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ABSTRACT

Synthetic data offers alternatives for data augmentation and sharing. Till date, it
remains unknown how to use watermarking techniques to trace and audit synthetic
tables generated by tabular diffusion models to mitigate potential misuses. In this
paper, we design TabWak, the first watermarking method to embed invisible sig-
natures that control the sampling of Gaussian latent codes used to synthesize table
rows via the diffusion backbone. TabWak has two key features. Different from
existing image watermarking techniques, TabWak uses self-cloning and shuffling
to embed the secret key in positional information of random seeds that control the
Gaussian latents, allowing to use different seeds at each row for high inter-row
diversity and enabling row-wise detectability. To further boost the robustness of
watermark detection against post-editing attacks, TabWak uses a valid-bit mech-
anism that focuses on the tail of the latent code distribution for superior noise re-
silience. We provide theoretical guarantees on the row diversity and effectiveness
of detectability. We evaluate TabWak on five datasets against baselines to show
that the quality of watermarked tables remains nearly indistinguishable from non-
watermarked tables while achieving high detectability in the presence of strong
post-editing attacks, with a 100% true positive rate at a 0.1% false positive rate on
synthetic tables with fewer than 300 rows. Our code is available at the following
anonymized repository https://anonymous.4open.science/r/TabWak-4E65/.

1 INTRODUCTION

Synthetic data from generative models is becoming integral to today’s data management and artificial
intelligence services. Synthetic tables generated from tabular generative adversarial networks (Zhao
et al., 2021; Xu et al., 2019) and tabular diffusion models (Kotelnikov et al., 2023) are used to
augment the data for training machine learning models and substitute the original data for protect-
ing privacy (Guo & Chen, 2024). Synthetic tabular is the most common modality in industry and
organizations, which increasingly embrace synthetic data as a privacy-preserving data-sharing so-
lution (Liu et al., 2022; Qian et al., 2024; Potluru et al., 2024). It is important for the synthetic
data generator to verify if a piece of table is generated by itself and then take responsibility for
the (misa)usage of such data. Synthetic tables pose subtler yet significant risks. For instance: 1)
Financial Fraud: Synthetic datasets can manipulate performance metrics, enabling hedge funds to
fabricate high returns and conceal losses. Watermarking ensures that only genuine data is used for
informed decision-making. 2) Healthcare Misdiagnosis: Altered synthetic patient data can skew
diagnostic tools or treatment recommendations, potentially leading to issues like over-prescription
of medications. Watermarking safeguards data integrity, fostering trust in healthcare models. 3)
Regulatory Evasion: Companies may exploit synthetic data to falsify compliance records, inflate
profits, or create misleading sustainability reports. As such synthetic data is increasingly adopted
for critical tasks, it is paramount to ensure its traceability and auditability to avoid harm and mis-
usages. Recent advancements in watermarking technology (Kirchenbauer et al., 2023; Kuditipudi
et al., 2023; Wen et al., 2023; Zhu et al., 2024; Yang et al., 2024) have demonstrated significant
promise in texts from language models and images from diffusion models. The key challenges of
designing watermarks are twofold: the trade-off between the data quality and detectability, and their
robustness against post-editing operations, such as deletions and insertions (Kuditipudi et al., 2023).

Existing studies on image and language generative models focus on embedding watermarking keys
during the training (Fernandez et al., 2023), sampling (Wen et al., 2023; Kirchenbauer et al., 2023),
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and post-editing phases (Topkara et al., 2006; Barni et al., 2001; He et al., 2024). Sampling-phase
watermarking, which alters only the sampling process without changing the model weights yet main-
tains high data quality (Wen et al., 2023; Kirchenbauer et al., 2023), offers a favorable trade-off be-
tween computational overhead and robustness. In the context of token-based large language models
(e.g., GPT), secret keys (Kirchenbauer et al., 2023) are used to modify the logit values of vocab-
ulary tokens, thereby adjusting token probabilities for the next-word generation according to the
context and keys. For image diffusion models, watermarking is proposed to be embedded in the
latent space (Wen et al., 2023; Yang et al., 2024). Despite substantial research on watermarking
synthetic texts and images, there is, unfortunately no study on watermarking tabular generative
models during the sampling phase.

Existing techniques for watermarking diffusion models (Wen et al., 2023; Yang et al., 2024) achieve
a good balance between data quality and detectability on images. However, they do not allow
for direction application to the tabular domain. Applied at table level, such watermarks become
susceptible to common row-level operations like sorting, shuffling, and selection, which hinders
detectability. Conversely, applied at the row level using a fixed pattern across rows for row-order
independence diminishes cross-row diversity, ultimately negatively impacting the quality of the gen-
erated data. This challenge between ensuring watermark robustness and data diversity underscores
the need for a new approach that safeguards against row-level transformations while preserving the
overall quality and diversity of the generated tabular data.

In this paper, we propose the first watermarking scheme, TabWak, for tabular generative models in
the sampling phase. Particularly, we consider a Latent Diffusion Model (LDM) (Zhang et al., 2024)
that encodes heterogeneous (i.e., both continuous and categorical) variables into a unified latent
space via auto-encoder networks on which diffusion models synthesize latent codes. In TabWak,
we preserve the latent distribution to be close to the model’s assumptions (i.e., the standard Gaussian)
while enabling row-wise detection for tabular data. During synthesis, a joint self-cloning and seeded
shuffling technique ensures row-level variation, preventing repetitive patterns to prevent synthetic
table quality degradation due to repetition. During detection, our proposed valid bit mechanism
increases robustness against distortions and attacks, with theoretically guaranteed improvements in
detection reliability.

We evaluate TabWak on five datasets with synthetic tables generated by TabSyn (Zhang et al., 2024)
under normal and adversarial post-editing settings.Therein comparing the data quality, detectability,
and robustness of TabWak against two state-of-the-art baselines, Tree-ring (Wen et al., 2023) (TR),
and Gaussian Shading (Yang et al., 2024) (GS). Due to its close alignment with the standard Gaus-
sian distribution and row-level latent variation, TabWak imposes minimal loss of data quality over
original synthetic data in both terms of in terms of shape, trend, discriminability, and machine learn-
ing performance (MLE). Moreover, as measured by Z-scores (Casella & Berger, 2024) across all
five datasets, TabWak demonstrates strong detectability of detecting watermarks with only 1K rows
when the Z-score is higher than 3.95, which corresponds to a theoretical false positive rate below
3.9 × 10−5. To assess the robustness of TabWak, we designed five post-editing attacks: deletion
at the row, column, and cell level, plus noise injection and shuffling across rows. Our row-wise de-
tection mechanism ensures inherent robustness against row-level attacks, such as row deletion and
shuffling, without any loss in detectability. Furthermore, our valid bit mechanism provides enhanced
resilience against other forms of attack, ensuring best robustness among all methods.

Our primary contribution is the design and validation of TabWak, the pioneering watermarking
scheme for latent tabular diffusion models. The technical contributions are detailed as follows:

• We propose a novel watermarking technique that enables row-wise embedding in tabular
data with minimal impact on data quality over non-watermarked results regarding statistical
and machine learning performance.

• We introduce a valid bit mechanism to enhance the watermark’s detectability under adver-
sarial post-editing attacks.

• We derive a theoretical guarantee regarding row-level diversity and detection effectiveness.
• We develop a comprehensive benchmark for evaluating the robustness of tabular water-

marks, incorporating five distinct attack types targeted at tabular data.
• Extensive empirical evaluation demonstrating that TabWak meets three key objectives: i)

preserving the quality of synthetic data, ii) achieving high watermark detectability across
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multiple datasets, with average Z-score significantly exceeding 3.95, and iii) ensuring ro-
bustness, with 100% true positive rate at a 0.1% false positive rate on synthetic tables with
fewer than 300 rows under various post-editing attacks.

2 RELATED WORKS

Watermarking Synthetic Data With the ability to create contents that mimic human creativity,
generative AI models have achieved notable proficiency in generating high-fidelity images, videos,
texts, and more (Borsos et al., 2023; OpenAI, 2023). However, this progress also introduces chal-
lenges, notably the potential for misuse, such as deepfakes and misinformation enabling fraud and
scams (Schreyer et al., 2019; Gupta et al., 2023; Karnouskos, 2020). To ensure accountability against
potential misuse and risks, watermarking across various data modalities has been proposed as an ef-
fective strategy to enhance traceability by embedding hidden signatures into all generated content.

Watermarking Images and Text Watermarking can be integrated into generative models by mod-
ifying training procedures through explicit training or modified sampling. The former involves em-
bedding a watermark into the training data, ensuring that the generated images (Yu et al., 2021a;b;
Zhao et al., 2023) or text (Tang et al., 2023; Sun et al., 2023) inherently contain the watermark. The
latter, on the other hand, does not require the re-training of a generator per watermark. For images
Pivotal Tuning Watermarking (Lukas & Kerschbaum, 2023) offers a method for watermarking pre-
trained GANs by adjusting the models during post-training. Other methods use the invertibility of
diffusion models (Wen et al., 2023) or employ additional encoders and decoders to embed a water-
mark message-matrix (Xiong et al., 2023). without retraining. For text, alternatives use the token
sequence to modify the probability distribution of the next predicted token either during the logits
generation (Kirchenbauer et al., 2023; Zhu et al., 2024) or directly during the token sampling phase
without modifying the logits. The latter can be implemented at the word (Kuditipudi et al., 2023) or
sentence (Hou et al., 2023) level. Yet, due to their assumption on representation order, these methods
fail to address the need for diversity at scale and resilience to column reordering of tabular data.

Watermarking Tables Recent works (He et al., 2024; Zheng et al., 2024) on watermarking syn-
thetic tabular data have focused on embedding watermarks through additive post-editing noise to
ensure numerical values fall into strategically chosen intervals. However, no existing method ad-
dresses watermarking at the sampling phase, where the watermark is embedded in the noisy latent
space rather than directly modifying the tabular data itself. In this work, we extend watermarking
techniques to latent tabular diffusion models in the sampling phase with our proposed TabWak,
which maintains high synthetic data quality, achieves superior watermark detectability, and demon-
strates strong resilience against post-editing attacks.

3 TABWAK : ROW-WISE TABLE WATERMARKING

The primary distinction between diffusion models for images and tables lies in the nature of their
latent representations. For image diffusion, the latent representation encapsulates all pixels of a
single image as a unified whole, allowing watermarking techniques to target this holistic represen-
tation. In contrast, tabular diffusion models generate row-specific latent representations, where each
row of a table is treated as an independent unit to enhance the diversity between rows and water-
mark robustness to post-editing attacks. This is analogous to watermarking a batch of independent
images, where each row behaves like a separate image. These fundamental differences introduce ad-
ditional challenges that make a straightforward application of image-based watermarking methods
unsuitable for tabular diffusion models, demarcated by three key factors:

• Independent Row Units: Row-level operations such as row shuffling, deletion, or reorder-
ing are common when handling tables. This necessitates row-wise detection of watermarks
rather than treating the table as a unified entity. The watermarking technique proposed
by (Wen et al., 2023), for example, embeds the watermark in the Fourier space of the latent
space, treating the table holistically. This approach, however, is unsuitable for row-by-row
detection in tabular data, where the dependence across rows is crucial for detecting any
alterations or attacks at a granular level.
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Figure 1: The framework of TabWak. The first half of the control seed, d0:m2 −1, is randomly
drawn from a discrete uniform distribution over 0, 1. After self-cloning and shuffling, the control
seed is used for distribution-preserving sampling. The tabular data is then generated by the latent
diffusion model. During detection, the control seed is recovered through diffusion inversion, reverse
sampling, and un-shuffling. Finally, the bit accuracy between the first and second halves of each row
is checked.

• Latent Representation Diversity: Unlike images, where different prompts naturally con-
tribute to diverse generated outputs, tabular data lacks this diversity enhancer. In fact, if
the latent representations across rows are too homogeneous, e.g., due to equal per-row
watermarking like Yang et al. (2024), the quality and utility of the generated table can sig-
nificantly degrade. Therefore, ensuring diversity across row-wise latent representations is
critical for maintaining the table’s integrity while embedding a robust watermark.

• Unique Post-editing Attacks: Post-processing in the tabular domain differs significantly
from the image domain. Tabular-specific attacks, such as row deletion, row shuffling, and
column deletion, require a watermarking scheme to be robust against these unique chal-
lenges.

In summary, our watermarking method focuses on the following: (i) Performing watermarking row-
wise, thereby alleviating the dependence on row-ordering during detection. (ii) Ensuring row-wise
diversity in the latent representations via self-cloning with shuffling. (iii) Robustness against post-
editing attacks.

Latent Diffusion Models Inversion Latent diffusion models use latent variables zt for t ∈
[T, ...0] throughout the generation process, necessitating a decoder D that converts the denoised
latent variable z0 into tabular data X0. Watermark detection necessitates reversing the process.
During detection, we reconstruct the latent tabular data through iterative gradient descent, follow-
ing (Hong et al., 2024). Thereby reducing latent reconstruction error due to the in-exact mapping of
the encoder and decoder mapping. Furthermore, to recover the latent variable zT , we incorporate the
DDIM (Denoising Diffusion Implicit Models) inversion (Wen et al., 2023), enabling the recovery of
ẑT from the reconstructed latent ẑ0 following the decoder inversion step.

3.1 GAUSSIAN WATERMARK EMBEDDING

The dimension of the latent representation zT for a single row is defined as m. Let ϕ(x) denote the
probability density function of the standard Gaussian distribution N (0, 1), and Φ(x) represent its
cumulative distribution function (CDF). The function ϕ(x) is partitioned into l quantiles (segments)
of equal cumulative probability. Using the diffusion-preserving approach in (Yang et al., 2024), we
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construct a control seed d consisting of integers of the length m, where each element di ∈ [0, l).
When di = k, the watermarked latent representation zw

T is constrained to the k-th quantile of ϕ(x),
implying that zw

T,i is sampled from the following conditional distribution:

p
(
zw
T,i | di = k

)
=

{
l · ϕ (zw

T ) if Φ
(
k
l

)
< zw

T,i ≤ Φ
(
k+1
l

)
0 otherwise.

Self-Cloning plus Shuffling Mechanism Previous methods for image generation (Yang et al.,
2024) use d as the control seed. Using the same d for all rows leads to poor diversity (see Appendix F
for an example). Conversely, using row-specific d requires matching each row to the correct d during
detection, which makes the watermark vulnerable to even simple row reordering attacks. In contrast,
we introduce a self-cloning plus shuffling mechanism that embeds the secret watermark key into the
ordering of the elements in d. This allows the generation of distinct control seeds while ensuring
row-level detectability via a unique watermark key.

The proposed method divides the control seed d, with length m, into two parts: d0:m/2−1 and
dm/2:m, where m represents the dimensionality of the latent vector for a row. In our experiments,
m is a model- and data-related hyperparameter, calculated as the product of the token dimension and
the number of columns in the table. The first part, d0:m/2−1, is sampled from a discrete uniform
distribution over the set {0, 1, . . . , l − 1}, while the second part, dm/2:m, is set to be identical to
d0:m/2−1. The elements of the sequence d are shuffled using a pseudo-random permutation, seeded
by the watermark key κ, to produce the row signature ds. Let d = (d0,d1, . . . ,dm−1) represent
the control sequence. The shuffling process can be described using a permutation πκ of the indices
{0, 1, . . . ,m− 1}, where πκ is determined by the watermark key κ.

The new shuffled signature ds is then given by:

ds
i = dπκ(i) for i = 0, 1, . . . ,m− 1.

Given u ∼ U(0, 1) from a discrete uniform distribution, we subsequently sample the latent variable
zT as:

zw
T = Φ−1

(
u+ ds

l

)
where Φ−1 (·) is the percent point function (PPF) of a standard Gaussian distribution Φ (·).
For detection and extraction of the watermark, the inverse mapping is given by,

ds = ⌊l · Φ (zw
T )⌋ .

Given the watermark key κ, the original control seed d can be recovered from the shuffled sequence
ds using π−1

κ , which reverses the effect of the shuffle πκ. The inverse-shuffled sequence it then
obtained following,

di = ds
π−1

k (i)
for i = 0, 1, . . . ,m− 1,

where π−1
κ is the inverse-permutation function mapping each permuted each index i in dκ back to

its original index in d.

The bit accuracy is then defined as,

Abit =
1

m/2
·
m/2−1∑
i=0

I(di = dm/2+i),

where I(·) is the indicator function returning 1 if the clause (·) holds, else 0. Fig. 1 summarizes the
overall embedding and detection procedure.

Valid Bit Mechanism To improve the robustness of our detection, we reconstruct ds at a finer
granularity by setting l = 4, i.e., mapped to four quantiles as opposed to two during generation.
This change helps to mitigate the effects of random noise introduced into the recovered latent during

5
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recovery or under attacks, which we denote as ẑw
T . We use the following quantile-based transfor-

mation to classify the latent values into l = 4 categories: ds =
⌊
4 · Φ̂ (ẑw

T )
⌋

, where Φ̂ (·) is the
empirical CDF of latent ẑw

T . And after the inverse shuffling, we get di = ds
π−1

k (i)
.

To perform the bit accuracy calculation, we focus primarily on the extrema values of the distribution
(i.e, low ẑw

T ≤ Φ̂(0.25), and high ẑw
T > Φ̂(0.75)) in the sequence, as they are less likely to be

altered by noise or attacks. Thus, the bit accuracy is computed as follows:

Avbit =

∑m/2
i=1 I

(
(di = 0 and dm/2+i = 0 or 1) or (di = 3 and dm/2+i = 2 or 3)

)∑m/2
i=1 I (di = 0 or di = 3)

Expected bit accuracy under Gaussian Noise Theorems 1 and 2 in Appendix C present the
expected bit accuracy for TabWak, both with and without the valid bit mechanism, when the latents
generated by the control sequence d are perturbed by Gaussian noise following N(0, σ), i.e.ẑw

T =
zT + ϵ(σ), where ϵ ∼ N(0, σ). In summary, under these conditions, the expected bit accuracy for
TabWak without the Valid Bit Mechanism is given by

E [Abit] =

(∫ ∞

−∞

[
1− Φ

(
−|x|

σ

)]
ϕ(x) dx

)2

+

(∫ ∞

−∞
Φ

(
−|x|

σ

)
ϕ(x) dx

)2

.

Similarly, the expected bit accuracy for TabWak with the Valid Bit Mechanism is expressed as:

E [Avbit] = 16



(∫ Φ−1(0.25)

−∞ Φ
(

Φ−1(0.25)
√
1+σ2+x

σ

)
ϕ(x)dx

)
×
(∫ Φ−1(0.25)

−∞ Φ
(
x
σ

)
ϕ(x)dx

)
+
(∫ Φ−1(0.25)

−∞ Φ
(

Φ−1(0.25)
√
1+σ2−x

σ

)
ϕ(x)dx

)
×
(∫ Φ−1(0.25)

−∞ Φ
(−x

σ

)
ϕ(x)dx

)
+
(∫ 0

Φ−1(0.25)
Φ
(

Φ−1(0.25)
√
1+σ2+x

σ

)
ϕ(x)dx

)
×
(∫ 0

Φ−1(0.25)
Φ
(
x
σ

)
ϕ(x)dx

)
+
(∫ 0

Φ−1(0.25)
Φ
(

Φ−1(0.25)
√
1+σ2−x

σ

)
ϕ(x)dx

)
×
(∫ 0

Φ−1(0.25)
Φ
(−x

σ

)
ϕ(x)dx
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Figure 2: Comparison of expected bit accu-
racy with and without the Valid Bit Mecha-
nism.

Figure 2 presents the curves for E [Abit | σ] and
E [Avbit | σ]. As expected, the bit accuracy for both
models is 0.5 when ẑw

T is randomly sampled from
a standard Gaussian distribution (i.e., without wa-
termarking). Moreover, it is evident that, for the
same noise level σ, E [Avbit] consistently exceeds
E [Abit]. This implies that (E [Abit | σ]− 0.5) ≤
(E [Avbit | σ]− 0.5) for σ > 0. Consequently, at
equivalent noise levels, the Valid Bit Mechanism
in TabWak introduces a greater disparity in bit ac-
curacy compared to randomly drawn latents (non-
watermarked latents). In other words, the Valid Bit
Mechanism enhances robustness against noise, re-
sulting in improved detection accuracy.

4 EVALUATION

4.1 EXPERIMENTS SETUP

Datasets We used five widely utilized tabular datasets to evaluate the performance of the pro-
posed TabWak on synthetic data quality, its effectiveness of watermark detection, and its robustness
against post-editing attacks. These include: Shoppers (Sakar & Kastro, 2018), Magic (Bock, 2007),
Credit (Yeh, 2016), Adult (Becker & Kohavi, 1996), and Diabetes (Strack et al., 2014). Additional
details regarding these datasets are provided in Appendix E.1.

Metrics Data quality: The quality of synthetic data is assessed through similarity, discriminability,
and utility. Similarity measures how well the synthetic data reflects the original, focusing on shape
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(distribution comparisons using Kolmogorov-Smirnov and total variation distance) and trend (cor-
relation preservation across columns). Discriminability uses logistic regression to evaluate whether
a model can distinguish between synthetic and real data, with higher scores indicating better indis-
tinguishability. Utility assesses how well synthetic data performs in machine learning tasks, using
classification/regression models to compare AUC and RMSE scores. Detectabilty: Detectability is
assessed using Z-score, which measures the difference in mean values between a synthetic table
with and without watermark, and TPR@XFPR, which evaluates the True Positive Rate (TPR) at a
X% False Positive Rate (XFPR) in the detection of the watermarked table.

Tabular generative model All experiments used a consistent latent tabular model architecture based
on the Tabsyn framework Zhang et al. (2024).Given that all watermarking methods are applied dur-
ing the generator’s sampling phase, models for each dataset are shared across methods. Hence,
for each dataset, the same generator is sampled multiple times with different watermarked latent
codes to evaluate the watermark’s effectiveness. Detailed model specifications are provided in Ap-
pendix B.1.

Baselines. To the best of our knowledge, no sampling phase watermarking technique for tabular
data has yet been proposed in related work. Therefore, we adapt two commonly used watermarking
techniques in image diffusion models—Tree-Ring (TR) (Wen et al., 2023) and Gaussian Shading
(GS) (Yang et al., 2024)—to the tabular diffusion model. And a post-processing watermark (He
et al., 2024) is also included in the Appendix F.3. Detailed implementation of these methods can
be found in Appendix D.1.

4.2 GENERATIVE TABULAR DATA QUALITY AND WATERMARK DETECTABILITY

Table 1: Synthetic Table Quality and Watermark Detectability: Comparison of methods without
watermarking (‘W/O’), Tree-Ring (‘TR’), Gaussian Shading (‘GS’), and TabWak without (‘Ours’)
and with (‘Ours*’) the Valid Bit Mechanism. Best results are shown in Bold, and second-best results
are underlined. Metrics include various quality measures and Z-scores for different row counts.

Datasets Method Quality Metric Z-score
Shape↑ Trend↑ Logistic↑ MLE↑ 1K rows↑ 5K rows↑ 10K rows↑

Shoppers

W/O 0.922±0.001 0.907±0.002 0.635±0.006 0.871±0.012 - - -
TR 0.892±0.001 0.876±0.001 0.499±0.009 0.864±0.009 3.11±0.81 6.17±0.75 6.68±0.56

GS 0.767±0.001 0.716±0.001 0.166±0.006 0.816±0.031 10.02±1.10 22.66±0.87 31.92±0.91

Ours 0.905±0.002 0.881±0.001 0.523±0.007 0.878±0.010 5.42±0.88 11.89±0.95 16.94±1.09

Ours∗ 0.914±0.008 0.906±0.002 0.580±0.057 0.867±0.062 15.46±1.19 34.52±1.05 48.59±1.03

Magic

W/O 0.917±0.002 0.939±0.001 0.710±0.004 0.906±0.004 - - -
TR 0.890±0.001 0.928±0.001 0.626±0.003 0.904±0.004 1.54±0.78 3.56±0.94 4.72±0.97

GS 0.812±0.001 0.913±0.003 0.383±0.003 0.902±0.005 16.54±0.92 36.77±0.95 52.11±0.89
Ours 0.897±0.002 0.934±0.001 0.656±0.007 0.904±0.007 5.88±0.98 13.17±0.84 18.61±1.14

Ours∗ 0.908±0.009 0.927±0.011 0.705±0.007 0.876±0.090 11.29±1.02 25.30±0.99 35.98±1.08

Adult

W/O 0.933±0.001 0.887±0.000 0.653±0.007 0.876±0.005 - - -
TR 0.924±0.006 0.868±0.012 0.640±0.013 0.872±0.007 0.77±0.46 0.84±0.56 0.93±0.66

GS 0.732±0.001 0.487±0.024 0.023±0.001 0.858±0.004 18.63±1.16 41.64±1.09 58.60±1.04
Ours 0.932±0.001 0.872±0.001 0.661±0.021 0.874±0.011 15.83±0.82 35.08±0.93 49.70±0.90

Ours∗ 0.931±0.003 0.884±0.003 0.645±0.009 0.874±0.008 12.58±1.09 28.45±1.06 40.15±0.95

Credit

W/O 0.930±0.001 0.905±0.001 0.741±0.003 0.743±0.013 - - -
TR 0.912±0.015 0.891±0.012 0.717±0.023 0.737±0.012 2.90±0.91 5.56±1.00 6.48±0.96

GS 0.566±0.001 0.655±0.001 0.129±0.002 0.715±0.016 37.69±0.85 84.09±1.08 118.81±0.94
Ours 0.928±0.001 0.905±0.001 0.750±0.005 0.741±0.010 4.99±1.03 11.35±0.97 15.79±1.06

Ours∗ 0.922±0.010 0.892±0.016 0.677±0.086 0.744±0.009 10.10±1.08 22.91±1.05 32.04±1.10

Diabetes

W/O 0.873±0.009 0.743±0.004 0.748±0.034 0.803±0.032 - - -
TR 0.858±0.011 0.726±0.004 0.698±0.034 0.794±0.030 2.31±0.73 6.86±1.11 7.59±0.79

GS 0.732±0.004 0.720±0.003 0.129±0.004 0.000±0.000 24.94±0.80 55.56±0.95 78.86±0.88
Ours 0.884±0.007 0.749±0.003 0.737±0.034 0.777±0.020 2.39±1.02 5.42±0.98 7.70±0.98

Ours∗ 0.849±0.007 0.733±0.004 0.694±0.022 0.801±0.039 3.95±1.04 7.86±0.91 11.27±0.99

To evaluate the quality of the watermarked tabular data, for each comparison we generate as many
rows as the original datasets. To evaluate the detectability of the watermarks, we generate a given
number of rows to compute the Z-score. The mean and standard deviation across 100 tests of each
quality metric and Z-score for 1K, 5K and 10K rows are presented in Table 1. These are all one-
tailed Z-scores. Specifically, for Tree-Ring, the distance between watermark batches in the Fourier
space for the watermarked table is expected to be smaller than for the non-watermarked table. For
Gaussian Shading and our method, the bit accuracy of the watermarked table is expected to be higher
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than that of the non-watermarked table. The relationship between the one-tailed Z-score and p-value
is illustrated in Figure 6 in the Appendix E.2.

From the results, we observe that our method consistently delivers the best or second-best quality
scores both with and without the valid bit mechanism, except the Diabetes dataset where Tree-
Ring at times comes in second. The quality metrics for our method are also close to those of non-
watermarked data. In contrast, Gaussian Shading exhibits the worst quality scores. For instance, in
all datasets, the Logistic detection score for Gaussian Shading is at least 0.4 points worse than our
proposed method. This significant drop is likely caused by Gaussian Shadings’ fixed control seed
across rows, resulting in less diversity in the generated tabular data.

Regarding detectability, the Gaussian Shading method shows the highest Z-scores in the Magic,
Adult, Credit, and Diabetes datasets, and the second-highest Z-score in the Shoppers dataset, thanks
to the shared control seed. With the valid bit mechanism, the detectability of our method improves
significantly, achieving the highest Z-score in the Shoppers dataset and the second-highest in the
others, except for the Adult dataset. Across all datasets and row counts, the Z-scores are consistently
higher than 3.95, indicating that we can detect our watermark in all cases with a false positive rate
(FPR) of less than 3.9× 10−5.

4.3 ROBUSTNESS AGAINST POST-EDITING ATTACKS

For robustness against post-editing attacks, we designed five types of attacks: row deletion, column
deletion, cell deletion, Gaussian noise, and shuffling. In the row deletion and cell deletion attacks, a
certain percentage of rows or cells (5%, 10%, or 20%) is removed. In the column deletion attack, a
specific number of columns (1–3 columns) are deleted. For the Gaussian noise attack, noise is added
to the numeric columns of the tabular data, where the noise’s standard deviation is a percentage of
the cell value. In the shuffling attack, the rows of the table are shuffled.

For the Tree-Ring watermark, which does not support row-by-row detection, we handle row dele-
tions by replacing the deleted rows with those from a non-watermarked table. Similarly, for column
and cell deletions across all watermarking methods, we replace deleted values with randomly sam-
pled non-watermarked data to obtain the corresponding latent codes.

Table 2 presents the average Z-score for a watermarked table with 5K rows under different types of
attacks across 100 tests. To reduce the impact of failed tests on the average Z-score, we set negative
Z-scores in the one-tailed Z-test to zero when calculating the average. From the results, we ob-
serve that Tree-Ring, which performs ordered table-level detection, exhibits low robustness against
row-related attacks, such as row deletion and row shuffling, with Z-scores falling below 0.6. In con-
trast, Gaussian Shading and our method, which are inherently robust against these types of attacks,
demonstrate superior performance. Notably, the valid bit mechanism shows strong performance.
For our method without the valid bit mechanism, the Z-score drops a lot under stronger attacks. In
the case of column deletion attacks, the Z-score drops to 0 in 2 out of 5 datasets. However, for our
method with the valid bit mechanism, the average Z-score remains above 4 across all test conditions.
In most cases, the Z-score is either the highest or second-highest among the compared methods.
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Figure 3: The trade-off between p-value under various attacks and the average data quality

Figure 3 illustrates the trade-off between detectability and data quality across various watermarking
methods. The x-axis represents the theoretical false positive rate (p-value), while the y-axis shows
the average of four data quality metrics (Shape, Trend, Logistic, and MLE) from Table 1, evaluated
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Table 2: Robustness Against Post-Editing Attacks: Average Z-score on 5K rows, repeated 100
times, for methods without watermarking (‘W/O’), Tree-Ring (‘TR’), Gaussian Shading (‘GS’), and
TabWak without (‘Ours’) and with (‘Ours*’) the Valid Bit Mechanism. Best results are shown
in Bold, and second-best results are underlined. Z-scores without attacks at 5K rows reprinted in
(parentheses) from Table 1.

Dataset Method
Attacks

Row Deletion Column Deletion Cell Deletion Gaussian Noise Shuffling
5% 10% 20% 1 col 2 col 3 col 5% 10% 20% 5% 10% 20% -

Shoppers

TR (6.17) 0.37 0.37 0.36 3.76 2.59 1.98 4.87 4.69 4.27 3.87 1.48 0.01 0.00
GS (22.66) 21.95 21.36 20.02 20.99 19.18 9.19 22.29 21.96 22.07 22.25 21.74 21.64 22.49
Ours (11.89) 11.54 11.27 10.68 12.19 15.70 9.41 12.48 13.34 14.48 11.60 6.26 0.00 11.81
Ours* (34.52) 33.58 32.69 30.98 34.50 34.33 37.38 34.40 34.63 33.36 27.60 29.84 39.90 34.51

Magic

TR (3.56) 0.41 0.34 0.42 2.29 1.01 0.42 4.83 4.53 4.06 4.95 4.89 4.38 0.00
GS (36.77) 35.97 35.11 33.07 35.73 32.80 34.37 35.37 34.08 31.96 36.89 36.91 36.86 36.92
Ours (13.17) 12.88 12.68 11.93 0.00 0.00 0.00 7.93 2.84 0.00 12.87 12.51 11.19 13.12
Ours* (25.30) 24.78 23.98 22.61 32.38 32.33 37.80 26.92 28.13 30.17 25.51 25.12 25.06 25.39

Adult

TR (0.84) 0.39 0.37 0.36 0.42 0.43 0.57 0.30 0.31 0.37 0.29 0.67 1.46 0.00
GS (41.64) 40.43 39.40 37.34 37.94 48.50 50.79 43.14 43.55 43.39 51.02 66.03 83.84 41.67
Ours (35.08) 34.17 33.49 31.46 31.32 29.24 19.55 36.41 34.08 35.60 28.02 14.22 3.83 35.30
Ours* (28.45) 27.78 26.83 25.43 28.45 24.92 27.57 29.29 30.07 29.86 32.53 48.66 64.19 28.42

Credit

TR (5.56) 0.38 0.39 0.39 3.31 1.14 0.57 5.33 4.81 3.96 5.70 5.37 4.75 0.00
GS (84.09) 82.20 79.88 75.45 84.59 84.49 88.94 83.78 84.05 84.21 74.20 73.16 76.30 84.36
Ours (11.35) 10.94 10.52 10.00 8.08 5.90 4.05 9.65 8.10 6.18 8.93 3.31 0.00 11.26
Ours* (22.91) 22.11 21.65 20.29 27.31 32.71 34.98 26.65 30.31 36.24 23.18 24.31 27.17 22.88

Diabetes

TR (6.86) 0.83 0.42 0.59 4.60 3.13 2.15 6.56 6.27 5.70 6.51 5.38 2.37 0.00
GS (55.56) 54.21 52.88 49.73 55.73 56.94 58.93 54.09 52.97 50.72 53.81 50.59 49.14 55.94
Ours (5.42) 5.42 4.94 4.71 1.27 0.00 0.00 1.15 2.31 3.84 0.08 0.02 0.23 5.32
Ours* (7.86) 7.76 7.63 7.11 4.98 10.94 12.74 4.76 4.41 3.61 6.56 6.73 3.83 7.91

under the strongest attack settings. Notably, TabWak with valid bit mechanism(Ours*, indicated by
filled plus markers) predominantly occupies the upper-left region, signifying superior performance
in most scenarios, except under cell deletion and Gaussian noise attacks on the Diabetes dataset. In
contrast, Gaussian Shading (GS), while demonstrating strong detectability, consistently appears in
the lower-left region, emphasizing its compromise on data quality for robustness.

Figure 4 explores the relationship between the number of rows and TPR@0.1%FPR (True Positive
Rate under 0.1% False Positive Rate). For each row count, 10 repetitive experiments were conducted
on 100 tables. The strongest attacks from Table 2 were used: Cell and Noise attacks were set at 20%
strength, and three columns were deleted for the Column Deletion (Del.) attack.
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Figure 4: TPR@0.1% FPR versus row count in four datasets under various attacks. Cell and Noise
attacks are set at 20% strength; Column Deletion (Del.) is fixed to three columns.

As shown in Figure 4, our method with the valid bit mechanism (Ours*) consistently demonstrates
a significantly higher TPR compared to the version without it (Ours). Notably, our method with-
out the valid bit mechanism underperforms, achieving a TPR@0.1%FPR below 0.5 in 7 out of 12
cases—effectively random guessing. In contrast, our method with the valid bit mechanism achieves
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a 1.0 TPR@0.1%FPR in all cases with 11 cases requiring as few as 200 rows and 1 case needing
fewer than 300 rows. Moreover, our method with the valid bit mechanism shows similar or better
detectability than Gaussian Shading in most scenarios while maintaining a significantly higher data
quality.

5 CONCLUSION

Motivated by the necessity and urgency to audit the usage of synthetic tables, we propose TabWak-
the first row-wise watermarking scheme for tabular diffusion models. TabWak aims to embed an
imperceptible pattern in each row, while maintaining high quality of tables and detectability in the
presence of post-editing attacks. The novel feature of TabWak is to embed the secrete key in the
positional information and values of random seeds that control Gaussian latent codes for each row,
without affecting the Gaussian distribution nor limiting the sampling choices. Another feature of
TabWak is the valid-bit detection, particularly on the tail distribution of latent embeddings. We val-
idate the effectiveness of TabWak through theoretical claims and extensive experiments. Evaluation
results on five datasets against image-based watermarking baselines show that TabWak achieves the
highest tabular quality measure thanks to its diversity in latent, and resilient detectability with or
without attacks.

6 REPRODUCIBILITY AND ETHIC STATEMENT

To ensure the reproducibility of our research, we have open-sourced the code for the various wa-
termarking techniques and the tabular diffusion model, as shown in https://anonymous.
4open.science/r/TabWak-4E65. This code is available in a publicly accessible repository
under an anonymous account. Furthermore, all experiments conducted as part of this study utilized
publicly available datasets.

With the popularity of diffusion models and their applications, embedding watermarks into their
generated content is an essential step toward trustworthy and responsible AI technology development
and deployment. Our findings of improved watermark detection performance and utility provide
novel insights into the research and practice of watermarking for synthetic tables.
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A NOMENCLATURE

πκ Pseudo-random permutation applied to the control seed d, indexed by the watermark key κ,
used to shuffle the sequence for embedding.

d Control seed used for watermark embedding, containing integer values that define specific
segments of the latent space.

ds Shuffled control seed, generated by applying a pseudo-random permutation to d, ensuring
row-wise detectability of the watermark.

zT Noisy latent variable at the final time step T , from which the tabular data generation starts.

zt Latent variable at time step t, representing intermediate states during the diffusion process.

zw
T Watermarked latent variable at time step T , altered for embedding watermark information.

ϵ(σ) Gaussian noise added during the perturbation process, drawn from N(0, σ2).

I(·) Indicator function, used to compare whether conditions are met (returns 1 if true, 0 other-
wise).

D Decoder, used to reconstruct tabular data from the latent space.

E Encoder, used to map tabular data into the latent space.

Φ(x) Cumulative distribution function (CDF) of the standard normal distribution, used to partition
latent space into segments.

ϕ(x) Probability density function (PDF) of the standard normal distribution.

σ Noise level in the Gaussian noise distribution, controlling the magnitude of perturbations in
the watermark detection process.

Abit Bit accuracy, the proportion of bits correctly recovered after noise perturbation, measuring
the effectiveness of the watermark embedding.

Avbit Valid bit accuracy, a refined accuracy measure focusing on extreme values in the bit se-
quence to increase resilience against noise.

F (zT ) Fourier-transformed version of the noisy latent code, used for injecting or detecting the
watermark.

K Watermark patch applied to the latent space, created through a structured pattern of concen-
tric circles or ripples.

r Radius in the Tree-Ring watermark, defining the size of the watermark region within the
latent space.

Fourier Transform (fft2d) A mathematical transformation used to convert the latent noise matrix
into frequency space for watermark embedding.

B DIFFUSION AND DIFFUSION INVERSION

B.1 TABULAR LATENT DIFFUSION MODEL

In this paper, we adopt the Tabsyn framework from (Zhang et al., 2024), which combines an autoen-
coding framework with a diffusion process in the latent space. This architecture efficiently manages
the complexity of mixed-type tabular data, which includes both numerical and categorical variables,
by encoding them into a unified latent space where the diffusion process operates. Below, we out-
line the key components of this architecture. Unlike Tabsyn, which utilizes a score-based diffusion
process, we employ a Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) for train-
ing, and leverage Denoising Diffusion Implicit Models (DDIM) (Song et al., 2021) for the sampling
process.
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Original tabular
data space

Autoencoder

... ...

...

Latent space

 Diffusion Process

Forward process

Reverse processSampling

Figure 5: The diagram for tabular latent diffusion models.

Autoencoding Framework To
capture the structure of tabular data,
we use a Variational Autoencoder
(VAE) that maps the data into la-
tent space through tokenization,
encoding, and decoding. The model
handles both numerical and cat-
egorical columns by tokenizing
each type: numerical features are
linearly transformed into embed-
dings, while categorical features
are one-hot encoded and embedded
using a lookup table. This unified
representation is then passed into a
Transformer-based encoder, which
captures inter-column dependencies
and outputs latent embeddings z.
These are sampled via the reparam-
eterization trick and decoded back
into reconstructed token embeddings.
Finally, the detokenizer converts these embeddings back to their original tabular form by applying
inverse transformations for numerical columns and softmax for categorical columns, ensuring the
output retains the original structure of the data.

Diffusion Model In our model, we utilize a Denoising Diffusion Probabilistic Model (DDPM) in
the latent space for data generation. DDPM gradually corrupts the latent variables z0 by adding
Gaussian noise over a series of time steps, resulting in zT , which follows a simple Gaussian distri-
bution. During the reverse process, the model learns to denoise these latent variables step-by-step,
starting from zT and progressively removing the noise to recover the original latent representation
z0. This reverse process is parameterized using a neural network that predicts the noise at each step,
allowing the model to generate new latent variables that are then decoded back into synthetic tabular
data. The DDPM approach provides high flexibility and generates diverse samples by learning to
capture the complex distribution of the latent space.

More in detail for the model we used, the autoencoder module comprises an encoder and a decoder,
each following a 2-layer Transformer architecture. The hidden dimension of the Transformer’s
feed-forward network (FFN) is set to 128. The diffusion model comprises a 4-layer multi-layer
perceptron (MLP) with a hidden dimension of 1024. For both the diffusion and sampling processes
within the diffusion model, 1000 timesteps are used. With these hyperparameters, the latent tabular
model consistently generates high-quality synthetic data in the absence of watermarking, achieving
similarity metrics above 0.88, discriminability metrics above 0.63, and utility metrics around 0.79
across all datasets. Therefore, the same architecture is employed for all four datasets, while the
number of training epochs is tuned for each dataset individually.

B.2 DDIM AND DDIM INVERSION

The diffusion model denoises a latent representation of the tabular data from a noise matrix, which
can be infused with a watermark and later detected the watemarking pattern. While the architecture
is oblivious to the specific choice of autoencoder architecture, the choice of diffusion model requires
careful consideration to guarantee deterministic diffusion and sampling processes. Ensuring both
deterministic processes allows for accurate recovery of the noise matrix from the synthesized table,
thereby enabling sound detection of the watermark.

Among the various diffusion models, Denoising Diffusion Implicit Model (DDIM) (Song et al.,
2021) stands out for its ability to facilitate both deterministic diffusion and sampling processes.
DDIM extends the classical Markovian diffusion process into a broader class of non-Markovian
diffusion processes. Within the DDIM framework, given the noise matrix zT in the latent space, and
a neural network ϵθ that predicts the noise ϵθ(t, zt) at each diffusion time step t, the generation of a
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sample zt−1 from zt during the sampling process is described by the equation:

zt−1 =
√
αt−1(

zt −
√
1− αtϵθ(t, zt)√

αt
) +

√
1− αt−1 − σ2

t · ϵθ(t, zt) + σtϵt

where α1, . . . , αT are computed from a predefined variance schedule, ϵt ∼ N (0, I) denotes stan-
dard Gaussian noise independent of zt, and the σt values can be varied to yield different generative
processes. Specifically, by setting σt to 0 for all t, the sampling process becomes deterministic:

zt−1 =

√
αt−1

αt
zt + (

√
1− αt−1 −

√
αt−1

αt
− αt−1)ϵθ(t, zt)

This deterministic sampling process ensures that a given noise matrix zT consistently generates
the same latent matrix z0. Consequently, when z0 is fed into the decoder D, the resulting table
X = D(z0) will also be consistently the same.

Notably, in the limit of small steps (large value of T ), we can traverse the timesteps in the reverse
direction towards increasing levels of noise, yielding a deterministic diffusion process from z0 to
zT , i.e. DDIM inversion:

zt+1 =

√
αt+1

αt
zt + (

√
1− αt+1 −

√
αt+1

αt
− αt+1)ϵθ(t, zt)

Therefore, given the tabular latent z0 = E(X) of a table X , the noise matrix zT that is used to
sample the corresponding table can be derived. This latent tabular diffusion model with deterministic
sampling and diffusion processes enables the secure watermarking of synthetic tabular data. By
embedding the watermark into the noise matrix zT , the watermark remains imperceptible to humans
and exerts minimal influence on the quality of the synthetic tables. By reversing the tabular data back
to the noise matrix, the watermark’s presence can be smoothly detected by assessing watermarking
patterns.

B.3 DECODER INVERSION

The inversion of AutoEncoder in the watermarking process is essiensial. However, when an inverse
transformation is needed (e.g., to map a generated table back to its latent representation), simply
applying the encoder (E) to the table is insufficient due to inherent reconstruction errors. This
discrepancy arises because the encoder is not the exact inverse of the decoder, meaning that using E
for inversion leads to imperfect recovery of the latent representation. This results in a lower-bound
reconstruction error defined as:

∥D (E (X))−X∥ .

To overcome this limitation and reduce reconstruction errors, an exact inversion of the decoder is
required, ensuring that the latent representation aligns more closely with the original data. Exact
inversion can enable more accurate reconstructions, enhancing performance in downstream tasks
such as editing, manipulation, or generating variations of the original input.

To perform decoder inversion, we use an iterative optimization process based on gradient descent.
The goal is to find the latent variable z that, when passed through the decoder D, minimizes the
reconstruction error between the original table X and the generated output D(zT ). The process
starts by initializing z with the output of the encoder:

zT ← E(X).

Then, we iteratively adjust zT by performing gradient descent on the objective function:

∥X −D(zT )∥22.

This optimization updates the latent variable in the direction that reduces the difference between
the original table and the decoder’s output. The process continues until convergence, i.e., when
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further updates to zT no longer significantly reduce the error. The gradient descent step can be
mathematically expressed as:

zT ← zT − η∇zT
∥X −D(zT )∥22,

where η is the learning rate. Once the process converges, the optimized latent variable zT is returned
as the exact inverse representation, yielding a more accurate result than using the encoder alone.

C THEOREMS AND PROOFS

Theorem 1 Let d ∈ {0, 1}m be a 1-bit string consisting of m bits, where each bit follows a random
Bernoulli distribution, i.e., di ∼ Bernoulli(1/2) for each i ∈ {1, . . . ,m}.
Let the perturbed Gaussian sampling process as follows:

zi = Φ−1

(
ui + dk

2

)
, ui ∼ U(0, 1),

where Φ−1 is the inverse cumulative distribution function (CDF) of the standard normal distribution
N (0, 1), and ui is a uniform random variable.

Let the perturbation noise ϵ1, ϵ2 ∼ N (0, σ2) be independent Gaussian noise with variance σ2.

Let the recovered bit strings as d̂1
i and d̂2

i after perturbation as:

d̂j
i =

⌊
2 · F (zj

T + ϵj)
⌋
, j = 1, 2,

where F (·) is the empirical cumulative distribution function (CDF) of the perturbed Gaussian noise.

Let the Bit Accuracy, denoted by Abit, as the proportion of recovered bits that match between two
independent instances of the bit recovery process:

Abit =
1

m

m∑
i=1

I
(
d̂1
i = d̂2

i

)
,

where I(·) is the indicator function.

We can show that the expected value of the Bit Accuracy, E[Abit], is given by:

E[Abit] =

(∫ ∞

−∞

[
1− Φ

(
−|x|

σ

)]
ϕ(x) dx

)2

+

(∫ ∞

−∞
Φ

(
−|x|

σ

)
ϕ(x) dx

)2

,

where Φ(x), ϕ(x) is the CDF and PDF of the standard normal distribution.

Proof: When the string d consists of a single bit, the bit string recovery process simplifies. Specif-
ically, the recovered bit d̂i can be written as:

d̂i =

{
1 if zi + ϵi ≥ 0,

0 if zi + ϵi < 0,

where zi follows the perturbed Gaussian process and ϵi ∼ N (0, σ2) is Gaussian noise.

Thus, the expected Bit Accuracy can be interpreted as the probability that the signs of z1
i + ϵ1i and

z2
i + ϵ2i agree, where z1

i and z2
i are two independent instances of the perturbed Gaussian process.

Mathematically, this is expressed as:

E [Abit] = E
[
P
(
sign(z1

i + ϵ1i ) = sign(z2
i + ϵ2i )

)]
.

The probability that the signs match can be decomposed into two cases:

1) The signs of both z1
i + ϵ1i and z2

i + ϵ2i are positive. 2) The signs of both z1
i + ϵ1i and z2

i + ϵ2i are
negative.
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Thus, we have:
E [Abit] = E[P

(
no flip for z1

i

)
· P
(
no flip for z2

i

)
+ P

(
flip for z1

i

)
· P
(
flip for z2

i

)
]

Using the Gaussian CDF Φ(x), this becomes:

E [Abit] =

∫ ∞

−∞

∫ ∞

−∞

[(
1− Φ

(
−|x1|

σ

))(
1− Φ

(
−|x2|

σ

))
+Φ

(
−|x1|

σ

)
Φ

(
−|x2|

σ

)]
ϕ(x1)ϕ(x2) dx1 dx2,

where:

• Φ(·) is the CDF of the standard normal distribution.

• ϕ(x) = 1√
2π

e−x2/2 is the probability density function (PDF) of the standard normal distri-
bution.

This simplifies to:

E [Abit] =

(∫ ∞

−∞

[
1− Φ

(
−|x|

σ

)]
ϕ(x) dx

)2

+

(∫ ∞

−∞
Φ

(
−|x|

σ

)
ϕ(x) dx

)2

.

Theorem 2 Let d ∈ {0, 1, 2, 3}m represent an m-length string, where each element di is
an independent random variable following a categorical distribution over the set {0, 1, 2, 3}.
Specifically, for each i ∈ {1, . . . ,m}, the random variable di is distributed according to
Categorical(p0, p1, p2, p3), with p0 = p1 = p2 = p3 = 1

4 .

Define the perturbed Gaussian sampling process as follows:

zi = Φ−1

(
ui + dk

4

)
, ui ∼ U(0, 1),

where Φ−1 is the inverse cumulative distribution function (CDF) of the standard normal distribution
N (0, 1), and ui is a uniform random variable.

Let the perturbation noise ϵ1, ϵ2 ∼ N (0, σ2) be independent Gaussian noise with variance σ2.

Define the recovered bit strings d̂1
i and d̂2

i after perturbation as:

d̂j
i =

⌊
4 · F (zj

T + ϵj)
⌋
, j = 1, 2,

where F (·) is the empirical cumulative distribution function (CDF) of the perturbed Gaussian noise.

We define the Valid Bit Accuracy, denoted Abit, as the proportion of recovered bits that match
between two independent instances of the bit recovery process:

Avbit =

∑m
i=1 I

((
d̂1
i = 0 and d̂2

i = 0 or 1
)

or
(
d̂1
i = 3 and d̂2

i = 2 or 3
))

∑m
i=1 I

(
d̂1
i = 0 or d̂1

i = 3
)

where I(·) is the indicator function.

We can show that the expected value of the Bit Accuracy, E[Avbit], is given by
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(∫ Φ−1(0.25)

−∞
Φ

(
Φ−1 (0.25)

√
1 + σ2 + x

σ

)
ϕ(x) dx

)
×
(∫ Φ−1(0.25)

−∞
Φ
(x
σ

)
ϕ(x) dx

)

+

(∫ Φ−1(0.25)

−∞
Φ

(
Φ−1 (0.25)

√
1 + σ2 − x

σ

)
ϕ(x) dx

)
×
(∫ Φ−1(0.25)

−∞
Φ

(−x
σ

)
ϕ(x) dx

)

+

(∫ 0

Φ−1(0.25)

Φ

(
Φ−1 (0.25)

√
1 + σ2 + x

σ

)
ϕ(x) dx

)
×
(∫ 0

Φ−1(0.25)

Φ
(x
σ

)
ϕ(x) dx

)

+

(∫ 0

Φ−1(0.25)

Φ

(
Φ−1 (0.25)

√
1 + σ2 − x

σ

)
ϕ(x) dx

)
×
(∫ 0

Φ−1(0.25)

Φ

(−x
σ

)
ϕ(x) dx

)


Φ(·) is the CDF of the standard normal distribution.
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Proof:

E [Avbit] =

3∑
k=0

P (di = k) · E[A | d(i) = d]

There are eight situations that satisfy the condition of Valid bit accuracy:

1. di = 0, d̂1
i = 0, d̂2

i = 0 or 1

2. di = 1, d̂1
i = 0, d̂2

i = 0 or 1

3. di = 2, d̂1
i = 0, d̂2

i = 0 or 1

4. di = 3, d̂1
i = 0, d̂2

i = 0 or 1

5. di = 0, d̂1
i = 3, d̂2

i = 2 or 3

6. di = 1, d̂1
i = 3, d̂2

i = 2 or 3

7. di = 2, d̂1
i = 3, d̂2

i = 2 or 3

8. di = 3, d̂1
i = 3, d̂2

i = 2 or 3

Based on the symmetric property of the Gaussian distribution, we can easily get that:

• P (di = 0, d̂1
i = 0, d̂2

i = 0 or 1) = P (di = 3, d̂1
i = 3, d̂2

i = 2 or 3)

• P (di = 1, d̂1
i = 0, d̂2

i = 0 or 1) = P (di = 2, d̂1
i = 3, d̂2

i = 2 or 3)

• P (di = 2, d̂1
i = 0, d̂2

i = 0 or 1) = P (di = 1, d̂1
i = 3, d̂2

i = 2 or 3)

• P (di = 3, d̂1
i = 0, d̂2

i = 0 or 1) = P (di = 0, d̂1
i = 3, d̂2

i = 2 or 3)

So, we split the problem into 4 situations:

1) P (d̂1
i = 0 and (d̂2

i = 0 or d̂2
i = 1) | di = 0)

Given that di = 0, both z1
T (i) and z2

T (i) are initially in the 0% − 25% quantile of the standard
normal distribution. That is:

z1
T (i), z

2
T (i) ∈

[
Φ−1(0),Φ−1(0.25)

]
where Φ−1(q) is the inverse cumulative distribution function (CDF) of the standard normal distri-
bution, corresponding to the q-quantile.

After adding independent Gaussian noise ϵ1i ∼ N(0, σ2) and ϵ2i ∼ N(0, σ2), the noisy signals
z1
T (i) + ϵ1i and z2

T (i) + ϵ2i are distributed as N(z1
T (i), σ

2) and N(z2
T (i), σ

2), respectively. Thus,
the combined distribution of each signal is:

z1
T (i) + ϵ1i , z

2
T (i) + ϵ2i ∼ N(0, 1 + σ2)

The condition d̂1
i = 0 implies that the noisy signal z1

T (i) + ϵ1i falls into the 0% − 25% quantile of
the N(0, 1 + σ2) distribution. Hence, we need to compute:

P (d̂1
i = 0 | di = 0) = P

(
z1
T (i) + ϵ1i < Φ−1(0.25) ·

√
1 + σ2 | z1

T (i) ∈
[
Φ−1(0),Φ−1(0.25)

])
For any specific value z1

T (i) = x, after adding noise, the noisy signal z1
T (i) + ϵ1i is distributed as

N(x, σ2). The conditional probability is:

P (z1
T (i) + ϵ1i < Φ−1(0.25) ·

√
1 + σ2 | z1

T (i) = x) = Φ

(
Φ−1(0.25) ·

√
1 + σ2 − x

σ

)

Therefore, the total probability P (d̂1
i = 0 | di = 0) is the integral over the 0%− 25% quantile:

P (d̂1
i = 0 | di = 0) =

∫ Φ−1(0.25)

Φ−1(0)

Φ

(
Φ−1(0.25) ·

√
1 + σ2 − x

σ

)
fz1

T (i)(x)dx

= 4

∫ Φ−1(0.25)

−∞
Φ

(
Φ−1(0.25)

√
1 + σ2 − x

σ

)
ϕ(x)dx
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where fz1
T (i)(x) is the probability density function (PDF) of z1

T (i) in the 0%− 25% quantile:

fz1
T (i)(x) =

ϕ(x)∫ Φ−1(0.25)

Φ−1(0)
ϕ(t)dt

= 4ϕ(x)

with ϕ(x) = 1√
2π

e−x2/2 being the standard normal PDF.

The condition d̂2
i = 0 or d̂2

i = 1 means that the noisy signal z2
T (i)+ϵ2i falls into either the 0%−25%

or the 25%− 50% quantile of the new distribution N(0, 1 + σ2). The respective probabilities are:

- For d̂2
i = 0 (0%-25% quantile):

P (d̂2
i = 0 | z2

T (i) = x) = Φ

(
Φ−1(0.25) ·

√
1 + σ2 − x

σ

)

- For d̂2
i = 1 (25%-50% quantile):

P (d̂2
i = 1 | z2

T (i) = x) = Φ

(
Φ−1(0.50) ·

√
1 + σ2 − x

σ

)
− Φ

(
Φ−1(0.25) ·

√
1 + σ2 − x

σ

)

Thus, the total probability P (d̂2
i = 0 or d̂2

i = 1 | di = 0) is:

P
(
d̂2
i = 0 or d̂2

i = 1 | di = 0
)
=

∫ Φ−1(0.25)

Φ−1(0)

(
Φ

(
Φ−1(0.25) ·

√
1 + σ2 − x

σ

)

+

(
Φ

(
Φ−1(0.50) ·

√
1 + σ2 − x

σ

)
− Φ

(
Φ−1(0.25) ·

√
1 + σ2 − x

σ

))
fz2

T (i)(x)dx

= 4

(∫ Φ−1(0.25)

−∞
Φ

(−x
σ

)
ϕ(x)dx

)

The total probability P (d̂1
i = 0 and (d̂2

i = 0 or d̂2
i = 1) | di = 0) is the product of the two

integrals:

P (d̂1
i = 0 and (d̂2

i = 0 or d̂2
i = 1) | di = 0) =

16

(∫ Φ−1(0.25)

−∞
Φ

(
Φ−1(0.25)

√
1 + σ2 − x

σ

)
ϕ(x)dx

)(∫ Φ−1(0.25)

−∞
Φ

(−x
σ

)
ϕ(x)dx

)
Similarly, we can get

P
(
d̂1
i = 0 and

(
d̂2
i = 0 or d̂2

i = 1
)
| di = 1

)
=

16

(∫ 0

Φ−1(0.25)

Φ

(
Φ−1(0.25)

√
1 + σ2 + x

σ

)
ϕ(x)dx

)(∫ 0

Φ−1(0.25)

Φ
(x
σ

)
ϕ(x)dx

)

P
(
d̂1
i = 0 and

(
d̂2
i = 0 or d̂2

i = 1
)
| di = 2

)
=

16

(∫ Φ−1(0.25)

−∞
Φ

(
Φ−1(0.25)

√
1 + σ2 − x

σ

)
ϕ(x)dx

)(∫ Φ−1(0.25)

−∞
Φ

(−x
σ

)
ϕ(x)dx

)

P
(
d̂1
i = 0 and

(
d̂2
i = 0 or d̂2

i = 1
)
| di = 3

)
=

16

(∫ Φ−1(0.25)

−∞
Φ

(
Φ−1(0.25)

√
1 + σ2 + x

σ

)
ϕ(x)dx

)(∫ Φ−1(0.25)

−∞
Φ
(x
σ

)
ϕ(x)dx

)
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The final E [Avbit] can be summarized as:

E [Avbit] =

2
(
P
(
d̂1
i = 0 and (d̂2

i = 0 or d̂2
i = 1) | di = 0

)
+ P

(
d̂1
i = 0 and (d̂2

i = 0 or d̂2
i = 1) | di = 1

)
+P

(
d̂1
i = 0 and (d̂2

i = 0 or d̂2
i = 1) | di = 2

)
+ P

(
d̂1
i = 0 and (d̂2

i = 0 or d̂2
i = 1) | di = 3

))
/2

= 16



(∫ Φ−1(0.25)

−∞ Φ
(

Φ−1(0.25)
√
1+σ2+x

σ

)
ϕ(x)dx

)
×
(∫ Φ−1(0.25)

−∞ Φ
(
x
σ

)
ϕ(x)dx

)
+
(∫ Φ−1(0.25)

−∞ Φ
(

Φ−1(0.25)
√
1+σ2−x

σ

)
ϕ(x)dx

)
×
(∫ Φ−1(0.25)

−∞ Φ
(−x

σ

)
ϕ(x)dx

)
+
(∫ 0

Φ−1(0.25)
Φ
(

Φ−1(0.25)
√
1+σ2+x

σ

)
ϕ(x)dx

)
×
(∫ 0

Φ−1(0.25)
Φ
(
x
σ

)
ϕ(x)dx

)
+
(∫ 0

Φ−1(0.25)
Φ
(

Φ−1(0.25)
√
1+σ2−x

σ

)
ϕ(x)dx

)
×
(∫ 0

Φ−1(0.25)
Φ
(−x

σ

)
ϕ(x)dx

)


D IMPLEMENTATION DETAILS

D.1 TREE-RING

The Tree-Ring watermark is specifically designed for images, taking into account the unique char-
acteristics of image data. In image synthesis, images and it’s latent code are typically square, such
as a 256×256 matrix. The Tree-Ring watermark is centrally placed within the image and resembles
concentric rings, much like the rings of a tree.

In contrast, tabular data usually consists of far more rows than columns, resulting in a tall rectangular
shape, such as a 10000 × 40 matrix. We use a different shape for Tree-Ring watermark in tabular
data, whose shape is more like a ripple. For a predefined radius r representing the outermost circle
of the ripple watermark, a watermark patch K is generated with the ripple originating from its center
using Algorithm 1. The process starts by generating a random matrix of the same size as the noisy
latent code using Gaussian noise. This matrix undergoes a 2D Fourier transform, with the zero-
frequency component shifted to the center, providing the base for the watermark patch. The ripple
is then created, where each concentric circle shares the same value, sampled randomly from the
transformed base matrix. The radius r is determined as 10% of the number of rows of the table in a
generation.

Algorithm 1 Tree-Ring Embedding in Tabular Data

1: Input: Radius r, shape (n,m) of the noise matrix where n is the number of rows and m is the
dimension of the latent for each row

2: N ← (Nij ∼ N (0, 1))1≤i≤n,1≤j≤m // Initialize a random Gaussian matrix
3: K ← fftshift(fft2d(N)) // Apply 2D Fourier transform to N and shift the components
4: Ktmp ← copy(K) // Copy K for value sampling in ripple circles
5: for k ← r downto 1 do
6: // From the outermost circle inward
7: v ← sample(Ktmp) // Sample a random value v for the i-th circle
8: for all (i, j) where 1 ≤ i ≤ n, 1 ≤ j ≤ m, (i− n

2 )
2 + (j − m

2 )
2 ≤ k2 do

9: K(i, j)← v // Assign v to position (i, j)
10: end for
11: end for
12: return K // Return the modified matrix

The watermarking injection and detection phases proceed as follows. In the injection phase, specific
matrix elements in the Fourier-transformed noisy latent code are replaced by values from a prede-
fined watermark patch. Specifically, given the predefined watermark patch K and a binary mask M
with values of 1 in the ripple watermark region and 0 elsewhere, the FFT-transformed noise matrix
F (zT ) of the initial noisy latent code zT is watermarked as follows:

F (zT )i,j =

{
Ki,j , if Mi,j = 1
F (zT )i,j , otherwise where Mi,j =

{
1, if (i− n

2 )
2 + (j − m

2 )
2 ≤ r2

0, otherwise
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The watermarked FFT-transformed noisy latent code is then subjected to an inverse fast Fourier
transform (IFFT). This process generates a synthetic table with the watermark embedded, produced
through the sampling and decoding processes of the diffusion model.

In the detection phase, the synthetic tables are encoded back into the latent space and diffused to the
noisy latent code z̃T . An FFT is applied to this code, and the detection process compares the ground-
truth watermark patch K with the watermarked region of the Fourier-transformed latent noise matrix
F (z̃T ) using the L1 distance. The distance metric is defined as:

Dist =
1

|M |
∑

Mi,j=1

|Ki,j − F (z̃T )i,j |

D.2 GAUSSIAN SHADING

To adapt Gaussian Shading from the image domain to the tabular data domain, unlike Tree-Ring,
which embeds a single watermark across different rows, we embed the watermark on a per-row basis.
This approach benefits row-by-row detection and enhances robustness against row-wise attacks.

However, we are constrained to using the same control seed d for all rows. Using multiple control
seeds would require additional information, such as row indices, to generate different control seeds
for each row. This method, however, would not be robust against row-wise attacks, as information
like row indices can easily be altered by operations such as row deletion or shuffling.

E EXPERIMENTS DETAILS

E.1 DATASETS

The overview of the datasets use are shown in Table 3. The Shoppers (Sakar & Kastro, 2018) cap-
tures online shoppers’ purchasing intentions via 12,330 samples featuring 18 mixed-type columns
(10 continuous and 8 categorical).The Magic (Bock, 2007) dataset simulates the registration of
high-energy gamma particles and consists of 19,020 instances with 11 columns (10 continuous and
1 categorical). The Credit (Yeh, 2016) dataset provides data on the default payments of credit
card clients, comprising 30,000 instances with a total of 24 mixed-type columns (14 continuous and
10 categorical). The Adult (Becker & Kohavi, 1996) dataset contains information on individuals’
annual incomes, consisting of 48,842 instances with 15 mixed-type columns (6 continuous and 9 cat-
egorical). Finally, the Diabetes (Strack et al., 2014) dataset contains medical information on Pima
Indian female patients aged 21 or older, consisting of 768 instances with 9 columns (8 continuous
and 1 categorical).

Name Domain # Rows # Cat # Num Task Target Column

Shoppers Retail 12,330 8 10 Classification “Revenue”
Magic Physics 19,019 1 10 Classification “class”
Adult Social Science 48,842 9 6 Classification “class”
Credit Finance 30,000 11 14 Classification “default”

Diabetes Medical 768 1 8 Classification “Outcome”

Table 3: Properties of selected datasets used in the evaluation. # Rows, # Cat, # Num indicate
the number of rows, the number of categorical columns, and the number of numerical columns,
respectively. # Test indicates the number of samples in the test set.

E.2 METRIC

The quality of the synthetic data is evaluated on three aspects: similarity, discriminability, and utility.

Similarity This aspect assesses the statistical similarity between the synthetic data and the original
data through the following metrics:
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• Shape quality: This metric evaluates resemblance by comparing the distribution of each
column in the synthetic data with its counterpart in the original data. A similarity score is
computed for each column based on the distributions in both datasets. In particular, we use
the complement of the Kolmogorov-Smirnov statistic for continuous columns and of the
total variation distance for categorical columns, respectively (Dat, 2023). The average of
these scores across all columns reflects the shape quality of the synthetic table. A higher
score indicates a greater similarity between the synthetic and original tables.

• Trend quality: Since columns in the data may or may not relate to each other, this metric
assesses how well the synthetic data preserves these relationships. This involves calculating
the correlation between every pair of columns in both the synthetic and original datasets and
comparing them. A higher trend quality score indicates that the synthetic data accurately
represents the inter-column relationships found in the original data. The average of these
scores across all column pairs is used to represent the trend quality of the synthetic table.

Discriminability This aspect assesses how difficult it is for a machine learning model to distin-
guish between synthetic data and original data through the following method:

• Logistic Detection: A logistic regression model is trained to differentiate between the two
datasets. First, all rows from both the real and synthetic datasets are combined and then
split into training and validation sets. The machine learning model is trained on the training
set and evaluated on the validation sets. The performance of the model is measured based
on the averaged complement of ROC AUC score across all validation splits. A higher score
indicates that the model can not differentiate between synthetic and real data, suggesting
higher in-discriminability for the synthetic data, i.e. synthetic data being undistinguishable
from real data.

Utility This aspect evaluates the quality of the synthetic data in terms of their performance in
downstream machine-learning tasks. This evaluation is conducted using the following method:

• Machine Learning Efficacy (MLE): Following the training-on-synthetic and test-on-real
setting, each dataset’s classification or regression model is trained on the synthetic data
and evaluated using the real testing set. The performance of the model is measured by the
AUC score for classification tasks and the RMSE for regression tasks. A higher MLE score
indicates better machine learning utility of the synthetic data.

Detectability Detectability assesses how well watermarks can be detected in synthetic data. We
use two metrics: Z-score and TPR@XFPR.

• Z-score: This metric measures the difference in a watermarking statistic between water-
marked and non-watermarked tables. For row-wise watermarks (e.g., Gaussian Shading
and TabWak), the metric is the bit accuracy for each row. For Tree-Ring, we calculate
the distance between the watermark patch in the Fourier domain. We compute the em-
pirical mean and variance of these metrics for non-watermarked tables as a baseline. For
row-wise watermarking, such as Gaussian Shading and TabWak, we use 500,000 rows to
calculate statistics of non-watermarked rows, assuming the bit accuracy for watermarked
rows is higher. For Tree-Ring watermarking, the statistics of non-watermarked tables is
computed over 1,000 tables per shape, based on the assumption that watermarked tables
have a smaller distance between watermark patches than non-watermarked ones. In both
cases, the Z-score is used for a one-tailed test to reject the null hypothesis that the table
is non-watermarked. The Z-score for a table with n rows for row-wise watermarking is
calculated as: The Z-score measures the difference between the mean bit accuracy of wa-
termarked rows and non-watermarked rows, normalized by the standard deviation of the
non-watermarked rows, adjusted for the number of watermarked rows. The formula is:

Z =
µAbit, W − µAbit, NW

σAbit, NW√
n

Where:
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Figure 6: Relationship between Z-score and the logarithmic p-value for a one-tailed test. The red
dashed line indicates the significance threshold ( p = 0.05, or log10(p) ≈ −1.3 ).

– µAbit, W is the mean bit accuracy of the watermarked rows,
– µAbit, NW is the mean bit accuracy of the non-watermarked rows,
– σAbit, NW is the standard deviation of the bit accuracy in the non-watermarked rows,
– n is the number of watermarked rows.

For the Tree-Ring method, the Z-score is computed based on the distance between the
watermarked and non-watermarked data rather than row-wise accuracy. Since it’s not row-
wise, there is no dependence on n. Additionally, the Z-score is computed using the opposite
tail of the distribution. The formula is:

Z =
µDistNW − µDistW

σDistNW

Where:
– µDistW is the mean distance of the watermarked data,
– µDistNW is the mean distance of the non-watermarked data,
– σDistNW is the standard deviation of the distance for the non-watermarked data.

The relationship between Z-score and the logarithmic p-value is shown in Figure 6.
• TPR@XFPR: This metric evaluates the True Positive Rate (TPR) at a given False Positive

Rate (XFPR), where X is a predefined percentage. It provides insight into the watermark
detection capability by measuring how often a watermarked table is correctly identified at
different levels of false positives. A higher TPR@XFPR score indicates a better detection
performance.

F ADDITIONAL RESULTS

F.1 DISTRIBUTION OF LATENTS FOR DIFFERENT WATERMARKS

Figure 7 illustrates latent code matrices of size (1000×40) generated by Tree-Ring, Gaussian Shad-
ing, and TabWak. Upon observation, the latent codes produced by our method closely resemble
a Gaussian distribution, whereas Tree-Ring and Gaussian Shading exhibit distinct patterns that are
easily recognizable at first glance. The reduced distortion in the Gaussian distribution explains why
our method achieves superior data quality.

F.2 WATERMARKING NUMERICAL COLUMNS ONLY

Figure 8 presents TPR@1% FPR versus row count across four datasets. When applying the water-
mark only to numerical columns, the performance drops for the three watermarks. However, our
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Figure 7: Examples of latent codes sampled from standard Gaussian noise and various watermarking
methods

method still demonstrates strong robustness, achieving 100% TPR@1% FPR within 200 rows in 11
out of 12 cases.
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Figure 8: TPR@1% FPR versus row count in four datasets under various attacks, with the watermark
applied only to the numeric columns Cell and Noise attacks are set at 20% strength; Column Deletion
involves three columns.

F.3 POST-PROCESSING WATERMARKS

The reason we did not include post-processing watermarks in the primary evaluation is that such
methods, like the one described in (He et al., 2024), can only be embedded into continuous values
by strategically adjusting these values to fall within a chosen range. However, the applicability of
this approach is limited in tabular data, which often contains many integers and categorical values.

Additionally, post-processing watermarks are highly susceptible to common operations in tabular
data processing, such as rounding, which can easily remove the watermark.

Since our dataset contains many integer columns, we preprocess the data by converting numbers
into scientific notation. The method from (He et al., 2024), is then applied to the coefficients of the
scientific notation. Below are the results of comparing the post-processing method under different
types of attacks. The results show that the post-processing method is particularly vulnerable to
Gaussian noise, where it fails to maintain the watermark.
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Dataset
Attacks

Row Deletion Column Deletion Cell Deletion Gaussian Noise Shuffling
5% 10% 20% 1 col 2 col 3 col 5% 10% 20% 5% 10% 20% -

Shoppers 65.3 63.5 59.9 67.1 67.1 67.1 63.3 60.0 53.3 0.1 0.0 0.0 67.1
Magic 38.4 37.3 35.3 39.3 39.1 39.3 37.3 35.2 31.9 0.0 0.1 0.0 39.4
Adult 68.9 67.1 63.2 70.7 70.7 70.7 67.0 63.3 56.3 0.0 0.0 0.6 70.7
Credit 62.2 60.5 57.2 63.8 63.7 63.7 61.2 58.2 51.4 0.0 0.0 0.0 63.8

Diabetes 56.3 54.8 51.6 57.8 57.8 57.8 54.7 51.9 45.9 0.0 0.0 0.0 57.8

Table 4: The robustness of post-processing watermark (He et al., 2024) against post-editing attacks:
Average Z-score on 5K rows.

F.4 LATENT-SPACE ATTACKS

In this subsection, we evaluate the robustness of various watermarking methods under latent-space
manipulation attacks.

F.4.1 REGENERATION ATTACK

The Regeneration Attack mimics the approach outlined in DiffPure (Nie et al., 2022). This attack
maps the watermarked table into the latent space using the decoder inversion method, generating
ẑW0 . Subsequently, DDIM inversion transforms it into ẑWT , which serves as the initial latent for
reconstructing the tabular data. The results in Table 5 reveal the impact of this attack on watermark
detectability.

Sampling-based methods, including Tree-Ring, Gaussian Shading, and our method, retain their de-
tectability under most of the regeneration process. However, Tree-Ring fails for the Adult dataset,
demonstrating a limitation in its robustness. On the other hand, the post-processing watermark is
entirely eliminated during regeneration, as evidenced by a Z-score of 0 across all datasets.

These findings underscore the vulnerability of post-processing watermarks to latent-space transfor-
mations, emphasizing the need for embedding mechanisms that are resilient to such attacks.

Dataset TR GS Ours Ours* He et al. (2024)
Shoppers 4.73 22.30 11.02 35.10 0.00
Magic 4.85 36.53 13.68 25.09 0.21
Adult 0.54 46.42 42.08 30.50 0.01
Credit 5.34 84.06 10.86 22.13 0.07
Diabetes 6.29 55.76 5.82 7.04 0.03

Table 5: Robustness of different watermarking methods against the regeneration attack: Average
Z-score on 5K rows.

F.4.2 EMBEDDING ATTACK

The Embedding Attack, inspired by WAVES (An et al.), introduces adversarial perturbations to the
numerical components of the watermarked table. Utilizing our encoder E , which maps the tabular
data (Xnum, Xcat) to a latent representation, this attack generates perturbed data Xadv

num that aims
to shift the latent representation of the adversarial table away from that of the original watermarked
table Xnum. This objective is formulated as:

max
Xadv

num

∥∥E(Xadv
num, Xcat)− E(Xnum, Xcat)

∥∥
2
,

subject to the constraint:

∣∣Xadv
num −Xnum

∣∣ ≤ ϵ · |Xnum| .

In this formulation, ϵ is the perturbation budget, set to 0.2 in our experiments, ensuring that the
modifications remain bounded while significantly impacting the latent representation.
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The results in Table 6 highlight the effectiveness of this attack. Our method with the valid bit mech-
anism (Ours*) and Gaussian Shading demonstrate notable resilience, maintaining high Z-scores
across most datasets. In contrast, the post-processing watermarking method is rendered ineffective,
with Z-scores consistently approaching 0, signifying the complete destruction of the watermark.

This attack demonstrates the importance of designing embedding mechanisms that can withstand
adversarial manipulations, ensuring the integrity and detectability of watermarks even under such
challenging conditions.

Dataset TR GS Ours Ours* He et al. (2024)
Shoppers 0.31 22.49 0.00 28.69 0.00
Magic 0.33 36.54 8.41 21.61 0.08
Adult 0.00 56.29 0.08 27.00 0.06
Credit 0.04 79.43 0.00 11.12 0.00
Diabetes 1.27 48.28 2.90 7.42 0.00

Table 6: Robustness of different watermarking methods against the embedding attack: Average Z-
score on 5K rows.

F.4.3 ADAPTIVE ATTACK ON TAIL VALUES IN LATENTS

To further challenge the watermarking methods, we propose an Adaptive Attack that targets the tail
values in the latent space. This attack aims to minimize the contribution of outlier latent values (ẑT )
while adhering to a perturbation constraint (ϵ = 0.2). The optimization objective is formulated as:

min
Xadv

num

∥Mtail · ẑT ∥2 ,

where the tail mask Mtail is determined by the interquartile range of ẑT , defined as:

Mtail[i] =

{
1 if ẑT [i] < Q0.25(ẑT ) or ẑT [i] > Q0.75(ẑT ),

0 otherwise.

The attack is subject to the constraint:

∣∣Xadv
num −Xnum

∣∣ ≤ ϵ · |Xnum| .

In this framework, ẑT represents the initial latent estimated using DDIM inversion applied to the
encoder output of the perturbed tabular data. This approach ensures that the perturbations selectively
target the tail values while maintaining bounded distortions to the original data.

The results of this attack, presented in Table 7, demonstrate that our method (Ours*) remains resilient
under both Embedding and Adaptive Attacks, retaining Z-scores above 20 in most datasets. In
contrast, the Adaptive Attack significantly reduces watermark robustness for weaker methods, such
as Gaussian Shading, especially in datasets like Magic and Diabetes.

These findings highlight the importance of designing watermarking methods that leverage intrin-
sic latent-space properties to withstand targeted perturbations and ensure robust detectability under
challenging conditions.

Dataset W/O Attack Embedding Attack Adaptive Attack
Shoppers 34.52 28.69 24.61
Magic 25.30 21.61 7.43
Adult 28.45 27.00 26.03
Credit 22.91 11.12 14.48
Diabetes 7.86 7.42 2.15

Table 7: Robustness of TabWak against embedding and adaptive attacks: Average Z-score on 5K
rows.
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F.5 HYPERPARAMETER EVALUATION FOR VALID BIT MECHANISM

Below are the experiments conducted to evaluate the hyperparameter settings of our method with the
valid bit mechanism. We introduce a new setting for l = 3, where the standard normal distribution
is divided into three quantiles. In this setting, we focus on the two tails: values < Φ−1(0.333)
and values > Φ−1(0.667). The aim is to investigate whether the signs of the tail values differ in
detecting self-cloning.

Tables 8 and 9 provide results for generative quality and robustness, respectively.

Datasets l Shape Trend Logistic MLE
Shoppers W/O 0.922 0.907 0.635 0.871

3 0.908 0.893 0.567 0.879
4 0.914 0.906 0.580 0.867

Magic W/O 0.917 0.939 0.710 0.906
3 0.903 0.936 0.736 0.893
4 0.908 0.927 0.705 0.876

Adult W/O 0.933 0.887 0.653 0.876
3 0.927 0.867 0.636 0.871
4 0.931 0.884 0.645 0.874

Credit W/O 0.930 0.905 0.741 0.743
3 0.927 0.897 0.713 0.741
4 0.922 0.892 0.677 0.744

Diabetes W/O 0.873 0.743 0.748 0.803
3 0.832 0.735 0.728 0.789
4 0.849 0.733 0.694 0.801

Table 8: Synthetic Table Quality: Comparison of hyperparameters l = 3 and l = 4. ‘W/O‘ refers to
data without watermark.

From Table 8, we observe that the quality results for l = 3 and l = 4 are close to each other. l = 3
achieves better performance in 10 out of 20 cases in the table (across different datasets and metrics).

Dataset l
Attacks

Row Deletion Column Deletion Cell Deletion Gaussian Noise Shuffling
5% 10% 20% 1 col 2 col 3 col 5% 10% 20% 5% 10% 20% -

Shoppers 3 29.06 28.33 26.57 29.82 30.10 31.49 28.55 27.92 26.52 24.49 28.03 39.11 29.79
4 33.58 32.69 30.98 34.50 34.33 37.38 34.40 34.63 33.36 27.60 29.84 39.90 34.51

Magic 3 20.66 20.09 18.99 26.39 29.02 28.82 22.31 23.39 24.17 21.35 21.19 20.92 21.20
4 24.78 23.98 22.61 32.38 32.33 37.80 26.92 28.13 30.17 25.51 25.12 25.06 25.39

Adult 3 31.18 30.37 28.64 32.21 31.70 28.74 31.76 29.95 28.25 37.34 54.67 69.21 32.01
4 27.78 26.83 25.43 28.45 24.92 27.57 29.29 30.07 29.86 32.53 48.66 64.19 28.42

Credit 3 19.03 18.62 17.54 24.33 27.19 27.39 23.89 24.27 29.44 20.56 20.55 25.25 19.57
4 22.11 21.65 20.29 27.31 32.71 34.98 26.65 30.31 36.24 23.18 24.31 27.17 22.88

Diabetes 3 5.75 5.62 5.29 9.97 13.14 15.94 6.89 7.07 6.60 5.13 4.23 4.11 5.73
4 7.76 7.63 7.11 4.98 10.94 12.74 4.76 4.41 3.61 6.56 6.73 3.83 7.91

Table 9: Robustness of Different l Settings of TabWak Against Post-Editing Attacks: Average Z-
Score on 5K Rows.

From Table 9, we observe that l = 4 consistently achieves higher Z-scores than l = 3 in the
Shoppers, Magic, and Credit datasets. In the Adult dataset, l = 3 performs better in 11 out of 13
cases, and in the Diabetes dataset, l = 3 wins in 7 out of 13 cases.

The better robustness of l = 4 can be attributed to valid bit values being closer to the distribution
tails, making them more resistant to noise and distortion. However, increasing l excessively may
reduce robustness, as smaller quantile ranges introduce higher variance despite higher average bit
accuracy. Excessively large l values could also disrupt the initial latent distributions by imposing
stricter constraints on self-cloning.
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