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Abstract
Rule models are favored in many prediction tasks
due to their interpretation using natural language
and their simple presentation. When learned from
data, they can provide high predictive perfor-
mance, on par with more complex models. How-
ever, in the presence of incomplete input data
during test time, standard rule models’ predic-
tions are undefined or ambiguous. In this work,
we consider learning compact yet accurate rule
models with missing values at both training and
test time, based on the notion of replacement vari-
ables. We propose a method called MINTY which
learns rules in the form of disjunctions between
variables that act as replacements for each other
when one or more is missing. This results in a
sparse linear rule model that naturally allows a
trade-off between interpretability and goodness
of fit while being sensitive to missing values at
test time. We demonstrate the concept of MINTY
in preliminary experiments and compare the pre-
dictive performance to baselines with potential
applications in clinical scoring systems.

1. Introduction
Rule-based models, such as risk scores, rule lists, and linear
rule models, are favored in prediction problems and domains
where interpretability is a concern (Fürnkranz et al., 2012;
Wei et al., 2019; Margot & Luta, 2021). For example, clin-
ical scoring systems are defined using a small number of
rules with associated points that add up to a score, indicating,
e.g., the risk of mortality for a patient (Knaus et al., 1991).
In the same domains, it is common for some variables used
in rules to be unobserved at the time of prediction, due to
varying tool availability, examination protocols, or heteroge-
neous data sources (Madden et al., 2016). Despite this, most
rule-based models lack built-in principled ways for making
predictions with missing values. Approaches to prediction
with incomplete data, include imputation (Rubin, 1976),
Bayesian modeling, fallback default rules (Chen & Guestrin,
2016), weighted estimating equations (Ibrahim et al., 2005)
and prediction with missingness indicators (Le Morvan et al.,
2020). Drawbacks of existing methods are that they are

specific to a non-interpretable model class or that they re-
duce the interpretability of rule-based models by relying
on auxiliary models which may not be interpretable (impu-
tation, estimation weighting) or on parameters associated
with missingness itself (default rules, missingness indica-
tors) (Stempfle & Johansson, 2022). If there is redundancy
in the covariates set, where two variables have similar asso-
ciations to the outcome, we may not need to observe both of
them to predict accurately. Instead, redundant variables A
and B could be used as replacements for each other when
one of them is missing: “If A is not available, use B”, or “If
B is not available, use A”.

Below we show an example of rules which illustrate how
replacement variables can be used in the context of linear
rule models with binary covariates; if at least one variable in
each rule is observed and active, the prediction is the same
whether other variables in the rule are missing.

prediction = Coefficient1(Variable1 OR Variable2)
+ Coefficient2(Variable3 OR Variable4)

Using replacement variables also avoids direct dependence
on imputation or missingness indicators. In this project, we
aim to learn replacement variables for missing values at test
time using a rule-base interpretable model. Replacements
for unobserved variables should be learned during the train-
ing phase and then retrieved at test time. We propose a new
methodology, MINTY which utilizes replacement variables,
defined by disjunctions of literals, in generalized linear rule
models. Replacement variables indicate which features can
be alternatively used in situations where the original feature
was not measured. In addition, they ensure a comparable
predictive power to their original counterpart.

2. Prediction with missing values at test time
We consider a supervised learning problem of predicting a
continuous outcome of interest Y ∈ R based on a vec-
tor of d input features X = [X1, ..., Xd]

⊤. In our set-
ting, features may be missing both at training time and
at test time, as indicated by a random missingness mask
M = [M1, ...,Md]

⊤ ∈ {0, 1}d such that Mj = 0 if Xj is
observed and Mj = 1 otherwise. We let X̃ ∈ (R ∪ {NA})d
indicate the partially observed feature vector.

We are given a training data set of samples (xi,mi, yi) for
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i = 1, . . . , n, drawn i.i.d. from a distribution p, with xi =
[xi1, ...xid]

⊤ the feature vector of sample i with missing
values, and mi, yi defined analogously. For convenience,
we let X ∈ (R ∪ {NA})n×d,M ∈ {0, 1}n×d,Y ∈ R1×d

denote data matrices of features, missingness masks and
outcomes for all observations, respectively.

We assume that all features Xj represent logical literals,
taking values in {0, 1}, where Xij = 1 represents that
literal j is true for observation i. In a health care example,
feature j may represent the literal Age ≥ 70 and a patient
i that is 73 years old would have the observation xij = 1.
Our goal is to predict Y under missingness M in X using
functions f : (R ∪ {NA})d → R, with minimum risk with
respect to the squared loss on p,

min
f

R(f), where R(f) := EX̃,Y∼p[(f(X̃)− Y )2] . (1)

We assume that features and their missingness have the
same distribution at test time as during training. A common
strategy for learning and prediction with missing values is
to impute unobserved variables based on observed ones (Ru-
bin, 1976) and proceed as if no values were missing in the
first place. However, when missingness itself depends on
unobserved values—variables are missing not-at-random
(MNAR)—this strategy is generally suboptimal, (Jamshid-
ian & Mata, 2007).

In our setting, under the assumption that Y has centered, ad-
ditive noise, Y = g(X,M)+ϵ where E[ϵ] = 0, the Bayes-
optimal predictor of Y is f∗ = E[Y = 1 | X̃,M ] (Morvan
et al., 2021), depending directly on the missingness mask
M itself. However, when interpretability is wanted, letting
models include features such as “Age is missing” may be
undesirable.

3. Methodology
We propose MINTY, a linear rule model for learning replace-
ment variables when values expected by the model may be
unobserved at test time. Our goal is to obtain small, in-
terpretable models with high predictive performance when
inputs are incomplete. We first describe the model class
and then show how we solve the regression task using con-
strained optimization. MINTY is a generalized linear rule
model (Wei et al., 2019) with three main components:

1. Rule definitions z·k ∈ {0, 1}d, for rules k = 1, ...,K,
defining logical rules in terms of d features (literals)

2. Rule activations aik ∈ {0, 1}, which indicate whether
individual i = 1, ..., n satisfies rule k

3. Rule coefficients, β = [β1, ..., βK ]⊤ ∈ RK , where βk

relates rule k to the predicted outcome. By letting rule
1 always be true, β1 takes the role of an intercept.

MINTY handles missing values by making predictions based
on rules formed as disjunctions of literals, such as “(Age
> 20) or (Female)”. If the value of “Age” is missing, the
rule depends only on the value of “Female”. If none of the
features in a disjunction is observed, the rule is inactive—
acting like zero-imputation. To prevent this from happening,
at training time, we require that, for each observation and
each rule, at least one literal is observed. We formalize the
MINTY model as follows.

Given an observation xi, with missingness, let x̄i denote
its zero- imputation, x̄i = xi1[xi ̸= NA]. Then, define the
activation of rule k for xi to be,

aik =

d∧
j=1

zjkx̄ij = max
j∈[d]

zjkx̄ij

where zjk = 1 indicates that literal (feature) j is included
in disjuction (rule) k. Given such activations, the prediction
for an input xi is made as ŷi =

∑
k∈S β⊤

k aik, where S
denotes the set of disjunctions under consideration, defined
by indicators zjk. We aim to find both a set of rules S and
coefficients β that minimize the regularized empirical risk,

min
β,S

1

n

n∑
i=1

(
∑
k∈S

βkaik − yi)
2 +

∑
k

λk|βk|, (2)

with an ℓ1-penalty λk|βk| for including rule k. By choosing
λk, we can control the number and size of rules used by the
model. When generating the rule set, we restrict S to only
include rules where at least one of the variables in each rule
k is measured for each subject i.

3.1. Optimization

By letting S be the set of all possible disjunctions K =
{0, 1}d, our learning problem (2) reduces to a LASSO prob-
lem with known solvers, but with a number of rules and
coefficients growing exponentially in d. Even for moderate-
size problems, it would be intractable to enumerate all of
them. Instead, we follow the column-generation strategy
by Wei et al. (2019), which intelligently searches the space
of disjunctions and builds up S ⊆ K incrementally. The
idea is to first solve a restricted problem with a small set of
candidate rules S0, in our case just the intercept rule, and
then iterative adding new candidates based on the optimal
dual solution of the restricted problem. A rule is selected
based on the marginal benefit (or partial derivative) of intro-
ducing it to the restricted problem. If the partial derivative
for the most promising column is non-negative, the proce-
dure terminates. We modify their approach by requiring
that each added rule has at least one observed feature for
each observation in the training set. Given a current set of
disjunctions S and coefficients β, a new rule is added to S
by finding a disjunction that can explain the largest part of
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the residual of the current model, R = Aβ − Y, where
A = [a1·, . . . , an·]

⊤ is the matrix of rule assignments for
all observations i = 1, . . . , n in the training set. (Wei et al.,
2019) show that such a rule z may be found by solving the
following optimization problem for both signs of the first
term in the objective.

minimize
a∈{0,1}n

z∈{0,1}d

± 1

2n

n∑
i=1

riai + λ0 + λ1

d∑
j=1

zj

subject to ai =

K∑
k=1

max(xijzj)

∀i : max
j

(1−Mij)zj ≥ 1,

(3)

where nm is the number of samples. The first constraint
in (3) makes sure that rule activations aik correspond to a
disjunction of literals xij as indicated by zj . For the second
constraint, we require that, for all rules, at least one of the
included literals j : zj = 1 is observed for every individual
i. To find an approximate solution to (2), we start with a
subset S0 of rules, solve (2) with respect to β for this set,
and compute the residual R for the current model. Then,
repeatedly, a single rule is added to S based on maximizing
its correlation with the residual R, solving (3), and the
coefficients β are refit. When no rule can be found with a
negative solution to (3), the algorithm terminates and the
coefficients β are refit one last time.

Relaxed Version of MINTY In MINTY with zero
imputation, the missingness constraint in (3) is always in-
active, leading to a larger model class that has been proven
to benefit learning disjunctions. As a compromise, instead
of having the constraint that every rule be measured for
every training sample, we minimize the number of rules
where no variable is measured. We introduce a variation
of the original algorithm, MINTYrelaxed shown in (4) in the
Appendix A.2.

4. Experiments
We evaluate the MINTY model1 on synthetic data aiming
to answer two main questions: How does the accuracy of
MINTY compare to baseline models; How do replacement
variables affect performance and interpretation?

Experimental Setup In the column generation subprob-
lem, to find values for β, given rule definitions S, we use
the LASSO implementation in scikit-learn (Buitinck et al.,
2013) with covariate weighting to achieve variable-specific
regularization strength. We iteratively add variables to S by

1The code to reproduce the experiments is available at https:
//github.com/Healthy-AI/minty

optimizing (3) using Gurobi, a general-purpose optimization
solver (Gurobi Optimization, LLC, 2023).

The objective function regularizes each rule z·k with
strength λk = λ0 + λ1∥z·k∥0, penalizing high numbers
of unmeasured literals per rule. The values of λ0 and λ1

range within [10e−3, 0.1]. In MINTYrelaxed we range the
regularization parameter γ within [10e−3, 0.1] and normal-
ized over all samples n.

Baseline models The baselines we used included ℓ1-
regularized linear regression models, also known as LASSO,
a decision tree model (DT) (Pedregosa et al., 2011), and
a GXBoost (XGB), where missing values are supported by
default (Chen & Guestrin, 2016). We also implement the
NeuMiss (NEUMISS) network, which approximates a spe-
cialization term on observed data (along with per-pattern
biases) using a deep neural network where both covariates
and missingness mask are given as input, sharing parame-
ters across patterns (Le Morvan et al., 2020). These mod-
els were applied to imputed data using zero imputation
(I0), whereas, in future experiments, more sophisticated
methods such as Multiple Imputation by Chained Equations
(MICE) (Buitinck et al., 2013) can be used. Methods such
as XGB, NEUMISS, and MINTY do not rely on imputation.
More details are given in Appendix A.3.

4.1. Simulated Data

We use simulated data to illustrate the process of generating
replacement variables focusing on predictive performance
and interpretablity. We sample n × d independent binary
input features such that Xij ∼ Bernoulli(p), with p = 0.3.
We sample 2000 data points. The outcome Y is given by a
disjunctive linear rule model of S, without noise (see Table
2). We limit our experiments to the missing-at-random
(MAR) mechanism given by (Mayer et al., 2019). The
proportion of missing values to generate for variables that
will have missing values is set to pmiss = 0.2. To give the
rules meaningful descriptions we constructed column names
based on the features available in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI)2 database.

4.2. Results

We report the predictive performance, as the mean square
error (MSE) and the R2 score of MINTY compared to base-
lines over 10 draws (Table 1). The statistical uncertainty of
the average error is measured with its square root, which
is a standard deviation and expressed by 95% confidence
intervals over the test set.

For the regression task, MINTYrelaxed and XGB perform
best with an R2 of 0.73 and the same confidence intervals.

2http://adni.loni.usc.edu
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Table 1. Results for the synthetic data comparing MINTY to the
baseline models.

MODEL R2 MSE

LASSO (Izero) 0.40 (0.32, 0.47) 3.94 (3.67, 4.22)
XGB (Izero) 0.73 (0.68, 0.78) 1.73 (1.55, 1.92)
DT (Izero) 0.68 (0.63, 0.73) 2.08 (1.88, 2.28)
NEUMISS 0.58 (0.51, 0.64) 2.78 (2.55, 3.01)

MINTYrelaxed 0.73 (0.68, 0.78) 1.78 (1.60, 1.96)
MINTY 0.71 (0.66, 0.77) 1.88 (1.70, 2.08)

Validation performance resulted in selecting λ0 = 0.1, and
λ = 0.1 and a γ value of 1 for MINTYrelaxed. MINTY
achieves a slightly lower R2 of 0.71 using λ0 = 0.1, and
λ = 0.1 than its algorithmic relaxer variation. When com-
paring DT (R2 of 0.68) and XGB we can assume that XGB
benefits from its ability to handle missing data without rely-
ing on imputation. However, the black-box nature of XGB
and NEUMISS (R2 of 0.58) is not conducive to reasoning
about missingness to improve prediction comprehension.
With an R2 score of 0.40, LASSO seems to have a disadvan-
tage due to its linear function class.

Results are shown in Figure 2 in the Appendix, comparing
the R2s with estimator-specific complexity measurements.
We see that both MINTY models perform better than the
baselines with a small number of non-zero coefficients that
ensure lower model complexity. XGB achieves consistent
performance across estimators, but could be difficult to
interpret with a larger number of estimators (and an even
larger number of parameters). In a DT, neighboring leaves
are similar to each other as they share the path in the tree. As
the number of leaves increases, variance in the performance
increases and perhaps compromises interpretability. While
LASSO is the simplest model, its performance is the lowest.
In summary, both MINTY models perform comparably to
the baselines, with quite tight confidence intervals.

Customized rule sets We present descriptions for indi-
vidual instances and describe the rules relevant to them
while the coefficients sum up to the prediction made by
the model (Table 2). Variables that are not measured are
removed from the rules, and the coefficients of the rules that
become equal due to the removed variables are summed up.
The simple representation supports domain experts, such as
clinicians to make use of MINTY in their decision-making.

In Table 2, we compare a set of ground truth rules (top
Table) to learned rules (bottom Table) from generated data.
We interpret the results by saying that the first rule including
(Sex= female) as a literal does not capture any rule in
the true rule set. The literals in the third rule match those
in the upper table, with the rounded coefficients matching
perfectly. The literals in the last two rules in each table are
correctly learned, however, the coefficients differ (+3 and

Table 2. Customized rule sets for predictions based on the ground
true rule set S (Top table). Learned rules set with corresponding
coefficients in the bottom table are based on MINTY. The results
are based on a generated data set with n = 2000 samples and a
pmiss = 0.2

TRUE RULES COEFF.

(AGE≥70) OR (SEX= female) +2
(HEART RATE≥120BPM) OR (EDUCATIONlow) +3
(EDUCATIONlow) OR (PRIOR AD DIAGNOSIS) +2
(AGE≥70) OR (HEART RATE≥120BPM) -5

INTERCEPT +0
LEARNED RULES COEFF.

(EDUCATIONlow) OR (SEX= female) +1.18
(HEART RATE≥120BPM OR (EDUCATIONlow) +1.69
(EDUCATIONlow) OR (PRIOR AD DIAGNOSIS) +1.55
(AGE≥70) OR (HEART RATE≥120BPM) -2.97
INTERCEPT +0.36

+1.69 for (Educationlow) OR (Prior AD diagnosis)). The
coefficient for the last rule shows the right influence on the
prediction but the learned coefficients should be higher in
value to match the true coefficient (-5).

5. Related work
We focused on developing an interpretable rule-based model
by learning variables that may act as replacements for each
other. The literature on interpretable machine learning mod-
els contains other methods where learning replacements
variables might be beneficial for prediction with test-time
missingness. For example, risk scores provide a way to
add interpretability in applications with domain-specific
constraints (Ustun & Rudin, 2019). They comprise sim-
ple logistic-linear models but depend on imputation. The
XGBoost (Chen & Guestrin, 2016) offers an alternative by
assigning default paths for missing variables. The NeuMiss
network proposes a new type of non-linearity: multiplica-
tion by the missingness indicator (Le Morvan et al., 2020).

6. Conclusion
We studied prediction with missingness where groups of
variables are correlated but one or more may be missing at
training and test time. We proposed the rule-based inter-
pretable model MINTY for learning replacement variables
for linear combinations of decision rules. Empirical results
on synthesized data show that MINTY achieves comparable
performance to baseline models. If meaningful variables
are present, they can be evaluated by a domain expert for
intuitiveness as replacements and allow for applications, e.g.
in clinical scoring systems. In future work, real-world data
and various missingness mechanisms can be studied.
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Software and Computing Infrastructure
The computations required resources of 4 compute nodes
using two Intel Xeon Gold 6130 CPUS with 32 CPU cores
and 384 GiB memory (RAM). Moreover, a local disk with
the type and size of SSSD 240GB with a local disk, usable
area for jobs including 210 GiB was used. Inital experiments
are run on a Macbook using macOS Montery with a 2,6 GHz
6-Core Intel Core i7 processor.
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of rule learning. Springer Science & Business Media,
2012.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2023. URL https://www.gurobi.com.

Ibrahim, J. G., Chen, M.-H., Lipsitz, S. R., and Herring,
A. H. Missing-data methods for generalized linear mod-
els: A comparative review. Journal of the American
Statistical Association, 100(469):332–346, 2005.

Jamshidian, M. and Mata, M. Advances in analysis of
mean and covariance structure when data are incomplete.
In Handbook of latent variable and related models, pp.
21–44. Elsevier, 2007.

Knaus, W. A., Wagner, D. P., Draper, E. A., Zimmerman,
J. E., Bergner, M., Bastos, P. G., Sirio, C. A., Murphy,

D. J., Lotring, T., Damiano, A., et al. The apache iii
prognostic system: risk prediction of hospital mortality
for critically iii hospitalized adults. Chest, 100(6):1619–
1636, 1991.

Le Morvan, M., Josse, J., Moreau, T., Scornet, E., and
Varoquaux, G. Neumiss networks: differentiable pro-
gramming for supervised learning with missing values.
Advances in Neural Information Processing Systems, 33:
5980–5990, 2020.

Madden, J. M., Lakoma, M. D., Rusinak, D., Lu, C. Y.,
and Soumerai, S. B. Missing clinical and behavioral
health data in a large electronic health record (ehr) system.
Journal of the American Medical Informatics Association,
23(6):1143–1149, 2016.

Margot, V. and Luta, G. A new method to compare the
interpretability of rule-based algorithms. AI, 2(4):621–
635, 2021.

Mayer, I., Sportisse, A., Josse, J., Tierney, N., and Vialaneix,
N. R-miss-tastic: a unified platform for missing values
methods and workflows, 2019. URL https://arxiv.
org/abs/1908.04822.

Mofrad, S. A., Lundervold, A. J., Vik, A., and Lunder-
vold, A. S. Cognitive and MRI trajectories for prediction
of Alzheimer’s disease. Scientific Reports, 11(1):1–10,
2021.

Morvan, M. L., Josse, J., Scornet, E., and Varoquaux,
G. What’s a good imputation to predict with missing
values?, 2021. URL https://arxiv.org/abs/
2106.00311.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Rubin, D. B. Inference and missing data. Biometrika, 63(3):
581–592, 1976.

Stempfle, L. and Johansson, F. Sharing pattern submod-
els for prediction with missing values. arXiv preprint
arXiv:2206.11161, 2022.

Ustun, B. and Rudin, C. Learning optimized risk scores. J.
Mach. Learn. Res., 20(150):1–75, 2019.

Wei, D., Dash, S., Gao, T., and Gunluk, O. Generalized lin-
ear rule models. In International Conference on Machine
Learning, pp. 6687–6696. PMLR, 2019.

5

https://www.gurobi.com
https://arxiv.org/abs/1908.04822
https://arxiv.org/abs/1908.04822
https://arxiv.org/abs/2106.00311
https://arxiv.org/abs/2106.00311


Submission and Formatting Instructions for ICML 2023

A. Appendix
A.1. Real world data sets

ADNI The compiled data set includes 1337 subjects that were preprocessed by one-hot encoding of the categorical
features and dichotomized for the numeric features. The processed data has 76 features after the binning process. The
regression task targets predicting the result of the cognitive test ADAS13 (Alzheimer’s Disease Assessment Scale) at a
2-year follow-up (Mofrad et al., 2021) based on available data at baseline.

MIMIC-III The compiled data set includes 304 subjects that were preprocessed by one-hot encoding of the categorical
features and dichotomized for the numeric features. The processed data has 164 features after the binning process.

A.2. Modification to MINTYrelaxed

Note, δ is a binary relaxed variable indicating if at least one literal j per rule k for each individual is measured. We add
a regularization term γ > 0 normalized of n samples to indicate how much we emphasize individuals not fulfilling the
constraint.

minimize
a∈{0,1}n

z∈{0,1}d

± 1

2n

n∑
i=1

riai + λ0 + λ1

d∑
j=1

zj +
γ

n

n∑
i=1

δi

subject to ai =

K∑
k=1

max(xijzj)

∀i : δi = 1−max
j

(1−Mij)zj

(4)

Variation on MINTY Note that MINTY can be combined with zero imputation, in which case when the disjunctions are
learned, the missingness constraint in (3) is disregarded, which is close to the approach proposed by (Wei et al., 2019),
although here conjunctions are learned rather than disjunctions.

A.3. Experiment details

The baselines are trained by the following parameters. The best values for these hyperparameters are chosen based on the
validation test set.

LASSO: The values of alpha indicating a ℓ1 regularization term on weights range within [0.1, 0.6], where increasing this
value will make model more conservative. We allow to fit an intercept and set the precompute parameter to TRUE to get the
precomputed Gram matrix to speed up calculations (Buitinck et al., 2013).

XGB: In XGB we range the learning rate (eta) between [0.3, 1.0] where the shrinking step size is used in the update to
prevent overfitting. After each boosting step, we can directly get the weights of new features, and eta shrinks the feature
weights to make the boosting process more conservative. The maximum depth of the trees is set to 10 since increasing this
value will make the model more complex and more likely to overfit (Chen & Guestrin, 2016). The hyperparameters lambda
represents the ℓ2 regularization term on weights and alpha indicates the ℓ1 regularization term. Increasing this value will
make a model more conservative.

DT: For DT we set the criterion to measure the quality of a split using the squared error and used ’best’ as the strategy to
choose the split at each node. The maximum number of features is set to 7 since we have 7 covariates in the data set. A node
will be split if this split induces a decrease of the impurity greater than or equal to 0.001. Complexity parameter ’ccp alpha’
is used for Minimal Cost-Complexity Pruning where the subtree with the largest cost complexity that is smaller than 0.005
will be chosen (Pedregosa et al., 2011).

NEUMISS: For NEUMISS models we define the dimension of inputs and outputs of the NeuMiss block (n-features), set
the number of layers (Neumann iterations) in the NeuMiss block (depth) and fix the number of hidden layers in the MLP
(mlp depth) as well as the width of the MLP (mlp width). If ’None’ take the width of the MLP will be the same as n of
covariates of a data set (Le Morvan et al., 2020).
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Figure 1. Performance on simulated data. The full data set has n = 2000 samples and was generated over 10 turns. As a criterion for
complexity, we use for MINTY, MINTYrelaxed and LASSO the number of non-zero coefficients achieved by regularisation. NEUMISS
does not aim at a sparse solution and therefore we give the complexity by the number of covariates used in the model. Note, there might be
more parameters to optimize for. The complexity for XGB is defined by the number of estimators used, however, the number of parameters
used in total is much larger, and for DT we describe the number of leaves.
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Figure 2. Performance on simulated data. The full data set has n = 200 samples and was generated over 10 turns.

A.4. Additional empirical results

In Figure 2 we show preliminary results in our study. We compare predictive performance in terms of the coefficient of
determination (R2) on the test set, averaged across multiple draws of synthetic data, against the regularization strength
indicated by the λ0. We have fit four models namely MINTY, MINTY with zero imputation, and LASSO models with either
zero or single imputation by chained equations as baseline models. We find that the MINTY models perform better than the
baseline models since they most likely benefit from their nonlinear function class. A potential reason why MINTY with
zero-imputation performs better than the MINTY including missing values is that the missingness constraint in (3) is always
inactive for MINTY with zero imputation. This leads to the conclusion that MINTY based on zero imputed data has more
rules in the model class to choose from. The constraint to improve interpretablity seems to introduce some cost on MINTY
when learning rules.

In Table 3 we present the rules learned by MINTYrelaxed, and we compare a set of learned rules (bottom Table) to the
ground truth rules (top Table) from the generated data. We interpret the results by saying that for the first rule, the model
learned the correct replacement variables ((Age≥70) OR (Sex= female)) and added another (Educationlow) variable to
the set, however, the coefficient is low and negative which does not match with the +2 coefficient in the truth model. For
the second rule in the top table, MINTY choose (Heart rate≥120BPM) OR (Prior Alzheimer’s diagnosis) which does not
fully match the true replacement of (Educationlow). The coefficient should be a multiple of the learned on (+1.55 to +3).
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Table 3. Customized rule sets for predictions based on the ground true rule set S (Top table). And learned rules set and the corresponding
coefficients in the bottom table are based on MINTY. The results are based on a generated data set with n = 2000 samples and a
pmiss = 0.2

TRUE RULES COEFF.

(AGE≥70) OR (SEX= female) +2
(HEART RATE≥120BPM) OR (EDUCATIONlow) +3
(EDUCATIONlow) OR (PRIOR ALZHEIMER’S DIAGNOSIS) +2
(AGE≥70) OR (HEART RATE≥120BPM) -5

INTERCEPT +0

LEARNED RULES COEFF.

(AGE≥70) OR (SEX= female) OR (EDUCATIONlow) -0.34
(HEART RATE≥120BPM) OR (PRIOR ALZHEIMER’S DIAGNOSIS) +1.55
(EDUCATIONlow) OR (PRIOR ALZHEIMER’S DIAGNOSIS) +1.86
(SEX= female) OR (HEART RATE≥120BPM) -4.21
(EDUCATIONlow) +0.30
(NEVER MARRIED) +0.23
INTERCEPT +0.15
PREDICTION 1.94

However, the third rule in both tables matches the true and the learned rules including (Heart rate≥120BPM) OR (Prior
Alzheimer’s diagnosis) with a rounded coefficient of +2. The learned model suggests replacing (Heart rate≥120BPM) with
the literal of (Sex= female) while the ground truth indicates that (Age≥70) would be correct. The coefficients for this rule
are both negative which captures the general influence of the variables,while the learned one is slightly less (-4.21 to -5).
The single literals in rule 5 and 6 in the learned table have no counterpart in the true rule set and can be disregarded.
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