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Abstract

We obtain the first positive results for bounded
sample compression in the agnostic regression set-
ting with the ℓp loss, where p ∈ [1,∞]. We con-
struct a generic approximate sample compression
scheme for real-valued function classes exhibiting
exponential size in the fat-shattering dimension
but independent of the sample size. Notably, for
linear regression, an approximate compression of
size linear in the dimension is constructed. More-
over, for ℓ1 and ℓ∞ losses, we can even exhibit
an efficient exact sample compression scheme of
size linear in the dimension. We further show that
for every other ℓp loss, p ∈ (1,∞), there does
not exist an exact agnostic compression scheme
of bounded size. This refines and generalizes a
negative result of David, Moran, and Yehudayoff
(2016) for the ℓ2 loss. We close by posing general
open questions: for agnostic regression with ℓ1
loss, does every function class admit an exact com-
pression scheme of polynomial size in the pseudo-
dimension? For the ℓ2 loss, does every function
class admit an approximate compression scheme
of polynomial size in the fat-shattering dimen-
sion? These questions generalize Warmuth’s clas-
sic sample compression conjecture for realizable-
case classification (Warmuth, 2003).

1. Introduction
Sample compression is a central problem in learning theory,
whereby one seeks to retain a “small” subset of the labeled
sample that uniquely defines a “good” hypothesis. Quanti-
fying small and good specifies the different variants of the
problem. For instance, in the classification setting, taking
small to mean “constant size” (i.e., depending only on the
VC-dimension d of the concept class but not on the sample

1Department of Computer Science, Ben-Gurion University,
Israel 2Department of Computer Science, Purdue University, USA.
Correspondence to: Idan Attias <idanatti@post.bgu.ac.il>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

sizem) and good to mean “consistent with the sample” spec-
ifies the classic realizable sample compression problem for
VC classes. The feasibility of the latter was an open prob-
lem between its being posed by Littlestone and Warmuth
(1986b) and its positive resolution by Moran & Yehudayoff
(2016), with various intermediate steps in between (Floyd,
1989; Helmbold, Sloan, and Warmuth, 1992; Floyd and War-
muth, 1995b; Ben-David and Litman, 1998; Kuzmin and
Warmuth, 2007; Rubinstein, Bartlett, and Rubinstein, 2009;
Rubinstein and Rubinstein, 2012; Chernikov and Simon,
2013; Livni and Simon, 2013; Moran, Shpilka, Wigderson,
and Yehudayoff, 2017). A stronger form of this problem,
where small means O(d) (or even exactly d), remains open
(Warmuth, 2003).

David, Moran, and Yehudayoff (2016) recently generalized
the definition of compression scheme to the agnostic case,
where it is required that the function reconstructed from the
compression set obtains an average loss on the full data set
nearly as small as the function in the class that minimizes
this quantity. In Remark 2.2, we give a strong motivation for
this criterion by arguing an equivalence to the generalization
ability of the compression-based learning algorithm. Under
this definition, David et al. (2016) extended the realizable-
case result for VC classes to cover the agnostic case as well:
a bounded-size compression scheme for the former implies
such a scheme (in fact, of the same size) for the latter. They
also generalized from binary to multiclass concept families,
with the graph dimension in place of VC-dimension. Pro-
ceeding to real-valued function classes, David et al. (2016)
came to a starkly negative conclusion: they established that
there is no constant-size exact agnostic sample compression
scheme for linear functions under the ℓ2 loss. (Realizable
linear regression in Rd trivially admits sample compression
of size d+ 1, under any loss, by selecting a minimal subset
that spans the data.)

Main results. We are the first to construct bounded sample
compression schemes for agnostic regression with ℓp loss,
p ∈ [1,∞]. Table 1 summarizes our contributions in the
context of previous results. We refer to an α-approximate
compression as one where the function reconstructed from
the compression set achieves an average error at most α com-
pared to the optimal function in the class. We consider the
sample compression to be exact when we precisely recover
this error. See Equations (3) and (4) for formal definitions.
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Our approach begins with proposing a boosting method
(Algorithm 1) to construct an α-approximate sample com-
pression scheme for agnostic ℓp regression, within function
classes characterized by a finite fat-shattering dimension.
The scheme has a size of Õ(fat(F , cα/p) fat∗(F , cα/p))1,
for some numerical constant c > 0, as established by The-
orem 3.1. Here, fat(F , cα/p) represents the fat-shattering
dimension of function class F at scale cα/p, and fat∗ is the
dimension of the dual-class, which is finite as long as the
dimension of the primal class is finite and can be at most
exponentially larger, see Equation (5). Notably, our com-
pression size is independent of the sample size. A major
open question is how to improve the exponential dependence
in the dimension, even in the realizable binary classification
setting (Warmuth, 2003). While such an approximate com-
pression has been previously acknowledged in realizable
regression (Hanneke et al., 2019), and exact compression
in agnostic binary classification (David et al., 2016), in
Section 3 we delve into the details of our techniques and
elucidate why methods previously suggested fall short in
addressing agnostic regression.

We proceed with exploring linear regression. The negative
result of David et al. (2016) regarding the impossibility of
achieving an exact compression for linear regression with
the ℓ2 (squared) loss raises a general doubt over whether
exact sample compression is ever a viable approach to ag-
nostic learning of real-valued functions. We address this
concern by proving that, if we replace the ℓ2 loss with the
ℓ1 or ℓ∞ loss, then there is a simple exact agnostic compres-
sion scheme of size d+ 1 for ℓ1 linear regression and d+ 2
for ℓ∞ in Rd, see Theorems 4.3 and 4.4. This is somewhat
surprising, given the above negative result for the ℓ2 loss.
Computationally, our compression schemes for ℓ1 and ℓ∞
involve solving a linear program of linear size.

We then propose Algorithm 2 for an α-approximate sample
compression for ℓp linear regression of size O(d log(p/α)),
where p ∈ (1,∞), see Theorem 4.2. Roughly speaking,
we reduce the problem to realizable binary classification
with linear functions. Our approach involves introducing a
discretized dataset on which the optimal solution of Support
Vector Machine (SVM) pointwise approximates an optimal
regressor on the original dataset. We complement this result
by showing that p ∈ {1,∞} are the only two ℓp losses
for which a constant-size exact compression scheme exists
(Theorem 4.6), generalizing the argument of David et al.
(2016).

These appear to be the first positive results for bounded ag-
nostic sample compression for real-valued function classes.
We close by posing intriguing open questions generalizing
our result to arbitrary function classes: under the ℓ1 loss,
does every function class admit an exact agnostic compres-

1Õ hides polylogarithmic factors in the specified expression.

sion scheme of size equal to its pseudo-dimension? under
the ℓ2 loss, does every function class admit an approximate
agnostic compression of size equal to its fat-shattering di-
mension? We argue that this represents a generalization
of Warmuth’s classic sample compression problem, which
asks whether every space of classifiers admits a compression
scheme of size VC-dimension in the realizable case.

Related work. Sample compression scheme is a classic
technique for proving generalization bounds, introduced by
Littlestone & Warmuth (1986a); Floyd & Warmuth (1995a).
These bounds proved to be useful in numerous learning
settings, particularly when the uniform convergence prop-
erty does not hold or provides suboptimal rates, such as
binary classification (Graepel et al., 2005b; Moran & Yehu-
dayoff, 2016; Bousquet et al., 2020), multiclass classifi-
cation (Daniely et al., 2015; Daniely & Shalev-Shwartz,
2014; David et al., 2016; Brukhim et al., 2022), regression
(Hanneke et al., 2019; Attias et al., 2023), active learning
(Wiener et al., 2015), density estimation (Ashtiani et al.,
2020), adversarially robust learning (Montasser et al., 2019;
2020; 2021; 2022; Attias et al., 2022; Attias & Hanneke,
2023), learning with partial concepts (Alon et al., 2022),
and showing Bayes-consistency for nearest-neighbor meth-
ods (Gottlieb et al., 2014; Kontorovich et al., 2017). As a
matter of fact, compressibility and learnability are known
to be equivalent for general learning problems (David et al.,
2016). A remarkable result by Moran & Yehudayoff (2016)
showed that VC classes enjoy a sample compression that is
independent of the sample size.

David et al. (2016) introduced sample compression in the
context of regression. They showed that an exact com-
pression scheme for ℓ2 agnostic linear regression requires
a linear growth relative to the sample size. Additionally,
they showed that it is feasible to have an α-approximate
compression for zero-dimensional linear regression with a
size of log(1/α)/α. In a broader sense, they established
the equivalence between learnability and the presence of an
approximate compression in regression.

Hanneke et al. (2019) showed how to convert consistent
real-valued learners into constant-size (i.e., independent
of sample size) efficiently computable approximate com-
pression schemes for the realizable (or nearly realizable)
regression with the ℓ∞ loss. This result was obtained via a
weak-to-strong boosting procedure, coupled with a generic
construction of weak learners out of abstract regressors.
The agnostic variant of this problem remains open in its full
generality.

Ashtiani et al. (2020) adapted the notion of a compression
scheme to the distribution learning problem. They showed
that if a class of distributions admits robust compressibility
then it is agnostically learnable.
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Problem Setup Compression Type Compression Size Reference

Realizable/Agnostic Binary Classification Exact O
(
VC · VC∗) (Moran & Yehudayoff, 2016; David et al., 2016)

Realizable/Agnostic Multiclass Classification Exact

O
(
dG · d∗

G

)
(David et al., 2016)

O
(
DS1.5 · polylog(m)

)
(Brukhim et al., 2022)

Ω
(
log(m)1−o(1)

)
(Pabbaraju, 2023)

Realizable ℓ∞ Regression α-Approximate O
(
fatcα · fat∗cα · polylog

(
fatcα, fat∗cα, 1

α

))
(Hanneke et al., 2019)

Agnostic ℓp Regression: p ∈ (1,∞)
α-Approximate

O
(
fatcα · fat∗cα · polylog

(
fatcα, fat∗cα, p, 1

α

))
This work

Agnostic ℓp Regression: p ∈ {1,∞} O
(
fatcα · fat∗cα · polylog

(
fatcα, fat∗cα, 1

α

))
Agnostic ℓp Linear Regression: p ∈ {1,∞} Exact O(d) This work

Agnostic ℓp Linear Regression: p ∈ (1,∞) α-Approximate O
(
d · log

(
p
α

))
This work

Agnostic ℓ2 Linear Regression Exact Ω(m) (David et al., 2016)

Agnostic ℓp Linear Regression: p ∈ [1,∞] Exact Ω(log(m)) This work

Table 1. Sample compression schemes for classification and regression. We denote the sample size by m, c > 0 is a numerical
constant. The o(1) term vanishes as m→∞. (i) Binary Classification: VC is the Vapnik-Chervonenkis dimension that characterizes
realizable and agnostic learnability. Any dimension with (·)∗ denotes the dimension of the dual-class. (ii) Multiclass Classification: dG

is the Graph-dimension and DS is the Daniely-Shwartz dimension. For a finite set of labels, both dimensions characterize realizable
and agnostic learnability. For an infinite set, only the finiteness of the DS dimension is equivalent to learnability. There exist learnable
function classes with infinite graph dimension and finite DS dimension. (iii) Regression: fatcα is the fat-shattering dimension at scale cα.
A function class is agnostically learnable in this setting if and only if the fat-shattering dimension is finite for any scale. However, in the
realizable case, there are learnable classes with infinite fat-shattering dimension. We comment that the results in (Hanneke et al., 2019)
are stated for ℓ∞, but still hold for any ℓp (with extra polylog factors in p) due to Lipschitzness of this loss. (iv) Linear Regression: d is
the vector space dimension. We refer to Section 5 for open problems.

2. Preliminaries
We denote [m] := {1, . . . ,m}. Let F ⊆ YX be a hypoth-
esis class. The ℓp loss incurred by a hypothesis f ∈ F on
(x, y) is given by (x, y) 7→ |f(x)− y|p, where p ∈ [1,∞].
For p ∈ [1,∞), the loss incurred by a hypothesis f ∈ F on
a labeled sample S = {(xi, yi) : i ∈ [m]} is given by

Lp(f, S) :=
1

m

m∑
i=1

|f(xi)− yi|p, (1)

while for p =∞,

L∞(f, S) := max
1≤i≤m

|f(xi)− yi|. (2)

Remark 2.1. The ℓp regression objective is typically written
without taking the pth root so as to facilitate optimization
algorithms. As we avoid taking the p-th root, the resulting
p-norm formulation does not directly converge to ℓ∞ as p
approaches infinity. Consequently, our ℓp results explicitly
depend on p, similar to results in the literature.

Now let us introduce a formal definition of sample com-
pression, and a criterion we require of any valid agnostic
compression scheme. Following the definition, we provide
a strong motivation for this criterion in terms of an equiva-
lence to the generalization ability of the learning algorithm
under general conditions.

Approximate and exact sample compression schemes.
Following David et al. (2016), we define a selection
scheme (κ, ρ) for a hypothesis class F ⊂ YX is defined
as follows. A k-selection function κ maps sequences
{(x1, y1), . . . , (xm, ym)} ∈

⋃
ℓ≥1{X × Y}

ℓ to elements

inK =
⋃

ℓ≤k′{X × Y}ℓ×
⋃

ℓ≤k′′ {0, 1}ℓ, where k′+k′′ ≤
k. A reconstruction is a function ρ : K → YX . We
say that (κ, ρ) is a k-size agnostic exact sample com-
pression scheme for F if κ is a k-selection and for all
S = {(xi, yi) : i ∈ [m]}, fS := ρ(κ(S)) achieves F-
competitive empirical loss:

Lp(fS , S) ≤ inf
f∈F

Lp(f, S). (3)

We also define a relaxed notion of agnostic α-approximate
sample compression in which fS should satisfy

Lp(fS , S) ≤ inf
f∈F

Lp(f, S) + α. (4)

In principle, the size k of an agnostic compression scheme
may depend on the data set size m, in which case we may
denote this dependence by k(m). However, in this work we
are primarily interested in the case when k(m) is bounded:
that is, k(m) ≤ k for some m-independent value k. Note
that the above definition is fully general, in that it defines
a notion of agnostic compression scheme for any function
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class F and loss function L, though in the present work we
focus on Lp loss for 1 ≤ p ≤ ∞.

Remark 2.2. At first, it might seem unclear why this is an
appropriate generalization of sample compression to the
agnostic setting. To see that it is so, we note that one of
the main interests in sample compression schemes is their
ability to generalize: that is, to achieve low excess risk under
a distribution P on X × Y when the data S are sampled
iid according to P (Littlestone and Warmuth, 1986b; Floyd
and Warmuth, 1995b; Graepel, Herbrich, and Shawe-Taylor,
2005a). Also, as mentioned, in this work we are primarily in-
terested in sample compression schemes that have bounded
size: k(m) ≤ k for anm-independent value k. Furthermore,
we are also focusing on the most-general case, where this
size bound should be independent of everything else in the
scenario, such as the data S or the underlying distribution
P . Given these interests, we claim that the above definition
is essentially the only reasonable choice. More specifically,
for Lp loss with 1 ≤ p <∞, any compression scheme with
k(m) bounded such that its expected excess risk under any
P converges to 0 as m→∞ necessarily satisfies the above
condition (or is easily converted into one that does). To
see this, note that for any data set S for which such a com-
pression scheme fails to satisfy the above F-competitive
empirical loss criterion, we can define a distribution P that
is simply uniform on S, and then the compression scheme’s
selection function would be choosing a bounded number of
points from S and a bounded number of bits, while guaran-
teeing that excess risk under P approaches 0, or equivalently,
excess empirical loss approaches 0. To make this argument
fully formal, only a slight modification is needed, to handle
having multiple copies of points from S in the compression
set; given that the size is bounded, these repetitions can be
encoded in a bounded number of extra bits, so that we can
stick to strictly distinct points in the compression set.

In the converse direction, we also note that any bounded-
size agnostic compression scheme (in the sense of the above
definition) will be guaranteed to have excess risk under P
converging to 0 as m → ∞, in the case that S is sampled
iid according to P , for losses Lp with 1 ≤ p < ∞, as
long as P guarantees that (X,Y ) ∼ P has Y bounded (al-
most surely). This follows from classic arguments about
the generalization ability of compression schemes, which
includes results for the agnostic case (Graepel, Herbrich,
and Shawe-Taylor, 2005a). For unbounded Y one cannot,
in general, obtain distribution-free generalization bounds.
However, one can still obtain generalization under certain
broader restrictions (see, e.g., Mendelson, 2015 and refer-
ences therein). The generalization problem becomes more
subtle for the L∞ loss: this cannot be expressed as a sum
of pointwise losses and there are no standard techniques for
bounding the deviation of the sample risk from the true risk.
One recently-studied guarantee achieved by minimizing em-

pirical L∞ loss is a kind of “hybrid error” generalization,
developed in Hanneke et al. (2019, Theorem 9). We refer
the interested reader to that work for the details of those
results, which can easily be extended to apply to our notion
of an agnostic compression scheme.

Complexity measures. Let F ⊆ [0, 1]X and γ > 0. We
say that S = {x1, . . . , xm} ⊆ X is γ-shattered by F if
there exists a witness r = (r1, . . . , rm) ∈ [0, 1]m such that
for each σ = (σ1, . . . , σm) ∈ {−1, 1}m there is a function
fσ ∈ F such that

∀i ∈ [m]

{
fσ(xi) ≥ ri + γ, if σi = 1

fσ(xi) ≤ ri − γ, if σi = −1.

The fat-shattering dimension of F at scale γ, denoted by
fat(F , γ), is the cardinality of the largest set of points in X
that can be γ-shattered by F . This parametrized variant of
the Pseudo-dimension (Alon et al., 1997) was first proposed
by Kearns & Schapire (1994). Its key role in learning theory
lies in characterizing the PAC learnability of real-valued
function classes (Alon et al., 1997; Bartlett & Long, 1998).
We also define the dual dimension. Define the dual class
F∗ ⊆ [0, 1]F of F as the set of all functions gw : F →
[0, 1] defined by gw(f) = f(w). If we think of a function
class as a matrix whose rows and columns are indexed by
functions and points, respectively, then the dual class is
given by the transpose of the matrix. The dual fat-shattering
dimension at scale γ, is defined as the fat-shattering at scale
γ of the dual-class and denoted by fat∗(F , γ). We have the
following bound due to Kleer & Simon (2021, Corollary 3.8
and inequality 3.1),

fat∗(F , γ) ≲ 1

γ
2fat(F,γ/2)+1. (5)

3. Approximate Agnostic Compression for
Real-Valued Function Classes

In this section, we construct an approximate compression
scheme for all real-valued function classes that are agnosti-
cally PAC learnable, that is, classes with finite fat-shattering
dimension at any scale (Alon et al., 1997; Bartlett & Long,
1998). We prove the following main result.
Theorem 3.1 (Approximate compression for agnostic re-
gression). Let F ⊆ [0, 1]X , S = {(xi, yi) : i ∈ [m]} ⊆
X × [0, 1], an approximation parameter α ∈ [0, 1], a weak
learner parameter β ∈ (0, 1/2], and ℓp loss where p ∈
[1,∞]. By setting Algorithm 1 with T ← O

(
1
β2 log(m)

)
and
d← Õ(fat(F , cα/p)) , n← Õ

(
fat∗(F , cα/p)

β2

)
, p ∈ [1,∞)

d← Õ(fat(F , cα)) , n← Õ
(
fat∗(F , cα)

β2

)
, p =∞,
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we get an α-approximate sample compression scheme of
size

Õ
(

1

β2
fat(F , cα/p) fat∗(F , cα/p)

)
, p ∈ [1,∞)

Õ
(

1

β2
fat(F , cα) fat∗(F , cα)

)
, p =∞,

for some universal constant c > 0. Recall that the dual fat-
shattering is at most exponential in the primal dimension,
see Equation (5). Õ(·) hides polylogarithmic factors of
(fat, fat∗, p, 1/α, 1/β).

Remark 3.2. Note that having an α-approximate compres-
sion of size k implies the following bound on the generaliza-

tion error: α +
√

k log(m/k)
m (David et al., 2016, Theorem

4.2).

Our algorithm incorporates a boosting approach for real-
valued functions. Therefore, we need a definition of weak
learners in this context.

Definition 3.3 (Approximate weak real-valued learners).
Let β ∈ (0, 12 ], α ∈ (0, 1). We say that g : X → [0, 1] is an
approximate (α, β)-weak learner, with respect to P and a
target function f⋆ ∈ F if

P(x,y)∼P {(x, y) : |g(x)− y| > |f⋆(x)− y|+ α} ≤ 1

2
−β.

This notion of a weak learner must be formulated carefully.
For example, taking a learner guaranteeing absolute loss at
most 1

2 − β is known to not be strong enough for boosting
to work, see the discussion in Hanneke et al. (2019, Section
4). On the other hand, by making the requirement too strong
(for example, AdaBoost.R in Freund & Schapire (1997)),
then the sample complexity of weak learning will be high
that weak learners cannot be expected to exist for certain
function classes. We can now present the main algorithm.

The challenges beyond realizable regression and agnostic
classification. There is a crucial difference from previous
boosting algorithms for real-valued used by Kégl (2003);
Hanneke et al. (2019) in the realizable case. In our ap-
proach, the cut-offs ψ(x, y) are allowed to vary across dif-
ferent points, in contrast to a fixed cut-off applied uniformly
across all points. This flexibility enables us to address the
agnostic setting, wherein the loss of an optimal minimizer
may differ across various points in the sample. To prove
the existence of weak learners we are required to have a
generalization theorem that is compatible with changing cut-
offs, see Theorem A.1. A similar generalization result was
used in the context of adversarially robust learning (Attias
& Hanneke, 2023).

The compression approach for agnostic binary classification,
as discussed in (David et al., 2016), encounters a similar

Algorithm 1 Approximate Agnostic Sample Compression
for ℓp Regression, p ∈ [1,∞]

Input: F ⊆ [0, 1]X , S = {(xi, yi) : i ∈ [m]} ⊆ X × [0, 1].
Parameters: Approximation parameter α ∈ (0, 1), weak
learner parameter β ∈ (0, 1/2], weak learner sample size
d ≥ 1, sparsification parameter n ≥ 1, number of boosting
rounds T ≥ 1, loss parameter p ∈ [1,∞].
Initialize: P1 ← Uniform(S).

▷ Find an optimal function in f⋆ ∈ F . Our goal is to
construct a function that pointwise approximates f⋆ on S

1. Compute:

(a) f⋆ ← argminf∈F Lp(f, S) (defined in Equa-
tions (1) and (2)).

(b) ψ(x, y)← |f⋆(x)− y|, ∀(x, y) ∈ S.

▷ Median boosting for real-valued functions

2. For t = 1, . . . , T :

(a) Get an (2α, β)-approximate weak learner f̂t with
respect to distribution Pt:
Find a multiset St ⊂ S of d points such
that for any f ∈ F with |f(x)− y| ≤
ψ(x, y) + α ∀(x, y) ∈ St, it holds that
P(x,y)∼Pt

{(x, y) : |f(x)− y| > ψ(x, y) + 2α} ≤
1/2− β. (St exists from Theorem A.1).

(b) For i = 1, . . . ,m:
Setw(t)

i ← 1−2I
[∣∣∣f̂t(xi)− yi∣∣∣ > ψ(xi, yi)+2α

]
.

(c) Set αt ← 1
2 log

(
(1−β)

∑m
i=1 Pt(xi,yi)I

[
w

(t)
i =1

]
(1+β)

∑m
i=1 Pt(xi,yi)I

[
w

(t)
i =−1

]) .
(d) If αt =∞:

return T copies of f̂t, (α1 = 1, . . . , αT = 1), St.
Else:
Pt+1(xi, yi)← Pt(xi, yi)

exp(−αtw
t
i)∑m

j=1 Pt(xj ,yj) exp(−αtwt
j)
.

▷ Sparsifying the weighted ensemble
{
f̂i

}T

i=1
returned

from boosting via sampling
3. Repeat:

(a) Sampling:

(J1, ... , Jn) ∼ Categorial
(

α1∑T
s=1 αs

, ... , αT∑T
s=1 αs

)n

.

(b) Let F̃ = {fJ1 , . . . , fJn}.
(c) Until ∀(x, y) ∈ S :∣∣∣{f ∈ F̃ : |f(x)− y| > ψ(x, y) + 3α

}∣∣∣ < n/2.

Compression: Multisets SJ1 , . . . , SJn and cut-offs
ψ|SJ1

, . . . , ψ|SJn
corresponding to the weak learners in F̃ .

Reconstruction: Reconstruct weak learners fJi
from

SJi
and ψ|SJi

, i ∈ [n], and output their median
Median(fJ1

, . . . , fJn
).
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challenge. In this method, our initial emphasis is on identify-
ing the points correctly classified by an optimal function in
the class. Subsequently, we apply compression techniques
for realizable classification. However, in regression, dis-
carding points where the optimal function makes mistakes
is not feasible, given that the loss is not strictly zero-one.
Instead, we utilize the entire sample, targeting the error
for each point and constructing a function with a similar
approximated error on each point.

Proof overview. First, we show that the returned output of
Algorithm 1 is a valid compression. Then we bound the size
of this compression.

Approximate compression correctness. In step 1, we com-
pute some f⋆ ∈ F the minimizes the empirical ℓp error on
the sample S,

f⋆ ← argmin
f∈F

Lp(f, S),

as defined in Equations (1) and (2). Let ψ : X ×Y → [0, 1]
be the ℓ1 loss of f⋆ on each point in S,

ψ(x, y)← |f⋆(x)− y|, ∀(x, y) ∈ S.

In step 2, we implement a boosting algorithm, following
Definition 3.3 of weak learners. By using Theorem A.1 with
δ = 1/3 and ε = 1/2 − β, for any distribution Pt on S,
upon receiving an i.i.d. sample St ⊆ S from Pt of size

d = O
(
fat(F , α/8) log2

(
fat(F , α/8)
α(1/2− β)

))
,

with probability 2/3 over sampling St from Pt, for any
f ∈ F satisfying ∀(x, y) ∈ St : |f(x)− y| ≤ ψ(x, y)+α,
it holds that

P(x,y)∼Pt
{(x, y) : |f(x)− y| > ψ(x, y) + 2α} ≤ 1

2
− β.

That is, such a function is an approximate (2α, β)-weak
learner for Pt and f⋆. Since this holds with probability
2/3, there must be such St ⊆ S. In order to construct
an approximate (2α, β)-weak learner f̂t, we need to find
f ∈ F such that ∀(x, y) ∈ St : |f(x)− y| ≤ ψ(x, y) + α,
and so the weak learner can be encoded by St of size d
and the set of cut-offs ψ(x, y) ∈ [0, 1] for all (x, y) ∈ St.
We encode only approximations of the cut-offs to keep the
compression size bounded (see the paragraph about the
compression size below). For T = O

(
1
β2 log(m)

)
rounds

of boosting, Lemma A.3 guarantees that for all (x, y) ∈ S
the output of the boosting algorithm satisfies∣∣∣Median

(
f̂1, . . . , f̂T ;α1, . . . , αT

)
(x)− y

∣∣∣ ≤ ψ(x, y) + 2α.

Finally, we use sampling to reduce the number of hypotheses
in the ensemble from O

(
1
β2 log(m)

)
to size that is inde-

pendent of m. Lemma A.4 implies that the sparsification
method in Step 3 ensures that we can sample

n = O
(
fat∗(F , cα) log2(fat∗(F , cα) /α)

)
such that for all (x, y) ∈ S

|Median(fJ1(x), . . . , fJn(x))− y| ≤ ψ(x, y) + 3α,

where c > 0 is an absolute constant. By rescaling 3α to α,
this proves the ℓ1 and ℓ∞ losses. For p ∈ (1,∞), we use
the Lipschitzness of the ℓp loss and rescale the approximate
parameter accordingly. We constructed a function h with
|h(x)− y| ≤ ψ(x, y)+α for any (x, y) ∈ S, which implies

|h(x)− y|p
(i)

≤ ((ψ(x, y)) + α)
p

(ii)

≤ ψ(x, y)p + pα,

and that will finish the proof. (i) Follows by just raising
both sides to the power of p. (ii) Follows since the function
x 7→ |x− y|p is p-Lipschitz for (x− y) ∈ [0, 1], and so

|(ψ(x, y) + α)
p − ψ(x, y)p| ≤ p|ψ(x, y) + α− ψ(x, y)|

≤ pα.

By rescaling pα to α, we get

|Median(fJ1
(x), . . . , fJn

(x))− y|p ≤ ψ(x, y)p + α,

where

n = Θ

(
1

β2
fat∗(F , cα/p) log2

(
p fat∗(F , cα/p)

α

))
,

and

d = O
(
fat(F , cα/p) log2

(
p fat(F , cα/p)
α(1/2− β)

))
.

We proved the correctness of an α-approximate compression

Lp(Median(fJ1 , . . . , fJn) , S) ≤ inf
f∈F

Lp(f, S) + α.

Approximate compression size. Each weak learner is en-
coded by a multiset S′ ⊆ S of size d and is constructed
by computing some f ′ ∈ F that solves the constrained
optimization

|f ′(x)− y| ≤ ψ(x, y) + α, ∀(x, y) ∈ S′.

We encode each ψ(x, y) by some approximation ψ̃(x, y),
such that

∣∣∣ψ̃(x, y)− ψ(x, y)∣∣∣ ≤ α, by discretizing [0, 1]

to 1/α buckets of size α, and each ψ(x, y) is rounded
down to the closest value ψ̃(x, y). Each approximation re-
quires to encode log(1/α) bits, and so each learner encodes
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d log(1/α) bits and d samples. We have n weak learners,
and the compression size is

n(d+ d log(1/α)) ≤ 2nd log(1/α) .

By plugging in n and d, and rescaling α, we conclude
Õ
(

1

β2
fat(F , cα/p) fat∗(F , cα/p)

)
, p ∈ [1,∞)

Õ
(

1

β2
fat(F , cα) fat∗(F , cα)

)
, p =∞.

4. Agnostic Compression for Linear
Regression

In this section, our focus is on ℓp linear regression in Rd.
We begin by improving upon the construction of an ap-
proximate sample compression scheme for general classes,
incorporating the structure of linear functions. Next, we
demonstrate the feasibility of constructing an exact com-
pression for p ∈ {1,∞} with a size linear in d. In sharp
contrast, we exhibit that this holds only for p ∈ {1,∞}. We
prove an impossibility result of achieving a bounded-size
exact compression scheme for p ∈ (1,∞).

We use the following notation. Vectors v ∈ Rd are denoted
by boldface, and their jth coordinate is indicated by v(j).
(Thus, vi(j) indicates the jth coordinate of the ith vector in
a sequence.)

4.1. Approximate Compression for p ∈ [1,∞]

In this subsection, our instance space is X = [0, 1]d, la-
bel space is Y = [0, 1], and hypothesis class is bounded
homogeneous linear functions F ⊆ YX , consisting of all
fw : X → Y given by fw(x) = ⟨w, x⟩, indexed by w ∈ Rd,
where ∥w∥2 ≤ 1.

In Section 3 we proved an approximate compres-
sion for general function classes with ℓp losses of size

O
(
fatcα/p · fat∗cα/p · polylog

(
fatcα/p, fat

∗
cα/p, p, 1/α

))
.

We have an immediate corollary for linear functions. Let
Pdim(F) be the pseudo-dimension of a function class F
(Pollard, 1990b; Haussler, 1992), that can be defined as
Pdim(F) = lim

γ→ 0
fatγ(F). The fat-shattering dimension

(at any scale) is upper bounded by the pseudo-dimension.
Moreover, the vector space dimension is of the same order
as the pseudo-dimension (Anthony et al., 1999), and the
dimension of the dual vector space is equal to the one of the
primal space. This implies the following.
Corollary 4.1. Algorithm 1 is a sample compression scheme
of size O

(
d2 · polylog

(
d, p, 1

α

))
for bounded linear regres-

sion in dimension d with the ℓp loss, for p ∈ [1,∞].

Another “baseline” solution involves encoding the coeffi-
cients of the linear regressor up to a certain approximation

parameter. To achieve an α-approximate sample compres-
sion, each coefficient should be accurate up to an additive
error of α/dp for p ∈ [1,∞), and α/d for p = ∞. Thus,
in this solution, we will encode d log (dp/α) bits without
retaining any samples for p ∈ [1,∞), and d log (d/α) for
p =∞.

In this section, Theorems 4.2 to 4.4 improve upon these
bounds by using a dedicated algorithm for linear functions.
We start with the following result:

Theorem 4.2 (Approximate compression for agnostic linear
regression). Let F =

{
x 7→ ⟨w, x⟩ : w ∈ Rd, ∥w∥2 ≤ 1

}
,

S = {(xi, yi) : ∥xi∥2 ≤ 1,∀i ∈ [m]} ⊆ X × [0, 1], and an
approximation parameter α ∈ (0, 1). Algorithm 2 is an
α-approximate sample compression scheme for the ℓp loss
of size 

O
(
d · log

( p
α

))
, p ∈ [1,∞)

O
(
d · log

(
1

α

))
, p =∞.

Algorithm 2 Approximate Agnostic Compression for ℓp
Linear Regression, p ∈ [1,∞]

Input: F =
{

x 7→ ⟨w, x⟩ : w ∈ Rd, ∥w∥2 ≤ 1
}

,
S = {(xi, yi) : ∥xi∥2 ≤ 1,∀i ∈ [m]} ⊆ X × [0, 1].
Parameters: Approximation parameter α ∈ [0, 1].

▷ Find an optimal regressor for S
1. f⋆ ← argminf∈F Lp(f, S)

▷ Define a discretized dataset where the new labels are
discretized to a resolution of α

2. Define Sα = A ∪B, where

A =

{
(xi, jα) : i ∈ [m], j ∈

{
− 1

α
, . . . ,−1, 0, 1, . . . , 1

α

}}
B =

{
(xi, j(1 + α)) : i ∈ [m], j ∈ {−1,+1}

}

▷ Label by ±1 the discretized dataset with f⋆

3. Define

Sα(f
⋆) = {((xi, ỹ) , z) : for any (xi, ỹ) ∈ Sα :

z = +1 if f⋆(xi)− ỹ ≤ 0, otherwise z = −1}

Compression: Run SVM for realizable binary classification
on Sα(f

⋆) and return a set of support vectors.
Reconstruction: Run SVM on the compression set.

Proof. Let F be the set of homogeneous linear predictors
bounded by 1, F =

{
x 7→ ⟨w, x⟩ : w ∈ Rd, ∥w∥2 ≤ 1

}
,

and data a set S = {(xi, yi) : ∥xi∥2 ≤ 1,∀i ∈ [m]} ⊆
X × [0, 1].

7



Agnostic Sample Compression Schemes for Regression

Approximate compression correctness. The algorithmic idea
is as follows. We first compute in Step 1 an optimal lin-
ear regressor f⋆ ∈ F for the ℓp loss. In step 2, we cre-
ate a discretized dataset Sα of size m(2/α + 3), where
for each example xi we create (2/α + 3) real-valued la-
bels {−1− α,−1, . . . ,−2α,−α, 0, α, 2α, . . . , 1, 1 + α}.
Then in step 3, we use the regressor f⋆ for classifying
the dataset Sα. That is, for any (xi, ỹ) ∈ Sα, we have
((xi, ỹ) ,+1) whenever f⋆(xi) − ỹ ≤ 0, and ((xi, ỹ) ,−1)
otherwise. We denote this dataset by Sα(f

⋆). Note that
for each xi we created a grid of binary labels of resolution
α in the range [−1 − α, 1 + α], and since |f⋆(xi)| ≤ 1,
for each vector xi there exists ỹ1, ỹ2 such that (xi, ỹ1),
(xi, ỹ2) ∈ Sα(f

⋆) have different labels. To obtain compres-
sion, we execute Support Vector Machine(SVM)
for realizable classification on Sα(f

⋆). Note that the clas-
sification problem is in Rd+1 and the original regression
problem is in Rd. Applying Caratheodory’s theorem allows
us to express its output as a linear combination of d + 2
support vectors (along with their labels). The set of returned
support vectors constitutes the compression set. For recon-
struction, we utilize SVM on these support vectors. The
hyperplane returned by SVM can be re-interpreted as a func-
tion from Rd to R that pointwise approximates f⋆ on all xi
in S.

We proceed to prove the correctness. Denote the out-
put of the compression scheme by fsvm = ρ(κ(S)) =
(wsvm, bsvm), which a affine linear function in Rd+1. This
function can be re-interpreted as an affine linear function
f̂ : Rd → R, for any x ∈ Rd we compute y ∈ R by solving
⟨wsvm, (x, y)⟩+ bsvm = 0,

f̂(x) = y =
⟨wd

svm, x⟩+ bsvm
wsvm(d+ 1)

,

where wd
svm = (wsvm(1), . . . ,wsvm(d)). It holds that

wsvm(d + 1) ̸= 0, since for any xi there exists ỹ1, ỹ2 such
that (xi, ỹ1), (xi, ỹ2) ∈ Sα(f

⋆) have different labels. If
wsvm(d+ 1) = 0 it means that the SVM hyperplane cannot
distinguish between these two points, and thus, it makes
a mistake on a realizable dataset, which is a contradiction.
Since the output of SVM is a valid compression scheme for
realizable binary classification, f̂ should classify correctly
all points in Sα(f

⋆). It follows that for any xi in S,∣∣∣f⋆(xi)− f̂(xi)
∣∣∣ ≤ α,

due to the two adjacent grid points with resolution α ly-
ing above and below both the hyperplane of f⋆ and the f̂
hyperplane. Therefore, for any (xi, yi) ∈ S∣∣∣|f⋆(xi)− yi| − |f̂(xi)− yi|∣∣∣ (i)

≤
∣∣∣f⋆(xi)− yi − f̂(xi) + yi

∣∣∣
=

∣∣∣f⋆(xi)− f̂(xi)
∣∣∣

≤ α,

where (i) follows from the triangle inequality, and so f̂ is an
α-approximate sample compression scheme for the ℓ1 and
ℓ∞ losses. For p ∈ (1,∞), using Lipschitzness of the ℓp
loss, we have∣∣∣|f⋆(xi)− yi|p − |f̂(xi)− yi|p

∣∣∣
≤

∣∣∣p(|f⋆(xi)− yi| − |f̂(xi)− yi|
)∣∣∣

= p
∣∣∣|f⋆(xi)− yi| − |f̂(xi)− yi|

∣∣∣
≤ pα.

By rescaling pα to α, we have an α-approximate compres-
sion scheme for the ℓp loss.

Approximate compression size. The SVM running on Sα(f
⋆)

returns a set of support vectors of size at most d+ 2, since
the input is in dimension d + 1. The x vectors are part of
the original sample S. We need to keep the grid point labels
of the support vectors as well, each one of them requires
log(1/α) bits, and each classification ±1 costs an extra bit.
We get a compression of size d + 2 + (d + 2) log(1/α) +
d+ 2 = O(d log(1/α)) .

4.2. Exact Compression for p ∈ {1,∞}

In this section, we show that agnostic linear regression in
Rd admits an exact compression scheme of size d+1 under
ℓ1 and d+2 under ℓ∞. Our instance space is X = Rd, label
space isY = R, and hypothesis class isF ⊆ YX , consisting
of all fw,b : X → Y given by fw,b(x) = ⟨w, x⟩+ b, indexed
by w ∈ Rd, b ∈ R. Note that we allow unbounded norms
for the linear functions and the data can be unbounded as
well, as opposed the the results in Section 4.1.

Theorem 4.3. There exists an efficiently computable (see
the linear program in Equation (8)) exact compression
scheme for agnostic ℓ1 linear regression of size d+ 1.

The optimization technique based on minimizing the sum of
absolute deviations is known as Least Absolute Deviations
(LAD) and was introduced by Boscovich in 1757 (see, for
example, Dodge (2008)). We derive a compression scheme
from this method. Similarly, we can obtain a compression
scheme for ℓ∞ loss via linear programming.

Theorem 4.4. There exists an efficiently computable (see
the linear program in Equation (9)) exact compression
scheme for agnostic ℓ∞ linear regression of size d+ 2.

4.3. Exact Constant Size Compression Is Impossible for
p ∈ (1,∞)

We proceed to show that it is impossible to have an exact
compression scheme of constant size (independent of the
sample size) for p ∈ (1,∞), generalizing the result for the
ℓ2 loss by David et al. (2016, Theorem 4.1).
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Theorem 4.5 (David et al. (2016)). There is no exact agnos-
tic sample compression scheme for zero-dimensional linear
regression with size k(m) ≤ m/2.

Theorem 4.6. There is no exact agnostic sample compres-
sion scheme for zero-dimensional linear regression under
ℓp loss, 1 < p <∞, with size k(m) < log(m).

5. Open Problems
The positive result for ℓ1 loss may also lead us to won-
der how general of a result might be possible. In particular,
noting that the pseudo-dimension (Pollard, 1984; 1990a; An-
thony et al., 1999) of linear functions in Rd is precisely d+1
(Anthony et al., 1999), there is an intriguing possibility for
the following generalization. For any class F of real-valued
functions, denote by Pdim(F) the pseudo-dimension of F .

Open Problem: Compressing to pseudo-dimension Num-
ber of Points. Under the ℓ1 loss, does every class F of
real-valued functions admit an exact agnostic compression
scheme of size Pdim(F)?

It is also interesting, and perhaps more approachable as an
initial aim, to ask whether there is an agnostic compression
scheme of size at most proportional to Pdim(F). Even
falling short of this, one can ask the more-basic question of
whether classes with Pdim(F) <∞ always have bounded
agnostic compression schemes (i.e., independent of sample
size m), and more specifically whether the bound is express-
ible purely as a function of Pdim(F) (Moran & Yehudayoff
(2016) have shown this is always possible in the realizable
classification setting).

These questions are directly related to (and inspired by)
the well-known long-standing conjecture of Floyd & War-
muth (1995b); Warmuth (2003), which asks whether, for
realizable-case binary classification, there is always a com-
pression scheme of size at most linear in the VC dimension
of the concept class. Indeed, it is clear that a positive solu-
tion of our open problem above would imply a positive solu-
tion to the original sample compression conjecture, since in
the realizable case with a function class F of {0, 1}-valued
functions, the minimal empirical ℓ1 loss on the data is zero,
and any function obtaining zero empirical ℓ1 loss on a data
set labeled with {0, 1} values must be {0, 1}-valued on that
data set, and thus can be thought of as a sample-consistent
classifier.2 Noting that, for F containing {0, 1}-valued func-
tions, Pdim(F) is equal the VC dimension, the implication
is clear.

The converse of this direct relation is not necessarily true.
Specifically, for a set F of real-valued functions, consider
the setH of subgraph sets: hf (x, y) = I[y ≤ f(x)], f ∈ F .

2To make such a function actually binary-valued everywhere,
it suffices to threshold at 1/2.

In particular, note that the VC dimension ofH is precisely
Pdim(F). It is not true that any realizable classification
compression scheme forH is also an agnostic compression
scheme for F under ℓ1 loss. Nevertheless, this reduction-to-
classification approach seems intuitively appealing, and it
might possibly be the case that there is some way to modify
certain types of compression schemes forH to convert them
into agnostic compression schemes for F . Following up on
this line of investigation seems the natural next step toward
resolving the above general open question.

Similarly, we ask the analogous question for the ℓ2 loss and
approximate sample compression schemes.

Open Problem: Compressing to fat-shattering Number
of Points. Let c > 0 be an absolute constant. Under the
ℓ2 loss, does every class F of real-valued functions admit
an α-approximate agnostic compression scheme of size
fat(F , cα)?
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A. Auxiliary Proofs for Section 3
Our proof relies on several auxiliary results.

Existence of approximate weak learners. We start with a result about generalization from interpolation. Anthony &
Bartlett (2000) established such a result for interpolation models (Anthony et al. (1999, Section 21.4)), where the cut-off
parameter η > 0 is fixed. The following results extend to cut-offs that may differ for different points. A similar result
appeared in Attias & Hanneke (2023) in the context of adversarially robust learning.

Theorem A.1 (Generalization from approximate interpolation with changing cutoffs). Let F ⊆ [0, 1]X be a function
class with a finite fat-shattering dimension (at any scale). For any α, ϵ, δ ∈ (0, 1), any function ψ : X × Y → [0, 1], any
distribution P over X × Y , for a random sample S ∼ Pm, if

m = O
(
1

ϵ

(
fat(F , α/8) log2

(
fat(F , α/8)

αϵ

)
+ log

1

δ

))
,

then with probability at least 1− δ over S, for any f ∈ F satisfying |f(x)− y| ≤ ψ(x, y) + α, ∀(x, y) ∈ S, it holds that
P(x,y)∼P {(x, y) : |f(x)− y| ≤ ψ(x, y) + 2α} ≥ 1− ϵ.
Theorem A.2 (Generalization from approximate interpolation). (Anthony et al., 1999, Theorems 21.13 and 21.14)
Let F ⊆ [0, 1]X be a function class with a finite fat-shattering dimension (at any scale). For any η, α, ϵ, δ ∈ (0, 1), any
distribution D over X , any function t : X → [0, 1], for a random sample S ∼ Dm, if

m(η, α, ϵ, δ) = O
(
1

ϵ

(
fat(F , α/8) log2

(
fat(F , α/8)

αϵ

)
+ log

1

δ

))
,

then with probability at least 1 − δ over S, for any f ∈ F satisfying |f(x)− t(x)| ≤ η ∀(x, y) ∈ S, it holds that
Px∼D{x : |f(x)− t(x)| ≤ η + α} ≥ 1− ϵ.

Proof of Theorem A.1. Let F ⊆ [0, 1]X and let

H = {(x, y) 7→ |f(x)− y| : f ∈ F} .

Define the function classes
F1 = {(x, y) 7→ |f(x)− y| − ψ(x, y) : f ∈ F} ,

and
F2 = {(x, y) 7→ max{f(x, y), 0} : f ∈ F1} .

We claim that fat(H, γ) = fat(F1, γ). Take a set S = {(x1, y1), . . . , (xm, ym)} that is γ-shattered by H. There exists a
witness r = (r1, . . . , rm) ∈ [0, 1]m such that for each σ = (σ1, . . . , σm) ∈ {−1, 1}m there is a function hσ ∈ H such that

∀i ∈ [m]

{
hσ((xi, yi)) ≥ ri + γ, if σi = 1

hσ((xi, yi)) ≤ ri − γ, if σi = −1.

The set S is shattered by F1 by taking r̃ = (r1 + η(x1, y1), . . . , rm + η(xm, ym)). Similarly, any set that is shattered by
F1 is also shattered byH.

The class F2 consists of choosing a function from F1 and computing its pointwise maximum with the constant function 0.
In general, for two function classes G1,G2, we can define the maximum aggregation class

max(G1,G2) = {x 7→ max{g1(x), g2(x)} : gi ∈ Gi},

Kontorovich & Attias (2021) showed that for any G1,G2

fat(max(G1,G2), γ) ≲ (fat(G1, γ) + fat(G2, γ)) log2(fat(G1, γ) + fat(G2, γ)) .

Taking G1 = F1 and G2 ≡ 0, we get

fat(F2, γ) ≲ fat(F1, γ) log
2(fat(F1, γ)) .
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For the particular case G2 ≡ 0, we can show a better bound of

fat(F2, γ) ≲ fat(F1, γ) .

In words, it means that truncation cannot increase the shattering dimension. Indeed, take a set S = {(x1, y1), . . . , (xk, yk)}
that is γ-shattered byF2 = max(F1, 0), we show that this set is γ-shattered byF1. There exists a witness r = (r1, . . . , rk) ∈
[0, 1]k such that for each σ = (σ1, . . . , σk) ∈ {−1, 1}k there is a function fσ ∈ F1 such that

∀i ∈ [k]

{
max{fσ((xi, yi)), 0} ≥ ri + γ, if σi = 1

max{fσ((xi, yi)), 0} ≤ ri − γ, if σi = −1.

For max{fσ((xi, yi)), 0} ≤ ri − γ, we simply have that fσ((xi, yi)) ≤ ri − γ. Moreover, this implies that ri ≥ γ. As a
result,

max{fσ((xi, yi)), 0} ≥ ri + γ

≥ 2γ

> 0,

which means that fσ((xi, yi)) ≥ ri + γ. This shows that F1 γ-shatters S as well. We can conclude the proof by applying
Theorem A.2 to the class F2 with t(x) = 0 and η = α.

The following boosting and sparsification claims were proven for the case of a fixed cut-off parameter. The proofs extend
similarly to the case of a changing cut-off parameter ψ : X × Y → [0, 1].

Boosting. Following (Hanneke et al., 2019), we define the weighted median as

Median(y1, . . . , yT ;α1, . . . , αT ) = min

{
yj :

∑T
t=1 αtI[yj < yt]∑T

t=1 αt

<
1

2

}
,

and the weighted quantiles, for β ∈ [0, 1/2], as

Q+
β (y1, . . . , yT ;α1, . . . , αT ) = min

{
yj :

∑T
t=1 αtI[yj < yt]∑T

t=1 αt

<
1

2
− β

}

Q−
β (y1, . . . , yT ;α1, . . . , αT ) = max

{
yj :

∑T
t=1 αtI[yj > yt]∑T

t=1 αt

<
1

2
− β

}
.

We define Q+
β (f1, . . . , fT ;α1, . . . , αT )(x) = Q+

β (f1(x), . . . , fT (x);α1, . . . , αT ), and Q−
β (f1, . . . , fT ;α1, . . . , αT )(x) =

Q−
β (f1(x), . . . , fT (x);α1, . . . , αT ), and Median(f1, . . . , fT ;α1, . . . , αT )(x) = Median(f1(x), . . . , fT (x);α1, . . . , αT ).

We omit the weights αi when they are equal to each other. The following guarantee holds for the boosting procedure.

Lemma A.3. Let S = {(xi, yi)}mi=1, T = O
(

1
β2 log(m)

)
. Let f̂1, . . . , f̂T and α1, . . . , αT be the functions and coefficients

returned from the median boosting procedure with changing cut-offs (Step 2 in Algorithm 1). For any i ∈ {1, . . . ,m} it
holds that

max
{∣∣∣Q+

β/2(f̂1, . . . , f̂T ;α1, . . . , αT ))(xi)− yi
∣∣∣ , ∣∣∣Q−

β/2f̂1, . . . , f̂T ;α1, . . . , αT )(xi)− yi
∣∣∣} ≤ ψ(x, y) + 2α.

Sparsification.
Lemma A.4. Choosing

n = Θ

(
1

β2
fat∗(F , cα) log2(fat∗(F , cα) /α)

)
in Step 3 of Algorithm 1, we have for all (x, y) ∈ S |Median(fJ1(x), . . . , fJn(x))− y| ≤ ψ(x, y) + 3α, where c > 0 is a
universal constant.

13



Agnostic Sample Compression Schemes for Regression

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

Figure 1. A sample S of m = 20 points (xi, yi) was drawn iid uniformly from [0, 1]2. On this sample, ℓ1 regression was performed
by solving the LP in (7), shown on the left, and ℓ∞ regression was performed by solving the LP in (9), on the right. In each case, the
regressor provided by the LP solver is indicated by the thick (red) line. Notice that for ℓ1, the line contains exactly 2 datapoints. For ℓ∞,
the regressor contains no datapoints; rather, the d+ 2 = 3 “support vectors” are indicated by .

B. Missing Proofs for Section 4
Proof of Theorem 4.3. We start with d = 0. The sample then consists of (y1, . . . , ym) [formally: pairs (xi, yi), where
xi ≡ 0], and F = R [formally, all functions h : 0 7→ R]. We define fS to be the median of (y1, . . . , ym), which for odd m
is defined uniquely and for even m can be taken arbitrarily as the smaller of the two midpoints. It is well-known that such a
choice minimizes the empirical ℓ1 risk, and it clearly constitutes a compression scheme of size 1.

The case d = 1 will require more work. The sample consists of (xi, yi)i∈[m], where xi, yi ∈ R, and F =
{R ∋ x 7→ wx+ b : a, b ∈ R}. Let (w⋆, b⋆) be a (possibly non-unique) minimizer of

L(w, b) :=
∑
i∈[m]

|(wxi + b)− yi|, (6)

achieving the value L⋆. We claim that we can always find two indices ı̂, ȷ̂ ∈ [m] such that the line determined by (xı̂, yı̂)

and (xȷ̂, yȷ̂) also achieves the optimal empirical risk L⋆. More precisely, the line (ŵ, b̂) induced by ((xı̂, yı̂), (xȷ̂, yȷ̂)) via3

ŵ = (yȷ̂ − yı̂)/(xȷ̂ − xı̂) and b̂ = yı̂ − ŵxı̂, verifies L(ŵ, b̂) = L⋆.

To prove this claim, we begin by recasting (6) as a linear program.

min
(ε1,...,εm,w,b)∈Rm+2

m∑
i=1

εi s.t. (7)

∀i ∈ [m] εi ≥ 0

∀i ∈ [m] wxi + b− yi ≤ εi
∀i ∈ [m] − wxi − b+ yi ≤ εi.

We observe that the linear program in (7) is feasible with a finite solution (and actually, the constraints εi ≥ 0 are redundant).
Furthermore, any optimal value is achievable at one of the extreme points of the constraint-set polytope P ⊂ Rm+2. Next,
we claim that the extreme points of the polytope P are all of the form v ∈ P with two (or more) of the εis equal to 0. This
suffices to prove our main claim, since εi = 0 in v ∈ P iff the (w, b) induced by v verifies wxi + b = yi; in other words,
the line induced by (w, b) contains the point (xi, yi). If a line contains two data points, it is uniquely determined by them:
these constitute a compression set of size 2. (See illustration in Figure 1.)

Now we prove our claimed property of the extreme points. First, we claim that any extreme point of P must have at least
one εi equal to 0. Indeed, let (w, b) define a line. Define

b+ := min
{
b̃ ∈ [b,∞) : ∃i ∈ [m], wxi + b̃ = yi)

}
3We ignore the degenerate possibility of vertical lines, which reduces to the 0-dimensional case.
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and analogously,
b− := max

{
b̃ ∈ (−∞, b] : ∃i ∈ [m], wxi + b̃ = yi)

}
.

In words, (w, b+) is the line obtained by increasing b to a maximum value of b+, where the line (w, b+) touches a datapoint,
and likewise, (w, b−) is the line obtained by decreasing b to a minimum value of b−, where the line (w, b−) touches a
datapoint.

Define by S+
a,b := {i : |wxi + b < yi|} the points above the line defined by (w, b) and S−

a,b := {i : |wxi + b > yi|} the
points below the line defined by (w, b). For a line (w, b) which does not contain a data point we can rewrite the sample loss
as

L(w, b) =
∑

i∈S+
a,b

(yi − (wxi + b)) +
∑

i∈S−
a,b

((wxi + b)− yi)

=

 ∑
i∈S−

a,b

xi −
∑

i∈S+
a,b

xi

 a+
(
|S−

a,b| − |S
+
a,b|

)
b+

 ∑
i∈S+

a,b

yi −
∑

i∈S−
a,b

yi


=: λa+ µb+ ν.

Since for fixed a and b ∈ [b−, b+], the quantities S−
a,b, S

+
a,b are constant, it follows that the function L(w, ·) is affine in b, and

hence minimized at b± ∈ {b−, b+}. Thus, there is no loss of generality in taking b⋆ = b±, which implies that the optimal
solution’s line (w⋆, b⋆) contains a data point (xı̂, yı̂). If the line (w⋆, b±) contains other data points then we are done, so
assume to the contrary that εı̂ is the only εi that vanishes in the corresponding solution v⋆ ∈ P .

Let Pı̂ ⊂ P consist of all v for which εı̂ = 0, corresponding to all feasible solutions whose line contains the data point
(xı̂, yı̂). Let us say that two lines (w1, b1), (w2, b2) are equivalent if they induce the same partition on the data points, in the
sense of linear separation in the plane. The formal condition is S−

w1,b1
= S−

w1,b1
, which is equivalent to S+

w1,b1
= S+

w1,b1
.

Define P⋆
ı̂ ⊂ Pı̂ to consist of those feasible solutions whose line is equivalent to (w⋆, b±). Denote by w+ :=

max {a : (ε1, .., εm, w, b) ∈ P⋆
ı̂ } and define v+ to be a feasible solution in P⋆

ı̂ with slope w+, and analogously,
w− := min {w : (ε1, .., εm, w, b) ∈ P⋆

ı̂ } and v− ∈ P⋆
ı̂ with slope w−. Geometrically this corresponds to rotating the line

(w⋆, b⋆) about the point (xı̂, yı̂) until it encounters a data point above and below.

Writing, as above, the sample loss in the form L(w, b), we see that L(·, b±) is affine in a over the range w ∈ [w−, w+]

and hence is minimized at one of the endpoints. This furnishes another datapoint (xȷ̂, yȷ̂) verifying ŵxȷ̂ + b̂ = yȷ̂ for
L(ŵ, b̂) = L⋆, and hence proves compressibility into two points for d = 1.

Generalizing to d > 1 is quite straightforward. We define

L(w, b) =
∑
i∈[m]

|(⟨w, xi⟩+ b)− yi|

and express it as a linear program analogous to (7),

Linear programming for ℓ1 regression:

min
(ε1,...,εm,w,b)∈Rm+d+1

m∑
i=1

εi s.t. (8)

∀i ∈ [m] εi ≥ 0

∀i ∈ [m] ⟨w, xi⟩+ b− yi ≤ εi
∀i ∈ [m] − ⟨w, xi⟩ − b+ yi ≤ εi.

Given an optimal solution (w⋆, b⋆), we argue exactly as above that b⋆ may be chosen so that the optimal regressor contains
some datapoint — say, (x1, y1). Holding b⋆ and w(j), j ̸= 1 fixed, we argue, as above, that w(1) may be chosen so that
the optimal regressor contains another datapoint (say, (x2, y2)). Proceeding in this fashion, we inductively argue that the
optimal regressor may be chosen to contain some d+ 1 datapoints, which provides the requisite compression scheme.
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Proof of Theorem 4.4. Given m labeled points in Rd × R, S = {(xi, yi) : i ∈ [m]} and any w ∈ Rd, b ∈ R define the
empirical risk

L(w, b) := max {|⟨w, xi⟩+ b− yi| : i ∈ [m]} .

We cast the risk minimization problem as a linear program.

Linear programming for ℓ∞ regression:

min
(ε,w,b)∈Rd+2

: ε (9)

s.t. ∀i : ε− ⟨w, xi⟩ − b+ yi ≥ 0

ε+ ⟨w, xi⟩+ b− yi ≥ 0.

(As before, the constraint ε ≥ 0 is implicit in the other constraints.) Introducing the Lagrange multipliers λi, µi ≥ 0,
i ∈ [m], we cast the optimization problem in the form of a Lagrangian:

L(ε,w, b, µ1 . . . , µm, λ1 . . . , λm) = ε−
m∑
i=1

λi (ε− ⟨w, xi⟩ − b+ yi)−
m∑
i=1

µi (ε+ ⟨w, xi⟩+ b− yi) .

The KKT conditions imply, in particular, that

∀i : λi(ε− ⟨w, xi⟩ − b+ yi) = 0

µi(ε+ ⟨w, xi⟩+ b− yi) = 0.

Geometrically, this means that either the constraints corresponding to the ith datapoint are inactive — in which case, omitting
the datapoint does not affect the solution — or otherwise, the ith datapoint induces the active constraint

⟨w, xi⟩+ b− yi = ε. (10)

On analogy with SVM, let us refer to the datapoints satisfying (10) as the support vectors; clearly, the remaining sample
points may be discarded without affecting the solution. Solutions to (9) lie in Rd+2 and hence d+ 2 linearly independent
datapoints suffice to uniquely pin down an optimal (ε,w, b) via the equations (10).

Proof of Theorem 4.6. Consider a sample (y1, . . . , ym) ∈ {0, 1}m. Partition the indices i ∈ [m] into S0 := {i ∈ [m] : yi =
0} and S1 := {i ∈ [m] : yi = 1}. The empirical risk minimizer is given by

r̂ := argmin
s∈R

m∑
i=1

|yi − s|p.

To obtain an explicit expression for r̂, define

F (s) =

m∑
i=1

|yi − s|p = |S1|(1− s)p + |S0|sp =: N1(1− s)p +N0s
p.

We then compute

F ′(s) = pN0s
p−1 − pN1(1− s)p−1

and find that F ′(s) = 0 occurs at

ŝ =
µ1/(p−1)

1 + µ1/(p−1)
,
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where µ = N1/N0. A straightforward analysis of the second derivative shows that ŝ = r̂ is indeed the unique minimizer of
F .

Thus, given a sample of size m, the unique minimizer r̂ is uniquely determined by N0 — which can take on any of integer
m+ 1 values between 0 and m. On the other hand, every output of a k-selection function κ outputs a multiset Ŝ ⊆ S of
size k′ and a binary string of length k′′ = k − k′. Thus, the total number of values representable by a k-selection scheme is
at most

k∑
k′=0

k′2k−k′
< 2k+1 − k,

which, for k < logm, is less than m.

Remark B.1. A more refined analysis, along the lines of David et al. (2016, Theorem 4.1), should yield a lower bound of
k = Ω(m). A technical complication is that unlike the p = 2 case, whose empirical risk minimizer has a simple explicit
form, the general ℓp loss does not admit a closed-form solution and uniqueness must be argued from general convexity
principles.
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