρ be the ρ-cover of F
⋃
G. Now taking a union bound for all

(k, h, ϕ) ∈ [K] × [H] × Xρ, and following the same proof-lines as in (Jin et al., 2021,
Lemma 39), we get ∑

t<k

E
[(
δ
(t)
h (sh, ah)

)2∣∣∣H(t)
h

]
≤ O(β), (74)

where β = O
((

Hmin{H, 1/σ}
)
log
(

KH |F||G|
δ

))
.

Therefore, eq. 74 concludes that
∑

t<k E(s,a)∼d
(t),Pω

h (s,a)

[
δ
(t)
h (s, a)

)2 ≤ O(β).
By the definition of visitation measures, we have∑

(s,a)

d̃
(k)
h (s, a) δ

(t)
h (s, a)2

(a)
=
∑
t<k

∑
(s,a)

d
(t),Pω

h (s, a) δ
(t)
h (s, a)2

=
∑
t<k

E
(s,a)∼d

(t),Pω

h

[
δ
(t)
h (s, a)2

]
(b)

≤ O(β), (75)

where (a) is by the definition of d̃(k)h (s, a) given by equation 31, and (b) is using equation 74.

☞ Proof of ineq. (a) To show ineq. (a), we will focus on the proof-lines of (Jin et al., 2021,
Lemma 40) and (Xie et al., 2022, Lemma 15 (1)). Fix (k, h, f) and follow the same notation
as mentioned in the proof lines of the inequality (b), we define

W
(t)
h (f, g

f
) :=

(
f
(t)
h (sth, a

t
h)− r

(t)
h (sth, a

t
h)− Z

(t)
h (f (t), g

f(t))

)2

−
(
Q⋆,σ

h (sth, a
t
h)− r

(t)
h (sth, a

t
h) + Z

(t)
h (f (t), g

f(t))

)2

, for 1 ≤ t ≤ k.

As in eq. 72, E
[
W

(t)
h (f, g

f
) | H(t)

h

]
=
(
f
(t)
h (sth, a

t
h) − Q

⋆,σ
h (sth, a

t
h)
)2

where H(t)
h be

the filtration induced by {si1, ai1, ri1, . . . , siH}
t−1
i=1

⋃
{st1, at1, rt1, . . . , sth, ath}. Similarly, we

can verify that |W (t)
h (f, g

f
)| ≤ c1

(
Hmin{H, 1/σ}

)2
and Var

[
W

(t)
h (f, g

f
) | H(t)

h

]
≤

c2

(
Hmin{H, 1/σ}

)2
E
[
W

(t)
h (f, g

f
) | H(t)

h

]
. Now, following the proof-lines of (Jin et al.,

2021, Lemma 40), and applying Freedman’s ineq. (Lemma T.4 and a cover of G yields, w.p.
1− δ, we get

k−1∑
t=1

[
Q⋆,σ

h (sth, a
t
h)− rth(sth, ath)−Q

⋆,σ
h+1(s

t
h+1, π

Q⋆,σ

h+1 (s
t
h+1))

]2

≤
k−1∑
t=1

[
f
(t)
h (sth, a

t
h)− rth(sth, ath)−Q

⋆,σ
h+1(s

t
h+1, π

Q⋆,σ

h+1 (s
t
h+1))

]2
+O(β).

Finally, by recalling the definition of F (k), we conclude that with probability at least 1− δ,
Q⋆,σ ∈ F (k) for all k ∈ [K].

This concludes the proof of Lemma K.2.

Lemma K.3 (Dual Optimization Error Bound). Let g
f

denote any dual parameter obtained from the
empirical optimization in eq. 14 for a given state–action value function f , and let T σ

g be as defined
in eq. 10. Then, under Definition 2, for any δ ∈ (0, 1), with probability at least 1− δ,

sup
f∈F

∥∥T σf − T σ
g
f
f
∥∥
1,µπ = O

(
Hmin{H, 1/σ}

√
2 log

(
8|G||F|/δ

)
|D|

+ ξdual

)
. (76)
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Proof. Fix an arbitrary f ∈ F and recall that g
f

as defined in eq. 14, where D̂ualloss is given in
eq. 14. For notational convenience, define the dual objective

Φf (x) := E(s,a)∼µπ,s′∼P⋆
s,a

[
hf (x)

]
, where hf (x) :=

(
x−max

a′
f(s′, a′)

)
+
− (1− σ)x.

Using the dual representation in eq. 13, the difference between the true robust Bellman operator and
its empirical counterpart can be written as

∥∥T σf − T σ
g
f
f
∥∥
1,µπ = Φf

(
g
f

)
− E(s,a)∼µπ

[
inf

η∈[0,2H/σ]
hf
(
η
)]
. (77)

Next, we use the functional reformulation, which (by the interchange rule for integral functionals
(Rockafellar & Wets, 1998, Theorem 14.60)) (as given in Lemma T.2) states that

E(s,a)∼µπ

[
inf

η∈[0,2H/σ]
hf
(
η
)]

= inf
g∈L1(µπ)

Φf (g).

Substituting this into eq. 77 gives∥∥T σf − T σ
g
f
f
∥∥
1,µπ = Φf (gf )− inf

g∈L1(µπ)
Φf (g)

=
[
Φf (gf )− inf

g∈G
Φf (g)

]
+
[
inf
g∈G

Φf (g)− inf
g∈L1(µπ)

Φf (g)
]
.

The second bracket is controlled by the approximate dual realizability assumption (Assumption 3),
which gives

inf
g∈G

Φf (g)− inf
g∈L1(µπ)

Φf (g) ≤ ξdual.

Hence, ∥∥T σf − T σ
g
f
f
∥∥
1,µπ ≤ Φf (gf )− inf

g∈G
Φf (g) + ξdual. (78)

We now bound the optimization error term Φf (gf )− infg∈G Φf (g). Consider the loss function as

ℓf (g, (s, a, s
′)) :=

(
g(s, a)−max

a′
f(s′, a′)

)
+
− (1− σ)g(s, a),

so that Φf (g) = E(s,a,s′)

[
ℓf (g, (s, a, s

′))
]

and D̂ualloss(g; f) in eq. 14 is the empirical average
of ℓf over D. Since f ∈ F and g ∈ G take values in [0, H] and [0, 2H/σ], respectively, we have
|ℓf (g, (s, a, s′))| ≤ 5H/σ, and ℓf (·, (s, a, s′)) is (2− σ)-Lipschitz in g.

By applying the empirical risk minimization generalization bound ((Panaganti et al., 2022, Lemma
3)) together with the Lipschitz-based bound in eq. 81 of Lemma T.1, we obtain that, with probability
at least 1− δ,

Φf (gf )− inf
g∈G

Φf (g) ≤
4H(2− σ)

σ

√
2 log |G|
|D|

+
25H

σ

√
2 log(8/δ)

|D|
. (79)

Combining equation 78 and equation 79, and then taking a union bound over f ∈ F , we conclude
that, with probability at least 1− δ,

sup
f∈F

∥∥T σf − T σ
g
f
f
∥∥
1,µπ ≤ 25(3− σ)H

σ

√
2 log

(
8|G||F|/δ

)
|D|

+ ξdual

≤ C H

σ

√
2 log

(
8|G||F|/δ

)
|D|

+ ξdual,

for some absolute constant C > 0, which proves the claimed big-O bound.
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Lemma K.4. For any policy π and transition kernel P , define the step-h state and state–action
visitation measures as

ρπ,Ph (s) := Pr(sh = s | π, P ), dπ,Ph (s, a) := Pr(sh = s, ah = a | π, P ) = ρπ,Ph (s)π(a | s).
For each step h ∈ [H], define the robust coefficient as

Ccv,rob
h := sup

P∈U

∑
(s,a)∈S×A

sup
π
dπ,Ph (s, a),

and its state-only counterpart

C̃cv,rob
h := sup

P∈U

∑
s∈S

sup
π
ρπ,Ph (s).

Under the d-rectangular linear TV-RMDP assumption in Assumption 4 and the definition of Crcov in
Definition 3, the robust coverability coefficient satisfies

Crcov ≤ max
h

C̃cv,rob
h ≤ O(Ad).

Proof. The first inequality is straightforward, as Pw ∈ U .

Fix any kernel P ∈ U . By Lemma T.6,∑
(s,a)

sup
π
dπ,Ph (s, a) ≤

∑
(s,a)

sup
π
ρπ,Ph (s) = A

∑
s

sup
π
ρπ,Ph (s).

Applying Lemma T.7 pointwise in s yields∑
s

sup
π
ρπ,Ph (s) ≤

∑
s

max
i∈[d]

νh−1,i(s),

for the corresponding signed measures {νh−1,i}. It hence completes the proof by applying Lemma T.8.

D.3 TECHNICAL LEMMAS

We now state a result for the generalization bounds on empirical risk minimization (ERM) problems.
This result is adapted from (Shalev-Shwartz & Ben-David, 2014, Theorem 26.5, Lemma 26.8, Lemma
26.9).
Lemma T.1 (ERM generalization bound (Panaganti et al., 2022), Lemma 3). Let P be a distribution
on X and letH be a hypothesis class of real-valued functions on X . Assume the loss loss : H×X →
R satisfies

|loss(h, x)| ≤ c0, ∀h ∈ H, x ∈ X , for some constant c0 > 0.

Given an i.i.d. sample D = {Xi}Ni=1 from P , define the empirical risk minimizer h̃ ∈
argminh∈H

1
N

∑N
i=1 loss(h,Xi). For any δ ∈ (0, 1) and any population risk minimizer h⋆ ∈

argminh∈H EX∼P [loss(h,X)], the following holds with probability at least 1− δ:

EX∼P [loss(h̃, X)]− EX∼P [loss(h
⋆, X)] ≤ 2R(loss ◦ H ◦ D) + 5c0

√
2 log(8/δ)

N
, (80)

where R(loss ◦H ◦D) is the empirical Rademacher complexity of the loss-composed class loss ◦H,
defined by

R(loss ◦ H ◦ D) = 1

N
E{σi}N

i=1

[
sup

g∈loss◦H

N∑
i=1

σig(Xi)

]
,

with {σi}Ni=1 independent of {Xi}Ni=1 and i.i.d. according to a Rademacher random variable σ (i.e.,
P(σ = 1) = P(σ = −1) = 0.5). Moreover, if H is finite, |H| < ∞, and there exist constants
c1, c2 > 0 such that

|h(x)| ≤ c0 ∀h ∈ H, x ∈ X , and loss(h, x) is c1-Lipschitz in h,

then with probability at least 1− δ we further have

EX∼P [loss(h̃, X)]− EX∼P [loss(h
⋆, X)] ≤ 2c1c2

√
2 log(|H|)

N
+ 5c0

√
2 log(8/δ)

N
. (81)
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We now mention two important concepts from variational analysis (Rockafellar & Wets, 1998)
literature that is useful to relate minimization of integrals and the integrals of pointwise minimization
under special class of functions.
Definition 5 (Decomposable spaces and Normal integrands (Rockafellar & Wets, 1998)(Definition
14.59, Example 14.29)). A space X of measurable functions is a decomposable space relative to an
underlying measure space (Ω,A, µ), if for every function x0 ∈ X , every set A ∈ A with µ(A) <∞,
and any bounded measurable function x1 : A→ R, the function

x(ω) = x0(ω)1(ω /∈ A) + x1(ω)1(ω ∈ A)
belongs to X . A function f : Ω× R→ R (finite-valued) is a normal integrand, if and only if f(ω, x)
is A-measurable in ω for each x and is continuous in x for each ω.
Remark 7. A few examples of decomposable spaces are Lp(S × A,Σ(S × A), µ) for any p ≥ 1
andM(S ×A,Σ(S ×A)), the space of all Σ(S ×A)-measurable functions.
Lemma T.2 ((Rockafellar & Wets, 1998), Theorem 14.60). Let X be a space of measurable functions
from Ω to R that is decomposable relative to a σ-finite measure µ on the σ-algebra A. Let f :
Ω× R→ R (finite-valued) be a normal integrand. Then, we have

inf
x∈X

∫
ω∈Ω

f(ω, x(ω))µ(dω) =

∫
ω∈Ω

(
inf
x∈X

f(ω, x)

)
µ(dω).

Moreover, as long as the above infimum is not −∞, we have that

x′ ∈ argmin
x∈X

∫
ω∈Ω

f(ω, x(ω))µ(dω),

if and only if x′(ω) ∈ argminx∈R f(ω, x)µ almost surely.
Lemma T.3 (Equivalence of robust coverability and cumulative visitation (Xie et al., 2022), Lemma
3). Recall the definition of Crcov as given in Definition 3 and the cumulative visitation for every layer
h ∈ [H] as given in Definition 4. Then

Crcov = max
h∈[H]

Ccv
h ,

and hence Crcov ≤ SA.
Lemma T.4 (Freedman’s inequality (e.g., (Agarwal et al., 2014))). Let {Mt}t≤T be a real-valued
martingale difference sequence w.r.t. filtration {Gt} with |Mt| ≤ b a.s. and let ST =

∑T
t=1 E[M2

t |
Gt−1]. Then for any δ ∈ (0, 1),

Pr
( T∑

t=1

Mt ≥
√

2ST ln(1/δ) + b
3 ln(1/δ)

)
≤ δ.

Lemma T.5 (Per-state-action elliptic potential lemma (Lattimore & Szepesvári, 2020)). Let
d(1), d(2), . . . , d(K) be an arbitrary sequence of distributions over a set Z (e.g., Z = S × A),
and let µ ∈ ∆(Z) be a distribution such that d(t)(z)/µ(z) ≤ C for all (z, t) ∈ Z × [K]. Then for
all z ∈ Z ,

K∑
k=1

d(k)(z)∑
i<t d

(k)(z) + C · µ(z)
≤ O(logK) .

Lemma T.6. For any kernel P , state s, action a, and step h,

sup
π
dπ,Ph (s, a) ≤ sup

π
ρπ,Ph (s).

Proof. For any π, dπ,Ph (s, a) = ρπ,Ph (s)π(a | s) ≤ ρπ,Ph (s), hence supπ d
π,P
h (s, a) ≤ supπ ρ

π,P
h (s).

Lemma T.7. Fix step h and a kernel P with bases {νh−1,i}di=1. For any policy π,

ρπ,Ph (·) =

d∑
i=1

zπh−1,i νh−1,i(·) for some zπh−1 ∈ ∆d. (82)

Consequently, for any state s,

sup
π
ρπ,Ph (s) ≤ max

i∈[d]
νh−1,i(s). (83)
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Proof. It holds that

ρπ,Ph (·) =
∑
s′,a

ρπ,Ph−1(s
′)π(a | s′)Ph−1(· | s′, a)

=
∑
s′,a

ρπ,Ph−1(s
′)π(a | s′)

d∑
i=1

ϕi(s
′, a) νh−1,i(·)

=

d∑
i=1

(∑
s′,a

ρπ,Ph−1(s
′)π(a | s′)ϕi(s′, a)

)
︸ ︷︷ ︸

=:zπ
h−1,i

νh−1,i(·).

Because ϕi(·) ≥ 0 and
∑d

i=1 ϕi(·) = 1, we have zπh−1 ≥ 0 and
∑d

i=1 z
π
h−1,i = 1, hence zπh−1 ∈ ∆d

and equation 82 holds. For any state s,

ρπ,Ph (s) =

d∑
i=1

zπh−1,i νh−1,i(s) ≤ max
i
µh−1,i(s),

and taking supπ gives equation 83.

Lemma T.8. Let {νi}di=1 be some probability measure on S with in Pi. Then∑
s∈S

max
i∈[d]

νi(s) ≤ d. (84)

Proof. Note that ∑
s∈S

max
i∈[d]

νi(s) ≤
d∑

i=1

∑
s

νi(s) = d,

where the last equality is from the fact that νi is some probability measure.

E USE OF LARGE LANGUAGE MODELS

We used ChatGPT strictly as a general-purpose assist tool for typesetting and language polishing. In
particular, it helped with (i) grammar, style, and readability improvements, and (ii) LaTeX formatting
tasks such as managing algorithm placement, cleaning BibTEX entries and citation styles, and
resolving compile issues (e.g., Type-3 font warnings and package conflicts).

All ideas, derivations, and final claims were developed, verified, and validated by the authors. The
authors take full responsibility for the content of this paper.
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