

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SAMPLE-EFFICIENT ONLINE DISTRIBUTIONALLY ROBUST REINFORCEMENT LEARNING VIA GENERAL FUNCTION APPROXIMATION

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 The deployment of reinforcement learning (RL) agents in real-world tasks is
014 frequently hampered by performance degradation caused by mismatches between
015 the training and target environments. Distributionally Robust RL (DR-RL) offers a
016 principled framework to mitigate this issue by learning a policy that maximizes
017 worst-case performance over a specified uncertainty set of transition dynamics.
018 Despite its potential, existing DR-RL research faces two key limitations: reliance
019 on prior knowledge of the environment – typically access to a generative model
020 or a large offline dataset – and a primary focus on tabular methods that do not
021 scale to complex problems. In this paper, we bridge these gaps by introducing an
022 online DR-RL algorithm compatible with general function approximation. Our
023 method learns an optimal robust policy directly from environmental interactions,
024 eliminating the need for prior models or offline dataset, enabling application to
025 complex, high-dimensional tasks. Furthermore, our theoretical analysis establishes
026 a near-optimal sublinear regret for the algorithm under the total variation uncertainty
027 set, demonstrating that our approach is both sample-efficient and effective.

028 1 INTRODUCTION

030 Reinforcement Learning (RL) has emerged as a powerful paradigm for solving sequential
031 decision-making problems. A central paradigm of RL is online learning, where an agent learns an
032 optimal policy through direct trial-and-error interactions with an unknown environment, without
033 relying on pre-collected datasets or high-fidelity simulators. This learning scheme has fueled
034 significant achievements in complex simulator-based tasks, including video games (Silver et al., 2016;
035 Zha et al., 2021; Berner et al., 2019; Vinyals et al., 2017) and generative AI (Ouyang et al., 2022;
036 Cao et al., 2023; Black et al., 2023; Uehara et al., 2024; Zhang et al., 2024; Du et al., 2023; Cao
037 et al., 2024). However, a critical vulnerability lies at the heart of conventional online RL algorithms.
038 Vanilla RL typically optimizes an agent’s policy under the implicit assumption that the environment’s
039 dynamics, while stochastic, are fixed and unchanging. In other words, the environment encountered
040 during training is presumed identical to the one at deployment – an assumption often violated in
041 practice and risky for real-world applications. An agent trained in this manner can become highly
042 specialized to the exact conditions experienced during training, leading to a brittle policy that is
043 dangerously unprepared for even minor variations. When deployed in dynamic settings such as
044 autonomous driving (Kiran et al., 2021) or healthcare (Wang et al., 2018), an agent may confront
045 unforeseen shifts, like a sudden change in road friction due to weather. A standard RL agent, never
046 having been trained to consider such possibilities, may suffer a catastrophic drop in performance,
047 leading to unsafe or costly outcomes.

048 The core of this issue is that vanilla online RL merely optimizes for expected performance within
049 the training environment, but fails to account for potential perturbations or model mismatch upon
050 deployment. Distributionally robust RL (DR-RL) (Iyengar, 2005; Pinto et al., 2017; Hu et al.,
051 2022) offers a promising solution by instead optimizing for the worst-case performance over a
052 pre-defined uncertainty set that captures potential model mismatches. By doing so, DR-RL can learn
053 policies that are inherently resilient to environmental shifts, achieving reliable and safe performance
even when encountering new conditions post-deployment (Goodfellow et al., 2014; Vinitsky et al.,
2020; Abdullah et al., 2019; Hou et al., 2020; Rajeswaran et al., 2017; Atkeson & Morimoto, 2003;

054 Morimoto & Doya, 2005; Huang et al., 2017; Kos & Song, 2017; Lin et al., 2017; Pattanaik et al.,
 055 2018; Mandlekar et al., 2017). Online DR-RL (He et al., 2025; Liu et al., 2024; Liu & Xu, 2024b; Lu
 056 et al., 2024; Ghosh et al., 2025), where the agent directly interacts with the unknown environment
 057 but optimizes for the worst-case over some uncertainty set, hence provides a promising approach to
 058 overcome the aforementioned issues of online RL and enhance robustness against model mismatches.

059 Despite its potential, online DR-RL faces two theoretical challenges. The first is due to the *off-target*
 060 nature of the objective: training data are generated by nominal dynamics, while robustness is evaluated
 061 against worst-case dynamics. The targeted worst-case environment generally differs from the training
 062 environment, hence the agent must solve an off-dynamic learning problem (Eysenbach et al., 2020;
 063 Liu & Xu, 2024a; Holla, 2021). This can result in an information bottleneck, as samples critical for
 064 the target environment may never be observed under the dynamics with which the agent interacts
 065 (Lu et al., 2024; Ghosh et al., 2025). Moreover, because the online agent interacts directly with
 066 the world, naive exploration that could lead to severe, undesirable consequences is forbidden. This
 067 imposes a crucial constraint: the agent must maintain safe and satisfactory performance, even under
 068 its worst cases, throughout the entire learning process. Due to these challenges, existing DR-RL
 069 mostly assume access to additional data sources, such as a generative model that can freely generate
 070 samples (Panaganti & Kalathil, 2022; Xu et al., 2023; Shi et al., 2023), or a comprehensive offline
 071 dataset covering the relevant dynamics (Blanchet et al., 2023; Shi & Chi, 2024; Tang et al., 2024;
 072 Wang et al., 2024c; Liu & Xu, 2024a; Panaganti et al., 2022; Wang et al., 2024a), **and more recently**
 073 **hybrid regimes that combine a large offline dataset with limited online interaction** (Panaganti et al.,
 074 2024). Yet in many practical scenarios, such simulators or datasets are unavailable or prohibitively
 075 expensive to create, necessitating online DR-RL.

076 The second challenge is its poor scalability. Most existing DR-RL algorithms are designed for
 077 small-scale, tabular problems. Real-world applications, however, often involve vast state-action
 078 spaces that render these methods impractical. In standard RL, function approximation techniques
 079 (Mnih et al., 2013; Silver et al., 2016; Kober et al., 2013; Li et al., 2016), where a low-dimensional
 080 function class is used to approximate the value functions, is the key technique for scaling up to large
 081 problems. Yet, its application to DR-RL raises significant theoretical challenges. Due to the inherent
 082 model mismatch, the existence of an accurate, low-dimensional approximation of the worst-case
 083 value function is not guaranteed. For instance, there may not exist a linear function that properly
 084 approximates the worst-case value function (Tamar et al., 2014). Existing attempts to bridge this gap
 085 often rely on strong, unverifiable assumptions, such as a small discount factor (Xu & Mannor, 2010;
 086 Zhou et al., 2024; Badrinath & Kalathil, 2021) or the environment being modeled as a linear MDP
 087 (Ma et al., 2022; Liu & Xu, 2024b;a; Liu et al., 2024; Wang et al., 2024a).

088 These two gaps naturally lead to one fundamental question: *Can we develop a sample-efficient*
 089 *online DR-RL algorithm scaling up to large problems, under minimal structural assumptions?*

090 In this paper, we answer this question by developing an online DR-RL framework with general
 091 function approximation and by deriving finite-sample convergence guarantees. Our main contributions
 092 are summarized as follows.

093 **(1) First sample-efficient algorithm for online DR-RL with general function approximation.** We
 094 develop *Robust Fitted Learning with TV-Divergence Uncertainty Set (RFL-TV)*, the first algorithm
 095 for *purely online* DR-RL with general function approximation under TV-divergence uncertainty sets.
 096 *RFL-TV* integrates optimism for exploration into a fitted-learning scheme via a novel functional
 097 reformulation of the robust Bellman operator. Instead of standard state-action-wise bonuses as in
 098 tabular UCB methods, we use this reformulation to construct a *global* uncertainty quantifier over
 099 the function class, which aggregates estimation error more effectively and guides exploration. This
 100 yields a computationally efficient algorithm suitable for large-scale problems and, to the best of our
 101 knowledge, the first polynomial-time, polynomial-sample algorithm for purely online DR-RL beyond
 102 tabular and offline/hybrid settings.

103 **(2) Robust coverability as the fundamental complexity measure.** We introduce the *robust*
 104 *coverability coefficient* C_{rcov} , defined as the worst-case ratio between adversarial and nominal
 105 visitation measures across policies and time steps. Although a similar term is also studied in
 106 (Panaganti et al., 2024) for hybrid setting, our studies reveals its necessity in pure online setting with
 107 function approximation, which captures the intrinsic “information deficit” of learning a worst-case
 108 policy from nominal data. We show that (i) natural fail-state assumptions imply $C_{\text{rcov}} < \infty$, and (ii)

108 C_{rcov} fully characterizes the sample complexity of online DR-RL, in direct analogy to—but strictly
 109 weaker than—classical coverability and concentrability conditions.

110 **(3) Dual robust fitted learning and global confidence sets.** We construct a dual robust Bellman
 111 residual based on a functional optimizer g and use it to build *global confidence sets* over value
 112 functions. Unlike tabular UCB methods and non-robust GOLF, which use per-state-action bonuses,
 113 *RFL-TV* maintains a single least-squares objective on the dual residual that simultaneously (i)
 114 approximates the worst-case Bellman operator and (ii) serves as a global uncertainty quantifier for
 115 exploration. This dual-driven robust fitted learning mechanism is specific to the DR-RL setting and
 116 contrasts with offline DR-RL methods, where the dual is analyzed under a fixed data distribution and
 117 not used to drive exploration.

118 **(4) Sharp regret and sample-complexity guarantees (general and linear settings).** We show that
 119 *RFL-TV* finds an ε -optimal robust policy with sample complexity $\tilde{\mathcal{O}}\left(H^5(\min\{H, \sigma^{-1}\})^2 C_{\text{rcov}} \varepsilon^{-2}\right)$,
 120 up to logarithmic factors, plus an additive term linear in the dual approximation error. This bound is
 121 the first polynomial-order guarantee for robust online learning with general function approximation.
 122 It is independent of $|\mathcal{S}|$ and $|\mathcal{A}|$, demonstrating scalability to large or continuous spaces, with
 123 the cost of higher state-space dependence on H and σ^{-1} compared to existing online DR-RL
 124 results. Moreover, in *d*-dimensional linear TV-RMDPs our analysis specializes to a regret bound
 125 $\tilde{\mathcal{O}}(H^2 \min\{H, \sigma^{-1}\} \sqrt{C_{\text{rcov}}^2 d^2 K})$, which is near-optimal compared to the minimax lower bound
 126 (Liu et al., 2024), highlighting the sharpness of our theory.

2 RELATED WORK

131 We discuss most related DR-RL works here, and defer the discussion of non-robust RL to Appendix.

132 **Tabular DR-RL:** DR-RL is mostly studied under the tabular setting. A substantial body of DR-RL
 133 has been developed under the generative-model setting (Clavier et al., 2023; Liu et al., 2022; Panaganti
 134 & Kalathil, 2022; Ramesh et al., 2024; Shi et al., 2023; Wang et al., 2023a;b; 2024b; Xu et al., 2023;
 135 Yang et al., 2022; 2023; Badrinath & Kalathil, 2021; Li et al., 2022b; Liang et al., 2023), where the
 136 agent is assumed to have access to a simulator or a comprehensive offline dataset (Blanchet et al.,
 137 2023; Shi & Chi, 2024; Zhang et al., 2023; Liu & Xu, 2024a; Wang et al., 2024c;a). Recently, limited
 138 number of online DR-RL studies are developed (Dong et al., 2022; Wang & Zou, 2021; Lu et al.,
 139 2024; He et al., 2025; Ghosh et al., 2025). The information bottleneck discussed is addressed through
 140 adopting some technical assumptions, and sample efficient algorithms are derived. However, all of
 141 these works are model-based or value-based, suffering from poor scalability to large-scale problems.

142 **DR-RL with Function Approximation:** Existing theoretical DR-RL with function approximation
 143 largely focuses on linear function classes. However, these classes are generally not closed under the
 144 robust Bellman operator, so approximation guarantees cannot be ensured. To circumvent this, most
 145 works impose strong structural assumptions on the underlying robust MDP—such as a small discount
 146 factor (Xu & Mannor, 2010; Tamar et al., 2014; Zhou et al., 2024) or a linear robust MDP model
 147 (Ma et al., 2022; Liu & Xu, 2024b;a; Liu et al., 2024; Wang et al., 2024a)—assumptions that are
 148 difficult to verify in practice. In contrast, we work with a broader, general function class to avoid
 149 these restrictions. General function approximation for DR-RL has so far been studied mainly in
 150 (Panaganti et al., 2022; 2024), which use a functional optimization approach but focus on offline
 151 or hybrid data settings with global coverage and thus avoid the exploration challenges of our fully
 152 online setting; moreover, (Panaganti et al., 2024) studies regularized robust MDPs, which differ from
 153 the DR-RL formulation considered here.

3 PRELIMINARIES AND PROBLEM FORMULATION

3.1 DISTRIBUTIONALLY ROBUST MARKOV DECISION PROCESS (RMDPs).

157 Distributionally robust RL can be formulated as an episodic finite-horizon RMDP (Iyengar, 2005),
 158 represented by $\mathcal{M} := (\mathcal{S}, \mathcal{A}, H, \mathcal{P}, r)$, where the set $\mathcal{S} = \{1, \dots, S\}$ is the finite state space,
 159 $\mathcal{A} = \{1, \dots, A\}$ is the finite action space, H is the horizon length, $r = \{r_h : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]\}_{h=1}^H$ is
 160 the collection of reward functions, and $\mathcal{P} = \{\mathcal{P}_h\}_{h=1}^H$ is an uncertainty set of transition kernels. At

162 step h , the agent is at state s_h and takes an action a_h , receives the reward $r_h(s_h, a_h)$, and is transited
 163 to the next state s_{h+1} following an arbitrary transition kernel $P_h(\cdot|s_h, a_h) \in \mathcal{P}_h$.
 164

165 We consider the standard (s, a) -rectangular uncertainty set with divergence ball-structure (Wiesemann
 166 et al., 2013). Specifically, there is a *nominal* transition kernel $P^* = \{P_h^*\}_{h=1}^H$, where each $P_h^* :
 167 \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$ ¹. The uncertainty set, centered around the nominal transition kernel, is defined as
 168 $\mathcal{P} = \mathcal{U}^\sigma(P^*) = \bigotimes_{(h, s, a) \in [H] \times \mathcal{S} \times \mathcal{A}} \mathcal{U}_h^\sigma(s, a)$, and $\mathcal{U}_h^\sigma(s, a) \triangleq \{P \in \Delta(\mathcal{S}) : D(P, P_h^*(\cdot|s, a)) \leq
 169 \sigma\}$, containing all the transition kernels that differ from P^* up to some uncertainty level $\sigma \geq 0$,
 170 under some probability divergence functions (Iyengar, 2005; Panaganti & Kalathil, 2022; Yang et al.,
 171 2022). Specifically, in this paper, we mainly consider uncertainty sets specified by *total-variation*
 172 (*TV*) (Sason & Verdú, 2016), as defined below, and refer to the RMDP defined as an *TV-RMDP*.
 173

Definition 1 (*TV*-Divergence Uncertainty Set). For each (s, a) pair, the uncertainty set is defined as:

$$\mathcal{U}_h^\sigma(s, a) \triangleq \left\{ P \in \Delta(\mathcal{S}) : D_{\text{TV}}\left(P, P_h^*(\cdot|s, a)\right) \leq \sigma \right\}, \quad (1)$$

174 where for $p, q \in \Delta(\mathcal{S})$, $D_{\text{TV}}(p, q) = \frac{1}{2} \sum_{s' \in \mathcal{S}} |p(s') - q(s')|$ is the *TV*-divergence.
 175

3.2 POLICY AND ROBUST VALUE FUNCTION

176 The agent's strategy of taking actions is captured by a Markov policy $\pi := \{\pi_h\}_{h=1}^H$, with $\pi_h : \mathcal{S} \rightarrow
 177 \Delta(\mathcal{A})$ for each step $h \in [H]$, where $\pi_h(\cdot|s)$ is the probability of taking actions at the state s in step h .
 178 In RMDPs, the performance of a policy is captured by the worst-case performance, defined as the
 179 robust value functions. Specifically, given any policy π and for each step $h \in [H]$, the *robust value
 180 function* and the *robust state-action value function* are defined as the expected accumulative reward
 181 under the worst possible transition kernel within the uncertainty set:
 182

$$\begin{aligned} V_h^{\pi, \sigma}(s) &\triangleq \inf_{P \in \mathcal{U}^\sigma(s, a)} \mathbb{E}_{\pi, P} \left[\sum_{t=h}^H r_t(s_t, a_t) \middle| s_h = s \right], \\ Q_h^{\pi, \sigma}(s, a) &\triangleq \inf_{P \in \mathcal{U}^\sigma(s, a)} \mathbb{E}_{\pi, P} \left[\sum_{t=h}^H r_t(s_t, a_t) \middle| s_h = s, a_h = a \right], \end{aligned} \quad (2)$$

183 where the expectation is taken with respect to the state-action trajectories induced by policy π under
 184 the transition P .
 185

186 The goal of DR-RL is to find the optimal robust policy $\pi^* := \{\pi_h^*\}$ that maximizes the robust value
 187 function, for some initial state s_1 :

$$\pi^* \triangleq \arg \max_{\pi \in \Pi} V_1^{\pi, \sigma}(s_1), \quad (3)$$

188 where Π is the set of policies. Such an optimal policy exists and can be obtained as a deterministic
 189 policy (Iyengar, 2005; Blanchet et al., 2023). Moreover, the optimal robust value functions (denoted
 190 by $Q_h^{\pi^*, \sigma}$, $V_h^{\pi^*, \sigma}$), which are the corresponding robust value functions of the optimal policy π^* , are
 191 shown to be the unique solution to the robust Bellman equations:
 192

$$Q_h^{\pi^*, \sigma}(s, a) = r_h(s, a) + \mathbb{E}_{\mathcal{U}_h^\sigma(s, a)} [V_{h+1}^{\pi^*, \sigma}], \quad V_h^{\pi^*, \sigma}(s) = \max_{a \in \mathcal{A}} Q_h^{\pi^*, \sigma}(s, a), \quad (4)$$

193 where $\mathbb{E}_{\mathcal{U}_h^\sigma(s, a)} [V_{h+1}^{\pi^*, \sigma}] \triangleq \inf_{P_h \in \mathcal{U}_h^\sigma(s, a)} \mathbb{E}_{s' \sim P_h(\cdot|s, a)} [V_{h+1}^{\pi^*, \sigma}(s')]$.
 194

195 On the other hand, for any policy π , the corresponding robust value functions also satisfy the following
 196 robust Bellman equation for π (Blanchet et al., 2023, Proposition 2.3)):
 197

$$Q_h^{\pi, \sigma}(s, a) = r_h(s, a) + \mathbb{E}_{\mathcal{U}_h^\sigma(s, a)} [V_{h+1}^{\pi, \sigma}], \quad V_h^{\pi, \sigma}(s) = \mathbb{E}_{a \sim \pi_h(\cdot|s)} [Q_h^{\pi, \sigma}(s, a)]. \quad (5)$$

3.3 ONLINE DISTRIBUTIONALLY ROBUST RL

198 In this work, we study distributionally robust RL in an online setting, where the agent's goal is to
 199 learn the robust-optimal policy π^* defined in eq. 3 by interacting with the nominal environment P^*
 200

¹ $\Delta(\cdot)$ denotes the probability simplex over the space.

over $K \in \mathbb{N}$ episodes. At the start of episode k , the agent observes the initial state s_1^k , selects a policy π^k based on its history, executes π^k in P^* to collect a trajectory, and then updates its policy for the next episode. In the online setting, agents cannot freely explore, but instead need to minimize the risk of consequences (under the worst-case) during learning. Hence, the goal is to minimize the *cumulative robust regret* over K episodes, defined as

$$\text{Regret}(K) \triangleq \sum_{k=1}^K \left[V_1^{\star,\sigma}(s_1^k) - V_1^{\pi^k,\sigma}(s_1^k) \right]. \quad (6)$$

Note that this robust regret extends the regret in standard MDP (Auer et al., 2008) by measuring the cumulative robust value gap between the optimal policy π^* and the learner's policies $\{\pi^k\}_{k=1}^K$.

We also evaluate performance through *sample complexity*, defined as the minimum number of samples $T = KH$ needed to learn an ε -optimal robust policy $\hat{\pi}$ that satisfies

$$V_1^{\star,\sigma}(s_1) - V_1^{\hat{\pi},\sigma}(s_1) \leq \varepsilon. \quad (7)$$

4 ROBUST BELLMAN OPERATOR WITH FUNCTION APPROXIMATION

In this section, we highlight the challenges of online RL and give a step-by-step approach to overcome these challenges.

Functional approximation. When the state-action space is large, learning robust policies from interaction alone is computationally challenging. To address this, we adopt the function approximation technique, where we use a general function class $\mathcal{F} = \{\mathcal{F}_h\}_{h=1}^H$ where \mathcal{F}_h contains some functions $f : \mathcal{S} \times \mathcal{A} \rightarrow [0, H]$, to approximate the robust value function $Q_h^{\star,\sigma}$. This function class can be a parametric class with low-dimension parameters, e.g., neural network, to significantly reduce the computation and improve sample efficiency. To ensure effective learning with these function classes, prior work has identified structural conditions that they must satisfy (Russo & Van Roy, 2013; Jiang et al., 2017; Sun et al., 2019; Wang et al., 2020b; Jin et al., 2021; Panaganti et al., 2022). These conditions regulate how the functional class \mathcal{F} interacts with the RMDP dynamics. The most commonly used assumptions are the *representation conditions*, which require that \mathcal{F} is expressive enough to capture the robust value functions of interest. More specifically, the optimal robust Q-function $Q^{\star,\sigma} \in \mathcal{F}$ (known as realizability) and closure under the robust Bellman operator, namely $\mathcal{T}_h^\sigma \mathcal{F}_{h+1} \subseteq \mathcal{F}_h$ (known as completeness). Following standard studies of function approximation in RL (Jin et al., 2021; Xie et al., 2022; Panaganti et al., 2022; Wang et al., 2019), we adopt the following completeness assumption.

Assumption 1 (Completeness). *For all $h \in [H]$, we have $\mathcal{T}_h^\sigma f_{h+1} \in \mathcal{F}_h$ for all $f_{h+1} \in \mathcal{F}_{h+1}$.*

Per Assumption 1, \mathcal{F} is closed under the robust Bellman operator \mathcal{T}^σ . Note that, different from standard function approximation RL studies, we do not assume the realizability ($Q^{\star,\sigma} \in \mathcal{F}$). We highlight that realizability may be restricted in RMDPs, for instance, when \mathcal{F} is a linear function class, since the optimal robust value function may not be linear, additional assumptions like linear RMDPs are needed to ensure realizability (Ma et al., 2022; Liu & Xu, 2024b;a; Liu et al., 2024; Wang et al., 2024a; Ma et al., 2022).

Support shifting issue. In RMDPs with a TV-divergence uncertainty set, we face a unique support shifting issue. When the worst-case transition kernel P^ω and the nominal kernel P^* have different support, states that will be visited under the worst-case may never be visited under the nominal kernel, thus the agent cannot get samples from these states, resulting in an information bottleneck. Notably, the sample complexity of RMDPs with this issue can be exponentially large (Lu et al., 2024). To overcome this challenge, we follow prior work and adopt a standard fail-states assumption (Lu et al., 2024; Liu et al., 2024; Liu & Xu, 2024b; Panaganti et al., 2022) to enable sample-efficient robust RL through interactive data collection.

Assumption 2 (Failure States). *For a TV-RMDP, there exists a set of failure states $\mathcal{S}_F \subseteq \mathcal{S}$, such that $r_h(s, a) = 0$, and $P_h^*(s'|s, a) = 0, \forall a \in \mathcal{A}, \forall s \in \mathcal{S}_F, \forall s' \notin \mathcal{S}_F$.*

Note that this issue does not exist in offline or generative model settings, as the coverage assumption directly ensures the inclusion of the worst-case kernel support.

To better understand the necessity of this assumption, we introduce an intrinsic metric based on visitation measures in both the nominal and the worst-case environments as follows.

Definition 2 (Visitation measure (He et al., 2025)). Under TV-RMDP, for any policy π , we denote the worst transition kernel by $P_h^{\omega, \pi}(\cdot | s, a) \triangleq \arg \min_{P_h \in \mathcal{U}_h^\sigma(s, a)} \mathbb{E}_{P_h}[V_{h+1}^{\pi, \sigma}](s, a)$. Furthermore, at step $h \in [H]$, we define $d_h^\pi(\cdot)$ as the visitation measure on \mathcal{S} induced by the policy π under $P^{\omega, \pi}$, and $\mu_h^\pi(\cdot)$ as the visitation measure on \mathcal{S} induced by the policy π under P^* .

Inspired by offline learning (Agarwal et al., 2019; Chen & Jiang, 2019; Wang et al., 2020a; Xie et al., 2021), we further introduce a term to capture the ratio of the visitation measure between the nominal and worst-transition kernels.

Definition 3 (Robust Coverability). Under Definition 2, we define

$$C_{\text{rcov}} := \sup_{\pi \in \Pi, h \in [H]} \|d_h^\pi / \mu_h^\pi\|_\infty,$$

as the maximum ratio between the worst-case visitation measure and the nominal visitation measure.

When $C_{\text{rcov}} = \infty$, there exists some state that is visited under the worst-case kernel but not under the nominal kernel. Thus, no data can be obtained for that state, resulting in the support shifting issue. As illustrated in (He et al., 2025), an online learning algorithm is efficient only if the coverability measure $C_{\text{rcov}} < \infty$, which, however, does not generally hold in TV cases. However, we show that the failure state Assumption 2 guarantees the finiteness of the robust coverability, thereby providing a necessary condition for efficient online learning algorithms. In this sense, our robust coverability condition plays a role analogous to the offline/hybrid coverage notions in (Panaganti et al., 2022; 2024), but is tailored to a different regime: their coverage constants compare robust occupancies to a fixed offline behavior distribution μ , whereas C_{rcov} compares robust occupancies to the nominal online occupancies induced by the learner's policy, specifically for online settings.

Empirical robust Bellman operator and functional optimization. Recall from eq. 5 that the robust value function is characterized as the fixed point of the robust Bellman operator. Hence, computing an optimal robust policy amounts to computing this fixed point. Directly evaluating the operator, however, is intractable: the mapping $\mathbb{E}_{\mathcal{U}_h^\sigma(s, a)}[\cdot]$ requires, for each (s, a) , an optimization over an S -dimensional TV-uncertainty set, which quickly becomes prohibitive.

To address these issues, we construct an efficient empirical solution and adapt the approach in (Panaganti et al., 2022) to avoid pointwise scalar optimization by rewriting the problem as a *single* optimization over functions. Namely, we consider the probability space $(\mathcal{S} \times \mathcal{A}, \Sigma(\mathcal{S} \times \mathcal{A}), \mu)$, let $\mathcal{L}^1(\mu)$ denote the space of absolutely integrable dual functions, and consider the dual loss

$$\text{Dual}_{loss}(g; f) = \mathbb{E}_{(s, a) \sim \mu} [\mathbb{E}_{s' \sim P_{s, a}^*} [(g(s, a) - \max_{a'} f(s', a'))_+] - (1 - \sigma)g(s, a)], \quad (8)$$

and its optimization is equivalent to the robust Bellman operator (Panaganti et al., 2022):

$$\inf_{g \in \mathcal{L}^1(\mu)} \text{Dual}_{loss}(g; f) = \mathbb{E}_{(s, a) \sim \mu} [\mathbb{E}_{\mathcal{U}_h^\sigma(s, a)}[f]]. \quad (9)$$

We now construct an empirical dual loss $\widehat{\text{Dual}}_{loss}(g; f)$ through a dataset, and obtain an approximate dual minimizer by solving $\inf_{g \in \mathcal{L}^1(\mu)} \widehat{\text{Dual}}_{loss}(g; f)$. For efficiency, we instead optimize over another function class $\mathcal{G} = \{g : \mathcal{S} \times \mathcal{A} \rightarrow [0, 2H/\sigma]\}$ used to approximate the dual variables, which satisfies the following realizability assumption (deferred to Appendix C). We then approximate the robust Bellman operator for a given f and dataset \mathcal{D} as $\underline{g}_f = \arg \min_{g \in \mathcal{G}} \widehat{\text{Dual}}_{loss}(g; f)$, and then define the empirical robust Bellman operator

$$(\mathcal{T}_g^\sigma f)(s, a) \triangleq r(s, a) - \mathbb{E}_{s' \sim P_{s, a}^*} [(g(s, a) - \max_{a'} f(s', a'))_+] - (1 - \sigma)g(s, a). \quad (10)$$

The next lemma quantifies how well \underline{g}_f^σ approximates \mathcal{T}^σ in an \mathcal{L}^1 sense.

Lemma 1. Let π be any policy, and let μ_h^π denote the visitation measure on $\mathcal{S} \times \mathcal{A}$ at step h induced by π under P^* . Suppose \mathcal{D} is a dataset collected by running π . Then, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$\sup_{f \in \mathcal{F}} \|\mathcal{T}_g^\sigma f - \mathcal{T}_{\underline{g}_f}^\sigma f\|_{1, \mu^\pi} = \mathcal{O}\left(H \min\{H, 1/\sigma\} \sqrt{2 \log(8|\mathcal{G}||\mathcal{F}|/\delta) / |\mathcal{D}|} + \xi_{\text{dual}}\right). \quad (11)$$

324 A similar result is derived for a fixed distribution (the offline dataset distribution) in (Panaganti et al.,
325 2022; 2024), whereas we show it simultaneously hold for any policy and its induced distribution.
326 Lemma 1 shows that our empirical functional optimization yields a uniformly accurate approximation
327 to the robust Bellman operator under the $\mathcal{L}^1(\mu^\pi)$ norm. Crucially, the error is controlled *globally*
328 with respect to the visitation measure μ^π , rather than pointwise in (s, a) . This global control is what
329 we leverage later to define our robust confidence sets and the global error term that drives the design
330 and analysis of our main algorithm.

331 **Remark 1** (Relation to φ -regularized RMDPs (Panaganti et al., 2024)). *Assumption 3 and Lemma 1*
332 *build on the dual functional machinery first developed by (Panaganti et al., 2022) and subsequently*
333 *employed by (Panaganti et al., 2024) for φ -regularized RMDPs in a hybrid setting, where the policy*
334 *value includes a Lagrangian penalty λ with $\lambda > 0$ and the guarantees scale with $(\lambda + H)$. Although*
335 *the φ -regularized RMDPs recovers the standard RMDPs with $\lambda = 0$, our result cannot be obtained*
336 *directly. This is due to that, the analysis in (Panaganti et al., 2024) is carried out explicitly for $\lambda > 0$*
337 *and we cannot set $\lambda = 0$ in their analysis to obtain ours.*

339 5 ROBUST FITTING LEARNING ALGORITHM

341 We then utilize our previous constructions and propose our Robust Fitted Learning (RFL) algorithm.

343 Algorithm 1: Robust Fitted Learning with TV-Divergence Uncertainty Set (RFL-TV)

344 1: **Input:** Function class \mathcal{F} , Dual Function class \mathcal{G} , $\beta > 0$, $\sigma > 0$.
345 2: **Initialize:** $\mathcal{F}^{(0)} \leftarrow \mathcal{F}$, $\mathcal{D}_h^{(0)} \leftarrow \emptyset \forall h \in [H]$
346 3: **for** episode $k = 1, 2, \dots, K$ **do**
347 4: Set $f^{(k)} \leftarrow \arg \max_{f \in \mathcal{F}^{(k-1)}} f(s_1, \pi_1^f(s_1))$ and $\pi^{(k)} \leftarrow \pi^{f^{(k)}}$
348 5: Execute $\pi^{(k)}$ and obtain a trajectory $(s_1^{(k)}, a_1^{(k)}, r_1^{(k)}), \dots, (s_H^{(k)}, a_H^{(k)}, r_H^{(k)})$
349 6: Update dataset: $\mathcal{D}_h^{(k)} \leftarrow \mathcal{D}_h^{(k-1)} \cup \{(s_h^{(k)}, a_h^{(k)}, s_{h+1}^{(k)})\} \forall h \in [H]$
350 7: $\mathcal{F}_H^{(k)} \leftarrow \{0\}$
351 8: **for** $h = H-1, \dots, 1$ **do**
352 9: Update the confidence set, with notations defined in eq. 12:
353
354
$$\mathcal{F}_h^{(k)} \leftarrow \left\{ f \in \mathcal{F}_h : L_h^{(k)}(f_h, f_{h+1}, \underline{g}_{f_{h+1}}) - \min_{f'_h \in \mathcal{F}_h} L_h^{(k)}(f'_h, f_{h+1}, \underline{g}_{f_{h+1}}) \leq \beta, \forall f_{h+1} \in \mathcal{F}_{h+1}^{(k)} \right\}$$

355
356 10: **end for**
357 11: **end for**
358 12: **Output:** $\bar{\pi} = \text{unif}(\pi^{(1:K)})$. For PAC guarantee only.

362 Our algorithm follows the standard fitting learning structure. In each step h , we will construct a
363 confidence set $\mathcal{F}^{(k)}$ (Line 9) based on the fitted error under the robust Bellman operator to ensure the
364 inclusion of $Q^{*,\sigma} \in \mathcal{F}^{(k)}$. As discussed, we utilize our functional optimization based loss function
365 and the error bound in Lemma 1 to construct the set. Namely, given a function f , we first solve the
366 dual-variable approximation through the empirical functional optimization loss as
367

$$\underline{g}_f \triangleq \arg \min_{g \in \mathcal{G}} \sum_{(s, a, s') \in \mathcal{D}_h^{(k)}} \left(g(s, a) - \max_{a' \in \mathcal{A}} f(s', a') \right)_+ - (1 - \sigma)g(s, a). \quad (12)$$

371 We further capture the empirical robust Bellman error $L_h^{(k)}(f', f, g)$ via our functional optimization:

$$\sum_{(s, a, r, s') \in \mathcal{D}_h^{(k)}} \left\{ f'(s, a) - r - \left(g(s, a) - \max_{a' \in \mathcal{A}} f(s', a') \right)_+ + (1 - \sigma)g(s, a) \right\}^2.$$

376 Notably, due to the large-scale of the problem, we construct the confidence set of function classes
377 in a *global* fashion that entails optimizing over f_h for all steps $h \in [H]$ simultaneously (Zanette
378 et al., 2020), instead of constructing error qualifications for each state-action pair as in tabular UCB

378 approaches. More specifically, the confidence set is constructed by considering all the functions that
 379 not only minimize the squared robust Bellman error on the collected transition data $\mathcal{D}_h^{(k)}$ in terms of
 380 the dual variable function, but also any function whose loss is only slightly larger than the optimal
 381 loss over the functional class \mathcal{F}_h . We will later design an error quantification error β , to ensure that
 382 $Q^{\star,\sigma} \in \mathcal{F}^{(k)}$ with high probability. With the function confidence set which contains $Q^{\star,\sigma}$, we then
 383 adopt the optimism principle and choose $\pi^{(k)} = \pi^{f^{(k)}}$ based on the robust value function $f^{(k)} \in \mathcal{F}^{(k)}$
 384 with the most optimistic estimate $f_1(s_1, \pi_1^{(k)}(s_1))$ for the total reward. This will ensure the optimism
 385 of our algorithm, and balance the exploration and exploitation.
 386

387 **Algorithmic novelties.** While the overall template of “optimism + fitted value iteration” is
 388 reminiscent of GOLF (Xie et al., 2022), our setting differs fundamentally from both non-robust
 389 RL and offline DR-RL, and this is reflected in the design of RFL-TV. The datasets $\mathcal{D}_h^{(k)}$ are
 390 generated under *different* policies across episodes, so there is no single policy π with $\mathcal{D}_h^{(k)} \sim \mu^\pi$,
 391 and the fixed-distribution error quantification in Lemma 1 cannot be applied directly. Instead, we
 392 implement an optimistic, dual-driven fitted scheme in which a value–dual pair (f, g) is learned
 393 online: the dual network g both approximates the TV-robust Bellman operator and acts as a *global*
 394 *uncertainty quantifier* that defines optimistic confidence sets over \mathcal{F} and guides exploration under
 395 this non-stationary data. The resulting regret decomposition and confidence bounds exploit the
 396 robust coverability coefficient C_{rcov} (Definition 3) to control the mismatch between the evolving
 397 on-dynamics distribution and the worst-case kernel P^ω . This dual-based, coverability-aware
 398 realization of “optimism + fitted value iteration” contrasts with GOLF’s squared non-robust Bellman
 399 error (Xie et al., 2022) and with offline RFQI-style robust methods (Panaganti et al., 2022), where
 400 data come from a fixed distribution and the dual is not used to drive online exploration.
 401

402 6 THEORETICAL GUARANTEES

404 We then develop the theoretical guarantees of our algorithm.

406 **Theorem 1.** For any $\delta \in (0, 1]$, we set $\beta = \mathcal{O}\left(\min\{H, 1/\sigma\} \log\left(\frac{KH|\mathcal{F}||\mathcal{G}|}{\delta}\right)\right)$. Then under
 407 Assumption 1, 2, and 3, there exists an absolute constant c such that with probability at least $1 - \delta$,²
 408

$$409 \text{Regret}(K) \leq \mathcal{O}\left(\sqrt{C_{\text{rcov}}^2 H^4 (\min\{H, 1/\sigma\})^2 \log(KH|\mathcal{F}||\mathcal{G}|\delta^{-1})K} + C_{\text{rcov}}\xi_{\text{dual}}\right).$$

412 **Proof-sketch.** Our proof has two main ingredients: (i) a reduction of robust regret to a sum of
 413 *robust average Bellman errors* under a worst-case kernel, and (ii) uniform control of these Bellman
 414 errors via the dual-based empirical operator and robust coverability.

415 *Step 1: From regret to robust average Bellman error.* By Assumption 1 and the construction of
 416 the confidence sets, the optimistic estimates $f^{(k)}$ satisfy $f_h^{(k)} \geq Q_h^{\star,\sigma}$ pointwise for all k, h with
 417 high probability. Using the robust Bellman equation and the worst-case kernel P^ω in Definition 2,
 418 Lemma K.1 shows that the robust regret can be written as a sum of robust average Bellman errors:
 419

$$420 \text{Regret}(K) \leq \sum_{k=1}^K \sum_{h=1}^H \varepsilon_{\text{TV}}^\sigma(f^{(k)}, \pi_f^{(k)}, h; P^\omega),$$

423 where $\varepsilon_{\text{TV}}^\sigma$ is some robust Bellman error and is defined in eq. 17. Notably, different from offline
 424 robust RL (Panaganti et al., 2022) and non-robust ones, our robust Bellman error is defined under
 425 the worst-case occupancy measure, which depends on the learner’s greedy policy $\pi_f^{(k)}$ and the
 426 corresponding worst-case kernel P^ω . Both of them are changing during algorithms, and we need to
 427 tackle such distribution shift among episodes.

428 *Step 2: Dual-based decomposition and bounds via coverability.* Our strategy is to utilize the
 429 coverability to derive a uniform upper bound of the errors. For each (k, h) , we add and subtract the
 430

431 ²We assume for simplicity that $|\mathcal{F}|, |\mathcal{G}| < \infty$, but our result can be directly extended to the general infinite
 432 case with a standard finite coverage technique (Xie et al., 2022; Panaganti et al., 2022).

432 dual-based empirical operator \mathcal{T}_g^σ (eq. 10) and decompose (eq. 19 and eq. 20): $\text{Regret}(K) \leq I + II$,
 433 where I aggregates the Bellman residuals $f_h^{(k)} - \mathcal{T}_{g_f(k)}^\sigma f_{h+1}^{(k)}$, and II aggregates the approximation
 434 error $\mathcal{T}_{g_f(k)}^\sigma f_{h+1}^{(k)} - \mathcal{T}_g^\sigma f_{h+1}^{(k)}$. Since $f^{(k)}$ and $g^{(k)}$ minimize a global least-squares loss, Lemma K.2
 435 shows that the empirical squared Bellman residuals contributing to I are bounded by $\mathcal{O}(\beta)$ on the
 436 observed data. A concentration type analysis then implies
 437

$$I \leq \mathcal{O}(HC_{\text{rcov}} \min\{H, \sigma^{-1}\} + H \sqrt{C_{\text{rcov}} \cdot \beta K \log K}).$$

438 For II, Lemma 1 provides a uniform bound on $\mathcal{T}^\sigma f - \mathcal{T}_{g_f}^\sigma f$ for all $f \in \mathcal{F}$ and policies π . Robust
 439 coverability (Definition 3) is then used to transfer this control from the nominal visitation μ_h^π to the
 440 worst-case visitation under P^ω , resulting in
 441

$$II = \mathcal{O}(C_{\text{rcov}} H^2 \min\{H, \sigma^{-1}\} \sqrt{2K \log(8|\mathcal{G}||\mathcal{F}|KH/\delta)} + C_{\text{rcov}} \xi_{\text{dual}}).$$

442 Combining the bounds on I and II and setting β as in Theorem 1 hence implies the regret bound.
 443

444 Our result is the first polynomial regret of robust online learning with general function approximation.
 445 It is free from the problem scales and hence enjoys better scalability. Our result is also comparable
 446 against the ones under offline/hybrid setting with general function approximation in (Panaganti et al.,
 447 2022; 2024), hence our algorithm can efficiently learn RMDPs even without any pre-collected dataset.
 448

449 **Remark 2.** We developed our results in terms of robust coverability, a notion also used and studied
 450 in non-robust learning (Xie et al., 2022). There is also a line of work in online RL that employs
 451 complexity measures such as Bellman rank (Jiang et al., 2017; Du et al., 2021) and BE dimension
 452 (Jin et al., 2021), and we expect our analysis could similarly be adapted to these notions.
 453

454 **Technical novelties in the analysis.** Our analysis departs substantially from both non-robust online
 455 RL (Xie et al., 2022) and offline/hybrid robust RL with function approximation (Panaganti et al.,
 456 2022; 2024). First, we learn a dual-based robust Bellman operator from *on-dynamics* data, but must
 457 certify performance under the *worst-case* kernel P^ω , so the dual optimization error is measured
 458 under nominal visitation while regret is defined under robust occupancy. To bridge this mismatch, we
 459 introduce the robust coverability coefficient C_{rcov} , which uniformly bounds density ratios between
 460 worst-case and nominal occupancies across episodes and time steps, and use it to propagate a *single*
 461 global dual error through the regret analysis. Second, unlike analyses that work with a fixed Bellman
 462 operator and only control approximation error in the value class \mathcal{F} , our confidence bounds must
 463 simultaneously handle errors in both \mathcal{F} and the dual class \mathcal{G} in the backup $\mathcal{T}_{g_f}^\sigma$, requiring a new
 464 dual optimization error lemma and a careful treatment under evolving on-policy distributions. Third,
 465 our regret decomposition explicitly ties these dual-based Bellman residuals to cumulative robust
 466 visitation, cleanly separating *algorithmic* quantities (exploration scale β , dual error ξ_{dual}) from the
 467 *structural* property C_{rcov} of the underlying RMDP.
 468

469 By contrast, the offline robust RL analysis of Panaganti et al. (2022) assumes a *static* dataset drawn
 470 from a distribution satisfying a strong *global concentrability* condition that uniformly covers all
 471 policies and kernels in the uncertainty set, allowing all functional errors to be controlled under a single
 472 reference measure. In our fully online setting no such dataset exists: the data distributions μ^{π_k} evolve
 473 with learning, and the mismatch between nominal and worst-case kernels invalidates any global
 474 coverage assumption and forces an episode- and time-dependent analysis. Our robust coverability
 475 coefficient C_{rcov} is therefore a weaker, more local notion than the global concentrability used in
 476 the offline setting, yet our results show that it already suffices to obtain sample-efficient exploration
 477 guarantees in online distributionally robust RL.

478 As an immediate corollary, we obtain the sample complexity for learning an ε -optimal policy with
 479 RFL-TV by applying a standard online-to-batch conversion (Cesa-Bianchi et al., 2001).

480 **Corollary 1** (Sample Complexity). *Under the same setup in Theorem 1, with probability at least
 481 $1 - \delta$, the sample-complexity of RFL-TV to obtain an ε -optimal robust policy is*

$$T = KH = \mathcal{O}\left(H^5(\min\{H, \sigma^{-1}\})^2 C_{\text{rcov}}^2 \log\left(T |\mathcal{F}||\mathcal{G}|\delta^{-1}\right) \varepsilon^{-2} + C_{\text{rcov}} \xi_{\text{dual}} \varepsilon^{-1}\right)$$

482 Our bound is independent of S and A , indicating scalability to large state and action spaces. Moreover,
 483 as we shall discuss later, the dependences on other parameters, H, σ, ε , are also tight and near-optimal.
 484

486 **Remark 3.** We note that our results are obtained for a fixed uncertainty set level σ . However, when
 487 σ is varying, the required function class $|\mathcal{F}_\sigma|$ can also change and depend on σ . Nevertheless, note
 488 that $\sup_\sigma |\mathcal{F}_\sigma|$ is upper bounded by the tabular function class, which is independent from σ .
 489

490 We note that the minimax lower bound for general function approximation based RL is generally
 491 unattainable, due to the richness of function classes, even for non-robust setting. Thus to justify the
 492 tightness of our results, we compare our results with prior works, especially under two reductions:
 493 tabular and linear cases. A comprehensive comparison can be found in Table 1.

494 **Remark 4 (Tabular).** Our result can be reduced to the finite tabular case by taking \mathcal{F} and \mathcal{G} to be the
 495 full spaces of bounded functions $\mathcal{S} \times \mathcal{A} \rightarrow [0, H]$ and $\mathcal{S} \times \mathcal{A} \rightarrow [0, 2H/\sigma]$, so that the entropy terms
 496 satisfy $\log |\mathcal{F}|, \log |\mathcal{G}| = \tilde{\mathcal{O}}(SA)$ (Jin et al., 2021). Substituting these quantities into Theorem 1 yields
 497 a tabular regret bound of order $\tilde{\mathcal{O}}(\sqrt{C_{\text{cov}}^2 H^4 (\min\{H, 1/\sigma\})^2 SA K})$. Comparing with results with
 498 a similar coverage notion (He et al., 2025), which has a regret of $\tilde{\mathcal{O}}(\sqrt{C_{\text{vr}} H^4 S^3 A K})$, our algorithm
 499 has a better dependence on S and a worse dependence on H , which indicating the scalability of our
 500 method. Moreover, our algorithm has more applicability with general function approximation.

501 **Remark 5 (Linear TV-RMDPs).** As another special case, we specialized our results to the
 502 d -rectangular linear RMDPs (Ma et al., 2022; Liu et al., 2024) in Appendix D. In particular, when
 503 the robust Bellman operator is linear in a d -dimensional feature map, we adapted the analysis of
 504 Theorem 1 and show that RFL-TV attains $\text{Regret}(K) = \tilde{\mathcal{O}}(\sqrt{C_{\text{cov}}^2 H^4 (\min\{H, 1/\sigma\})^2 d^2 K})$.
 505 Moreover, we show in Lemma K.4 that $C_{\text{cov}} \leq \mathcal{O}(d)$, hence the sample complexity is
 506 $\tilde{\mathcal{O}}(d^4 H^5 (\min\{H, 1/\sigma\})^2 \varepsilon^{-2})$. Such a result is $\mathcal{O}(d^2 H^2)$ -worse than the online learning in linear
 507 robust MDPs in (Liu et al., 2024), and $\mathcal{O}(d^2 H^3)$ -worse than the minimax lower bound (Liu et al.,
 508 2024). However, our results hold for more general non-linear function classes.
 509

Setting	Online / Hybrid	Robustness	Sample complexity
General	Online, (Xie et al., 2022)	No	$\tilde{\mathcal{O}}(C_{\text{cov}} H^3 \log(\mathcal{F} /\delta) \varepsilon^{-2})$
	Online, RFL-TV (ours), Thm. 1	Yes	$\tilde{\mathcal{O}}(C_{\text{cov}}^2 H^5 (\min\{H, 1/\sigma\})^2 \log(\mathcal{F} \mathcal{G} /\delta) \varepsilon^{-2})$
	Lower Bound	N/A	N/A
Tabular	Online, (Azar et al., 2017)	No	$\tilde{\mathcal{O}}(SAH^4 \varepsilon^{-2})$
	Online, (Lu et al., 2024)	Yes	$\tilde{\mathcal{O}}(\min\{H, \sigma^{-1}\} SAH^3 \varepsilon^{-2})$
	Online, (He et al., 2025)	Yes	$\tilde{\mathcal{O}}(C_{\text{vr}} S^3 AH^5 \varepsilon^{-2})$
	Online, RFL-TV (ours), Thm. 1 Lower Bound (Lu et al., 2024)	Yes	$\tilde{\mathcal{O}}(C_{\text{cov}}^2 H^5 (\min\{H, 1/\sigma\})^2 SA \varepsilon^{-2})$
Linear	Online, (He et al., 2023)	No	$\tilde{\mathcal{O}}(d^2 H^4 \varepsilon^{-2})$
	Online, (Liu et al., 2024)	Yes	$\tilde{\mathcal{O}}(d^2 H^3 (\min\{H, 1/\sigma\})^2 \varepsilon^{-2})$
	Hybrid, (Panaganti et al., 2024)	Yes	$\tilde{\mathcal{O}}(\max\{C^2(\pi^*), 1\} d^3 H^3 (\lambda + H)^2 \varepsilon^{-2})$
	Online, RFL-TV (ours), Thm. 2	Yes	$\tilde{\mathcal{O}}(C_{\text{cov}}^2 H^5 (\min\{H, 1/\sigma\})^2 d^2 \varepsilon^{-2})$
	Lower Bound (Liu et al., 2024)	Yes	$\tilde{\mathcal{O}}(d^2 H^2 (\min\{H, 1/\sigma\})^2 \varepsilon^{-2})$

526
 527 Table 1: Comparison under general-function, tabular, and linear settings.
 528
 529

7 CONCLUSION

531 In this work, we introduced RFL-TV, a DR-RL algorithm with general function approximation under
 532 TV-uncertainty set for a purely online setting. The algorithm implements a fitted robust Bellman
 533 update via a functional optimization and replaces state-action bonuses with a global uncertainty
 534 quantifier that more effectively guides exploration. We also identified robust coverability C_{cov} as the
 535 structural condition that governs learnability, yielding sharp, scalable sample-efficiency guarantees.
 536 We further developed a regret bound of our algorithm that does not scale with problem scales,
 537 implying the efficiency and scalability of our method. Reducing to both tabular and d -rectangular
 538 linear RMDP cases, our results are both tight and near-optimal against existing works and minimax
 539 lower bounds, implying the tightness and near-optimality of our results. Our hence algorithm stands
 for the first purely online, sample efficient algorithm for large scale DR-RL.

540 REFERENCES
541

542 Mohammed Amin Abdullah, Hang Ren, Haitham Bou Ammar, Vladimir Milenkovic, Rui Luo,
543 Mingtian Zhang, and Jun Wang. Wasserstein Robust Reinforcement Learning. *arXiv preprint*
544 *arXiv:1907.13196*, 2019.

545 Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire. Taming
546 the monster: A fast and simple algorithm for contextual bandits. In *Proc. International Conference*
547 *on Machine Learning (ICML)*, pp. 1638–1646. PMLR, 2014.

548 Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
549 Algorithms. *CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep*, 32:96, 2019.

550 Christopher G Atkeson and Jun Morimoto. Nonparametric Representation of Policies and Value
551 Functions: A Trajectory-Based Approach. In *Proc. Advances in Neural Information Processing*
552 *Systems (NIPS)*, pp. 1643–1650, 2003.

553 Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-Optimal Regret Bounds for Reinforcement
554 Learning. *Advances in neural information processing systems*, 21, 2008.

555 Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax Regret Bounds for
556 Reinforcement Learning. In *Proceedings of the 34th International Conference on Machine*
557 *Learning*, pp. 263–272. PMLR, July 2017. ISSN: 2640-3498.

558 Kishan Panaganti Badrinath and Dileep Kalathil. Robust reinforcement learning using least squares
559 policy iteration with provable performance guarantees. In *International Conference on Machine*
560 *Learning*, pp. 511–520. PMLR, 2021.

561 Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
562 Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with Large
563 Scale Deep Reinforcement Learning. *arXiv preprint arXiv:1912.06680*, 2019.

564 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training Diffusion
565 Models with Reinforcement Learning. *arXiv preprint arXiv:2305.13301*, 2023.

566 Jose Blanchet, Miao Lu, Tong Zhang, and Han Zhong. Double Pessimism is Provably Efficient for
567 Distributionally Robust Offline Reinforcement Learning: Generic Algorithm and Robust Partial
568 Coverage. *Advances in Neural Information Processing Systems*, 36:66845–66859, 2023.

569 Yuanjiang Cao, Quan Z Sheng, Julian McAuley, and Lina Yao. Reinforcement learning for generative
570 ai: A survey. *arXiv preprint arXiv:2308.14328*, 2023.

571 Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua Zhao,
572 Jinyue Yan, and Yun Li. Survey on Large Language Model-Enhanced Reinforcement Learning:
573 Concept, Taxonomy, and Methods. *IEEE Transactions on Neural Networks and Learning Systems*,
574 2024.

575 Nicoló Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the Generalization Ability of On-Line
576 Learning Algorithms. *Advances in neural information processing systems*, 14, 2001.

577 Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. In
578 *Proc. International Conference on Machine Learning (ICML)*, pp. 1042–1051. PMLR, 2019.

579 Pierre Clavier, Erwan Le Pennec, and Matthieu Geist. Towards Minimax Optimality of Model-based
580 Robust Reinforcement Learning. *arXiv preprint arXiv:2302.05372*, 2023.

581 Jing Dong, Jingwei Li, Baoxiang Wang, and Jingzhao Zhang. Online policy optimization for robust
582 mdp. *arXiv preprint arXiv:2209.13841*, 2022.

583 Simon S Du, Sham M Kakade, Jason D Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and
584 Ruosong Wang. Bilinear classes: A structural framework for provable generalization in rl. *arXiv*
585 *preprint arXiv:2103.10897*, 2021.

594 Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
 595 Gupta, and Jacob Andreas. Guiding Pretraining in Reinforcement Learning with Large Language
 596 Models. In *Proc. International Conference on Machine Learning (ICML)*, pp. 8657–8677. PMLR,
 597 2023.

598 Benjamin Eysenbach, Swapnil Asawa, Shreyas Chaudhari, Sergey Levine, and Ruslan Salakhutdinov.
 599 Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers. *arXiv*
 600 *preprint arXiv:2006.13916*, 2020.

602 Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of
 603 interactive decision making. *arXiv preprint arXiv:2112.13487*, 2021.

604 Debamita Ghosh, George K Atia, and Yue Wang. Provably near-optimal distributionally robust
 605 reinforcement learning in online settings. *arXiv preprint arXiv:2508.03768*, 2025.

607 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1.
 608 MIT press Cambridge, 2016.

609 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial
 610 Examples. *arXiv preprint arXiv:1412.6572*, 2014.

612 Jiafan He, Heyang Zhao, Dongruo Zhou, and Quanquan Gu. Nearly Minimax Optimal Reinforcement
 613 Learning for Linear Markov Decision Processes. In *International Conference on Machine Learning*,
 614 pp. 12790–12822. PMLR, 2023.

616 Yiting He, Zhishuai Liu, Weixin Wang, and Pan Xu. Sample Complexity of Distributionally Robust
 617 Off-Dynamics Reinforcement Learning with Online Interaction. In *Forty-second International
 618 Conference on Machine Learning*, 2025.

619 Joshua Arvind Holla. *On the Off-Dynamics Approach to Reinforcement Learning*. McGill University
 620 (Canada), 2021.

622 Linfang Hou, Liang Pang, Xin Hong, Yanyan Lan, Zhiming Ma, and Dawei Yin. Robust reinforcement
 623 learning with Wasserstein constraint. *arXiv preprint arXiv:2006.00945*, 2020.

624 Jiachen Hu, Han Zhong, Chi Jin, and Liwei Wang. Provable Sim-to-real Transfer in Continuous
 625 Domain with Partial Observations. *arXiv preprint arXiv:2210.15598*, 2022.

627 Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial Attacks
 628 on Neural Network Policies. In *Proc. International Conference on Learning Representations
 629 (ICLR)*, 2017.

630 Garud N Iyengar. Robust Dynamic Programming. *Mathematics of Operations Research*, 30(2):
 631 257–280, 2005.

633 Nan Jiang and Tengyang Xie. Offline reinforcement learning in large state spaces: Algorithms and
 634 guarantees. *Statistical Science*, 2024.

635 Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire.
 636 Contextual decision processes with low Bellman rank are PAC-learnable. In *Proc. International
 637 Conference on Machine Learning (ICML)*, pp. 1704–1713. PMLR, 2017.

639 Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably Efficient Reinforcement
 640 Learning with Linear Function Approximation. In *Conference on learning theory*, pp. 2137–2143.
 641 PMLR, 2020.

642 Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman Eluder Dimension: New Rich Classes of RL
 643 Problems, and Sample-Efficient Algorithms. *Advances in neural information processing systems*,
 644 34:13406–13418, 2021.

646 B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yogamani,
 647 and Patrick Pérez. Deep Reinforcement Learning for Autonomous Driving: A Survey. *IEEE
 648 transactions on intelligent transportation systems*, 23(6):4909–4926, 2021.

648 Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement Learning in Robotics: A Survey. *The*
 649 *International Journal of Robotics Research*, 32(11):1238–1274, 2013.
 650

651 Jernej Kos and Dawn Song. Delving into adversarial attacks on deep policies. In *Proc. International*
 652 *Conference on Learning Representations (ICLR)*, 2017.

653 Tor Lattimore and Csaba Szepesvári. *Bandit Algorithms*. Cambridge University Press, 2020.
 654

655 Gene Li, Pritish Kamath, Dylan J Foster, and Nati Srebro. Understanding the eluder dimension.
 656 *Advances in Neural Information Processing Systems*, 35:23737–23750, 2022a.
 657

658 Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. Deep
 659 reinforcement learning for dialogue generation. *arXiv preprint arXiv:1606.01541*, 2016.

660 Yan Li, Guanghui Lan, and Tuo Zhao. First-order policy optimization for robust markov decision
 661 process. *arXiv preprint arXiv:2209.10579*, 2022b.
 662

663 Zhipeng Liang, Xiaoteng Ma, Jose Blanchet, Jiheng Zhang, and Zhengyuan Zhou. Single-trajectory
 664 distributionally robust reinforcement learning. *arXiv preprint arXiv:2301.11721*, 2023.
 665

666 Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min Sun.
 667 Tactics of Adversarial Attack on Deep Reinforcement Learning Agents. In *Proc. International*
 668 *Joint Conferences on Artificial Intelligence (IJCAI)*, pp. 3756–3762, 2017.

669 Zhishuai Liu and Pan Xu. Minimax Optimal and Computationally Efficient Algorithms for
 670 Distributionally Robust Offline Reinforcement Learning. *Advances in Neural Information*
 671 *Processing Systems*, 37:86602–86654, 2024a.
 672

673 Zhishuai Liu and Pan Xu. Distributionally Robust Off-Dynamics Reinforcement Learning: Provable
 674 Efficiency with Linear Function Approximation. In *International Conference on Artificial*
 675 *Intelligence and Statistics*, pp. 2719–2727. PMLR, 2024b.
 676

677 Zhishuai Liu, Weixin Wang, and Pan Xu. Upper and Lower Bounds for Distributionally Robust
 678 Off-Dynamics Reinforcement Learning. *arXiv preprint arXiv:2409.20521*, 2024.
 679

680 Zijian Liu, Qinxun Bai, Jose Blanchet, Perry Dong, Wei Xu, Zhengqing Zhou, and Zhengyuan
 681 Zhou. Distributionally robust Q-learning. In *Proc. International Conference on Machine Learning*
 682 (*ICML*), pp. 13623–13643. PMLR, 2022.
 683

684 Miao Lu, Han Zhong, Tong Zhang, and Jose Blanchet. Distributionally Robust Reinforcement
 685 Learning with Interactive Data Collection: Fundamental Hardness and Near-Optimal Algorithm.
 686 *The Thirty-eighth Annual Conference on Neural Information Processing Systemss*, 2024.
 687

688 Xiaoteng Ma, Zhipeng Liang, Jose Blanchet, Mingwen Liu, Li Xia, Jiheng Zhang, Qianchuan
 689 Zhao, and Zhengyuan Zhou. Distributionally Robust Offline Reinforcement Learning with Linear
 690 Function Approximation. *arXiv preprint arXiv:2209.06620*, 2022.
 691

692 Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Adversarially Robust
 693 Policy Learning: Active Construction of Physically-Plausible Perturbations. In *2017 IEEE/RSJ*
 694 *International Conference on Intelligent Robots and Systems (IROS)*, pp. 3932–3939. IEEE, 2017.
 695

696 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
 697 Wierstra, and Martin Riedmiller. Playing Atari with deep reinforcement learning. *arXiv preprint*
 698 *arXiv:1312.5602*, 2013.
 699

700 Jun Morimoto and Kenji Doya. Robust Reinforcement Learning. *Neural computation*, 17(2):335–359,
 701 2005.
 702

703 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 704 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 705 instructions with human feedback. *Advances in neural information processing systems*, 35:
 706 27730–27744, 2022.

702 Kishan Panaganti and Dileep Kalathil. Sample Complexity of Robust Reinforcement Learning with
 703 a Generative Model. In *International Conference on Artificial Intelligence and Statistics*, pp.
 704 9582–9602. PMLR, 2022.

705 Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, and Mohammad Ghavamzadeh. Robust Reinforcement
 706 Learning using Offline Data. *Advances in neural information processing systems*, 35:32211–32224,
 707 2022.

708 Kishan Panaganti, Adam Wierman, and Eric Mazumdar. Model-Free Robust ϕ -Divergence
 709 Reinforcement Learning Using Both Offline and Online Data. *arXiv preprint arXiv:2405.05468*,
 710 2024.

711 Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary. Robust
 712 deep reinforcement learning with adversarial attacks. In *Proc. International Conference on
 713 Autonomous Agents and MultiAgent Systems*, pp. 2040–2042, 2018.

714 Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust Adversarial
 715 Reinforcement Learning. In *International conference on machine learning*, pp. 2817–2826.
 716 PMLR, 2017.

717 Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. EPOpt: Learning
 718 Robust Neural Network Policies Using Model Ensembles. In *Proc. International Conference on
 719 Learning Representations (ICLR)*, 2017.

720 Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Yifan Hu, Andreas Krause, and Ilija Bogunovic.
 721 Distributionally robust model-based reinforcement learning with large state spaces. In *International
 722 Conference on Artificial Intelligence and Statistics*, pp. 100–108. PMLR, 2024.

723 R Tyrrell Rockafellar and Roger JB Wets. *Variational analysis*. Springer, 1998.

724 Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
 725 exploration. *Advances in Neural Information Processing Systems*, 26, 2013.

726 Igal Sason and Sergio Verdú. f -Divergence Inequalities. *IEEE Transactions on Information Theory*,
 727 62(11):5973–6006, 2016.

728 Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to
 729 algorithms*. Cambridge university press, 2014.

730 Laixi Shi and Yuejie Chi. Distributionally Robust Model-Based Offline Reinforcement Learning with
 731 Near-Optimal Sample Complexity. *Journal of Machine Learning Research*, 25(200):1–91, 2024.

732 Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, Matthieu Geist, and Yuejie Chi. The Curious Price
 733 of Distributional Robustness in Reinforcement Learning with a Generative Model. *Advances in
 734 Neural Information Processing Systems*, 36:79903–79917, 2023.

735 David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
 736 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
 737 Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
 738 Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
 739 deep neural networks and tree search. *nature*, 529(7587):484–489, 2016.

740 Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-based
 741 rl in contextual decision processes: Pac bounds and exponential improvements over model-free
 742 approaches. In *Conference on learning theory*, pp. 2898–2933. PMLR, 2019.

743 Aviv Tamar, Shie Mannor, and Huan Xu. Scaling up robust MDPs using function approximation. In
 744 *Proc. International Conference on Machine Learning (ICML)*, pp. 181–189. PMLR, 2014.

745 Cheng Tang, Zhishuai Liu, and Pan Xu. Robust Offline Reinforcement Learning with Linearly
 746 Structured f -Divergence Regularization. *arXiv preprint arXiv:2411.18612*, 2024.

747 Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding
 748 Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review. *arXiv
 749 preprint arXiv:2407.13734*, 2024.

756 Eugene Vinitsky, Yuqing Du, Kanaad Parvate, Kathy Jang, Pieter Abbeel, and Alexandre Bayen.
 757 Robust reinforcement learning using adversarial populations. *arXiv preprint arXiv:2008.01825*,
 758 2020.

759 Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle
 760 Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schriftwieser, et al. Starcraft II: A
 761 new challenge for reinforcement learning. *arXiv preprint arXiv:1708.04782*, 2017.

762 He Wang, Laixi Shi, and Yuejie Chi. Sample Complexity of Offline Distributionally Robust Linear
 763 Markov Decision Processes. *arXiv preprint arXiv:2403.12946*, 2024a.

764 Lu Wang, Wei Zhang, Xiaofeng He, and Hongyuan Zha. Supervised Reinforcement Learning with
 765 Recurrent Neural Network for Dynamic Treatment Recommendation. In *Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 2447–2456,
 766 2018.

767 Ruosong Wang, Dean P Foster, and Sham M Kakade. What are the statistical limits of offline rl with
 768 linear function approximation? *arXiv preprint arXiv:2010.11895*, 2020a.

769 Ruosong Wang, Russ R Salakhutdinov, and Lin Yang. Reinforcement learning with general value
 770 function approximation: Provably efficient approach via bounded eluder dimension. *Advances in
 771 Neural Information Processing Systems*, 33:6123–6135, 2020b.

772 Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. A Finite Sample Complexity Bound
 773 for Distributionally Robust Q-learning. In *International Conference on Artificial Intelligence and
 774 Statistics*, pp. 3370–3398. PMLR, 2023a.

775 Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. On the foundation of distributionally
 776 robust reinforcement learning. *arXiv preprint arXiv:2311.09018*, 2023b.

777 Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. Sample Complexity of
 778 Variance-Reduced Distributionally Robust Q-Learning. *Journal of Machine Learning Research*,
 779 25(341):1–77, 2024b.

780 Yining Wang, Ruosong Wang, Simon S Du, and Akshay Krishnamurthy. Optimism in reinforcement
 781 learning with generalized linear function approximation. *arXiv preprint arXiv:1912.04136*, 2019.

782 Yue Wang and Shaofeng Zou. Online Robust Reinforcement Learning with Model Uncertainty.
 783 *Advances in Neural Information Processing Systems*, 34:7193–7206, 2021.

784 Yue Wang, Zhongchang Sun, and Shaofeng Zou. A Unified Principle of Pessimism for Offline
 785 Reinforcement Learning under Model Mismatch. *Advances in Neural Information Processing
 786 Systems*, 37:9281–9328, 2024c.

787 Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust Markov Decision Processes.
 788 *Mathematics of Operations Research*, 38(1):153–183, 2013.

789 Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
 790 pessimism for offline reinforcement learning. *arXiv preprint arXiv:2106.06926*, 2021.

791 Tengyang Xie, Dylan J Foster, Yu Bai, Nan Jiang, and Sham M Kakade. The role of coverage in
 792 online reinforcement learning. *arXiv preprint arXiv:2210.04157*, 2022.

793 Huan Xu and Shie Mannor. Distributionally robust Markov decision processes. In *Proc. Advances in
 794 Neural Information Processing Systems (NIPS)*, pp. 2505–2513, 2010.

795 Zaiyan Xu, Kishan Panaganti, and Dileep Kalathil. Improved Sample Complexity Bounds for
 796 Distributionally Robust Reinforcement Learning. In *International Conference on Artificial
 797 Intelligence and Statistics*, pp. 9728–9754. PMLR, 2023.

798 Wenhao Yang, Liangyu Zhang, and Zhihua Zhang. Toward Theoretical Understandings of Robust
 799 Markov Decision Processes: Sample Complexity and Asymptotics. *The Annals of Statistics*, 50(6):
 800 3223–3248, 2022.

810 Wenhao Yang, Han Wang, Tadashi Kozuno, Scott M Jordan, and Zhihua Zhang. Robust markov
811 decision processes without model estimation. *arXiv preprint arXiv:2302.01248*, 2023.

812
813 Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near
814 optimal policies with low inherent bellman error. In *International Conference on Machine Learning*,
815 pp. 10978–10989. PMLR, 2020.

816 Daochen Zha, Jingru Xie, Wenye Ma, Sheng Zhang, Xiangru Lian, Xia Hu, and Ji Liu. DouZero:
817 Mastering DouDizhu with Self-Play Deep Reinforcement Learning. In *Proc. International*
818 *Conference on Machine Learning (ICML)*, pp. 12333–12344. PMLR, 2021.

819 Wenhao Zhan, Baihe Huang, Audrey Huang, Nan Jiang, and Jason D Lee. Offline reinforcement
820 learning with realizability and single-policy concentrability. *arXiv preprint arXiv:2202.04634*,
821 2022.

822 Runyu Zhang, Yang Hu, and Na Li. Soft Robust MDPs and Risk-Sensitive MDPs: Equivalence,
823 Policy Gradient, and Sample Complexity. *arXiv preprint arXiv:2306.11626*, 2023.

824 Yinan Zhang, Eric Tzeng, Yilun Du, and Dmitry Kislyuk. Large-scale reinforcement learning for
825 diffusion models. In *European Conference on Computer Vision*, pp. 1–17. Springer, 2024.

826 Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement learning
827 for linear mixture Markov decision processes. *arXiv preprint arXiv:2012.08507*, 2020.

828 Ruida Zhou, Tao Liu, Min Cheng, Dileep Kalathil, PR Kumar, and Chao Tian. Natural actor-critic
829 for robust reinforcement learning with function approximation. In *Proc. Advances in Neural*
830 *Information Processing Systems (NeurIPS)*, volume 36, 2024.

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 A RELATED WORKS: NON-ROBUST RL WITH FUNCTIONAL APPROXIMATION
865866 Function approximation has been widely studied in non-robust RL. While extensive studies are
867 developed for offline RL with general function approximation, e.g., (Zhan et al., 2022; Jiang & Xie,
868 2024; Wang et al., 2020a), we mainly discuss online RL here, which requires the agent to explore
869 while learning actively.870 A foundational direction is the development of complexity measures that capture when online RL
871 with function approximation is tractable. The Eluder dimension (Li et al., 2022a; Russo & Van Roy,
872 2013) provides a measure of the sequential complexity of a function class. Online RL algorithms have
873 been developed that use optimism based on confidence sets constructed around the true value function,
874 and the size of these confidence sets and the magnitude of the exploration bonus are constructed
875 based on the Eluder dimension (Wang et al., 2020b).876 Since the Eluder dimension merely captures the complexity of the function class in isolation, other
877 measures have been proposed that capture the interaction between \mathcal{F} and the MDP dynamics. Bellman
878 rank (Jiang et al., 2017) and Witness rank (Sun et al., 2019) are later then developed to capture these
879 interactions, and are later unified by the Bellman–Eluder dimension Jin et al. (2021). It directly
880 measures the complexity relevant to value-based RL, i.e., the difficulty of learning to minimize
881 Bellman errors.882 More recently, attention has turned to coverage conditions as the key lens for understanding
883 learnability in online RL. (Xie et al., 2022) introduced the notion of coverability, which provides a
884 sharp characterization of when exploration with function approximation is sample-efficient. Their
885 results demonstrate that coverability is both necessary and sufficient, thereby subsuming earlier
886 assumptions such as concentrability or bounded Bellman rank. Complementary hardness results
887 (Foster et al., 2021; Du et al., 2021) show that, without such structural or coverage conditions, online
888 RL in rich-observation environments may require exponentially many samples, highlighting the limits
889 of tractability.890 Our work situates itself in this online regime, explicitly addressing exploration rather than assuming
891 exploratory data. However, the non-robust guarantees above do not transfer directly to our robust
892 setting. Robust RL replaces a single nominal kernel with an uncertainty set and a worst-case Bellman
893 operator, which breaks several conveniences used by non-robust analyses: (i) Bellman errors are
894 non-linear and invalidates the usual variance-style error accounting: In non-robust RL, the kernel is
895 fixed so the Bellman error can be captured through standard concentration inequalities; However, in
896 robust case, the error propagation requires “functional transfer” between value functions and the dual
897 variables to be quantified; (ii) Confidence sets and bonuses must control both sampling noise and
898 adversarial model shift induced by the worst-case kernel: In non-robust RL, the confidence set only
899 considers data limitations, whereas we additionally consider the uncertainties from the uncertainty
900 set; (iii) Since the mismatch between the nominal and the worst-case kernels, our analysis requires
901 additional structural notions (e.g., coverability) to capture such mismatches. We thus develop new
902 concentration arguments that commute with the supremum over models, and new pessimism/optimism
903 couplings to control duality gaps. In short, our robust online RL introduces adversarial model coupling
904 and functional transfer effects that require genuinely different analysis and algorithmic design, which
905 are not directly achievable from the non-robust studies.906 B NUMERICAL EXPERIMENTS
907908 B.1 EXPERIMENTAL SETUP ON CARTPOLE
909910 **Environment.** We consider the standard CartPole-v1 benchmark with a discrete action space.
911 The state $s \in \mathbb{R}^4$ contains the cart position, cart velocity, pole angle, and pole angular velocity,
912 and the action space is $\mathcal{A} = \{0, 1\}$, corresponding to applying a fixed horizontal force to the left
913 or right. Episodes terminate either when the pole falls beyond the allowed angle or when the time
914 limit is reached (maximum horizon $H = 500$). Rewards are the standard per-step rewards from the
915 environment, and the agent aims to maximize the undiscounted return over each episode.916 **Robustness evaluation.** We are interested in how the learned policies behave under several kinds
917 of mismatch between training and test conditions. Policies are always *trained on the nominal*

918 *environment* and are evaluated under the following perturbation families, applied only at evaluation
 919 time:

920

- 921 • **Action perturbation.** At each time step, with probability $\rho \in [0, 1]$ the environment ignores
 922 the agent’s action and instead executes a uniformly random action in \mathcal{A} . We evaluate over a
 923 grid of perturbation levels and, for the plots in the main text, we focus on

$$\Gamma_{\text{act}} = \{0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0\},$$

924 where $\rho = 0$ corresponds to the nominal case (used internally for sanity checks but not
 925 always displayed in the figures).

926

- 927 • **Force-magnitude perturbation.** The horizontal push force applied in the dynamics is
 928 multiplied by a scalar factor η_{force} . We evaluate the learned policies on a finite set of scale
 929 values $\eta_{\text{force}} \in \Gamma_{\text{force}}$ that includes values

$$\Gamma_{\text{force}} = \{0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0\},$$

930 where smaller values correspond to progressively weaker control inputs, and $\eta_{\text{force}} = 1.0$ is
 931 the nominal strength (used for training but not repeated in this sweep).

932

- 933 • **Pole-length perturbation.** The physical pole length is multiplied by a scalar factor η_{len} . At
 934 the configuration level, we specify the effective evaluation grid as

$$\Gamma_{\text{len}} = \{0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0\},$$

935 covering shorter and longer poles relative to the nominal length.

936 In all settings, training is performed on the nominal environment ($\rho = 0, \eta_{\text{force}} = 1, \eta_{\text{len}} = 1$), while
 937 robustness is measured by evaluating the final policy on perturbed environments from the above
 938 families. Unless otherwise stated, each reported return corresponds to the average over 20 evaluation
 939 episodes and 3 independent random seeds $\{0, 1, 2\}$; we also plot 95% confidence intervals computed
 940 across seeds and episodes.

941 **Practical RFL-TV agent.** For CartPole we use a purely value-based implementation of RFL-TV
 942 with a discrete action space. The agent maintains two Q-networks Q_1, Q_2 (for Double Q-learning)
 943 and their target copies \bar{Q}_1, \bar{Q}_2 , together with a dual network g and its target copy \bar{g} . All networks are
 944 multilayer perceptrons with ReLU activations:

945

- 946 • **Q-networks.** We maintain two Q-networks Q_1 and Q_2 . Each network takes the state $s \in \mathbb{R}^4$
 947 as input and outputs a vector in $\mathbb{R}^{|\mathcal{A}|}$, one value per discrete action ($|\mathcal{A}| = 2$ for CartPole).
 948 The architecture is a two-layer fully connected MLP with hidden sizes (128, 128) and ReLU
 949 activations, followed by a linear output layer. The scalar value $Q_i(s, a)$ is obtained by
 950 indexing the corresponding component of this output vector.
- 951 • **Dual network.** The dual function $g(s, a)$ is parameterized by a network with the same
 952 backbone as the Q-networks: it takes $s \in \mathbb{R}^4$ as input, passes it through two fully connected
 953 ReLU layers with (128, 128) units, and produces a vector in $\mathbb{R}^{|\mathcal{A}|}$, one value per action.
 954 The output is passed through a sigmoid and scaled so that $g(s, a) \in [0, 10]$ for all (s, a) ,
 955 enforcing non-negativity and preventing numerical blow-up in the dual updates.

956 **Training protocol and robustness hyper-parameters.** RFL-TV is trained off-policy on
 957 CartPole-v1 using a replay buffer and an ε -greedy exploration strategy. Unless otherwise
 958 specified, we fix the discount factor to $\gamma = 0.99$ and use soft target updates with rate $\tau = 0.005$ for
 959 all target networks. Transitions are stored in a replay buffer of size 2×10^5 , from which we sample
 960 mini-batches of size 256 and perform one gradient update per environment step. The Q-networks and
 961 dual network are optimized with Adam at a learning rate of 3×10^{-4} . Exploration uses ε -greedy
 962 action selection, where the exploration rate is initialized at $\varepsilon_{\text{start}} = 1.0$ and decayed linearly to
 963 $\varepsilon_{\text{end}} = 0.05$ over the first 200 episodes, and then held fixed at 0.05 for the remainder of training.
 964 Each configuration is trained for $K = 500$ episodes, and we report performance statistics over three
 965 random seeds $\{0, 1, 2\}$. The robust RFL-TV backup is parameterized by a TV-radius $\sigma \in [0, 1]$ and a
 966 slack parameter $\beta \geq 0$ that controls how strictly the dual constraint is enforced. On CartPole, we
 967 sweep $\sigma \in \{0.0, 0.2, 0.3, 0.4, 0.5, 0.6\}$ and treat the slack parameter β as a scalar hyperparameter

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 2: Training hyper-parameters for RFL-TV on CartPole-v1.

Parameter	Symbol	Value
Discount factor	γ	0.99
Target update rate	τ	0.005
Replay buffer size	$ \mathcal{D} $	2×10^5 transitions
Mini-batch size	B	256
Q-network learning rate	lr_Q	3×10^{-4}
Dual-network learning rate	lr_g	3×10^{-4}
Exploration start	$\varepsilon_{\text{start}}$	1.0
Exploration end	ε_{end}	0.05
Epsilon decay horizon	T_ε	200 episodes
Gradient updates per step	—	1
Training episodes	K	500
Evaluation episodes per configuration	—	20
Random seeds	—	{0, 1, 2}
TV-robustness radii	σ	{0.0, 0.2, 0.3, 0.4, 0.5, 0.6}
Slack parameter	β	{0.0, 0.5, 1.0}

Table 3: Network architectures for RFL-TV on CartPole.

Network	Hidden layers
Q-network Q_1, Q_2	(128, 128) (ReLU)
Dual network g (default)	(128, 128) (ReLU)
Dual network g (capacity sweep)	(64, 64)/ (128, 128)/ (256, 256) (ReLU)

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
controlling how strictly we enforce the dual Bellman constraint. After normalizing rewards and values so that the dual residual has typical scale $\mathcal{O}(1)$, we sweep $\beta \in \{0.0, 0.5, 1.0\}$, spanning hard ($\beta = 0$) to moderately relaxed ($\beta = 1$) constraints, and report the best-performing setting. In our experiments, the best choice is $\beta = 0.0$ under action perturbations and $\beta = 0.5$ under force-magnitude and pole-length perturbations. The numerical values of all optimization hyper-parameters and network architectures are summarized in Tables 2 and 3.

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Practical RFL-TV update (CartPole, discrete). For completeness, Algorithm 2 summarizes the training loop for the discrete practical RFL-TV agent used in the CartPole experiments. The pseudocode follows our implementation: we use Double Q-learning with a dual network that approximates the robust inner optimization under total variation, and we incorporate the slack parameter β by clipping the dual residual inside a quadratic penalty.

B.2 RFL-TV vs. FUNCTIONAL APPROXIMATION BENCHMARKS: GAINS UNDER SHIFT

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Figure 1 compares RFL-TV to three function-approximation baselines: DQN, the value-function method GOLF (Xie et al., 2022), and a dual-augmented variant GOLF-DUAL, which shares the same dual architecture as RFL-TV but is run with $\sigma = 0$. All three baselines are trained without explicit distributional robustness and thus correspond to the non-robust ($\sigma = 0$) setting. For RFL-TV, we fix the uncertainty radius to the value that achieves the best nominal CartPole performance on our σ grid, selecting $\sigma = 0.6$ for action perturbations, $\sigma = 0.5$ for force-magnitude perturbations, and $\sigma = 0.5$ for pole-length perturbations.

1020
1021
1022
1023
1024
1025
Across all three perturbation families, RFL-TV (with its best-performing $\sigma > 0$) consistently dominates the non-robust functional approximation baselines. Under *action perturbations*, for moderate noise levels $\rho \in [0.2, 0.5]$, RFL-TV achieves roughly 30–60% higher average return than DQN and about 15–30% higher than the best non-robust value-based baseline, with performance at $\rho \approx 0.3$ nearly twice that of DQN. For *force-magnitude shifts* of 40–80% from nominal, RFL-TV maintains average returns of roughly 150–400, while DQN stays below about 260 and GOLF/GOLF-DUAL lie mostly in the 60–380 range, corresponding to roughly $\approx 1.5\text{--}3\times$ higher

1026 Algorithm 2: Practical RFL-TV for CartPole

1027 1: **Inputs:** TV radius σ , slack β , discount γ , target rate τ , batch size B , episodes K , horizon H ,
1028 exploration schedule $(\varepsilon_{\text{start}}, \varepsilon_{\text{end}}, K_{\text{decay}})$.

1029 2: Initialize replay buffer $\mathcal{D} \leftarrow \emptyset$.

1030 3: Initialize Q-networks Q_1, Q_2 and dual network g ; set target networks $\bar{Q}_i \leftarrow Q_i$ for $i = 1, 2$ (and
1031 optionally $\bar{g} \leftarrow g$).

1032 4: **for** $k = 1, \dots, K$ **do**

1033 5: Set ε_k by linearly decaying from $\varepsilon_{\text{start}}$ to ε_{end} over K_{decay} episodes, then clamping.

1034 6: Reset environment and observe s_0 .

1035 7: **for** $t = 0, \dots, H - 1$ **do**

1036 8: With prob. ε_k sample a_t uniformly; otherwise

1037
$$a_t = \arg \max_a \min\{Q_1(s_t, a), Q_2(s_t, a)\}.$$

1038

1039 9: Execute a_t , observe (r_t, s_{t+1}, d_t) , and store $(s_t, a_t, r_t, s_{t+1}, d_t)$ in \mathcal{D} .

1040 10: **if** $|\mathcal{D}| \geq B$ **then**

1041 11: Sample minibatch $\{(s, a, r, s', d)\}_{j=1}^B$ from \mathcal{D} .

1042 *** **Target value (Double Q)** ***

1043 12: Compute $\bar{Q}_i(s', \cdot)$, $i = 1, 2$, and update

1044
$$v_{\text{next}}(s') = \max_{a'} \min\{\bar{Q}_1(s', a'), \bar{Q}_2(s', a')\}.$$

1045

1046 *** **Dual update with slack β** ***

1047 13: Evaluate $g(s, a)$ and define

1048
$$\text{dual_term}(s, a) = (g(s, a) - v_{\text{next}}(s'))_+ - (1 - \sigma) g(s, a).$$

1049

1050

1051 14: Compute residual

1052
$$r_{\text{dual}}(s, a) = |\text{dual_term}(s, a)| - \beta, \quad \tilde{r}_{\text{dual}}(s, a) = \max\{r_{\text{dual}}(s, a), 0\},$$

1053 and minimize

1054
$$L_g = \mathbb{E}[\tilde{r}_{\text{dual}}(s, a)^2]$$

1055 w.r.t. the parameters of g (one gradient step).

1056 *** **Q-update using updated g** ***

1057 15: Recompute

1058
$$\text{dual_term}^{\text{new}}(s, a) = (g(s, a) - v_{\text{next}}(s'))_+ - (1 - \sigma) g(s, a),$$

1059

1060 and form targets

1061
$$y = r + (1 - d) \gamma (v_{\text{next}}(s') + \text{dual_term}^{\text{new}}(s, a)).$$

1062

1063

1064 16: Compute $Q_i(s, a)$, $i = 1, 2$, and minimize

1065
$$L_Q = \mathbb{E}[(Q_1(s, a) - y)^2 + (Q_2(s, a) - y)^2]$$

1066 w.r.t. the parameters of Q_1, Q_2 (one gradient step).

1067 17: Soft-update targets: $\bar{Q}_i \leftarrow (1 - \tau) \bar{Q}_i + \tau Q_i$, $i = 1, 2$,
1068 and optionally: $\bar{g} \leftarrow (1 - \tau) \bar{g} + \tau g$.

1069 18: **end if**

1070 19: **if** $d_t = 1$ **then**

1071 20: **break**

1072 21: **end if**

1073 22: **end for**

1074 23: **end for**

1075 24: **Return** greedy policy: $\pi(s) = \arg \max_a \min\{Q_1(s, a), Q_2(s, a)\}.$

1076

1077

1078

1079

1080 returns than DQN at severe shifts ($\geq 60\%$) and typically a 5–15% gain over the GOLF baselines
 1081 around the 40–50% shift region. For *pole-length changes* between 25% and 200% of nominal,
 1082 RFL-TV stays near 500 reward throughout, while the best non-robust baseline ranges between ≈ 330
 1083 and 480, yielding about 5–50% higher return depending on the shift. Overall, for a fixed function class,
 1084 turning on robustness in the Bellman update (via $\sigma > 0$ and the dual term) yields substantially better
 1085 robustness to both action noise and dynamics misspecification than any of the non-robust functional
 1086 approximation baselines. These trends also highlight that robustness is inherently σ -dependent: for a
 1087 fixed training robustness level, performance eventually degrades as the test-time perturbation grows,
 1088 so maintaining high returns under stronger shifts typically requires training with a larger σ and, in
 1089 practice, possibly a more expressive function class.

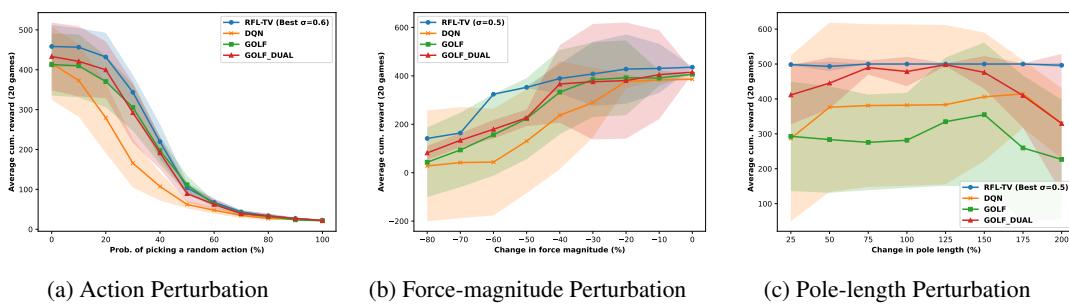


Figure 1: RFL-TV vs. Functional Approximation Algorithms

B.3 RFL-TV vs. ONLINE TABULAR TV-RMDP

Figure 2 evaluates how closely our practical RFL-TV implementation matches an ideal TV-robust planner by comparing it to OPROVI-TV (Lu et al., 2024), a tabular algorithm that exactly solves the TV-robust Bellman equations for a given radius σ . Although OPROVI-TV is restricted to small state spaces such as CartPole, it serves as a strong oracle-style baseline for TV-robust planning. In contrast, our practical RFL-TV implementation operates with neural function classes and sample-based updates, so its per-iteration computational cost depends on the network sizes, batch size, and action-space cardinality A , but *not* on the number of states S , making it applicable to large-scale problems where typically $S \gg A$. Across action perturbations and dynamics perturbations (force magnitude and pole length), RFL-TV with $\sigma \in \{0.4, 0.6\}$ consistently matches, and often exceeds the returns of OPROVI-TV at the same σ .

For action perturbations (random-action probability $\rho \in [0.3, 0.7]$), RFL-TV with $\sigma = 0.6$ achieves between roughly 100% and 400% higher average return than OPROVI-TV, while $\sigma = 0.4$ yields gains on the order of 30%–200% depending on the noise level; the two methods converge to similar near-random performance only as ρ approaches 1. Under force-magnitude perturbations, RFL-TV with $\sigma = 0.6$ improves over OPROVI-TV by about 100%–300% at large changes (40%–80% deviation from nominal), and $\sigma = 0.4$ still offers roughly 30%–150% gains. For pole-length perturbations, RFL-TV with $\sigma = 0.6$ maintains returns that are typically 150%–300% higher than the tabular baseline over most of the tested range, whereas $\sigma = 0.4$ yields about 30%–150% improvements. Overall, these trends indicate that a simple two-layer ReLU MLP (with 128–256 hidden units for both Q and dual networks) can closely track—and often outperform—the robust value structure computed by an exact tabular TV-RMDP solver, while enjoying computational complexity that scales with network size and A rather than S , which is particularly advantageous in regimes where $S \gg A$.

B.4 BALANCING ROBUSTNESS RADIUS AND DUAL-NETWORK CAPACITY

Figure 3 examines how the TV robustness radius σ and the dual-network width ξ_{dual} jointly shape the performance of RFL-TV. For each perturbation family (action noise, force-magnitude scaling, and pole-length scaling), we vary ξ_{dual} over two-layer MLPs with hidden sizes (64, 64), (128, 128), and (256, 256) and evaluate RFL-TV for $\sigma \in \{0.2, 0.4, 0.6\}$ at a representative perturbation level. Note that enlarging the dual hidden size can only decrease the approximation gap ξ_{dual} to the ideal dual

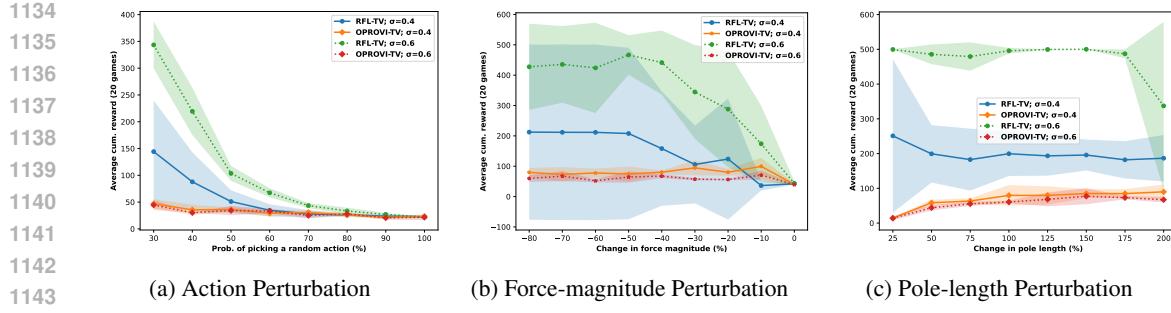
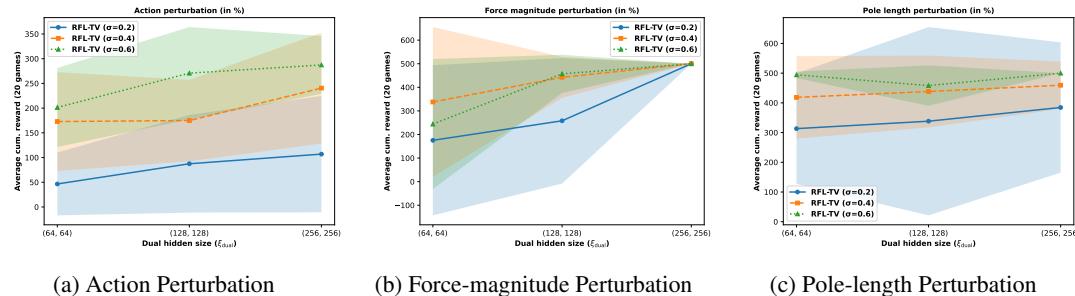


Figure 2: RFL-TV vs. OPROVI-TV (Tabular).

optimizer; in other words, we can view the dual width as a structural knob that monotonically reduces the realizability constant ξ_{dual} . Across all three families, increasing the dual capacity markedly improves robustness: moving from $(64, 64)$ to $(256, 256)$ yields roughly 40%–120% higher average return under action perturbations, about 50%–180% gains for force–magnitude shifts, and roughly 100%–250% gains for pole–length perturbations. At any fixed ξ_{dual} , larger robustness radii clearly help: compared to $\sigma = 0.2$, using $\sigma = 0.6$ improves returns by about 60%–160% under action noise, 30%–80% under force–magnitude changes, and 50%–150% under pole–length changes, with $\sigma = 0.4$ typically lying in between. This behaviour is natural: when σ is too small, the uncertainty set remains close to the nominal dynamics and the dual term contributes less, so the policy tends to overfit to the unperturbed environment and degrades sharply under shift. Larger radii ($\sigma \approx 0.4$ –0.6), together with a sufficiently expressive dual network, force the optimizer to hedge against adversarial transitions, leading to policies that are more conservative around failure modes yet still high-reward under the moderately perturbed environments we evaluate on. In practice, these results suggest a simple tuning recipe: increase ξ_{dual} until the robust return curve flattens, and select σ in a moderate range where performance gains saturate (here around 0.4–0.6), thereby jointly controlling approximation quality and the strength of robustness.

Figure 3: RFL-TV: uncertainty level σ vs. Uniform dual-approximation error ξ_{dual} .

C PROOF OF THE MAIN RESULTS

Assumption 3 ((Panaganti et al., 2022; 2024)). *For all $f \in \mathcal{F}$ and any policy π , there exists a uniform constant ξ_{dual} such that*

$$\inf_{g \in \mathcal{G}} \text{Dual}_{\text{loss}}(g; f) - \inf_{g \in \mathcal{L}^1(\mu^\pi)} \text{Dual}_{\text{loss}}(g; f) \leq \xi_{\text{dual}},$$

where μ^π is the visitation distribution induced by π under P^* .

This assumption is not restrictive. Specially, note that \mathcal{L}^1 can be approximated by deep/wide neural networks (Goodfellow et al., 2016), which ensures Assumption 3 with such neural network classes.

We denote the robust Bellman operator as

$$[\mathcal{T}^\sigma f](s, a) = r(s, a) - \inf_{\eta \in [0, 2H/\sigma]} \left\{ \mathbb{E}_{s' \in P_h^*(s, a)} \left[\left(\eta - \max_{a'} f(s', a') \right)_+ \right] - (1 - \sigma) \eta \right\}. \quad (13)$$

1188 And we define the empirical duality loss as:
 1189
 1190 $\widehat{\text{Dual}}_{loss}(g; f) = \sum_{(s, a, s') \sim \mathcal{D}} ((g(s, a) - \max_{a'} f(s', a'))_+ - (1 - \sigma)g(s, a)),$ (14)
 1191
 1192

C.1 PROOF OF THEOREM 1

1194 *Proof.* We will now prove Theorem 1. To prove this, we first highlight the role of robust coverability,
 1195 as defined in Definition 3, in limiting the complexity of exploration.
 1196

1197 • **Equivalence between robust coverability and cumulative visitation.** A key idea
 1198 underlying the proof of Theorem 1 is the equivalence between robust coverability and
 1199 a quantity we term *cumulative visitation* under the worst-transition kernel P^ω as defined in
 1200 Definition 2. We define the cumulative visitation as given below:

1201 **Definition 4** (Cumulative Visitation). We define the cumulative visitation at step h as

$$1203 C_h^{\text{cv}} := \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}} \sup_{\pi \in \Pi} d_h^{\pi, P^\omega}(s, a). \quad (15)$$

1205 The cumulative visitation C_h^{cv} reflects the variation in visitation probabilities under the
 1206 worst-kernel for policies in the class Π . More specifically, it captures the total worst-case
 1207 probability mass that policies in Π can allocate across the state-action space, under all
 1208 admissible transition kernels. When this quantity is low, it indicates that policies in Π largely
 1209 overlap in the regions they visit, limiting exploration complexity. Conversely, a high value
 1210 implies that policies can spread mass across disjoint state-action pairs, making exploration
 1211 harder. By Lemma T.3, we have

$$1212 C_{\text{rcov}} = \max_{h \in [H]} C_h^{\text{cv}}. \quad (16)$$

1214 • **Relate Regret to Robust Average Bellman Error:** According to Assumption 1, we can
 1215 guarantee $f^{(k)}$ is optimistic. Based on this optimistic algorithm, we will now relate the
 1216 regret to the robust average Bellman error under the learner's sequence of policies.

1218 For any Markov kernel $Q = \{Q_h(\cdot | s, a)\}_{h=1}^H \in \mathcal{P}$ and by the definition of the occupancy
 1219 measure of (s_h, a_h) as $d_h^{\pi^f, Q}$ induced by π^f and Q , we define the robust average Bellman
 1220 error at level h by

$$1222 \varepsilon_{TV}^\sigma(f, \pi^f, h; Q) := \mathbb{E}_{(s_h, a_h) \sim d_h^{\pi^f, Q}} \left[f_h(s_h, a_h) - [\mathcal{T}_h^\sigma f_{h+1}](s_h, a_h) \right]. \quad (17)$$

1224 By applying Lemma K.1 and by denoting $d^{\pi^{f^{(k)}}, P^\omega} := d^{(k), P^\omega}$, we can relate regret to the
 1225 robust average Bellman error as

$$\begin{aligned} 1227 \text{Regret}(K) &\leq \sum_{k=1}^K \sum_{h=1}^H \mathbb{E}_{(s_h, a_h) \sim d_h^{(k), P^\omega}} \left[f_h^{(k)}(s_h, a_h) - [\mathcal{T}_h^\sigma f_{h+1}^{(k)}](s_h, a_h) \right], \\ 1228 &= \sum_{k=1}^K \sum_{h=1}^H \mathbb{E}_{(s_h, a_h) \sim d_h^{(k), P^\omega}} \left[f_h^{(k)}(s_h, a_h) - \left[\mathcal{T}_{g_{f_h^{(k)}}, h}^\sigma f_{h+1}^{(k)} \right](s_h, a_h) \right. \\ 1229 &\quad \left. + \left[\mathcal{T}_{g_{f_{h+1}^{(k)}}, h}^\sigma f_{h+1}^{(k)} \right](s_h, a_h) - [\mathcal{T}_h^\sigma f_{h+1}^{(k)}](s_h, a_h) \right], \\ 1230 &= \text{I} + \text{II}, \end{aligned} \quad (18)$$

1236 where we denote

$$1238 \text{I} := \sum_{k=1}^K \sum_{h=1}^H \mathbb{E}_{(s_h, a_h) \sim d_h^{(k), P^\omega}} \left[f_h^{(k)}(s_h, a_h) - \left[\mathcal{T}_{g_{f_h^{(k)}}, h}^\sigma f_{h+1}^{(k)} \right](s_h, a_h) \right]. \quad (19)$$

$$1240 \text{II} := \sum_{k=1}^K \sum_{h=1}^H \mathbb{E}_{(s_h, a_h) \sim d_h^{(k), P^\omega}} \left[\left[\mathcal{T}_{g_{f_{h+1}^{(k)}}, h}^\sigma f_{h+1}^{(k)} \right](s_h, a_h) - [\mathcal{T}_h^\sigma f_{h+1}^{(k)}](s_h, a_h) \right]. \quad (20)$$

1242 • **Bound of Π via Robust Coverability:** To bound Π , let us define $\Delta_{k,h}$ as
 1243

$$1244 \Delta_{k,h}(s, a) := [\mathcal{T}_{\widehat{g}_{f_{h+1}^{(k)}}}^\sigma f_{h+1}^{(k)}](s, a) - [\mathcal{T}_h^\sigma f_{h+1}^{(k)}](s, a). \\ 1245$$

1246 Then, Π can be written as

$$1247 \Pi := \sum_{k=1}^K \sum_{h=1}^H \mathbb{E}_{(s_h, a_h) \sim d_h^{(k), P^\omega}} [\Delta_{k,h}(s_h, a_h)]. \quad (21) \\ 1248 \\ 1249$$

1250 To bound the term Π , we follow the following steps:
 1251

1252 **Step 1: Density ratio control.** By Holder's inequality and using the fact that $\mathbb{E}[X] \leq \mathbb{E}[|X|]$,
 1253 for any $\mu_h^\pi \in \Delta(\mathcal{S} \times \mathcal{A})$, we get

$$1254 \mathbb{E}_{d_h^{(k), P^\omega}} [\Delta_{k,h}] \leq \left\| \frac{d_h^{(k), P^\omega}}{\mu_h^\pi} \right\|_\infty \|\Delta_{k,h}\|_{1, \mu_h^\pi}, \quad (22) \\ 1255 \\ 1256$$

1257 where $\|\phi\|_{1, \mu^\pi} := \sum_{s,a} \mu^\pi(s, a) |\phi(s, a)|$. According to Definition 3, we have

$$1258 \left\| \frac{d_h^{(k), P^\omega}}{\mu_h^\pi} \right\|_\infty \leq C_{\text{rcov}}. \quad (23) \\ 1259 \\ 1260$$

1261 **Step 2: Apply Lemma K.3.** By Lemma K.3, applied with μ_h^π and $f = f_{h+1}^{(k)}$ and by the
 1262 choice of ξ_{dual} as ξ_{dual}/KH , and using a union bound over (k, h) , we obtain
 1263

$$1264 \|\Delta_{k,h}\|_{1, \mu_h^\pi} = \mathcal{O} \left(\frac{H}{\sigma} \sqrt{\frac{2 \log(8|\mathcal{G}||\mathcal{F}|KH/\delta)}{|\mathcal{D}_h^{(k)}|}} + \frac{\xi_{\text{dual}}}{KH} \right). \quad (24) \\ 1265 \\ 1266$$

1267 **Step 3: Combine bounds.** Hence, by combining eq. 22, eq. 23 and eq. 24, we get

$$1268 \mathbb{E}_{d_h^{(k), P^\omega}} [\Delta_{k,h}] = \mathcal{O} \left(C_{\text{rcov}} \frac{H}{\sigma} \sqrt{\frac{2 \log(8|\mathcal{G}||\mathcal{F}|KH/\delta)}{|\mathcal{D}_h^{(k)}|}} + C_{\text{rcov}} \frac{\xi_{\text{dual}}}{KH} \right). \quad (25) \\ 1269 \\ 1270 \\ 1271 \\ 1272$$

1273 **Step 4: Summing over $k, h \in [K] \times [H]$.** Summing the bound in eq. 25 over $k \in [K]$ and
 1274 $h \in [H]$ yields the desired result:
 1275

$$1276 \Pi = \mathcal{O} \left(C_{\text{rcov}} \frac{H}{\sigma} \sqrt{2 \log \left(\frac{8|\mathcal{G}||\mathcal{F}|KH}{\delta} \right)} \sum_{k=1}^K \sum_{h=1}^H \frac{1}{\sqrt{|\mathcal{D}_h^{(k)}|}} + C_{\text{rcov}} \xi_{\text{dual}} \right). \quad (26) \\ 1277 \\ 1278 \\ 1279$$

1280 **Step 5: Final Bound of Π .** By the update rule of RFL-TV, we have

$$1281 \mathcal{D}_h^{(k)} \leftarrow \mathcal{D}_h^{(k-1)} \cup \{(s_h^{(k)}, a_h^{(k)}, s_{h+1}^{(k)})\} \quad \forall h \in [H]. \\ 1282$$

1283 Therefore, in each episode k , exactly one sample appended to each step h in the dataset,
 1284 hence $|\mathcal{D}_h^{(k)}| = |\mathcal{D}_h^{(0)}| + k = k$.
 1285

1286 Since, $f(k) = k^{-1/2}$ is decreasing on $[1, \infty)$ and $f(1) = 1$, the term $\sum_{k=1}^K \sum_{h=1}^H \frac{1}{\sqrt{|\mathcal{D}_h^{(k)}|}}$
 1287 in eq. 26 can be bounded by the following integral, as

$$1288 \sum_{k=1}^K \sum_{h=1}^H \frac{1}{\sqrt{|\mathcal{D}_h^{(k)}|}} = \sum_{k=1}^K \sum_{h=1}^H \frac{1}{\sqrt{k}} \leq H \left(1 + \int_1^K \frac{dx}{\sqrt{x}} \right) = 2H\sqrt{K} - H \leq 2H\sqrt{K}. \\ 1289 \\ 1290 \\ 1291 \\ 1292 \\ 1293$$

1294 Applying eq. 27 in eq. 26, we get the final bound as
 1295

$$1296 \Pi = \mathcal{O} \left(C_{\text{rcov}} \frac{H^2}{\sigma} \sqrt{2K \log \left(\frac{8|\mathcal{G}||\mathcal{F}|KH}{\delta} \right)} + C_{\text{rcov}} \xi_{\text{dual}} \right). \quad (28) \\ 1297$$

1296 • **Bound of I via Robust Coverability:** Before we bound I, we first define the robust Bellman
 1297 error w.r.t. $\mathcal{T}_g^\sigma f$ as
 1298

$$1299 \delta_h^{(k)}(\cdot, \cdot) := f_h^{(k)}(\cdot, \cdot) - \left[\mathcal{T}_{\underline{g}_{f_{h+1}^{(k)}}}^\sigma f_{h+1}^{(k)} \right](\cdot, \cdot). \quad (29)$$

1300 Then, I can be written as
 1301

$$1303 \text{I} := \sum_{k=1}^K \sum_{h=1}^H \mathbb{E}_{(s_h, a_h) \sim d_h^{(k), P^\omega}} \left[\delta_h^{(k)}(s_h, a_h) \right]. \quad (30)$$

1306 We denote the expected number of times of visiting (s, a) before episode k under the
 1307 worst-transition kernel P^ω as $\tilde{d}_h^{(k)} \equiv d_h^{f^{(k)}}$, and is defined as
 1308

$$1310 \tilde{d}_h^{(k)}(s, a) := \sum_{i=1}^{k-1} d_h^{(i), P^\omega}(s, a). \quad (31)$$

1313 That is, $\tilde{d}_h^{(k)}$ is the unnormalized average of all state visitations encountered prior to episode
 1314 k , and μ_h^π is the visitation measure under nominal-kernel P^* for step h . Throughout the
 1315 proof, we perform a slight abuse of notation and write
 1316

$$1317 \mathbb{E}_{\tilde{d}_h^{(k)}}[f] := \sum_{i=1}^{k-1} \mathbb{E}_{d_h^{(i), P^\omega}}[f] \quad \text{for any function } f : \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}.$$

1320 **Step 1: Robust optimism.** Under the Assumption 1 and the construction of the confidence
 1321 set $\mathcal{F}^{(k)}$, the following Lemma K.2, will guarantee that with probability at least $1 - \delta$, for
 1322 all $k \in [K]$:

$$1324 Q^{*,\sigma} \in \mathcal{F}^{(k)} \quad \text{and} \quad \sum_{(s,a)} \tilde{d}_h^{(k)}(s, a) (\delta_h^{(k)}(s, a))^2 \leq \mathcal{O}(\beta). \quad (32)$$

1327 **Step 1: Conservative Burn-in Phase Construction.** We introduce the notion of a “burn-in”
 1328 phase for each state-action pair $(s, a) \in \mathcal{S} \times \mathcal{A}$ by defining

$$1330 \tau_h(s, a) = \min \left\{ t \mid \tilde{d}_h^{(t)}(s, a) \geq C_{\text{rcov}} \cdot \mu_h^\pi(s, a) \right\}, \quad (33)$$

1332 which captures the earliest time at which (s, a) has been explored sufficiently; we refer to
 1333 $k < \tau_h(s, a)$ as the burn-in phase for (s, a) . In other words, $\tau_h(s, a)$ guarantees that no
 1334 matter which kernel in the uncertainty set we are facing, the state-action pair (s, a) has
 1335 received enough coverage.

1336 Going forward, let $h \in [H]$ be fixed. We decompose regret into contributions from the
 1337 burn-in phase for each state-action pair, and contributions from pairs which have been
 1338 explored sufficiently and reached a stable phase “stable phase”:

$$1339 \text{I} = \underbrace{\sum_{k=1}^K \sum_{h=1}^H \mathbb{E}_{(s,a) \sim d_h^{(k), P^\omega}} \left[\delta_h^{(k)}(s, a) \mathbb{I}\{k < \tau_h(s, a)\} \right]}_{\text{conservative burn-in phase}} \quad (34)$$

$$1344 + \underbrace{\sum_{k=1}^K \sum_{h=1}^H \mathbb{E}_{(s,a) \sim d_h^{(k), P^\omega}} \left[\delta_h^{(k)}(s, a) \mathbb{I}\{k \geq \tau_h(s, a)\} \right]}_{\text{stable phase}}. \quad (35)$$

1348 We will not show that every state-action pair leaves the conservative burn-in phase. Instead,
 1349 we use robust coverability to argue that the contribution from pairs that have not left this

1350 phase is small on average. In particular, we use that $|\delta_h^{(k)}| \leq [0, c_3 H/\sigma]$ to bound the factor,
 1351 as follows

$$\mathbb{E}_{(s,a) \sim d_h^{(k),P^\omega}} \left[\delta_h^{(k)}(s,a) \mathbb{I}\{k < \tau_h(s,a)\} \right] \leq c_3 \frac{H}{\sigma} \sum_{s,a} d_h^{(k),P^\omega}(s,a) \mathbb{I}\{k < \tau_h(s,a)\}. \quad (36)$$

Plugging eq. 36 in the conservative burn-in phase term of eq. 34, we get

$$\begin{aligned}
& \sum_{k=1}^K \sum_{h=1}^H \mathbb{E}_{(s,a) \sim d_h^{(k),P^\omega}} \left[\delta_h^{(k)}(s,a) \mathbb{I}\{k < \tau_h(s,a)\} \right] \\
& \stackrel{(a)}{\leq} c_3 \frac{H}{\sigma} \sum_{k=1}^K \sum_{h=1}^H d_h^{(k),P^\omega}(s,a) \mathbb{I}\{k < \tau_h(s,a)\} \\
& = c_3 \frac{H}{\sigma} \sum_{h=1}^H \sum_{s,a} \sum_{k < \tau_h(s,a)} d_h^{(k),P^\omega}(s,a) \\
& \stackrel{(b)}{=} c_3 \frac{H}{\sigma} \sum_{h=1}^H \sum_{s,a} \tilde{d}_h^{\tau_h(s,a)}(s,a) \\
& = c_3 \frac{H}{\sigma} \sum_{h=1}^H \sum_{s,a} \left\{ \tilde{d}_h^{\tau_h(s,a)-1}(s,a) + d_h^{\tau_h(s,a)-1, P^\omega}(s,a) \right\} \\
& \stackrel{(c)}{\leq} c_3 \frac{H}{\sigma} \sum_{h=1}^H \sum_{s,a} \left\{ 2C_{\text{rcov}} \mu_h^\pi(s,a) \right\} \\
& \stackrel{(d)}{=} c_3 \frac{H^2}{\sigma} C_{\text{rcov}}. \tag{37}
\end{aligned}$$

1378 The ineq. (a) is due to the fact $\sup_P \sum_x g_x(P) \leq \sum_x \sup_P g_x(P)$; the equality (b) is
 1379 by the definition of $\tilde{d}_h^{\tau_h(s,a)}(s,a)$ by eq. 31; ineq. (c) is due to eq. 33 and by the fact
 1380 $d_h^{\tau_h(s,a)-1, P^\omega}(s,a) \leq C_{\text{rcov}} \mu_h^\pi(s,a)$.
 1381

1382 For the stable phase, we apply change-of-measure as follows:

$$\begin{aligned}
& \sum_{k=1}^K \sum_{h=1}^H \mathbb{E}_{(s,a) \sim d_h^{(k),P^\omega}} [\delta_h^{(k)}(s,a) \mathbb{I}\{k \geq \tau_h(s,a)\}] \\
&= \sum_{k=1}^K \sum_{h=1}^H \sum_{s,a} d_h^{(k),P^\omega}(s,a) \left(\frac{\tilde{d}_h^{(k)}(s,a)}{\tilde{d}_h^{(k)}(s,a)} \right)^{1/2} \delta_h^{(k)}(s,a) \mathbb{I}\{k \geq \tau_h(s,a)\} \\
&\leq \sum_{k=1}^K \sum_{h=1}^H \sum_{s,a} d_h^{(k),P^\omega}(s,a) \left(\frac{\tilde{d}_h^{(k)}(s,a)}{\tilde{d}_h^{(k)}(s,a)} \right)^{1/2} \delta_h^{(k)}(s,a) \mathbb{I}\{k \geq \tau_h(s,a)\} \\
&\leq \sum_{h=1}^H \underbrace{\left(\sum_{k=1}^K \sum_{s,a} \frac{(\mathbb{I}\{t \geq \tau_h(x,a)\}, d_h^{(k),P^\omega}(s,a))^2}{\tilde{d}_h^{(k)}(s,a)} \right)^{1/2}}_{\text{(A): extrapolation error}} \underbrace{\left(\sum_{k=1}^K \sum_{s,a} \tilde{d}_h^{(k)}(s,a) (\delta_h^{(k)}(s,a))^2 \right)^{1/2}}_{\text{(B): in-sample squared Bellman error}} ,
\end{aligned} \tag{38}$$

where the last inequality is Cauchy–Schwarz.

Using part (b) of Lemma K.2, we bound the in-sample error (B) by

$$(B) \leq \mathcal{O}(\sqrt{\beta K}). \quad (39)$$

Bounding the extrapolation error using robust coverability. We control the extrapolation error (A) via robust coverability. We use the following scalar variant of

1404 the elliptic potential lemma of (Lattimore & Szepesvári, 2020) (proved in (Xie et al., 2022,
 1405 Lemma 4)).

1406
 1407 We bound (A) on a per-state basis and invoke robust coverability (and the equivalence to
 1408 cumulative visitation) so that potentials from different (s, a) pairs aggregate well. From the
 1409 definition of τ_h in eq. 33, for all $t \geq \tau_h(s, a)$ we have $\tilde{d}_h^{(k)}(s, a) \geq C_{\text{rcov}}\mu_h^\pi(s, a)$, which
 1410 implies $\tilde{d}_h^{(k)}(s, a) \geq \frac{1}{2}(\tilde{d}_h^{(k)}(s, a) + C_{\text{rcov}}\mu_h^\pi(s, a))$. Thus,
 1411

$$\begin{aligned}
 (A) &= \sqrt{\sum_{k=1}^K \sum_{s,a} \frac{(\mathbb{I}\{k \geq \tau_h(s, a)\} d_h^{(k), P^\omega}(s, a))^2}{\tilde{d}_h^{(k)}(s, a)}} \\
 &\leq \sqrt{2 \sum_{k=1}^K \sum_{s,a} \frac{d_h^{(k), P^\omega}(s, a) \cdot d_h^{(k), P^\omega}(s, a)}{\tilde{d}_h^{(k)}(s, a) + C_{\text{rcov}} \cdot \mu_h^\pi(s, a)}} \\
 &\leq \sqrt{2 \sum_{k=1}^K \sum_{s,a} \max_{l \in [K]} d_h^{(l), P^\omega}(s, a) \frac{d_h^{(k), P^\omega}(s, a)}{\tilde{d}_h^{(k)}(s, a) + C_{\text{rcov}} \cdot \mu_h^\pi(s, a)}} \\
 &\leq \sqrt{2 \left(\max_{(s,a) \in \mathcal{S} \times \mathcal{A}} \sum_{k=1}^K \frac{d_h^{(k), P^\omega}(s, a)}{\tilde{d}_h^{(k)}(s, a) + C_{\text{rcov}} \cdot \mu_h^\star(s, a)} \right) \left(\sum_{s,a} \max_{l \in [K]} d_h^{(l), P^\omega}(s, a) \right)} \\
 &\leq \mathcal{O}(\sqrt{C_{\text{rcov}} \log K}),
 \end{aligned} \tag{40}$$

1427 where the last line uses Lemma T.5 and Lemma T.3.

1428 To conclude, substitute eq. 39 and eq. 40 into eq. 38 to obtain

$$\sum_{k=1}^K \sum_{h=1}^H \mathbb{E}_{(s,a) \sim d_h^{(k), P^\omega}} [\delta_h^{(k)}(s, a) \mathbb{I}\{k \geq \tau_h(s, a)\}] \leq \mathcal{O}(H \sqrt{C_{\text{rcov}} \cdot \beta K \log K}). \tag{41}$$

1433 By applying eq. 37 and eq. 41 in eq. 34, we get

$$I \leq \mathcal{O}\left(\frac{H^2}{\sigma} C_{\text{rcov}} + H \sqrt{C_{\text{rcov}} \cdot \beta K \log K}\right). \tag{42}$$

1437 Therefore, by applying eq. 42 and eq. 28 in eq. 18, we get

$$\text{Regret}(K) \leq \mathcal{O}\left(\frac{H^2}{\sigma} C_{\text{rcov}} + H \sqrt{C_{\text{rcov}} \cdot \beta K \log K} + C_{\text{rcov}} \frac{H^2}{\sigma} \sqrt{2K \log\left(\frac{8|\mathcal{G}||\mathcal{F}|KH}{\delta}\right)} + C_{\text{rcov}} \xi_{\text{dual}}\right).$$

1441 This concludes the proof of Theorem 1. \square

D SPECIALIZATION TO LINEAR TV-RMDP

1446 We now show that our regret bound for general functional approximation specializes to a
 1447 near-dimension-optimal bound when the robust value function admits a linear representation, in the
 1448 spirit of the d -rectangular linear RMDP framework of (Ma et al., 2022) and (Liu et al., 2024).

1449 **Assumption 4** (d -Rectangular Linear TV-RMDP). *There exists a known feature map $\phi_h : \mathcal{S} \times \mathcal{A} \rightarrow$
 1450 \mathbb{R}^d for each $h \in [H]$ with $\sum_{i=1}^d \phi_{h,i}(s, a) = 1$ and $\phi_{h,i}(s, a) \geq 0$ for any $(i, s, a) \in [d] \times \mathcal{S} \times \mathcal{A}$ such
 1451 that:*

1453 (i) (Linear nominal model.) The reward and nominal kernel are linear:

$$r_h(s, a) = \phi_h(s, a)^\top \boldsymbol{\theta}_h, \quad P_h^\star(\cdot | s, a) = \phi_h(s, a)^\top \boldsymbol{\nu}_h^\star(\cdot),$$

1455 for some unknown probability measures $\{\boldsymbol{\nu}_h^\star\}_{h=1}^H$ over \mathcal{S} and known vectors $\{\boldsymbol{\theta}_h\}_{h=1}^H$ with
 1456 $\|\boldsymbol{\theta}_h\|_2 \leq \sqrt{d}$.

1458
 1459 (ii) (*d*-rectangular TV uncertainty set.) For each step h and feature index $i \in [d]$ we can
 1460 parameterize our uncertainty set \mathcal{P} by $\{\nu_h^*\}_{h=1}^H$, and thereby, can be defined as $\mathcal{P} =$
 1461 $\mathcal{U}^\sigma(P^*) = \bigotimes_{(h,s,a) \in [H] \times \mathcal{S} \times \mathcal{A}} \mathcal{U}_h^\sigma(s, a; \nu_h^*)$, where $\mathcal{U}_h^\sigma(s, a; \nu_h^*)$ is defined as

1462
 1463
$$\mathcal{U}_h^\sigma(s, a; \nu_h^*) \triangleq \left\{ \sum_{i=1}^d \phi_{h,i}(s, a) \nu_{h,i}(\cdot) : \nu_{h,i} \in \Delta(\mathcal{S}) \text{ and } D_{TV}(\nu_{h,i}, \nu_{h,i}^*(\cdot|s, a)) \leq \sigma \right\}.$$

 1464

1465
 1466 This is the TV analogue of the *d*-rectangular linear RMDP of (Liu et al., 2024, Sec. 3.2), specialized
 1467 to TV divergence.

1468
 1469 **Linear function classes induced by the *d*-Rectangular linear TV-RMDP.** Under the linear
 1470 TV-RMDP structure in Assumption 4, we specialize our general functional class \mathcal{F} and dual functional
 1471 class \mathcal{G} used by RFL-TV as linear function classes with a common feature map $\phi_h : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^d$,
 1472 and are denoted as follows:

1473
$$\mathcal{F}^{lin} := \{\mathcal{F}_h^{lin}\}_{h=1}^H, \text{ where } \mathcal{F}_h^{lin} := \left\{ f_h : f_h(s, a) = \phi_h(s, a)^\top \mathbf{w}_h, \mathbf{w}_h \in \mathbb{R}^d \right\}, \quad (43)$$

 1474

1475
$$\mathcal{G}^{lin} := \{\mathcal{G}_h^{lin}\}_{h=1}^H, \text{ where } \mathcal{G}_h^{lin} := \left\{ g_h : g_h(s, a) = \phi_h(s, a)^\top \mathbf{u}_h, \mathbf{u}_h \in \mathbb{R}^d \right\}. \quad (44)$$

 1476

1477 The class \mathcal{F}^{lin} is used to approximate robust Q -functions, while \mathcal{G}^{lin} parameterizes the dual variables
 1478 appearing in the TV-robust Bellman operator (via the functional dual loss in Eq. 8)[See Sec. 4 for
 1479 the definition of the dual loss and its empirical counterpart].

1480 **Lemma 2** (Linear realizability and completeness). *Suppose the linear RMDP satisfies Assumption 4.
 1481 Then:*

1482 (i) **Linear realizability of $Q^{\pi, \sigma}$ and $Q^{*, \sigma}$.** For any Markov policy π and any $\sigma \geq 0$, there
 1483 exist vectors $\mathbf{w}_1^{\pi, \sigma}, \dots, \mathbf{w}_H^{\pi, \sigma} \in \mathbb{R}^d$ such that for all $h \in [H]$,

1484
$$Q_h^{\pi, \sigma}(s, a) = \phi_h(s, a)^\top \mathbf{w}_h^{\pi, \sigma}, \quad \forall (s, a) \in \mathcal{S} \times \mathcal{A}, \quad (45)$$

1485 and, in particular, for the robust-optimal policy π^* there exist $\mathbf{w}_1^{\pi^*, \sigma}, \dots, \mathbf{w}_H^{\pi^*, \sigma}$ with
 1486

1487
$$Q_h^{\pi^*, \sigma}(s, a) = \phi_h(s, a)^\top \mathbf{w}_h^{\pi^*, \sigma}, \quad \forall (s, a), h \in [H]. \quad (46)$$

1488 Hence $Q^{\pi, \sigma}, Q^{*, \sigma} \in \mathcal{F}^{lin}$.

1489 (ii) **Closure under the robust Bellman operator.** Let $f \in \mathcal{F}^{lin}$ with component functions
 1490 $f_h(s, a) = \phi_h(s, a)^\top \mathbf{w}_h$. Then, for each $h \in [H]$ there exists $\mathbf{w}'_h \in \mathbb{R}^d$ such that the robust
 1491 Bellman backup satisfies

1492
$$\begin{aligned} \mathcal{T}_h^\sigma f_{h+1}(s, a) &= r_h(s, a) + \mathbb{E}_{P \in \mathcal{U}_{\sigma, h}(s, a)} [V_{h+1}(s')] \\ &= \phi_h(s, a)^\top \mathbf{w}'_h, \quad \forall (s, a), \end{aligned} \quad (47)$$

1493 so that $\mathcal{T}_h^\sigma f_{h+1} \subseteq \mathcal{F}_h^{lin}$ for all h .

1494 (iii) **Linear dual representation.** For any $f \in \mathcal{F}^{lin}$, the dual minimizer g_f^* that attains the
 1495 pointwise TV dual can be chosen in \mathcal{G}^{lin} , i.e., there exist $\mathbf{u}_1^f, \dots, \mathbf{u}_H^f \in \mathbb{R}^d$ such that

1496
$$g_{f,h}^*(s, a) = \phi_h(s, a)^\top \mathbf{u}_h^f, \quad \forall (s, a), h \in [H]. \quad (48)$$

1497 Consequently, the dual realizability error ξ_{dual} defined in Assumption 3 is zero when we
 1498 take $\mathcal{G}^{lin} \equiv \mathcal{L}^1(\mu^\pi)$.

1499 **Proof.** (i) **Linear realizability of $Q^{\pi, \sigma}$ and $Q^{*, \sigma}$.** The linear robust MDP literature (e.g., (Ma et al.,
 1500 2022, Prop. 3.2 and Lem. 4.1) and (Liu et al., 2024, Sec. 3.2)) implies that both the robust Bellman
 1501 operator and the robust value functions preserve linearity in ϕ_h , yielding 45–47, the nominal kernel
 1502 and all kernels in the TV uncertainty set are linear mixtures of the base measures $\{\nu_h\}_{h=1}^H$, and the
 1503 reward is linear in ϕ_h .

(ii) *Closure under \mathcal{T}_h^σ .* Let $f \in \mathcal{F}^{\text{lin}}$ with $f_{h+1}(s, a) = \phi_{h+1}(s, a)^\top \mathbf{w}_{h+1}$. Define the value $V_{h+1}(s) = \max_{a \in \mathcal{A}} f_{h+1}(s, a)$. By the d -rectangular structure, any $P \in \mathcal{U}_h^\sigma(s, a)$ can be written as $P(\cdot | s, a) = \sum_{i=1}^d \phi_{h,i}(s, a) \nu_{h,i}(\cdot)$ with $\nu_{h,i} \in \mathcal{U}_h^\sigma(s, a; \boldsymbol{\nu}_h^*)$. Thus

$$\inf_{P_h \in \mathcal{U}_h^\sigma(s, a)} \mathbb{E}_{s' \sim P_h(\cdot | s, a)} [V_{h+1}^{\pi, \sigma}(s')] = \inf_{\nu_{h,1}, \dots, \nu_{h,d}} \sum_{i=1}^d \phi_{h,i}(s, a) \mathbb{E}_{s' \sim \mu_{h,i}} [V_{h+1}(s')] \quad (49)$$

$$= \sum_{i=1}^d \phi_{h,i}(s, a) \inf_{\nu_{h,i} \in \mathcal{U}_h^\sigma(s, a; \boldsymbol{\nu}_h^*)} \mathbb{E}_{s' \sim \nu_{h,i}} [V_{h+1}(s')] \quad (50)$$

$$= \sum_{i=1}^d \phi_{h,i}(s, a) \zeta_{h,i}(\mathbf{w}_{h+1}), \quad (51)$$

where each scalar $\zeta_{h,i}(\mathbf{w}_{h+1})$ depends only on V_{h+1} (and hence on \mathbf{w}_{h+1}) and the local TV ball at index i . We therefore obtain

$$[\mathcal{T}_h^\sigma f_{h+1}](s, a) = \phi_h(s, a)^\top \boldsymbol{\theta}_h + \phi_h(s, a)^\top \zeta_h(\mathbf{w}_{h+1}) = \phi_h(s, a)^\top \mathbf{w}'_h, \quad (52)$$

with $\mathbf{w}'_h := \boldsymbol{\theta}_h + \zeta_h(\mathbf{w}_{h+1})$. This yields 47 and shows that $\mathcal{T}_h^\sigma \{_{h+1} \subseteq \mathcal{F}_h^{\text{lin}}$.

(iii) *Linear dual representation.* Fix any $f \in \mathcal{F}^{\text{lin}}$ and (s, a, h) . The TV dual expression for the robust Bellman operator (Eq. 13) writes the inner worst-case expectation as a one-dimensional convex optimization problem in a scalar dual variable η . Under the linear RMDP structure, $P_h^*(\cdot | s, a) = \sum_{i=1}^d \phi_{h,i}(s, a) \nu_{h,i}^*$, so the dual term is a weighted sum over coordinates i , and the optimal dual variable can be decomposed into coordinate-wise scalar duals $\eta_{h,i}^*$ associated with each base measure $\nu_{h,i}^*$ (see, e.g., the TV dual derivation in (Liu et al., 2024, Sec. 3.2)). This yields an optimal dual function of the form

$$g_{f,h}^*(s, a) = \sum_{i=1}^d \phi_{h,i}(s, a) \eta_{h,i}^* = \phi_h(s, a)^\top \mathbf{u}_h^f \quad (53)$$

for some $\mathbf{u}_h^f \in \mathbb{R}^d$. Collecting these across h we obtain $g_f^* \in \mathcal{G}^{\text{lin}}$ as in 48. In particular, the infimum in the dual representation is attained within \mathcal{G}^{lin} , so the dual realizability error ξ_{dual} defined in Assumption 3 is zero when we set $\mathcal{G}^{\text{lin}} \equiv \mathcal{L}^1(\mu^\pi)$. \square

Assumption 5 (Finite linear covering). *For $\varepsilon_0 = 1/K$, the union class $\mathcal{H} = \mathcal{F}^{\text{lin}} \cup \mathcal{G}^{\text{lin}}$ admits a finite ε_0 -cover in $\|\cdot\|_\infty$ such that*

$$\log N_{\mathcal{H}}(\varepsilon_0) \leq c_o d H \log(c_o K) \quad (54)$$

for some absolute constant $c_o > 0$.

This bound follows from standard metric-entropy results for linear predictors on a bounded domain (see, e.g., (Shalev-Shwartz & Ben-David, 2014, Thm. 14.5)). In our setting, the feature vectors satisfy the simplex constraints $\sum_i \phi_{h,i}(s, a) = 1$ and $\phi_{h,i}(s, a) \geq 0$ for all (s, a, h) , which immediately implies $|\phi_h(s, a)| \leq 1$. Together with the fact that the parameter vectors of \mathcal{F}^{lin} and \mathcal{G}^{lin} are restricted to a bounded ball, this ensures that every function in the union class $\mathcal{H} = \mathcal{F}^{\text{lin}} \cup \mathcal{G}^{\text{lin}}$ behaves as a linear predictor in an ambient space of dimension $d^{\text{lin}} = dH$, yielding a covering-number bound of the form $\log N_{\mathcal{H}}(\varepsilon_0) \leq c_o d H \log(c_o/\varepsilon_0)$ for some absolute constant c_o .

Theorem 2 (Regret of RFL-TV in linear TV-RMDP). *For any $\delta \in (0, 1]$, we set*

$$\beta = \mathcal{O}\left(\min\{H, 1/\sigma\}(d^2 H \log(dKH/\delta))\right)$$

in RFL-TV. Then under Assumption 1–5, there exists an absolute constant $C > 0$ such that with probability at least $1 - \delta$, it holds that

$$\text{Regret}(K) = \mathcal{O}\left(\sqrt{C_{\text{rcov}}^2 H^4 (\min\{H, 1/\sigma\})^2 d^2 K} \log\left(\frac{dHK}{\delta}\right)\right).$$

1566 **Comparison with non-robust linear MDP.** In the standard (non-robust) linear MDP setting,
 1567 UCRL-VTR⁺ and its refinements (Zhou et al., 2020; Jin et al., 2020; He et al., 2023) attain the
 1568 minimax regret rate $\tilde{\mathcal{O}}(\sqrt{d^2 H^3 K})$. For linear TV-RMDP (with $\sigma = 0$), RFL-TV instead guarantees
 1569 $\tilde{\mathcal{O}}(\sqrt{C_{\text{rcov}}^2 d^2 H^6 K})$. Thus, our bound matches the optimal dependence on the feature dimension d
 1570 and the number of episodes K , but incurs an additional polynomial factor in the horizon H and a
 1571 multiplicative dependence on the robust coverage coefficient C_{rcov} , reflecting the extra difficulty of
 1572 controlling robust Bellman errors under partial coverage. Accordingly, we do not claim minimax
 1573 optimality in (H, C_{rcov}) .

1574 **Comparison with linear RMDPs.** On the robust side, several recent works study DR-RL with
 1575 linear structure, but under settings that are fundamentally different from our online setting. (Ma
 1576 et al., 2022) and (Wang et al., 2024a) analyse *offline* DR-RL with linear function approximation and
 1577 obtain value-estimation rates of order $\tilde{\mathcal{O}}(\sqrt{d/N})$ or $\tilde{\mathcal{O}}(\sqrt{d^3/N})$ depending on coverage, where N
 1578 is the number of trajectories. In the *online* setting, (Liu & Xu, 2024b) and (Liu et al., 2024) study
 1579 *d*-rectangular linear RMDPs where the agent interacts online with a nominal (source) environment but
 1580 the performance criterion is the worst-case value over a perturbed (target) environment, and attains
 1581 regret rate $\tilde{\mathcal{O}}(\sqrt{d^2 H^2 (\min\{H, 1/\sigma\})^2 K})$ together with an information-theoretic lower bound that
 1582 is optimal in (d, K, σ) up to a \sqrt{H} factor (Liu et al., 2024). (Panaganti et al., 2024) consider a
 1583 different hybrid setting for φ -divergence RMDPs with general function approximation, and derive
 1584 performance guarantees that scale with an appropriate complexity measure of the value-function
 1585 class, leveraging both an offline dataset and online interaction with a nominal model.

1586 By contrast, in the *d*-rectangular linear setting, Theorem 2 shows that RFL-TV achieves the regret
 1587 bound of order $\tilde{\mathcal{O}}(\sqrt{C_{\text{rcov}}^2 H^4 (\min\{H, 1/\sigma\})^2 d^2 K})$. In *moderate coverage* regimes, where
 1588 the data distribution provides good on-dynamics coverage and $C_{\text{rcov}} = \mathcal{O}(1)$, this simplifies to
 1589 $\tilde{\mathcal{O}}(H^2 \min\{H, 1/\sigma\} \sqrt{d^2 K})$, which is optimal in its dependence on (d, K, σ) and matches the
 1590 linear RMDP minimax lower bounds of Liu et al. (2024) up to an additional $\mathcal{O}(\sqrt{H^3})$ factor in the
 1591 horizon. In *hard coverage* regimes, where the on-dynamics data poorly covers the robustly relevant
 1592 state-action space, our coverability analysis in Lemma K.4 allows C_{rcov} to scale as $C_{\text{rcov}} = \mathcal{O}(d)$,
 1593 and the regret bound deteriorates to $\tilde{\mathcal{O}}(H^2 \min\{H, 1/\sigma\} \sqrt{d^4 K})$. Such a result is $\mathcal{O}(d^2 H^2)$ -worse
 1594 than the online learning in linear robust MDPs in (Liu et al., 2024), and $\mathcal{O}(\sqrt{d^2 H^3})$ -worse than the
 1595 minimax lower bound (Liu et al., 2024). This yields a dimension dependence consistent with existing
 1596 minimax lower bounds while explicitly quantifying the price of poor coverage via C_{rcov} . Closing the
 1597 remaining $\sqrt{H^3}$ gap in the horizon dependence and establishing matching lower bounds for online
 1598 DR-RL with general function approximation (recovering the linear RMDP lower bounds as a special
 1599 case) remain important directions for future work.

1600 **Remark 6.** (Panaganti et al., 2024) studies a hybrid φ -regularized RMDP that combines an offline
 1601 dataset with online interactions. Under approximate value and dual realizability, a bilinear model
 1602 of dimension d , and an offline concentratability coefficient $C(\pi^*)$, they obtain a suboptimality
 1603 bound of order $\mathcal{O}(\max\{C(\pi^*), 1\} (\lambda + H) \sqrt{d^3 H^2 K})$. By contrast, we specialize our general
 1604 theorem to a *d*-rectangular linear TV-RMDP and show that RFL-TV achieves robust regret
 1605 $\tilde{\mathcal{O}}(\sqrt{C_{\text{rcov}}^2 H^4 (\min\{H, 1/\sigma\})^2 d^2 K})$, which is better than the one in (Panaganti et al., 2024).
 1606 This comparison implies our algorithm achieves a tighter sample complexity, even without any prior
 1607 collected offline dataset.

1608 We also highlight that, conceptually, the two setups address different questions and are not directly
 1609 comparable. (Panaganti et al., 2024) analyze a regularized robust objective in a hybrid offline–online
 1610 regime, where the parameter λ controls a trade-off induced by a φ -regularizer and the guarantees
 1611 depend on offline coverage through $C(\pi^*)$. In contrast, we study a constrained TV-RMDP in a purely
 1612 online (off-dynamics) setting, where robustness is enforced via an explicit divergence ball of radius
 1613 σ around the nominal model and performance is measured by cumulative regret with respect to the
 1614 unconstrained TV-robust value. Our general theorem Theorem 1 applies to arbitrary parametric
 1615 function classes.

1620
1621

D.1 PROOF OF THEOREM 2

1622
1623
1624

Proof. We recall the proof of Theorem 1 and show how it specializes under the linear TV-RMDP structure in Assumption 4 together with the linear function classes $\mathcal{F}^{lin}, \mathcal{G}^{lin}$ defined in equation 43–equation 44.

1625

1626
1627

Step 1: Starting point from the general regret proof. By the definition of robust regret in 6 and following the proof lines 17–20, the robust regret can be decomposed as

1628
1629

$$\text{Regret}(K) \leq I + II, \quad (55)$$

1630

where I is the *Bellman-error term* 19 term and II is the *Dual-approximation term* 20 term.

1631
1632

By 42 and 28, we can bound I and II , respectively, as

1633
1634

$$I \leq \mathcal{O}\left(C_{\text{rcov}} \frac{H^2}{\sigma} + H \sqrt{C_{\text{rcov}} \beta K \log K}\right) \quad (56)$$

1635
1636

$$II \leq \mathcal{O}\left(C_{\text{rcov}} \frac{H^2}{\sigma} \sqrt{K \log\left(\frac{8|\mathcal{F}||\mathcal{G}|KH}{\delta}\right)} + C_{\text{rcov}} \xi_{\text{dual}}\right), \quad (57)$$

1637
1638
1639

The factor $\log(|\mathcal{F}||\mathcal{G}|)$ here comes from the union bounds over the function classes in the concentration arguments, and ξ_{dual} is the dual realizability bias in Assumption 3.

1640
1641

Our goal is to rerun these two bounds when we instantiate $\mathcal{F} = \mathcal{F}^{lin}$ and $\mathcal{G} = \mathcal{G}^{lin}$ under the linear TV-RMDP structure.

1642

1643
1644

Step 2: Consequences of the linear TV-RMDP structure. For better clarity, we work under the exact dual realizability condition, and we set $\xi_{\text{dual}} = 0$ for simplicity of proof³.

1645
1646
1647

Under Assumption 4, the linear classes $\mathcal{F}^{lin}, \mathcal{G}^{lin}$ together with Lemma 2 guarantee that all structural assumptions used in Theorem 1 remain valid when we instantiate the analysis with the linear TV-RMDP; the only resulting changes are as follows:

1648
1649
1650
1651
1652

- The complexity term $\log(|\mathcal{F}||\mathcal{G}|)$ is replaced by a covering-number bound for the union class $\mathcal{H} \triangleq \mathcal{F}^{lin} \cup \mathcal{G}^{lin}$. By Assumption 5, for $\varepsilon_0 = 1/K$, the union class $\mathcal{H} = \mathcal{F}^{lin} \cup \mathcal{G}^{lin}$ admits an ε_0 -cover in $\|\cdot\|_\infty$ with $\log N_{\mathcal{H}}(\varepsilon_0) \leq c_0 dH \log(c_0 K)$, for some absolute constant $c_0 > 0$ (Shalev-Shwartz & Ben-David, 2014).
- The dual bias term $C_{\text{rcov}} \xi_{\text{dual}}$ drops out.

1653
1654

The robust coverability constant C_{rcov} is unchanged, as it only depends on the failure-state assumption and the dynamics, not on the parametric structure of \mathcal{F} and \mathcal{G} . Moreover, each stage h behaves as a d -dimensional linear class, and the full horizon class \mathcal{H} has ambient dimension dH , yielding equation 54.

1655

1656
1657
1658
1659

Step 4: Bounding II in the linear case. The derivation of the general bound equation 57 for II (Lemma K.3) uses ERM generalization bound Lemma T.1 and a union bound over all episodes, time steps, and function pairs $(f, g) \in \mathcal{F} \times \mathcal{G}$. In the linear case, we instead apply the same argument to a finite ε_0 -net of \mathcal{H} .

1660
1661
1662
1663

More precisely, fix $\varepsilon_0 = 1/K$ and let $\mathcal{H}_0 \subset \mathcal{H}$ be a minimal ε_0 -net under $\|\cdot\|_\infty$, such that $|\mathcal{H}_0| = N_{\mathcal{H}}(\varepsilon_0)$. We then repeat the concentration analysis of Lemma T.1, but take the union bound over the finite set $(k, h, \varphi) \in [K] \times [H] \times \mathcal{H}_0$ instead of $(k, h, f, g) \in [K] \times [H] \times \mathcal{F} \times \mathcal{G}$. The approximation error between any $f \in \mathcal{H}$ and its nearest neighbor $f' \in \mathcal{H}_0$ is at most ε_0 in $\|\cdot\|_\infty$ and

1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

³By Lemma 2(iii), when we instantiate RFL-TV with the linear dual class \mathcal{G}^{lin} , the dual minimizer of the TV robust Bellman operator is exactly realizable, so the dual approximation error in Assumption 3 vanishes and we have $\xi_{\text{dual}} = 0$. For clarity, we therefore focus on this exact-realizability case in the sequel. If one instead works with a dual class that only approximately realizes the optimal dual (so $\xi_{\text{dual}} > 0$), the same proof strategy goes through with an additional additive term of order $C_{\text{rcov}} \xi_{\text{dual}}$ propagating from the bound on II (cf. 28) into the final regret bound; no other part of the argument needs to be modified, and the dependence on (K, d, H, σ) remains unchanged.

1674 hence contributes only an $o(1)$ term in K to the final regret bound, which we absorb into the big- \mathcal{O}
 1675 notation.

1676 Therefore, following the same steps of the proof of Lemma K.3 and setting $\xi_{\text{dual}} = 0$, we conclude
 1677 that in the linear case equation 57 becomes

$$1679 \quad \text{II} \leq \mathcal{O}\left(C_{\text{rcov}} \frac{H^2}{\sigma} \sqrt{K \log\left(\frac{8N_{\mathcal{H}}(\varepsilon_0)KH}{\delta}\right)}\right). \quad (58)$$

1681 By covering-number bound equation 54, we obtain

$$1683 \quad \log\left(\frac{8N_{\mathcal{H}}(\varepsilon_0)KH}{\delta}\right) \leq c_1 dH \log(c_1 K) + \log\left(\frac{c_2 KH}{\delta}\right) =: L_K, \quad (59)$$

1685 for some absolute constants $c_1, c_2 > 0$. Hence, by applying 59 in 58, we get

$$1687 \quad \text{II} \leq \mathcal{O}\left(C_{\text{rcov}} \frac{H^2}{\sigma} \sqrt{KL_K}\right), \quad L_K = dH \log(c_1 K) + \log\left(\frac{c_2 KH}{\delta}\right). \quad (60)$$

1689 **Step 5: Bounding I in the linear case and choice of β .** We now revisit the bound equation 56 on
 1690 I. In the linear case, we again cover the union class $\mathcal{H}_0 \subset \mathcal{H}$ by a finite ε_0 -net under $\|\cdot\|_\infty$, such that
 1691 $|\mathcal{H}_0| = N_{\mathcal{H}}(\varepsilon_0)$, where we set $\varepsilon_0 = 1/(KH)$. Therefore, following the same steps of the proof of
 1692 Lemma K.2 and using the same Freedman–cover argument as in Lemma T.4, but union-bounding
 1693 over the finite set $N_{\mathcal{H}}(\varepsilon_0)$ instead of $\mathcal{F} \cup \mathcal{G}$, we obtain the same form of result with the complexity
 1694 term $\log(|\mathcal{F}||\mathcal{G}|)$ replaced by $\log N_{\mathcal{H}}(\varepsilon_0)$. In particular, for $\varepsilon_0 = 1/(KH)$, Assumption 5 implies
 1695 that $\log N_{\mathcal{H}}(\varepsilon_0)$ has the same order as in equation 54, so choosing

$$1696 \quad \beta = \mathcal{O}\left((\min\{H, 1/\sigma\})^2 (d^2 H \log(c_1 K) + \log(c_2 KH/\delta))\right) = \mathcal{O}\left((\min\{H, 1/\sigma\})^2 L_K\right) \quad (61)$$

1698 is sufficient to reproduce the general bound equation 56, with the same constants as in Theorem 1.
 1699 Substituting equation 61 into equation 56 yields

$$1701 \quad \text{I} \leq \mathcal{O}\left(C_{\text{rcov}} \frac{H^2}{\sigma} + H \sqrt{C_{\text{rcov}} \beta K \log K}\right) \\ 1702 = \mathcal{O}\left(C_{\text{rcov}} \frac{H^2}{\sigma} + H \sqrt{C_{\text{rcov}} (\min\{H, 1/\sigma\})^2 L_K K \log K}\right) \\ 1703 = \mathcal{O}\left(C_{\text{rcov}} \frac{H^2}{\sigma} + H \sqrt{C_{\text{rcov}} (\min\{H, 1/\sigma\})^2 K L_K \log K}\right). \quad (62)$$

1707 **Step 6: Combining the bounds of I and II.** Combining equation 55, equation 60, and equation 62,
 1708 we obtain

$$1710 \quad \text{Regret}(K) \leq \mathcal{O}\left(C_{\text{rcov}} \frac{H^2}{\sigma} + H \sqrt{C_{\text{rcov}} (\min\{H, 1/\sigma\})^2 K L_K \log K} + C_{\text{rcov}} \frac{H^2}{\sigma} \sqrt{KL_K}\right). \quad (63)$$

1713 The additive term $C_{\text{rcov}} H^2/\sigma$ is lower order than the \sqrt{K} terms and can be absorbed into the leading
 1714 big- \mathcal{O} term. Also, since $K \geq 2$, $dH \geq 1$ and $\delta \in (0, 1]$, we have $\frac{dHK}{\delta} \geq K$ and $\frac{dHK}{\delta} \geq \frac{1}{\delta}$, so
 1715 $\log K \leq \log(dHK/\delta)$ and $\log(1/\delta) \leq \log(dHK/\delta)$. Using these facts and absorbing constants into
 1716 $c_3 > 0$, we obtain

$$1717 \quad L_K \leq c_3 \left(d^2 H + \log \frac{1}{\delta}\right) \log\left(\frac{dHK}{\delta}\right).$$

1719 Moreover, $\log K \leq \log(dHK/\delta)$, hence

$$1720 \quad \sqrt{L_K \log K} \leq c_4 \sqrt{d^2 H + \log \frac{1}{\delta}} \log\left(\frac{dHK}{\delta}\right) = \mathcal{O}\left(\sqrt{d^2 H} \log \frac{dHK}{\delta}\right),$$

1723 where we used that $\log(dHK/\delta)$ dominates $\sqrt{\log(1/\delta)}$ and absolute constants c_4 . Plugging this into
 1724 equation 63, we deduce that

$$1725 \quad \text{Regret}(K) \leq \mathcal{O}\left(\sqrt{C_{\text{rcov}}^2 H^4 (\min\{H, 1/\sigma\})^2 d^2 K} \log\left(\frac{dHK}{\delta}\right)\right),$$

1727 which proves the claim. \square

1728 D.2 KEY LEMMAS
1729

1730 **Lemma K.1** (Robust Value function error decomposition). *Consider an RMDP using the*
 1731 *TV-divergence uncertainty set as defined in eq. 1 where we define $V^f := \mathbb{E}[f_1(s_1, \pi_1^f(s_1))]$ and*
 1732 *$V^{\pi^f, Q} := \mathbb{E}_{a_{1:H} \sim \pi^f, s_{h+1} \sim Q_h} \left[\sum_{h=1}^H r_h(s_h, a_h) \right]$. Then, under Assumption 1 and Definition 2, we*
 1733 *define the robust average Bellman error $\varepsilon_{TV}^\sigma(f, \pi^f, h; P^\omega)$ as given in eq. 17. Then, we can bound*
 1734 *the regret as given in eq. 6 as,*
 1735

$$1736 \quad \text{Regret}(K) \leq \sum_{k=1}^K \sum_{h=1}^H \varepsilon_{TV}^\sigma(f^{(k)}, \pi^{f^{(k)}}, h; P^\omega). \quad (64)$$

1740 *Proof.* Fix any kernel $Q \in \mathcal{P}$. Let us denote $\psi^f(s') := \max_{a' \in \mathcal{A}} f(s', a')$. By definition of $\mathcal{T}_h^\sigma f$ in
 1741 eq. 13, we get

$$1743 \quad [\mathcal{T}_h^\sigma f_{h+1}](s, a) = r_h(s, a) + \inf_{P \in \mathcal{U}_h^\sigma(s, a)} \mathbb{E}_P \left[\psi_{h+1}^f \right] \leq r_h(s, a) + \mathbb{E}_{s' \sim Q_h(\cdot | s, a)} [\psi_{h+1}^f(s')]. \quad (65)$$

1745 Thus, from eq. 65 we get

$$1747 \quad f_h(s, a) - [\mathcal{T}_h^\sigma f_{h+1}](s, a) \geq f_h(s, a) - r_h(s, a) - \mathbb{E}_{s' \sim Q_h} [\psi_{h+1}^f(s')]. \quad (66)$$

1748 Taking expectation under $d_h^{\pi^f, Q}$ and summing over h gives

$$1750 \quad \sum_{h=1}^H \varepsilon_{TV}^\sigma(f, \pi^f, h; Q) \geq \sum_{h=1}^H \mathbb{E}_{(s_h, a_h) \sim d_h^{\pi^f, Q}} [f_h(s_h, a_h) - r_h(s_h, a_h) - \mathbb{E}_{Q_h} [\psi_{h+1}^f]]. \quad (67)$$

1753 The right-hand side of eq. 67 follows the same proof-lines as in (Jiang et al., 2017, Lemma 1),
 1754 yielding

$$1756 \quad \sum_{h=1}^H \varepsilon_{TV}^\sigma(f, \pi^f, h; Q) \geq V^f - V^{\pi^f, Q}. \quad (68)$$

1759 Finally, if Q is a worst-case kernel for π^f , i.e., $Q \equiv P^\omega$ then for each (s, a, h) ,

$$1761 \quad \mathbb{E}_{s' \sim P_h^\omega(\cdot | s, a)} [\psi_{h+1}^f(s')] := \mathbb{E}_{s' \sim Q_h(\cdot | s, a)} [\psi_{h+1}^f(s')] = \inf_{P \in \mathcal{U}_h(s, a)} \mathbb{E}_P [\psi_{h+1}^f(s')],$$

1763 so the inequality becomes equality. In this case,

$$1765 \quad \sum_{h=1}^H \varepsilon_{TV}^\sigma(f, \pi^f, h; Q) = V^f - V^{\pi^f, P^\omega}.$$

1768 Now, under the worst-transition kernel P^ω , we have $V_1^{\pi^{(k)}, \sigma}(s_1) = V_1^{\pi^{(k)}, P^\omega}(s_1)$. Furthermore,
 1769 according to Assumption 1, we can guarantee that $f^{(k)}$ is optimistic in episode k . Using these fact,
 1770 we can say that $V_h^{\star, \sigma}(s) \leq V_h^{f^{(k)}}(s)$. Therefore, we can write

$$1773 \quad \text{Regret}(K) = \sum_{k=1}^K V_1^{\star, \sigma}(s_1) - V_1^{\pi^{(k)}, \sigma}(s_1) \\ 1774 \quad \leq \sum_{k=1}^K V_1^{f^{(k)}}(s_1) - V_1^{\pi^{(k)}, P^\omega}(s_1) \\ 1776 \quad \leq \sum_{k=1}^K \sum_{h=1}^H \varepsilon_{TV}^\sigma(f^{(k)}, \pi^{f^{(k)}}, h; P^\omega) \quad [\text{By eq. 68}].$$

1781 This concludes the proof of Lemma K.1. \square

1782 **Lemma K.2.** Suppose Assumption 1 holds. Then if $\beta > 0$ is selected as in Theorem 1, then with
 1783 probability at least $1 - \delta$, for all $k \in [K]$, RFL-TV satisfies
 1784

1785 (a) $Q^{*,\sigma} \in \mathcal{F}^{(k)}$.
 1786 (b) $\sum_{(s,a)} \tilde{d}_h^{(k)}(s,a) (\delta_h^{(t)}(s,a))^2 \leq \mathcal{O}(\beta)$.
 1787

1789 *Proof.* The proof follows the same structure as the non-robust argument (Jin et al., 2021, Lemma
 1790 39 and 40) and (Xie et al., 2022, Lemma 15) (martingale concentration via Freedman's inequality
 1791 plus a finite cover of the functional class), with two robust-specific ingredients: (i) the dual scalar
 1792 representation of the TV worst-case expectation and (ii) the use of the dual pointwise integrand as a
 1793 sample target. We derive the complete proof as follows.
 1794

1795 \bowtie *Proof of ineq. (b)* To show ineq. (b), we will focus on the proof-lines of (Jin et al., 2021,
 1796 Lemma 39) and (Xie et al., 2022, Lemma 15 (2)). We first fix (k, h, f) tuple, where
 1797 an episode k we consider a function $f^{(k)} = \{f_1^{(k)}, \dots, f_H^{(k)}\} \in \mathcal{F}$. Let us denote
 1798 $\psi^k(s) := \psi_{f_{h+1}^{(k)}}^f(s)$ such that $\psi^k(s_{h+1}) := f_{h+1}^{(k)}(s_{h+1}, \pi_{h+1}^{(k)}(s_{h+1}))$, and we assume
 1799 $\|f\|_\infty, \|\psi^f\|_\infty \leq H$ (this is the boundedness assumption used throughout). We consider
 1800 the filtration induced as
 1801

$$\mathcal{H}_h^{(k)} = \{s_1^i, a_1^i, r_1^i, \dots, s_H^i\}_{i=1}^{k-1} \bigcup \{s_h^k, a_h^k, r_h^k, \dots, s_h^k, a_h^k\}$$

1802 as the filtration containing the history up to the episode k at step h .
 1803

1804 We obtain $g_{f_h} \in [0, 2H/\sigma]$ as a measurable minimizer of eq. 14 that satisfies Assumption 3.
 1805 For the trajectory of episode k , we define
 1806

$$Z_h^{(k)}(f, \underline{g}_f) := \left(g_{f_{h+1}^{(k)}}(s_h^k, a_h^k) - \psi_{h+1}^{f^{(k)}}(s_h^k, a_h^k) \right)_+ - (1 - \sigma) g_{f_{h+1}^{(k)}}(s_h^k, a_h^k), \quad (69)$$

1807 such that $|Z_h^{(k)}(f, \underline{g}_f)| \leq 5H/\sigma$ and
 1808

$$\mathbb{E}\left[Z_h^{(k)}(\underline{g}_f, f) \middle| \mathcal{H}_h^{(k)}\right] = \left[\mathcal{T}_{\underline{g}_{f_{h+1}^{(k)}}^f, h}^{\sigma} f_{h+1}^{(k)} \right] (s_h^k, a_h^k) - r_h^{(k)}(s_h^k, a_h^k). \quad (70)$$

1809 For each episode k and step h , we define the martingale difference as
 1810

$$\begin{aligned} X_h^{(k)}(f, \underline{g}_f) &:= \left(f_h^{(k)}(s_h^k, a_h^k) - r_h^{(k)}(s_h^k, a_h^k) - Z_h^{(k)}(f^{(k)}, \underline{g}_{f^{(k)}}) \right)^2 \\ &\quad - \left(\left[\mathcal{T}_{\underline{g}_{f_{h+1}^{(k)}}^f, h}^{\sigma} f_{h+1}^{(k)} \right] (s_h^k, a_h^k) - r_h^{(k)}(s_h^k, a_h^k) + Z_h^{(k)}(f^{(k)}, \underline{g}_{f^{(k)}}) \right)^2, \end{aligned} \quad (71)$$

1811 such that we have $|X_h^{(k)}(f, \underline{g}_f)| \leq c_1 \left(H \min\{H, 1/\sigma\} \right)^2$, where $c_1 > 0$ is an absolute
 1812 constant. Moreover,
 1813

$$\begin{aligned} \mathbb{E}\left[X_h^{(k)}(f, \underline{g}_f) \middle| \mathcal{H}_h^{(k)}\right] &= \left(\delta_h^{(k)}(s_h^k, a_h^k) \right)^2 \\ \text{Var}\left[X_h^{(k)}(f, \underline{g}_f) \middle| \mathcal{H}_h^{(k)}\right] &\leq c_2 \left(H \min\{H, 1/\sigma\} \right)^2 \mathbb{E}\left[X_h^{(k)}(f, \underline{g}_f) \middle| \mathcal{H}_h^{(k)}\right], \end{aligned} \quad (72)$$

1814 where $c_1, c_2 > 0$ are absolute constants.
 1815

1816 Therefore, by Freedman's inequality as given Lemma T.4, we can write
 1817

$$\left| \sum_{k=1}^K \left(X_h^{(k)}(f, \underline{g}_f) - \mathbb{E}\left[X_h^{(k)}(f, \underline{g}_f)\right] \right) \middle| \mathcal{H}_h^{(k)} \right| \leq \mathcal{O}\left(\sqrt{\log(1/\delta) \sum_{k=1}^K \mathbb{E}\left[X_h^{(k)}(f, \underline{g}_f) \middle| \mathcal{H}_h^{(k)}\right]} + \log(1/\delta) \right). \quad (73)$$

Now, let us consider \mathcal{X}_ρ be the ρ -cover of $\mathcal{F} \cup \mathcal{G}$. Now taking a union bound for all $(k, h, \phi) \in [K] \times [H] \times \mathcal{X}_\rho$, and following the same proof-lines as in (Jin et al., 2021, Lemma 39), we get

$$\sum_{t < k} \mathbb{E} \left[\left(\delta_h^{(t)}(s_h, a_h) \right)^2 \middle| \mathcal{H}_h^{(t)} \right] \leq \mathcal{O}(\beta), \quad (74)$$

where $\beta = \mathcal{O} \left(\left(H \min\{H, 1/\sigma\} \right) \log \left(\frac{KH|\mathcal{F}||\mathcal{G}|}{\delta} \right) \right)$.

Therefore, eq. 74 concludes that $\sum_{t < k} \mathbb{E}_{(s, a) \sim d_h^{(t), P^\omega}(s, a)} [\delta_h^{(t)}(s, a)]^2 \leq \mathcal{O}(\beta)$.

By the definition of visitation measures, we have

$$\begin{aligned} \sum_{(s, a)} \tilde{d}_h^{(k)}(s, a) \delta_h^{(t)}(s, a)^2 &\stackrel{(a)}{=} \sum_{t < k} \sum_{(s, a)} d_h^{(t), P^\omega}(s, a) \delta_h^{(t)}(s, a)^2 \\ &= \sum_{t < k} \mathbb{E}_{(s, a) \sim d_h^{(t), P^\omega}} [\delta_h^{(t)}(s, a)^2] \\ &\stackrel{(b)}{\leq} \mathcal{O}(\beta), \end{aligned} \quad (75)$$

where (a) is by the definition of $\tilde{d}_h^{(k)}(s, a)$ given by equation 31, and (b) is using equation 74.

Proof of ineq. (a) To show ineq. (a), we will focus on the proof-lines of (Jin et al., 2021, Lemma 40) and (Xie et al., 2022, Lemma 15 (1)). Fix (k, h, f) and follow the same notation as mentioned in the proof lines of the inequality (b), we define

$$\begin{aligned} W_h^{(t)}(f, \underline{g}_f) &:= \left(f_h^{(t)}(s_h^t, a_h^t) - r_h^{(t)}(s_h^t, a_h^t) - Z_h^{(t)}(f^{(t)}, \underline{g}_{f^{(t)}}) \right)^2 \\ &\quad - \left(Q_h^{\star, \sigma}(s_h^t, a_h^t) - r_h^{(t)}(s_h^t, a_h^t) + Z_h^{(t)}(f^{(t)}, \underline{g}_{f^{(t)}}) \right)^2, \quad \text{for } 1 \leq t \leq k. \end{aligned}$$

As in eq. 72, $\mathbb{E} [W_h^{(t)}(f, \underline{g}_f) \mid \mathcal{H}_h^{(t)}] = \left(f_h^{(t)}(s_h^t, a_h^t) - Q_h^{\star, \sigma}(s_h^t, a_h^t) \right)^2$ where $\mathcal{H}_h^{(t)}$ be the filtration induced by $\{s_1^i, a_1^i, r_1^i, \dots, s_H^i\}_{i=1}^{t-1} \cup \{s_1^t, a_1^t, r_1^t, \dots, s_h^t, a_h^t\}$. Similarly, we can verify that $|W_h^{(t)}(f, \underline{g}_f)| \leq c_1 \left(H \min\{H, 1/\sigma\} \right)^2$ and $\text{Var} [W_h^{(t)}(f, \underline{g}_f) \mid \mathcal{H}_h^{(t)}] \leq c_2 \left(H \min\{H, 1/\sigma\} \right)^2 E [W_h^{(t)}(f, \underline{g}_f) \mid \mathcal{H}_h^{(t)}]$. Now, following the proof-lines of (Jin et al., 2021, Lemma 40), and applying Freedman's ineq. (Lemma T.4 and a cover of \mathcal{G} yields, w.p. $1 - \delta$, we get

$$\begin{aligned} &\sum_{t=1}^{k-1} \left[Q_h^{\star, \sigma}(s_h^t, a_h^t) - r_h^t(s_h^t, a_h^t) - Q_{h+1}^{\star, \sigma}(s_{h+1}^t, \pi_{h+1}^{Q^{\star, \sigma}}(s_{h+1}^t)) \right]^2 \\ &\leq \sum_{t=1}^{k-1} \left[f_h^{(t)}(s_h^t, a_h^t) - r_h^t(s_h^t, a_h^t) - Q_{h+1}^{\star, \sigma}(s_{h+1}^t, \pi_{h+1}^{Q^{\star, \sigma}}(s_{h+1}^t)) \right]^2 + \mathcal{O}(\beta). \end{aligned}$$

Finally, by recalling the definition of $\mathcal{F}^{(k)}$, we conclude that with probability at least $1 - \delta$, $Q^{\star, \sigma} \in \mathcal{F}^{(k)}$ for all $k \in [K]$.

This concludes the proof of Lemma K.2. \square

Lemma K.3 (Dual Optimization Error Bound). Let \underline{g}_f denote any dual parameter obtained from the empirical optimization in eq. 14 for a given state-action value function f , and let \mathcal{T}_g^σ be as defined in eq. 10. Then, under Definition 2, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$\sup_{f \in \mathcal{F}} \|\mathcal{T}_g^\sigma f - \mathcal{T}_{\underline{g}_f}^\sigma f\|_{1, \mu^\pi} = \mathcal{O} \left(H \min\{H, 1/\sigma\} \sqrt{\frac{2 \log (8|\mathcal{G}||\mathcal{F}|/\delta)}{|\mathcal{D}|}} + \xi_{\text{dual}} \right). \quad (76)$$

1890 *Proof.* Fix an arbitrary $f \in \mathcal{F}$ and recall that \underline{g}_f as defined in eq. 14, where $\widehat{\text{Dual}}_{loss}$ is given in
 1891 eq. 14. For notational convenience, define the dual objective
 1892

$$1893 \quad \Phi_f(x) := \mathbb{E}_{(s,a) \sim \mu^\pi, s' \sim P_{s,a}^*} [h_f(x)], \text{ where } h_f(x) := (x - \max_{a'} f(s', a'))_+ - (1 - \sigma)x. \\ 1894$$

1895 Using the dual representation in eq. 13, the difference between the true robust Bellman operator and
 1896 its empirical counterpart can be written as
 1897

$$1898 \quad \|\mathcal{T}^\sigma f - \mathcal{T}_{\underline{g}_f}^\sigma f\|_{1,\mu^\pi} = \Phi_f(\underline{g}_f) - \mathbb{E}_{(s,a) \sim \mu^\pi} \left[\inf_{\eta \in [0,2H/\sigma]} h_f(\eta) \right]. \quad (77) \\ 1899 \\ 1900$$

1901 Next, we use the functional reformulation, which (by the interchange rule for integral functionals
 1902 (Rockafellar & Wets, 1998, Theorem 14.60)) (as given in Lemma T.2) states that
 1903

$$1904 \quad \mathbb{E}_{(s,a) \sim \mu^\pi} \left[\inf_{\eta \in [0,2H/\sigma]} h_f(\eta) \right] = \inf_{g \in \mathcal{L}^1(\mu^\pi)} \Phi_f(g). \\ 1905 \\ 1906$$

1907 Substituting this into eq. 77 gives
 1908

$$1909 \quad \|\mathcal{T}^\sigma f - \mathcal{T}_{\underline{g}_f}^\sigma f\|_{1,\mu^\pi} = \Phi_f(\underline{g}_f) - \inf_{g \in \mathcal{L}^1(\mu^\pi)} \Phi_f(g) \\ 1910 \\ 1911 = [\Phi_f(\underline{g}_f) - \inf_{g \in \mathcal{G}} \Phi_f(g)] + [\inf_{g \in \mathcal{G}} \Phi_f(g) - \inf_{g \in \mathcal{L}^1(\mu^\pi)} \Phi_f(g)]. \\ 1912$$

1913 The second bracket is controlled by the approximate dual realizability assumption (Assumption 3),
 1914 which gives

$$1915 \quad \inf_{g \in \mathcal{G}} \Phi_f(g) - \inf_{g \in \mathcal{L}^1(\mu^\pi)} \Phi_f(g) \leq \xi_{\text{dual}}. \\ 1916$$

1917 Hence,

$$1918 \quad \|\mathcal{T}^\sigma f - \mathcal{T}_{\underline{g}_f}^\sigma f\|_{1,\mu^\pi} \leq \Phi_f(\underline{g}_f) - \inf_{g \in \mathcal{G}} \Phi_f(g) + \xi_{\text{dual}.} \quad (78) \\ 1919$$

1920 We now bound the optimization error term $\Phi_f(\underline{g}_f) - \inf_{g \in \mathcal{G}} \Phi_f(g)$. Consider the loss function as
 1921

$$1922 \quad \ell_f(g, (s, a, s')) := (g(s, a) - \max_{a'} f(s', a'))_+ - (1 - \sigma)g(s, a), \\ 1923$$

1924 so that $\Phi_f(g) = \mathbb{E}_{(s,a,s')} [\ell_f(g, (s, a, s'))]$ and $\widehat{\text{Dual}}_{loss}(g; f)$ in eq. 14 is the empirical average
 1925 of ℓ_f over \mathcal{D} . Since $f \in \mathcal{F}$ and $g \in \mathcal{G}$ take values in $[0, H]$ and $[0, 2H/\sigma]$, respectively, we have
 1926 $|\ell_f(g, (s, a, s'))| \leq 5H/\sigma$, and $\ell_f(\cdot, (s, a, s'))$ is $(2 - \sigma)$ -Lipschitz in g .
 1927

1928 By applying the empirical risk minimization generalization bound ((Panaganti et al., 2022, Lemma
 1929 3)) together with the Lipschitz-based bound in eq. 81 of Lemma T.1, we obtain that, with probability
 1930 at least $1 - \delta$,

$$1932 \quad \Phi_f(\underline{g}_f) - \inf_{g \in \mathcal{G}} \Phi_f(g) \leq \frac{4H(2 - \sigma)}{\sigma} \sqrt{\frac{2 \log |\mathcal{G}|}{|\mathcal{D}|}} + \frac{25H}{\sigma} \sqrt{\frac{2 \log(8/\delta)}{|\mathcal{D}|}}. \quad (79) \\ 1933 \\ 1934$$

1935 Combining equation 78 and equation 79, and then taking a union bound over $f \in \mathcal{F}$, we conclude
 1936 that, with probability at least $1 - \delta$,

$$1938 \quad \sup_{f \in \mathcal{F}} \|\mathcal{T}^\sigma f - \mathcal{T}_{\underline{g}_f}^\sigma f\|_{1,\mu^\pi} \leq 25(3 - \sigma) \frac{H}{\sigma} \sqrt{\frac{2 \log(8|\mathcal{G}||\mathcal{F}|/\delta)}{|\mathcal{D}|}} + \xi_{\text{dual}} \\ 1939 \\ 1940 \\ 1941 \\ 1942 \\ 1943$$

$$\leq C \frac{H}{\sigma} \sqrt{\frac{2 \log(8|\mathcal{G}||\mathcal{F}|/\delta)}{|\mathcal{D}|}} + \xi_{\text{dual}},$$

1944 for some absolute constant $C > 0$, which proves the claimed big- \mathcal{O} bound. \square

1944
 1945 **Lemma K.4.** For any policy π and transition kernel P , define the step- h state and state-action
 1946 visitation measures as

$$1946 \quad \rho_h^{\pi, P}(s) := \Pr(s_h = s \mid \pi, P), \quad d_h^{\pi, P}(s, a) := \Pr(s_h = s, a_h = a \mid \pi, P) = \rho_h^{\pi, P}(s) \pi(a \mid s).$$

1947 For each step $h \in [H]$, define the robust coefficient as

$$1949 \quad C_h^{\text{cv,rob}} := \sup_{P \in \mathcal{U}} \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}} \sup_{\pi} d_h^{\pi, P}(s, a),$$

1950 and its state-only counterpart

$$1953 \quad \tilde{C}_h^{\text{cv,rob}} := \sup_{P \in \mathcal{U}} \sum_{s \in \mathcal{S}} \sup_{\pi} \rho_h^{\pi, P}(s).$$

1955 Under the d -rectangular linear TV-RMDP assumption in Assumption 4 and the definition of C_{rcov} in
 1956 Definition 3, the robust coverability coefficient satisfies

$$1957 \quad C_{\text{rcov}} \leq \max_h \tilde{C}_h^{\text{cv,rob}} \leq \mathcal{O}(Ad).$$

1959 *Proof.* The first inequality is straightforward, as $P^w \in \mathcal{U}$.

1961 Fix any kernel $P \in \mathcal{U}$. By Lemma T.6,

$$1962 \quad \sum_{(s, a)} \sup_{\pi} d_h^{\pi, P}(s, a) \leq \sum_{(s, a)} \sup_{\pi} \rho_h^{\pi, P}(s) = A \sum_s \sup_{\pi} \rho_h^{\pi, P}(s).$$

1965 Applying Lemma T.7 pointwise in s yields

$$1966 \quad \sum_s \sup_{\pi} \rho_h^{\pi, P}(s) \leq \sum_s \max_{i \in [d]} \nu_{h-1, i}(s),$$

1968 for the corresponding signed measures $\{\nu_{h-1, i}\}$. It hence completes the proof by applying Lemma T.8. \square

1972 D.3 TECHNICAL LEMMAS

1973 We now state a result for the generalization bounds on empirical risk minimization (ERM) problems.
 1974 This result is adapted from (Shalev-Shwartz & Ben-David, 2014, Theorem 26.5, Lemma 26.8, Lemma
 1975 26.9).

1977 **Lemma T.1** (ERM generalization bound (Panaganti et al., 2022), Lemma 3). Let P be a distribution
 1978 on \mathcal{X} and let \mathcal{H} be a hypothesis class of real-valued functions on \mathcal{X} . Assume the loss $\text{loss} : \mathcal{H} \times \mathcal{X} \rightarrow$
 1979 \mathbb{R} satisfies

$$1980 \quad |\text{loss}(h, x)| \leq c_0, \quad \forall h \in \mathcal{H}, x \in \mathcal{X}, \quad \text{for some constant } c_0 > 0.$$

1981 Given an i.i.d. sample $\mathcal{D} = \{X_i\}_{i=1}^N$ from P , define the empirical risk minimizer $\tilde{h} \in$
 1982 $\arg \min_{h \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^N \text{loss}(h, X_i)$. For any $\delta \in (0, 1)$ and any population risk minimizer $h^* \in$
 1983 $\arg \min_{h \in \mathcal{H}} \mathbb{E}_{X \sim P}[\text{loss}(h, X)]$, the following holds with probability at least $1 - \delta$:

$$1984 \quad \mathbb{E}_{X \sim P}[\text{loss}(\tilde{h}, X)] - \mathbb{E}_{X \sim P}[\text{loss}(h^*, X)] \leq 2R(\text{loss} \circ \mathcal{H} \circ \mathcal{D}) + 5c_0 \sqrt{\frac{2 \log(8/\delta)}{N}}, \quad (80)$$

1986 where $R(\text{loss} \circ \mathcal{H} \circ \mathcal{D})$ is the empirical Rademacher complexity of the loss-composed class $\text{loss} \circ \mathcal{H}$,
 1987 defined by

$$1989 \quad R(\text{loss} \circ \mathcal{H} \circ \mathcal{D}) = \frac{1}{N} \mathbb{E}_{\{\sigma_i\}_{i=1}^N} \left[\sup_{g \in \text{loss} \circ \mathcal{H}} \sum_{i=1}^N \sigma_i g(X_i) \right],$$

1991 with $\{\sigma_i\}_{i=1}^N$ independent of $\{X_i\}_{i=1}^N$ and i.i.d. according to a Rademacher random variable σ (i.e.,
 1992 $\mathbb{P}(\sigma = 1) = \mathbb{P}(\sigma = -1) = 0.5$). Moreover, if \mathcal{H} is finite, $|\mathcal{H}| < \infty$, and there exist constants
 1993 $c_1, c_2 > 0$ such that

$$1994 \quad |h(x)| \leq c_0 \quad \forall h \in \mathcal{H}, x \in \mathcal{X}, \quad \text{and} \quad \text{loss}(h, x) \text{ is } c_1\text{-Lipschitz in } h,$$

1995 then with probability at least $1 - \delta$ we further have

$$1997 \quad \mathbb{E}_{X \sim P}[\text{loss}(\tilde{h}, X)] - \mathbb{E}_{X \sim P}[\text{loss}(h^*, X)] \leq 2c_1 c_2 \sqrt{\frac{2 \log(|\mathcal{H}|)}{N}} + 5c_0 \sqrt{\frac{2 \log(8/\delta)}{N}}. \quad (81)$$

1998 We now mention two important concepts from variational analysis (Rockafellar & Wets, 1998)
 1999 literature that is useful to relate minimization of integrals and the integrals of pointwise minimization
 2000 under special class of functions.

2001 **Definition 5** (Decomposable spaces and Normal integrands (Rockafellar & Wets, 1998)(Definition
 2002 14.59, Example 14.29)). A space \mathcal{X} of measurable functions is a decomposable space relative to an
 2003 underlying measure space $(\Omega, \mathcal{A}, \mu)$, if for every function $x_0 \in \mathcal{X}$, every set $A \in \mathcal{A}$ with $\mu(A) < \infty$,
 2004 and any bounded measurable function $x_1 : A \rightarrow \mathbb{R}$, the function

$$x(\omega) = x_0(\omega)\mathbf{1}(\omega \notin A) + x_1(\omega)\mathbf{1}(\omega \in A)$$

2006 belongs to \mathcal{X} . A function $f : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ (finite-valued) is a normal integrand, if and only if $f(\omega, x)$
 2007 is \mathcal{A} -measurable in ω for each x and is continuous in x for each ω .

2008 **Remark 7.** A few examples of decomposable spaces are $\mathcal{L}^p(\mathcal{S} \times \mathcal{A}, \Sigma(\mathcal{S} \times \mathcal{A}), \mu)$ for any $p \geq 1$
 2009 and $\mathcal{M}(\mathcal{S} \times \mathcal{A}, \Sigma(\mathcal{S} \times \mathcal{A}))$, the space of all $\Sigma(\mathcal{S} \times \mathcal{A})$ -measurable functions.

2010 **Lemma T.2** ((Rockafellar & Wets, 1998), Theorem 14.60). Let \mathcal{X} be a space of measurable functions
 2011 from Ω to \mathbb{R} that is decomposable relative to a σ -finite measure μ on the σ -algebra \mathcal{A} . Let $f : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ (finite-valued) be a normal integrand. Then, we have

$$\inf_{x \in \mathcal{X}} \int_{\omega \in \Omega} f(\omega, x(\omega)) \mu(d\omega) = \int_{\omega \in \Omega} \left(\inf_{x \in \mathcal{X}} f(\omega, x) \right) \mu(d\omega).$$

2016 Moreover, as long as the above infimum is not $-\infty$, we have that

$$x' \in \arg \min_{x \in \mathcal{X}} \int_{\omega \in \Omega} f(\omega, x(\omega)) \mu(d\omega),$$

2020 if and only if $x'(\omega) \in \arg \min_{x \in \mathbb{R}} f(\omega, x) \mu$ almost surely.

2021 **Lemma T.3** (Equivalence of robust coverability and cumulative visitation (Xie et al., 2022), Lemma
 2022 3). Recall the definition of C_{rcov} as given in Definition 3 and the cumulative visitation for every layer
 2023 $h \in [H]$ as given in Definition 4. Then

$$C_{\text{rcov}} = \max_{h \in [H]} C_h^{\text{cv}},$$

2024 and hence $C_{\text{rcov}} \leq SA$.

2025 **Lemma T.4** (Freedman's inequality (e.g., (Agarwal et al., 2014))). Let $\{M_t\}_{t \leq T}$ be a real-valued
 2026 martingale difference sequence w.r.t. filtration $\{\mathcal{G}_t\}$ with $|M_t| \leq b$ a.s. and let $S_T = \sum_{t=1}^T \mathbb{E}[M_t^2 | \mathcal{G}_{t-1}]$. Then for any $\delta \in (0, 1)$,

$$\Pr \left(\sum_{t=1}^T M_t \geq \sqrt{2S_T \ln(1/\delta)} + \frac{b}{3} \ln(1/\delta) \right) \leq \delta.$$

2027 **Lemma T.5** (Per-state-action elliptic potential lemma (Lattimore & Szepesvári, 2020)). Let
 2028 $d^{(1)}, d^{(2)}, \dots, d^{(K)}$ be an arbitrary sequence of distributions over a set \mathcal{Z} (e.g., $\mathcal{Z} = \mathcal{S} \times \mathcal{A}$),
 2029 and let $\mu \in \Delta(\mathcal{Z})$ be a distribution such that $d^{(t)}(z)/\mu(z) \leq C$ for all $(z, t) \in \mathcal{Z} \times [K]$. Then for
 2030 all $z \in \mathcal{Z}$,

$$\sum_{k=1}^K \frac{d^{(k)}(z)}{\sum_{i < t} d^{(k)}(z) + C \cdot \mu(z)} \leq \mathcal{O}(\log K).$$

2031 **Lemma T.6.** For any kernel P , state s , action a , and step h ,

$$\sup_{\pi} d_h^{\pi, P}(s, a) \leq \sup_{\pi} \rho_h^{\pi, P}(s).$$

2032 **Proof.** For any π , $d_h^{\pi, P}(s, a) = \rho_h^{\pi, P}(s) \pi(a | s) \leq \rho_h^{\pi, P}(s)$, hence $\sup_{\pi} d_h^{\pi, P}(s, a) \leq \sup_{\pi} \rho_h^{\pi, P}(s)$. \square

2033 **Lemma T.7.** Fix step h and a kernel P with bases $\{\nu_{h-1, i}\}_{i=1}^d$. For any policy π ,

$$\rho_h^{\pi, P}(\cdot) = \sum_{i=1}^d z_{h-1, i}^{\pi} \nu_{h-1, i}(\cdot) \quad \text{for some } z_{h-1}^{\pi} \in \Delta_d. \quad (82)$$

2034 Consequently, for any state s ,

$$\sup_{\pi} \rho_h^{\pi, P}(s) \leq \max_{i \in [d]} \nu_{h-1, i}(s). \quad (83)$$

2052 *Proof.* It holds that
 2053

$$\begin{aligned}
 \rho_h^{\pi, P}(\cdot) &= \sum_{s', a} \rho_{h-1}^{\pi, P}(s') \pi(a | s') P_{h-1}(\cdot | s', a) \\
 &= \sum_{s', a} \rho_{h-1}^{\pi, P}(s') \pi(a | s') \sum_{i=1}^d \phi_i(s', a) \nu_{h-1, i}(\cdot) \\
 &= \sum_{i=1}^d \underbrace{\left(\sum_{s', a} \rho_{h-1}^{\pi, P}(s') \pi(a | s') \phi_i(s', a) \right)}_{=: z_{h-1, i}^{\pi}} \nu_{h-1, i}(\cdot).
 \end{aligned}$$

2064 Because $\phi_i(\cdot) \geq 0$ and $\sum_{i=1}^d \phi_i(\cdot) = 1$, we have $z_{h-1}^{\pi} \geq 0$ and $\sum_{i=1}^d z_{h-1, i}^{\pi} = 1$, hence $z_{h-1}^{\pi} \in \Delta_d$
 2065 and equation 82 holds. For any state s ,
 2066

$$\rho_h^{\pi, P}(s) = \sum_{i=1}^d z_{h-1, i}^{\pi} \nu_{h-1, i}(s) \leq \max_i \mu_{h-1, i}(s),$$

2070 and taking \sup_{π} gives equation 83. \square

2071 **Lemma T.8.** Let $\{\nu_i\}_{i=1}^d$ be some probability measure on \mathcal{S} with in \mathcal{P}_i . Then
 2072

$$\sum_{s \in \mathcal{S}} \max_{i \in [d]} \nu_i(s) \leq d. \tag{84}$$

2076 *Proof.* Note that
 2077

$$\sum_{s \in \mathcal{S}} \max_{i \in [d]} \nu_i(s) \leq \sum_{i=1}^d \sum_s \nu_i(s) = d,$$

2080 where the last equality is from the fact that ν_i is some probability measure. \square

2083 E USE OF LARGE LANGUAGE MODELS

2085 We used ChatGPT strictly as a general-purpose assist tool for typesetting and language polishing. In
 2086 particular, it helped with (i) grammar, style, and readability improvements, and (ii) LaTeX formatting
 2087 tasks such as managing algorithm placement, cleaning BibTeX entries and citation styles, and
 2088 resolving compile issues (e.g., Type-3 font warnings and package conflicts).

2089 All ideas, derivations, and final claims were developed, verified, and validated by the authors. The
 2090 authors take full responsibility for the content of this paper.

2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105