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Abstract

Motivated by the growing interest in correlation-robust stochastic optimization, we investi-
gate stochastic selection problems beyond independence. Specifically, we consider the instruc-
tive case of pairwise-independent priors and matroid constraints. We obtain essentially-optimal
bounds for contention resolution and prophet inequalities. The impetus for our work comes
from the recent work of Caragiannis et al. [19], who derived a constant-approximation for the
single-choice prophet inequality with pairwise-independent priors.

For general matroids, our results are tight and largely negative. For both contention res-
olution and prophet inequalities, our impossibility results hold for the full linear matroid over
a finite field. We explicitly construct pairwise-independent distributions which rule out an

ω
(

1
Rank

)
-balanced offline CRS and an ω

(
1

logRank

)
-competitive prophet inequality against the

(usual) oblivious adversary. For both results, we employ a generic approach for constructing
pairwise-independent random vectors — one which unifies and generalizes existing pairwise-
independence constructions from the literature on universal hash functions and pseudorandom-
ness. Specifically, our approach is based on our observation that random linear maps turn linear
independence into stochastic independence.

We then examine the class of matroids which satisfy the so-called partition property — these
include most common matroids encountered in optimization. We obtain positive results for both
online contention resolution and prophet inequalities with pairwise-independent priors on such
matroids, approximately matching the corresponding guarantees for fully independent priors.
These algorithmic results hold against the almighty adversary for both problems.

∗Supported by NSF Grant CCF-2009060.
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1 Introduction

Combinatorial optimization subject to uncertainty has gained substantial interest in recent years,
initially motivated by its applications in computational economics ([34, 21]). In many of these
tasks, the underlying uncertainty or stochasticity arises from either the random availability of
elements of a set system or from a stochastic weight assignment to these elements. Two fundamental
stochastic selection problems, contention resolution (e.g., [23, 2, 30, 48, 45]) and generalized prophet
inequalities (e.g., [41, 32, 28]), fit into this paradigm. These problems appear either directly, or
indirectly as subroutines, throughout the fields of algorithms and combinatorial optimization with
a wide range of applications including approximation algorithms [23, 50, 32], mechanism design
[48, 30, 29, 28, 4], online algorithms [38, 26, 50], stochastic probing [30, 3, 14], sparsification [27],
and algorithmic delegation [40, 15, 16].

A rich literature examines the design of algorithms for these problems when the input is a
product distribution or negatively correlated. However, our understanding is relatively limited
when the input distribution exhibits correlations, particularly positive correlations, which are often
present in many intended applications. For instance, consider the scenario of sequential posted
pricing where a seller with a single item encounters n prospective buyers in sequence, each possessing
a valuation for the product. The seller, with the goal of maximizing profit, offers a fixed, non-
negotiable price to each buyer, who then decides to buy the item if the price is less than or equal to
their valuation. Yet, in today’s hyper-connected world, it is unrealistic to presume buyers remain
unaffected by or ignorant of each other’s valuations. In fact, notable studies [47, 8] demonstrate
this phenomenon by showing that the aggregate online reviews from a large group of buyers play
a critical role in shaping customer behavior.

A deeper understanding of the interplay between correlation and optimal selection, and an ex-
pansion of the algorithmic and complexity-theoretic toolkit thereof, promises to impact the myriad
aforementioned applications of decision-making subject to uncertainty. Of particular note is the
matroid secretary conjecture of Babaioff et al. [9], which has recently been shown equivalent to
stochastic selection in the presence of a particular kind of positive correlation by Dughmi [25, 26].
Algorithmic approaches for near-optimal decision making in the presence of correlation, as well as
proof techniques for ruling out such algorithms, could therefore shed light on the conjecture.

A number of recent works explore a variety of models in which decisions must be made in the
presence of correlated inputs [11, 17, 18, 31, 13, 36]. It is either known (e.g. [35, 49]), or easy to
show, that not much can be achieved in the presence of arbitrary positive correlation. Even under
assumptions like the linear correlation model of Bateni et al. [13], in the worst case there are no
positive algorithmic results for prophet inequalities with non-sparse dependencies even for the rank
one matroid as shown by Immorlica et al. [36].

Particularly inspiring our investigation is the recent work by Caragiannis et al. [19], which
initiates the study of stochastic selection problems with inputs that are pairwise independent :
any two random variables are independent, though positive or negative correlations can manifest
when considering larger groups of variables. Pairwise independence significantly relaxes the usual
assumption of full independence, and pairwise independent distributions have found application in
hashing, derandomization, and constructions of pseudo-random generators (for more details, see
surveys [43, 52]). In the context of the sequential posted pricing mechanism, empirical studies
[47, 8] emphasize the significant impact of a large number of aggregated online reviews on shaping
customer behavior. These studies suggest that a buyer’s valuation is influenced by reviews from
a large number of consumers, whereas a small selection of customer reviews (which reflect their
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valuations) have little effect. As such, pairwise (or more generally k-wise) independence serves as a
reasonable idealization of such settings where correlations live largely in the higher-order moments
of a distribution.

Caragiannis et al. [19] show that pairwise independence suffices for a constant approximation in
the single-choice prophet inequality problem and sequential posted price mechanisms. This finding
encourages further exploration of stochastic selection problems under the same pairwise independent
assumption. Our focus is particularly on prophet inequalities and contention resolution schemes.
This naturally leads us to the following question:

Question 1.1. Do constant approximation prophet inequalities or contention resolution schemes
exist for a broader class of set-systems when the input distribution is pairwise independent?

We resolve the above question for matroids. We prove strong impossibility results for matroid
prophet inequalities and contention resolution schemes when the stochastic inputs are only pairwise
independent. These impossibility results hold even for the most permissive computational models
considered for these problems, and stand in contrast to the strong algorithmic results for inputs
that are mutually independent [41, 22, 42, 30]. The following summarizes our main contribution.

• There is no ω
(

1
logRank

)
-competitive matroid prophet inequality for pairwise independent

distributions. This holds even for the oblivious adversary who selects the order of elements
in advance, and even for binary matroids.

• There is no ω
(

1
Rank

)
-balanced contention resolution scheme for pairwise independent distri-

butions. This holds even in the offline setting of contention resolution, and even for linear
matroids.

We complement these negative results with simple algorithms that match these bounds when inputs
are pairwise independent, even in the most restrictive of computational models considered for these

problems: a Θ
(

1
logRank

)
-competitive matroid prophet inequality and a Θ

(
1

Rank

)
-balanced online

contention resolution scheme. In contrast to our impossibility results, both our algorithmic results
hold even for the almighty adversary who selects the order of elements with knowledge of all the
realized inputs and any internal randomness of the algorithm

For both of our impossibility results, we carefully construct a pairwise independent distribution
for the linear matroid F

d
q for some large d ∈ Z+ and a suitable prime q. Our approach to constructing

pairwise independent distributions is founded on the observation that uniformly random linear maps
between vector spaces convert linear independence in the domain space to stochastic independence
in the range space. To put it formally, when a family of k-wise linearly independent vectors
is embedded in another vector space via a uniformly random linear map, the embedded vectors
exhibit k-wise stochastic independence and each assumes a uniform marginal distribution over
the second vector space. Special instances of this observation have previously been employed to
define k-wise independent hash functions [20, 53] and k-wise independent random bits [5, 39, 6,
44]. For a comprehensive overview of prior work on the construction of pairwise independent
distributions, we refer interested readers to the survey by [43] and to [52, Chapter 3]. Our method
for constructing k-wise stochastically independent vectors can be viewed as a simple unification
and vector-generalization of existing constructions of scalar-valued random variables.1

1Despite the simplicity of our construction, we have been unable to identify another construction with this level of
generality. The concepts presented here permeate existing work on constructing k-wise independent random variables.
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Later, we examine the class of matroids that satisfy the partition property — these include the
most common matroids encountered in optimization. Informally, this property holds if a matroid
can be approximated by a (random) partition matroid. We demonstrate that, when a matroid
fulfills the partition property, we can reduce the problem to one defined over rank one matroids.
Leveraging the results and machinery of [19], we obtain constant factor prophet inequalities and
contention resolution schemes for pairwise independent distributions on matroids satisfying the
partition property. As in our previous algorithmic results, our bounds hold even for the almighty
adversary for both problems. We note the concurrent independent work of Gupta et al. [33], which
also studies pairwise-independent stochastic selection. They obtain similar contention resolution
schemes and prophet inequalities for a number of natural matroid classes such as the uniform,
laminar, graphic, co-graphic, and regular matroids.

Finally, we mention that our results deepen the existing schism between matroids that admit
the partition property and those that do not, and in doing so might shed light on the matroid
secretary conjecture. Much of the interest in the partition property is due to the fact — pointed
out in a survey by Dinitz [24] — that matroids satisfying the α partition property also admit
an O(α)-competitive secretary algorithm. In fact, most classes of matroids for which constant-
competitive secretary algorithms are known — such as graphic [10], co-graphic [51], and laminar
[37] — satisfy a constant partition property. Moreover, many such algorithms either explicitly or
implicitly exploit the partition property. Dinitz [24] therefore asked whether every matroid satisfies
a constant partition property, as a possible route to resolving the matroid secretary conjecture.
This question was answered negatively by the recent work of Abdolazimi et al. [1], who show that
the full binary matroid of rank d does not satisfy the α-partition property for any α ≤ O(d1/4).
The parallel work of Bahrani et al. [12] also provides evidence of the limitations of partition-based
algorithms for the secretary problem.

Our results add to this literature in two distinct ways. First, as corollaries of our results we
show that full linear matroid F

d
q with q ≥ d does not satisfy the α partition property for any

α ≤ O(d), and that the full binary matroid of rank d does not satisfy the partition property for any
α ≤ O(d/ log d), strengthening the bound of [1]. Second, by constructing provably “hard instances”
for selection problems that are easy in the presence of the partition property, our techniques might
shed light on the analogous question for the matroid secretary problem. In fact, showing that our
construction for prophet inequalities remains hard in the random order model would disprove the
matroid secretary conjecture. On the flip side, providing an algorithm for our construction in the
random order model appears highly nontrivial, and therefore might stimulate the development of
algorithmic techniques pertinent to the conjecture.

How to Read this Paper

We present pertinent preliminaries in Section 2, of which a light perusal is sufficient for the reader
comfortable the basics of matroid theory, contention resolution, and prophet inequalities. We then
present an abridged technical overview of our results and techniques in Section 3, followed by a
more detailed treatment in Sections 4 through 7. The reader looking to get a high-level sense of
our results and techniques is invited to focus primarily on Section 3, referring to the later technical
sections for more detail as needed. We close with open questions in Section 8.
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2 Preliminaries

2.1 Basic Notation and Terminology

We use bold lowercase letters to denote vectors, with the ℓth component of a vector v denoted
by v(ℓ). Sets and matrices are denoted by uppercase letters, while collections of sets or matrices
are denoted by bold uppercase letters. For a set S of indices into a vector v, we denote v(S) =∑

ℓ∈S v(ℓ). We denote the set of positive integers up to n by [n]. For a set X, we denote its power
set by 2X , and use ∆(X) to denote the family of all distributions supported on X.

A set system is a pairM = (E,I) where E is a set of elements and I ⊆ 2E is a family of feasible
(a.k.a. independent) sets. We concern ourselves primarily with set systems where E is finite, and
I is downwards-closed : If B ∈ I and A ⊆ B then A ∈ I. For a vector µ ∈ [0, 1]E of marginals
indexed by the elements, we use ∆pw(2E)(µ) ⊆ ∆(2E) to denote the family of pairwise independent
distributions over sets of elements with marginal probabilities µ, i.e. for every D(µ) ∈ ∆pw(2E)(µ),
PrQ∼D(µ)[e ∈ Q] = µ(e) and the events {e ∈ Q}e∈E are pairwise independent. We also consider

distributions in ∆(RE
≥0) that assign a nonnegative weight (a.k.a. value) to each element. We let

∆pw(RE
≥0) ⊆ ∆(RE

≥0) be the class of pairwise independent weight distribution over elements E —

i.e., if w ∼ D ∈ ∆pw(RE
≥0) then for any distinct pair of elements e, f ∈ E their weights w(e) and

w(f) are pairwise independent random variables. Throughout the paper, we interchangeably use
the terms “weight” and “value”.

For a prime number q, Fq denotes the finite field with q elements and Fd
q denotes the vector

space of dimension d over Fq.
2 For a given set of integer labels L ⊆ Z, we denote the collection of

labeled vectors by F
d
q × L :=

{
vi : for all i ∈ L and v ∈ F

d
q

}
. We use capital letters to symbolize

matrices over these finite fields, and their rank is denoted by Rank(·). A matrix R ∈ F
r×c
q is a

full column-rank matrix if Rank(R) = c, i.e. its columns constitute a set of linearly independent
vectors. Additionally, we often refer to the columns of a matrix R ∈ F

d×n
q using lowercase letters and

subscripts, such as r1, . . . rn ∈ F
d
q , and we occasionally allow ourselves some flexibility in notation

(clarifying with re-declarations in context) to use the matrix R interchangeably with the set of its
columns. For any matrix A, we denote its column space as cl(A).

2.2 Matroid Theory

We use standard definitions from matroid theory; for details see [46, 54]. A matroid M = (E,I) is
a set-system with elements E and a family of independent sets I ⊆ 2E satisfying the three matroid
axioms. A weighted matroid incorporates a matroid M = (E,I) with weights w ∈ R

E for its
elements.

By duplicating or making parallel labeled copies of each element of a matroid M = (E,I)
“m” times, we construct a larger matroid M×m = (E×m,I×m). Here E×m contains m parallel
copies e1, . . . , em of each e ∈ E, and T ⊆ E×m is in I×m if {e : ei ∈ T for some i} ∈ I and
|T ∩ {ei : i ∈ [m]}| ≤ 1 for all e ∈ E.

The rank function of matroid M = (E,I) is denoted by RankM, where RankM(S) =
max{|T | : T ⊆ S, T ∈ I}. The weighted rank function RankM

w is defined for weighted ma-
troids (M,w) as RankM

w (S) = max{w(T ) : T ⊆ S, T ∈ I}. The span function of matroid M
is denoted by SpanM(S) where SpanM(S) = {e ∈ E : RankM(S ∪ {e}) = RankM(S)}. We

2Unless otherwise specified, we think of vectors as column vectors.
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slightly abuse notation and use Rank(M) = RankM(E) for the rank of the matroid. We may
omit the superscriptM when it is clear from context.

The matroid polytope P(M) ⊆ [0, 1]E associated with M is the convex hull of all indicator
vectors of its independent sets. Equivalently, a nonnegative vector µ is in P(M) if and only if∑

e∈S µe ≤ RankM(S) for all S ⊆ E.
A linear matroid M = (E,I) is a matroid where E is a family of vectors in some vector space,

and I consists of the linearly-independent subsets of E. We consider linear matroids where the
underlying vector space is F

d
q , for q a prime and d ∈ N. When q = 2, this is also referred to as a

binary matroid. When E = F
d
q we call this the full linear matroid over F

d
q , and when E = F

d
2 we

call it the full binary matroid with rank d.
The rank one matroid on elements E is the matroid whose independent sets are the singletons

in E as well as the empty set. A simple partition matroid on E is the disjoint union of rank
one matroids; i.e., there is a partition E1, . . . , Ek of E such that S is independent if and only if
|S ∩ Ei| ≤ 1 for all i.

2.3 Contention Resolution

Contention Resolution is the algorithmic task of converting a random set which is feasible “on
average” to on to one which is always feasible. Contention resolution in the offline setting was
originally formalized by Chekuri et al. [23] for application to approximation algorithms. It has
since been generalized, studied, and applied in various online models (see [30, 2, 42]). An algorithm
for contention resolution is referred to as a Contention Resolution Scheme (CRS).

Fix a downward-closed set-system M = (E,I) over a ground set E of elements, as well as a
convex relaxation P(M) ⊆ [0, 1]E of the indicator vectors of sets in I. Let µ ∈ P(M) be a vector of
marginal probabilities, and let A ⊆ E be a set of active elements drawn from a known distribution
D ∈ ∆(2E) satisfying PrA∼D[e ∈ A] = µ(e) for all e ∈ E. Given these inputs, the goal of a CRS is
to select (a.k.a. accept) a feasible subset of the active elements — i.e., a set I ∈ I such that I ⊆ A.

A CRS is judged by its balance ratio: we say that a contention resolution scheme is c-balanced
if for all e ∈ E, Pr[e ∈ I | e ∈ A] ≥ c. Many natural classes of combinatorial constraints, including
matroids, matchings, and knapsacks, admit Ω(1)-balanced contention resolution schemes when the
events {e ∈ A}e∈E are jointly independent, and P(M) is the usual relaxation of the problem.

In the offline model of contention resolution, all inputs — in particular the set A of active
elements — are given upfront. This is the most permissive model considered for contention reso-
lution, and serves as the setting of our impossibility results. Our algorithmic results hold for the
more restrictive online setting where elements are presented to the algorithm, which we refer to as
an online CRS (OCRS), in some order determined by an adversary. When e ∈ E arrives online,
it is then revealed whether e is active (i.e., whether e ∈ A), at which point the algorithm must
irrevocably decide whether to select e subject to feasibility. Several adversary models have been
considered for online contention resolution, and our algorithmic results hold even for the most re-
strictive of those: the almighty adversary who determines the order of elements with full knowledge
of all inputs including the realization of A, as well as the realization of any internal randomness
used by the algorithm.

In this work, we focus on contention resolution for matroids when {e ∈ A}e∈E are only pairwise
independent, and P(M) is simply the matroid polytope. In particular, M = (E,I) is a matroid
and D ∈ ∆pw(2E)(x) for some x ∈ P(M). When a CRS is c-balanced for all such D, we say it is a
c-balanced pairwise-independent CRS.
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Finally, we restate a Theorem from [25] that characterizes the set of distributions which permit
balanced contention resolution schemes in the offline setting.

Theorem 2.1 (Theorem 3.6 from [25]). Fix a matroid M = (E,I), and let D be a distribution
supported on 2E. The following are equivalent for every c ∈ [0, 1],

1. There exists an offline contention resolution scheme which is c-balanced for D.

2. For every weight vector w ∈ R
E
≥0, the following holds: EA∼D[Rankw(A)] ≥ c · EA∼D[w(A)]

3. For every F ⊆ E, the following holds: EA∼D[Rank(A ∩ F )] ≥ c · EA∼D[|A ∩ F |].

2.4 Prophet Inequalities

Fix a downwards-closed set system M = (E,I). In a prophet inequality problem, there are weights
(or values) w ∈ R

E
≥0 on the elements that are drawn from a distribution D, and elements arrive

online in some order determined by an adversary. We take the perspective of a gambler who a-priori
knows M and the distribution D of weights, but not the realized weights w. When an element e
arrives online, the gambler learns w(e) and must irrevocably decide whether or not to accept e,
subject to accepting a feasible set of of elements S ∈ I. The gambler seeks to maximize their utility
w(S) =

∑
e∈S w(e). The goal is to compete — in expectation — with an omniscient prophet who

obtains the maximum possible utility max{w(T ) : T ∈ I}. When the gambler’s expected utility
is an α fraction of the prophet’s expected utility, we say that we have an α-competitive prophet
inequality for M and D.

Our negative results in this paper hold even against the weakest of adversaries considered in
the literature on prophet inequality problems: the oblivious adversary who determines the order of
elements in advance as a function of only M and D; the gambler, therefore, knows the (arbitrary)
order at the outset. In contrast, our positive results hold even for the strongest adversary considered
in the literature: the almighty adversary who determines the order of elements with full knowledge
of all inputs, including the realized weights w as well as any internal randomness of the gambler’s
algorithm. The gambler therefore only learns the order as elements arrive online.

In this paper, we focus on prophet inequality problems whereM is a matroid and D is a pairwise

independent distribution over weight vectors , i.e. D ∈ ∆pw

(
R
|E|
≥0

)
.

2.5 A Useful Lemma for Pairwise Independent Events

The following lemma, from [19] establishes a lower bound for the probability that at least one event
from a collection of pairwise independent events will occur.

Lemma 2.2 (Lemma 1 from [19]). Let D and ind be pairwise independent and mutually independent
distributions over a collection of random events {Ei}

k
i=1 such that PrE∼D[Ei] = PrE∼ind[Ei]. Then,

Pr
E∼D

[
k∨

i=1

Ei

]
≥

∑k
i=1 Pr[Ei]

1 +
∑k

i=1Pr[Ei]
and Pr

E∼D

[
n∨

i=1

Ei

]
≥

1

1.299
· Pr
E∼ind

[
n∨

i=1

Ei

]

where E ∨ F denotes the event that at least one of E or F occurs.
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3 Overview of Technical Results

In this section, we present an overview of our techniques and results. First we outline our con-
struction of pairwise stochastically independent vector families. We then show how to employ
this construction to prove our main impossibility results for pairwise-independent offline matroid
contention resolution, and pairwise-independent matroid prophet inequalities against the oblivious
adversary. We show that our impossibility results are tight by providing algorithms with matching
bounds for both problems, even against the almighty adversary. Finally, we examine matroids sat-
isfying the partition property, which includes most common matroids encountered in combinatorial
optimization. We provide constant factor algorithms for pairwise-independent contention resolution
and prophet inequalities on such matroids, even against the almighty adversary.

3.1 A Recipe for Pairwise-Independent Vector Families

As our main technical tool, we present a simple and flexible recipe for constructing pairwise indepen-
dent families of vectors. We instantiate this recipe in different ways for matroid prophet inequalities
and contention resolution schemes. Since our construction permits encoding of a rich variety of
higher order relationships between the vectors, while maintaining lower-order independence, we
hope it might be of independent interest.

There are two versions of our recipe. The first version produces an ordered family (i.e., a tuple)
of pairwise independent vectors, and the second turns that into an unordered family (i.e., a set)
of labeled vectors wherein membership is pairwise independent. We require the second, unordered,
version for our impossibility results. The ordered construction is the most natural, and easily
generalizes to k-wise independence for arbitrary k — we present the more general construction
in this paper. The unordered construction is built on its ordered counterpart, and is tailored for
pairwise independence (i.e., k = 2).

Ordered Families

We begin with our construction of an ordered family of k-wise independent vectors over the field Fq,
where q is a prime. Let m,n, d ≥ k be positive integers. Let Σ ∈ F

m×n
q be a matrix whose columns

σ1, . . . , σn ∈ F
m
q are k-wise linearly independent; i.e., no linear combination of k or fewer of these

columns evaluates to the zero vector in F
m
q . Intuitively, Σ is the input matrix we get to “design”

for encoding a “hard instance” of the problem at hand, while respecting k-wise independence. Let
R ∈ F

d×m
q be drawn uniformly at random; i.e., each entry of the matrix R is a uniformly-random

element of Fq. Let X = RΣ ∈ F
d×n
q be the output matrix, with columns x1, . . . ,xn ∈ F

d
q where

xi = Rσi.
The key observation here, which we prove in Section 4, is that the columns x1, . . . ,xn ∈ F

d
q of X

are k-wise stochastically independent, and moreover each is uniformly distributed in F
d
q . Notably,

the uniformly-random linear map R converts linear independence to stochastic independence. Also
notably, linearity of R entails that any higher-order (greater than k) linear relationships between
the columns of Σ — designed to inject “hardness” as previously described— are preserved as
relationships between the corresponding columns of X. In both our applications, the dimension d
of the output vectors x1, . . . ,xn is larger than the dimension m of the inputs σ1, . . . , σn, implying
that the linear operator R is injective — and the xis are therefore distinct — with high probability.

9



Unordered Families

Both of our impossibility results require constructing a set of non-zero vectors A where the events
{v ∈ A} are pairwise independent, and yet feature higher-order positive dependencies. This is
easiest to see in the case of contention resolution, where we require the set of active elements
to be concentrated in a lower-dimensional subspace, as needed to rule out a balanced CRS. This
motivates our second, unordered, construction, which we describe next.

A natural first attempt would be to invoke our ordered construction to obtain pairwise-independent
[x1, . . . ,xn] = RΣ, then take A = {x1, . . . ,xn} \ 0 to be the (unordered) set of non-zero columns.
Some thought reveals that this can introduce mild pairwise correlation. This is largely because
u ∈ A implies one fewer of the n “chances” is available for a different vector v. Moreover, analyz-
ing the exact magnitude of this correlation is complicated by the event — albeit a low probability
one in our applications — that the random linear operator R is non-injective. We circumvent these
issues by creating n copies v1, . . . ,vn of each vector v ∈ F

d
q , and including vi in A when xi = v 6= 0.

Therefore, we work in the matroid F
d
q × [n], with n parallel copies of each element in the matroid

F
d
q labeled with the positions 1, . . . , n. It is now clear that each non-zero ui is in A with probability

1/qd, and that the events ui ∈ A and vj ∈ A are pairwise-independent so long as i 6= j. This leaves
the case of ui and vi for distinct u and v, whose membership in A is mutually exclusive and hence
negatively correlated. This, however, can be easily corrected by mixing in — with small probability
1
qd

— a set which positively correlates vectors with the same label without introducing dependencies

across different labels, nor changing the marginals.3 We describe the details in Section 4.4

3.2 Contention Resolution on Matroids

We use our construction of pairwise independent vector families to rule out a balance ratio better
than 3

Rank
for pairwise-independent contention resolution on linear matroids, even in the offline

setting. For a desired rank d, we instantiate the recipe described in Section 3.1 with m = 2, n = d,
and an arbitrary prime q ≥ d. The input matrix Σ ∈ F

2×d
q is a fat (rank 2) matrix with d pairwise-

linearly-independent columns σ1, . . . , σd ∈ F
2
q — we show that such a matrix exists whenever q ≥ d.

The random linear operator R ∈ F
d×2
q then maps Σ to X ∈ F

d×d
q . The d columns x1, . . . ,xd ∈ F

d
q

of X are uniformly distributed in F
d
q , stochastically pairwise independent, and most crucially —

since Σ has rank 2 — all lie in a subspace of rank at most 2.
We convert X = [x1, . . . ,xd] to a pairwise-independent set A ⊆ F

d
q × [d] as described in Sec-

tion 3.1. Each non-loop element of the matroid F
d
q× [d] is in A with probability 1

qd
, so its marginals

lie in the matroid polytope5 and E[|A|] ≈ d. Moreover, since X has rank at most 2, and A consists of
(labeled copies of) the columns of X with probability 1− 1

qd
, we can bound E[Rank(A)] ≤ 2+ d

qd
< 3.

It follows from Theorem 2.1 that no contention resolution scheme has a balance ratio better than

3It is this step which recovers pairwise, but not necessarily k-wise, independence. A generalization to k-wise
independence appears more technically involved, though likely possible.

4Our procedure might seem similar to that of Alon et al. [7], where they devise a procedure to convert an
almost k-wise independent distribution to a k-wise independent distribution over {0, 1}n. However, given pairwise
independent random variables (or events) X1, . . . , Xn, their procedure requires the following: for any S ⊆ I with
|S| ≤ k, Pr[⊕i∈SXi = 1] = 1+ǫ

2
for small ǫ > 0 which is clearly not the case in our setting as Pr[vi ∈ A∧u

i ∈ A] = 0

for any distinct u,v ∈ F
d
q . Here ⊕ denotes the binary sum or XOR of the bits.

5To see this, note that a uniformly random base of Fd
q × [d] has essentially the same — in fact, very slightly larger

— marginals since all the vectors are equally likely to be part of the base and 0 is never sampled.
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E[Rank(A)]
E[|A|] ≤ 3

d , as claimed. This holds even in the offline setting of contention resolution.

We show that our bound of O(1/Rank) is essentially tight for general matroids. Given a
pairwise-independent distribution with feasible marginals for a matroid of rank d, the contention
resolution scheme which greedily selects active elements with probability 1

2d is 1
4d -balanced, even

against the almighty adversary. This follows simply from pairwise independence, as well as the fact
that the marginals sum to at most d.

We also note that our CRS impossibility result for linear matroids can easily be adapted
to the important special case of binary matroids, while degrading the bound from O

(
1

Rank

)
to

O
(
logRank

Rank

)
. Specifically, we let Σ ∈ F

O(log d)×d
2 be a fat (rank O(log d)) binary matrix with d pair-

wise independent columns, which we show always exists. We then proceed in identical fashion with
a uniformly random linear map R ∈ F

d×log d
2 , culminating in a stochastically pairwise-independent

family of ≈ d vectors in F
d
2 with expected rank O(log d), as needed.

3.3 Prophet Inequalities on Matroids

Through a somewhat more involved application of our recipe, we rule out a competitive ratio better
than O( 1

log d) for prophet inequalities on binary matroids of rank d, even against the oblivious
adversary. We also show by way of an algorithm that this bound is tight for pairwise-independent
prophet inequalities, even for general matroids and against the almighty adversary.

The Impossibility Result

We begin with the following randomized construction. For arbitrarily large d and some κ = Ω(log d),
we define a (random) nested sequence V1 ⊃ V2 . . . ⊃ Vκ of subspaces of F

d
2, and corresponding

independent sets S1, . . . , Sκ ⊆ F
d
2, satisfying the following properties:

(i) Vℓ has dimension d
2ℓ−1

(ii) Sℓ is a linearly independent subset of Vℓ with size nℓ equal to a constant fraction of its
dimension.6

(iii) Let ℓ < ℓ′ ≤ κ. Conditioned on S1, . . . , Sℓ and V1, . . . , Vℓ, a vector v ∈ Sℓ is in Vℓ′ with
probability ≥ 1/2ℓ

′−ℓ.

(iv) The sets S1, . . . , Sκ are disjoint.

We show the existence of such random Sℓs and Vℓs through a highly technical construction, the
details of which we defer to Section 6. For now, the reader might be satisfied of its plausibility
by noting that it becomes trivial if we drop property ((iv)): Let S1 be the standard basis vectors,
then for each ℓ let Sℓ+1 be a random half of Sℓ, and let Vℓ be the span of Sℓ. We cannot help but
speculate whether our construction, which goes to some pains in order to achieve all four properties
simultaneously, can be simplified or elegantly reduced to known linear-algebraic facts.

To motivate this construction, consider the following “hard” instance of the prophet inequality
problem on the matroid F

d
2 where elements of each Sℓ are assigned weight wℓ = 2ℓ, and remaining

elements are assigned weight 0. Suppose also that the non-zero weight elements arrive in increasing

6In fact, we can guarantee half the dimension, i.e. nℓ = d/2ℓ.
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order of weight, i.e. in the order S1, . . . , Sκ, followed by the zero-weight elements at the end.
Forgive for a moment that the weights are not pairwise independent, and that guaranteeing this
order is beyond the powers of the oblivious adversary — these are issues we will address later. The
maximum weight independent set, which can be constructed by running the greedy algorithm on
the non-zero weight elements in decreasing order of weights Sκ, . . . , S1, selects a constant fraction
of each Sℓ – this follows easily from the matroid exchange axiom and Property (ii). Therefore, the
prophet’s reward is Ω(

∑κ
ℓ=1wℓ · nℓ) = Ω(d log d). The gambler, in having to choose a subset Tℓ of

each Sℓ before learning anything about flats Vℓ′ for ℓ′ > ℓ, is not as fortunate. Properties ((i)) and

((iii)) imply that E[
∑ℓ′

ℓ=1 |Tℓ| ·
1

2ℓ′−ℓ ] ≤ d
2ℓ′−1 . Plugging in wℓ = 2ℓ and multiplying both sides by

2ℓ
′

, we get E[
∑ℓ′

ℓ=1wℓ|Tℓ|] ≤ 2d. Since this holds for arbitrary ℓ′, we conclude that the gambler’s
expected total reward is only O(d).

It remains to address two issues with this prophet inequality instance: pairwise independence,
and the limited powers of the oblivious adversary. For pairwise independence, we use our recipe
described in Section 3.1. We let Σℓ be the binary d × nℓ matrix with Sℓ as its columns, and
let the matrix Σ = [Σ1, . . . ,Σκ] ∈ F

d×n
2 with n =

∑κ
ℓ=1 nℓ be the concatenation of the Σℓs. By

property (iv), as well as the fact that we defined each Sℓ as a set (rather than a multiset), the
columns of Σ are distinct. Since we are in F2, this is equivalent to the columns being pairwise
linearly independent, as required for using Σ in our recipe. For the random linear embedding
R, we choose a slightly larger output dimension to guarantee that the mapping is injective with
high probability, and therefore preserves the geometry of S1, . . . , Sκ as captured by properties ((i))
through ((iv)). An output dimension of 2d suffices, so we let R be a uniformly random matrix in
F
2d×d
2 .

We proceed as described in Section 3.1. We define X = RΣ ∈ F
2d×n
2 , or in more detail

X = [X1, . . . ,Xκ] where Xℓ = RΣℓ ∈ F
2d×nℓ
2 has as its columns the image of Sℓ under the linear

map R. Recall from Section 3.1 that, for a fixed Σ, any pair of columns of X are distributed
independently and uniformly in the destination space F

2d
2 . It follow that this continues to hold

when using our randomly-constructed Σ, and the columns of our matrix X constitute a pairwise-
independent ordered family of vectors distributed uniformly in F

2d
2 . We then convert X to an

unordered family A ⊆ F
2d
2 × [n] wherein membership is stochastically pairwise independent as in

Section 3.1. In more detail, with probability 1 − 1/2d we let Aℓ consist of the the nℓ columns of
Xℓ = RΣℓ labeled with the integers Lℓ from (

∑
ℓ′<ℓ nℓ′)+1 to

∑
ℓ′≤ℓ nℓ′, and let A be the (disjoint)

union of the Aℓs. With remaining probability 1/2d the set A is drawn from a positively-correlated
distribution designed to ensure pairwise-independence overall as described in Section 3.1.

In summary, A is an (unordered) family of (labeled) vectors in F
2d
2 × [n] wherein membership

is stochastically pairwise independent. Moreover, with high probability A is the disjoint union of
A1, . . . , Aκ, where Aℓ is simply Sℓ transformed by an injective linear map R then distinctly labeled
with integers from Lℓ. By assigning weight wℓ = 2ℓ to elements with labels in Lℓ, we obtain
what is effectively our original “hard” instance of the matroid prophet inequality transformed by
the injective linear operator R. Moreover, since a labeled vector vi ∈ F

2d
2 × [n] with i ∈ Lℓ has

weight wℓ = 2ℓ when vi ∈ A and weight 0 otherwise, it follows that the weights are stochastically
pairwise independent. Therefore, we have converted our original hard instance into one which is
stochastically pairwise independent.

But what of the oblivious adversary’s power to set the arrival order? Fortunately, now that the
weight of vi ∈ F

2d
2 × [n] is either zero or uniquely determined as a non-decreasing function of its

its label i ∈ [n], ordering elements in increasing order of label guarantees that vectors in F
2d
2 arrive
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in non-decreasing order of weight. In particular, after arrival of elements with labels in L1, . . . , Lℓ,
the gambler knows the positions in F

2d
2 of the vectors with weights up to 2ℓ — those corresponding

with high probability to the original S1, . . . , Sℓ — but nothing else of the positions of vectors with
weights exceeding 2ℓ — corresponding to Sℓ′ for ℓ′ > ℓ. This is a fixed arrival order, and therefore
obviously within the power of the oblivious adversary.

The Algorithm

We show that our bound of O(1/ log Rank) is essentially tight for general matroids. Specifically,
we obtain an Ω(1/ log Rank) matroid prophet inequality for pairwise independent distributions,
even against the almighty adversary. We necessarily exploit pairwise independence, as no nontrivial
guarantee is possible for general correlated distributions even for the rank one matroid.

Our algorithm is based on simple bucketing. Let M = (E,I) be a matroid with pairwise-
independent random weights w ∈ R

E

≥0, and let OPT = E[Rankw(M)] denote the expected reward

of the prophet. Weights smaller than OPT
2Rank

contribute at most half the prophet’s reward, so can
be discarded. Partition the weights between OPT

2Rank
and 3 OPT into O(logRank) “regular” buckets

delimited by the integer powers of 2. Weights larger than 3OPT are assigned their own “special”
bucket. The algorithm simply chooses the bucket with the largest contribution to the prophet’s
reward, and greedily selects as many elements as possible from that bucket subject to feasibility.

Clearly, the greedy algorithm applied to any of the regular buckets recovers at least half of that
bucket’s contribution to the prophet’s expected reward. The special bucket B∞ requires a more
careful analysis which exploits pairwise independence of the events e ∈ B∞. By Markov’s inequality,
B∞ is non-empty with probability at most 1/3. A Lemma from [19] for pairwise-independent events

implies that
∑

e∈E Pr[e ∈ B∞] ≤ Pr[B∞ 6=∅]
1−Pr[B∞ 6=∅] ≤

1
2 . Invoking pairwise independence again, together

with the union bound, an element e in B∞ is the only element in that bucket with probability at
least 1/2, even after conditioning on its weight we. It follows that the greedy algorithm applied to
B∞ recovers half of its contribution to the prophet’s reward.

Putting it all together, since our algorithm greedily selects from the bucket contributing most
to the prophet’s reward, and there are O(logRank) buckets, we obtain an Ω(1/ log Rank) prophet
inequality for pairwise-independent distributions on matroids. Since we assumed nothing about
the order in which elements are greedily selected, this holds even against the almighty adversary.

3.4 Exploiting the Partition Property

In contrast to our negative results for general matroids, we show that not all is lost for most common
matroids in the optimization literature. Such matroids often satisfy the α-partition property for
a constant α. Informally, this means that the matroid M can be approximated by a randomly-
chosen simple partition matroid M′ on the same elements, in the sense that the weighted rank of
M′ approximates that of M from below up to a factor of α for every vector of element weights.

For prophet inequalities, we apply the pairwise-independent single-choice prophet inequality of
[19] to each part of M′ separately. This gives a 1

3 prophet inequality for M′, and therefore a α
3

prophet inequality forM, for pairwise independent distributions. Since the guarantees of [19] hold
even against the almighty adversary, so do ours.

For contention resolution, the situation is slightly more involved. First, we show the existence
of a balanced offline CRS for pairwise-independent distributions by utilizing Theorem 2.1 and
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Lemma 2.2, then we show how to exploit a duality argument as well as the aforementioned prophet
inequality to convert it to an online CRS against the almighty adversary.

Let A be a set of elements wherein membership is pairwise-independent with marginals µ feasible
for M. To show the existence of an offline balanced CRS, it suffices by Theorem 2.1 to show, for
every set of elements F , that the expected rank of A ∩F is a constant fraction of its expected size
µ(F ). We begin by analyzing the set Ã where membership is jointly independent with the same
marginals µ, and later relate A and Ã through Lemma 2.2. It follows from [23] that Ã admits a (1−
1/e)-balanced CRS with respect toM, and therefore E[RankM(Ã∩F )] ≥ (1−1/e) ·µ(F ) for every
set of elements F . Invoking the partition property, we get E[RankM′(Ã∩F )] ≥ α · (1−1/e) ·µ(F ).
We then observe that the rank function of the partition matroid M′ decomposes additively across
its parts E1, . . . , Ek, with the i-th part contributing 1 to RankM′(Ã ∩ F ) precisely when at least
one of the elements in Ei ∩ F is in Ã. Lemma 2.2 implies that the probability of a disjunction of
pairwise-independent events approximates, up to a factor of 1.299, the same quantity in the jointly
independent case. In particular, E[RankM′(A ∩ F )] ≥ 1

1.299 · α · (1 − 1/e) · µ(F ). Since the rank
function of M′ is smaller than that of M, we can invoke Theorem 2.1 to conclude the existence of
an 1−1/e

1.299 · α-balanced CRS for A with respect to M.
For good measure, we also show how to turn our offline CRS into an online one, even against the

almighty adversary, at a cost of an additional O(α) factor in the balance ratio. We use a duality-
based construction essentially identical to that in [25, Theorem 4.1]. At a high level, the problem
of maximizing the weighted rank of active elements functions as a dual to contention resolution.
An online β-approximation to this dual problem can be converted to an online CRS whose balance
ratio is within β of the best possible offline. Our prophet inequality is such an approximation with
β = α

3 , even against the almighty adversary. Therefore, we obtain a pairwise-independent online

CRS with balance ratio 1−1/e
3.897 · α

2 against the almighty adversary.
We note that our offline CRS for matroids satisfying the partition property, together with the

impossibility results for linear and binary matroids in Section 3.2, imply limits on the partition
property for these matroids. In particular, for an α-partition property we show that α = O

(
1
d

)
for

the full linear matroid, and α = O
(
log d
d

)
for the full binary matroid, where d denotes the rank.

The latter results improves on the bound of O
(

1
d1/4

)
from [1].

4 A Recipe for Pairwise-independent Vector Families

In this section, we devise our main tool to produce a family of pairwise independent (labeled)
vectors. Initially, we detail our approach to constructing an ordered family of pairwise independent
vectors. Subsequently, we outline the process for transforming an ordered family to an unordered
family.

4.1 Ordered Pairwise Independent Vector Families

The construction of an ordered family of pairwise independent vectors naturally extends to the k-
wise independence. Therefore, in this section, we present the construction in the most general form.
We fix positive integers m,n, d ≥ k. Let Σ ∈ F

m×n
q be a matrix with k-wise linearly independent

columns σ1, σ2, . . . σn and R ∈ F
d×m
q be a matrix where each entry is a uniformly random element

of Fq drawn independently. Consider the matrix X = RΣ ∈ F
d×n
q whose columns are obtained by
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linearly transforming each column of Σ via R. In the following lemma, we show that the columns
x1, . . . ,xn ∈ F

d
q of X form an ordered family of k-wise stochastically independent vectors., i.e., for

each S ⊆ [n] of size at most k the vectors {xi}i∈S are mutually (stochastically) independent.

Lemma 4.1. Let Σ ∈ F
m×n
q be a matrix with k-wise linearly independent columns σ1, . . . σn ∈ F

m
q ,

R ∈ F
d×m
q be a uniformly random matrix with entries ri,j ∼ Unif (0, 1, . . . , q − 1), and X = RΣ

with column vectors x1, . . .xn. For any subset S ⊆ [n] of size at most k, the vectors {xi}i∈S are
mutually stochastically independent. Moreover, for any i ∈ [n] and v ∈ F

d
q , Pr[xi = v] = 1

qd
.

Proof. First we show that each column xi ∈ F
d
q of X is uniformly distributed over Fd

q . For arbitrary

v ∈ F
d
q , we can express,

Pr[xi = v] = Pr[Rσi = v]

= Pr




d∧

ℓ=1





m∑

j=1

rℓ,j · σi(j) = v(ℓ)








=
d∏

ℓ=1

Pr




m∑

j=1

rℓ,j · σi(j) = v(ℓ)


 (disjoint set of independent RVs).

For any fixed ℓ ∈ [d], the set of possible solutions (rℓ,1, . . . , rℓ,m) to the equation
∑m

j=1 rℓ,j · σi(j) =

vi(ℓ), considering σi and v as fixed, forms an affine subspace of rank m− 1 which has size of qm−1.
As each ri,j is a uniformly random element from Fq, the probability,

Pr[xi = v] =

d∏

ℓ=1

Pr




m∑

j=1

rℓ,j · σi(j) = v(ℓ)


 =

(
qm−1

qm

)d

=
1

qd
. (1)

Next, we prove k-wise stochastic independence of the columns of X. Let S ⊆ [n] be such that
|S| ≤ k. By assumption, the corresponding columns {σi}i∈S of Σ are linearly independent. It
follows that

Pr

[
∧

i∈S
{xi = vi}

]
= Pr

[
∧

i∈S
{Rσi = vi}

]

= Pr



∧

i∈S

d∧

ℓ=1





m∑

j=1

rℓ,j · σi(j) = vi(ℓ)








= Pr




d∧

ℓ=1

∧

i∈S





m∑

j=1

rℓ,j · σi(j) = vi(ℓ)








=
d∏

ℓ=1

Pr



∧

i∈S





m∑

j=1

rℓ,j · σi(j) = vi(ℓ)






 . (disjoint set of independent RVs)
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Consider the following system of equations with variables (rℓ,1, . . . rℓ,m) for a fixed ℓ ∈ [d]:

m∑

j=1

rℓ,j · σi(j) = vi(ℓ) ∀i ∈ S. (2)

Since {σi | i ∈ S} are linearly independent, the set of solutions (rℓ,1, . . . rℓ,m) to the system of
equations (2) forms an affine subspace of dimension m − |S| containing qm−|S| many vectors. As
each ri,j is a uniformly random element from Fq, the probability,

Pr

[
∧

i∈S
{xi = vi}

]
=

d∏

ℓ=1

Pr



∧

i∈S





m∑

j=1

rℓ,j · σi(j) = vi(ℓ)








=

(
qm−|S|

qm

)d

= q−d·|S|

=
∏

i∈S
Pr[xi = vi].

Above, the second equality follows from the fact that ri,j is a uniformly random element from Fq

and the last equality follows from Equation (1). This proves that the random vectors {xi}i∈S are
mutually independent, as needed.

Next, we present a well-known fact about random matrices defined over finite fields. For the
self containment of the paper, we provide its simple proof in Appendix A.

Lemma 4.2. Let R ∈ F
d×m
q be a uniformly random matrix with entries ri,j ∼ Unif (0, 1, . . . , q − 1).

Then, for any m < d, we have Pr[Rank(R) = m] ≥ 1− 1
qd−m . In addition, for any Σ ∈ F

m×n
q with

distinct columns, the columns of X = RΣ are distinct with probability ≥ 1− 1
qd−m .

The last lemma essentially states that when d >> m, the random matrix R ∈ F
d×m
q becomes

full rank. Therefore, the random linear map under R becomes a random linear “embedding” (or
an injective mapping) with high probability. In such a scenario, when a matrix Σ ∈ F

m×n
q consists

of distinct columns, the product X = RΣ will have distinct columns with high probability.

4.2 Unordered Pairwise Independent Vector Families

In the context of stochastic selection, we typically focus on probability distributions over sets of
elements. This requires us to construct an (unordered) set of vectors A such that for any two
distinct vectors u and v, the events {u ∈ A} and {v ∈ A} are independent.

In the previous section, we introduced a technique for producing a sequence x1, . . . ,xn ∈ F
d
q

of vectors that exhibit pairwise (indeed k-wise) stochastic independence. To turn this into a set
of vectors A, it is tempting to define A = {x1, . . . ,xn}. However, some thought reveals that
membership in this set A can exhibit some slight negative correlation. Even in the (high probability)
event that the vectors x1, . . . ,xn are distinct, for distinct u,v ∈ F

d
q we have Pr[u ∈ A] = Pr[v ∈

A] = n
qd

, and yet Pr[u ∈ A ∧ v ∈ A] = n(n−1)
q2d

< Pr[u ∈ A]Pr[v ∈ A]. It might be tempting
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Procedure 1. Random Set Generation from Random Matrix (MatrixToSet)

Input: X ∈ F
d×n
q with pairwise independent columns x1, . . .xn and an ordered label set L =

{ℓ1, . . . , ℓn},
Output: A ⊆ F

d
q × L.

Dist - I : D1

(1) Construct an unordered set A := {xℓi
i : i ∈ [n]} ⊆ F

d
q × L.

Dist II : D2

(1) Start with A = ∅. Then, for each label ℓi ∈ [n], independently with probability 1
qd

, include

all elements {vℓi : v ∈ F
d
q} in A.

Sample A ⊆ F
d
q × L from D1 w.p 1− 1

qd
and D2 w.p. 1

qd
.

to “correct” for this negative correlation in A by slightly mixing with a different set A′ featuring
positive correlation that is calibrated to “cancel out” the negative correlation in A. However, this
is further complicated by the (low probability) event where the random linear map used in our
construction is singular, and the vectors x1, . . . ,xn are therefore not necessarily distinct. This
makes it challenging to quantify the exact “amount” of correlation in A in general, and therefore
challenging to argue for the existence of a suitable A′. To circumvent these difficulties, we take a
somewhat different approach which creates n labeled duplicates for each vector. We describe this
approach next.

Recall the construction of ordered families from the previous section: The matrix Σ ∈ F
m×n
q is

comprised of pairwise linearly independent column vectors σ1, . . . , σn, the matrix R ∈ F
d×m
q has its

entries ri,j drawn i.i.d. uniformly from Fq, and the matrix X = [x1, . . . ,xn] = R ·Σ is the image of
Σ under the linear transformation defined by matrix R. We create n labeled copies vℓ1 , . . . ,vℓn of
each vector v ∈ F

d
q , and include vℓi ∈ A whenever the i-th column of X equals v, i.e. xi = v. This

allows the inclusion of each vector v in the set A multiple times, each occurrence distinguished by
a unique label from a set of labels L. A is therefore a subset of Fd

q × L. Without loss of generality,
one can think of L = [n].

Let us proceed to understand correlation structure within this set A. First, we observe that
for distinct indices i, j ∈ [n] and any two (possibly equal) vectors v,u ∈ F

d
q , the events

{
vℓi ∈ A

}

and
{
uℓj ∈ A

}
are independent as events {xi = v} and {xj = u} are assured to be independent

by Lemma 4.1. Nonetheless, this method introduces correlation between the events {vℓi ∈ A} and
{uℓi ∈ A} since Pr[uℓi ∈ A∧vℓi ∈ A] = 0 for any two distinct vectors v,u ∈ F

d
q and index i ∈ [n] (or

label ℓi ∈ L). To overcome this, we mix A with another distribution that positively correlates the
inclusion of labeled vectors with the same label without introducing dependencies across different
labels, nor changing the marginals. We describe our procedure of converting ordered families of
vectors to unordered families of vectors in Procedure 1.

In the subsequent lemma, we demonstrate that the unordered family of vectors sampled accord-
ing to Procedure 1 is pairwise independent provided the ordered family of vectors x1, . . . ,xn are
pairwise independent and uniformly sampled from F

d
q . To maintain a smooth and uninterrupted
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discussion, we have postponed the detailed technical proof to Appendix A.

Lemma 4.3. Let X ∈ F
d×n
q be a random matrix with pairwise independent column vectors x1, . . . xn

for some n < qd where each vector xi is distributed uniformly in F
d
q . Then a random set A ⊆ F

d
q×L

generated by Procedure 1 given the inputs of X and L = {ℓ1, . . . ℓn} satisfies:

(1) For any vℓi ∈ F
d
q × L, Pr[vℓi ∈ A] = 1

qd
.

(2) For any two distinct vℓi ,uℓj ∈ F
d
q × L, the events {vℓi ∈ A} and {uℓj ∈ A} are independent.

5 Pairwise-independent Contention Resolution on Matroids

In this section, we utilize the tool devised in the previous section to show the limits of pairwise-
independent contention resolution schemes for matroids. In particular, we show that the class
of linear matroids does not admit an ω(1/Rank)-balanced pairwise independent offline CRS. We
complement this with a pairwise independent online CRS against the almighty adversary whose
balance ratio matches our impossibility result for offline schemes up to a constant factor.

5.1 Limits of Pairwise Independent Contention Resolution

We consider the matroid M×d = (Fd
q × [d],I×d) which consists of d labeled copies of each element

in the full linear matroid F
d
q . The following theorem states the limits of pairwise independent offline

contention resolution for this matroid.

Theorem 5.1. For any d > 2 and any prime q, the matroid F
d
q× [d] does not admit a c+1

d -balanced
pairwise independent offline CRS where c is any positive integer satisfying qc−1 ≥ d. In particular,

1. F
d
q × [d] does not admit a 3

d -balanced pairwise independent offline CRS for q ≥ d.

2. F
d
2 × [d] does not admit a 3+log2 d

d -balanced pairwise independent offline CRS.

Our construction of a hard offline contention resolution instance utilizes the tool devised in
Section 4 to sample pairwise independent unordered family of vectors. This unordered family will
serve as the set of active elements for contention resolution. We first form a “fat” matrix Σ ∈ F

c×d
q

(c << d) with pairwise linearly independent columns. The existence of such a matrix can be
assured by choosing q and c so that d ≤ qc−1 as we show in Claim 5.2. Then, linear transformation
of Σ via a uniformly random matrix R ∈ F

d×c
q yields a matrix X = RΣ whose columns x1, . . .xd

are pairwise stochastically independent due to Lemma 4.1. Finally, we use Procedure 1 to turn the
sequence (x1, . . .xd) into the set A ⊆ F

d
q × [d] of active elements. Lemma 4.3 ensures that for any

two distinct elements vi,ui ∈ F
d
q× [d], the events {vi ∈ A} and {uj ∈ A} are pairwise independent.

We summarize this construction in Procedure 2.
The following claim together with Lemma 4.3 implies that the output of Procedure 2 follows a

pairwise independent distribution over F
d
q × [d].

Claim 5.2. Given that d ≤ qc−1, there exists a matrix ΣCRS ∈ F
c×d
q which consists of d pairwise

linearly independent columns.
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Procedure 2. Pairwise Independent Set of Active Elements in M×d = (Fd
q × [d],I×d)

Input: Positive integers d, c and a prime q satisfying qc−1 ≥ d.
Output: A ⊆ F

d
q × [d].

(1) Let ΣCRS ∈ F
c×d
q be an arbitrary matrix with pairwise linearly independent column vectors.

(2) Let R ∈ F
d×c
q be a matrix where each entry rij is uniformly and independently sampled

from {0, . . . q − 1}.

(3) Set A← MatrixToSet(R · ΣCRS, [d]).

Proof. Notice that there are qc − 1 non-zero vectors in F
c
q, and linear dependence partitions them

into equivalence classes of size q− 1. Therefore, by selecting one vector from each equivalence class
one can generate qc−1

q−1 > qc−1 pairwise linearly independent columns. When d ≤ qc−1, the matrix

ΣCRS always exists.

Before we show that A, the output of Procedure 2, does not admit a c+1
d -balanced contention

resolution scheme, we first verify that the marginals of A reside within the matroid polytope
P(M×d).

Lemma 5.3. Let µ ∈ R
Fd
q×[d]

+ be the marginal probability vector of A where µ(vi) = Pr[vi ∈ A]
when A is sampled according to Procedure 2. Then, µ ∈ P(M×d).

Proof. By Lemma 4.3 we know that µ(vi) = 1
qd

for each vi ∈ F
d
q . Thus, for any subset S ⊆ F

d
q× [d],

observe that

µ(S) :=
∑

vi∈S
µ(vi) = |S| ·

1

qd
≤

d · qRank(S)

qd
=

d · qRank(S)

Rank(S) · qd
·Rank(S) ≤ Rank(S).

Above, the first inequality holds because |S| ≤ d · qRank(S) as we have d copies of each v ∈ F
d
q

in F
d
q × [d]. The last inequality follow from the fact that xq−x is a decreasing function of x and

Rank(S) ≤ d, hence, d·qRank(S)

Rank·qd ≤ 1. Thus, µ ∈ P(M×d).

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let q be any prime, c and d be two integers satisfying qc−1 ≥ d, and A be
the random set sampled according to Procedure 2. By Lemma 4.3 and Claim 5.2 we know that
A follows a pairwise independent distribution and Lemma 5.3 demonstrates that the set A has
marginals inside the matroid polytope P(M×d).

The final step of Procedure 2 invokes Procedure 1. Recall that Procedure 1 mixes distributions
D1 and D2. Then,

E[Rank(A)] ≤ E[Rank(A) | A ∼ D1] ·Pr[A ∼ D1] + Rank(M×d) ·Pr[A ∼ D2]

≤ E[Rank(A) | A ∼ D1] +
d

qd
(Rank(M×d) = d)

≤ c + 1 (q ≥ 2).
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Moreover, due to Lemma 4.3 we know that Pr[vi ∈ A] = 1
qd

for any vi ∈ F
d
q × [d]. Thus,

E[|A|] =
∑

vi∈Fd
q×[d]

Pr[vi ∈ A] =
1

qd
·
∣∣∣Fd

q × [d]
∣∣∣ = d.

Combining these two facts we obtain:

E[Rank(A)]

E[|A|]
≤

c + 1

d
.

Finally, the characterization of distributions permitting contention resolution from Theorem 2.1
concludes the proof.

5.2 Optimal Pairwise Independent OCRS

Consider a matroid M = (E,I) and a randomly chosen set of active elements A ⊆ 2E , which is
sampled from a pairwise independent distribution D ∈ ∆pw(2E)(µ) with marginals µ ∈ P(M). In
online contention resolution, the elements e ∈ E arrive in some order chosen by an adversary, at
which point the CRS algorithm learns whether e is in A and must irrevocably decide whether or
not to select e for inclusion in its solution. The algorithm is required to adhere to the feasibility
constraints of the matroid during these inclusions. We assume that the arrival order is chosen by
the almighty adversary who is aware of the algorithm and all random outcomes, including those
internal to the algorithm.

In the previous section we showed that for a class of linear matroids no offline CRS can attain
a balance ratio greater than 3

rank(M) for pairwise independent distributions. The following theorem

shows the existence a 4
rank(M) -balanced online CRS against the almighty adversary for all matroids.

Theorem 5.4. For any matroid M = (E,I), an arbitrary vector µ ∈ PI and distribution
D ∈ ∆pw(2E)(µ), there exists 1

4Rank(M) -balanced pairwise independent online contention resolu-
tion scheme against the almighty adversary.

Proof. We use the simple greedy algorithm that selects each active element with a probability of
1

2·rank(M) unless it violates feasibility. This algorithm internally flips an independent random coin

for each element e ∈ E, where each coin lands on “heads” with probability 1
2·rank(M) . We denote

the joint occurrence of an element being active and its corresponding coin flip resulting in heads
by Ee, and the complement of this event is denoted by Ee.

We note two crucial observations: First, events {Ee}e∈E are pairwise independent since events
{e ∈ A}e∈E are pairwise independent. Second, given that the marginal probability vector µ(e) :=
Pr[e ∈ A] is within the matroid polytope P(M), the total sum of probabilities

∑
e∈E Pr[e ∈ A] is

at most rank(M). Consequently, the sum
∑

e∈E Pr[Ee] is at most 1
2 . We now bound the balance

ratio of the greedy algorithm as follows.
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Pr[e is selected] ≥ Pr


Ee ∧

∧

f∈E\{e}
Ef


 (Ee solely occurs)

=


1−Pr




∨

f∈E\{e}
Ef

∣∣∣∣∣∣
Ee




 ·Pr[Ee]

≥


1−

∑

f∈E\{e}
Pr[Ef | Ee]


 ·Pr[Ee] (Union bound)

=


1−

∑

f∈E\{e}
Pr[Ef ]


 ·Pr[Ee] (Pairwise Independence)

≥
1

2
·

1

2Rank
·Pr[e ∈ A]



∑

f∈E
Pr[Ef ] ≤

1

2




=
1

4Rank
·Pr[e ∈ A].

6 Pairwise-independent Prophet Inequalities on Matroids

In this section, we explore a specific instance of the pairwise independent prophet inequality problem

which demonstrates the impossibility of achieving any ω
(

1
logRank

)
-competitive algorithm against

the oblivious adversary. Our focus is on a complete binary matroid of rank 2d, comprising n
labeled copies of each element, represented asM×n = (E×n,I×n). Here, d is an integer power of 2,
n = Θ(d), and E×n is defined as F

2d
2 × [n]. The precise value of n will be determined in subsequent

discussions. The hard instance is structured around two main elements: (i) a pairwise independent
probability distribution for the weights assigned to E×n and (ii) a fixed order λ of elements E×n.
This setup will ensure that any algorithm adhering to λ for processing elements inevitably fails
to select an independent set that offers substantial reward, particularly due to the lack of prior
knowledge regarding the weight assignments.

6.1 Construction of Weight Distribution and Arrival Order

We start by outlining the process for constructing a pairwise independent weight distribution for
the elements in the matroid F

2d
2 ×[n], where n = Θ(d). Reflecting on the core principles summarized

in Section 3.3, our approach for determining weight distribution involves generating κ = Θ(log d)
distinct levels. The elements of F2d

2 ×[n] will be partitioned into these levels based on their respective
labels. For elements assigned to the ℓ-th level, we will assign weights, either being 2ℓ or zero, in
accordance with a carefully formulated distribution.

For each level ℓ ∈ [κ], we fix the size of labels Lℓ of level ℓ as d/2ℓ. Subsequently, we define n
as the cumulative sum of the sizes of these label sets, expressed as n :=

∑κ
ℓ=1 |Lℓ|. In particular,

we define label set Lℓ as
{∑ℓ−1

j=1
d
2j

+ 1, . . . ,
∑ℓ

j=1
d
2j

}
. Note that the collection {Lℓ}ℓ∈[κ] effectively

forms a partition of the set [n]. Consequently, the set of vectors F2d
2 ×Lℓ ⊆ F

2d
2 ×[n] is categorized as
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belonging to the level ℓ. Having established this framework, we now proceed to outline the pairwise
independent weight distribution along with a deterministic worst-case arrival order of elements
which renders this distribution challenging for a gambler.

First, we describe the weight assignment procedure for elements in the matroid, with an ap-
proach akin to the active element distribution for the pairwise independent CRS problem, described
in Procedure 2. More formally, for each level ℓ ∈ [κ], we begin by constructing a random matrix

Σℓ ∈ F
d×|Lℓ|
2 whose columns are pairwise linearly independent with probability one. Subsequent to

this, we apply a linear transformation with a matrix R whose entries are sampled independently
from r(i,j) ∼ Ber(1/2). This step produces a new random matrix Xℓ := RΣℓ for each level ℓ ∈ [κ].

Next, Xℓ is converted into a subset Aℓ of F2d
2 ×Lℓ by independently applying Procedure 1 across

all levels. Each vector vi in Aℓ is assigned a weight of 2ℓ. Notice that this process is well defined
as {Lℓ}ℓ∈[κ] forms a partition of [n]. As we will show in Lemma 6.1, weights sampled according to

this process are pairwise independent, provided the matrix Σ :=
[
Σ1 Σ2 . . .Σκ

]
comprises pairwise

linearly independent columns.
Regarding the deterministic order in the prophet inequality problem, we define an arbitrary fixed

sequence λℓ for the elements within each level. The worst-case order λ for the matroid F
2d
2 × [n] is

then composed by concatenating these individual level sequences in ascending order of levels. This
is expressed as λ := λ1, λ2, . . . , λκ. Crucially, this sequence is structured without foreknowledge of
the weight realizations, ensuring that any algorithm addressing the prophet inequality will confront
elements with nonzero weights in ascending order of their assigned weights.

6.1.1 Properties of Σ matrices

We encode the challenging instance of the prophet inequality problem via a careful selection of the
matrices Σ1, . . . ,Σκ, each adhering to certain essential properties. At high level, we designate a
random subspace for each level ℓ, derived from the span of a randomly chosen subset of principal
basis vectors Bℓ. The matrices Σℓ are then selected in a way that their columns are linearly
independent subset within Span(Bℓ). For convenience, we think of Σℓ interchangeably as a matrix
as well as the set of it’s columns, and write e ∈ Σℓ for e ∈ F

d
2 if e is a column of Σℓ. The following

four properties define critical features of {Σℓ}ℓ∈[κ] and {Bℓ}ℓ∈[κ] which ensure that our resulting
w and λ constitute a hard instance for the pairwise-independent prophet inequality problem as
explained in Section 3.3.

(i) Bκ ⊆ · · · ⊆ B2 ⊆ B1 ⊆ F
d
2 is a nested system with size |Bℓ| =

d
2ℓ−1 .

(ii) Σℓ ∈ F
d×d/2ℓ

2 is a full column rank matrix with columns from Span(Bℓ).

(iii) Pr[e ∈ Span(Bℓ′) | {e ∈ Σℓ},Σ1, . . . ,Σℓ, B1, . . . , Bℓ] = 1
2ℓ′−ℓ

for all e ∈ Fd
2 and ℓ′ ≥ ℓ.

(iv) Σ :=
[
Σ1 Σ2 . . .Σκ

]
consists of distinct columns with probability 1.

Let us revisit the roles of these properties, briefly touched upon in Section 3.3. We first set
aside for a moment the requirement for the distribution to be pairwise independent. Consider a
“hard” instance of a prophet inequality problem on F

d
2 where each column vector in some Σℓ is

assigned a weight of 2ℓ and the rest of the vectors are assigned weight zero. Assume that the vectors
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with non-zero weight appear in ascending order of weight, starting with vectors in Σ1,Σ2, . . . ,Σκ,
followed by vectors with weight zero.

A greedy offline algorithm, aiming to select the maximum weight independent set, would process
the non-zero-weight vectors in reverse order from Σκ to Σ1. By utilizing the matroid exchange
principle and Property (ii), the algorithm can secure a constant fraction of each set Σℓ. This
strategy enables the prophet to achieve a total reward of Ω(d · log d).

Conversely, a gambler must select a subset Tℓ from the columns of Σℓ without prior knowledge of
the sets Σℓ′ or their corresponding weights, for all ℓ′ > ℓ. Roughly speaking, based on Properties (i)
and (iii), we can potentially show that if |Tℓ| = c · |Σℓ| for some constant c then Tℓ ends up spanning
c-fraction of vectors from all the sets Σℓ′ for all ℓ′ > ℓ. Hence, the gambler can only select c fraction
of vectors from 1

c many levels. This leads an O(d) upper bound on the total reward of the gambler
and rules out ω(1/ log d)-competitive algorithm for the gambler.

Returning to the aspect of pairwise independence, Property (iv) facilitates the conversion of this
“hard” instance into one where weights are pairwise independent, while maintaining the problem’s
inherent difficulty. This step utilizes the tools developed in Section 4.

6.1.2 Formal description of hard instance

At this stage, we provisionally accept the existence of a random sampling for the sets {Bℓ}ℓ∈[κ]
and matrices {Σℓ}ℓ∈[κ], which adhere to the four specified properties in unison. We postpone the
discussion of how this distribution is explicitly constructed to Section 6.3. Now, we are prepared
to describe the detailed process for determining the weight assignments and the sequence λ in
Procedure 3.

Next, we show that the weight assignment constructed by Procedure 3 is pairwise independent
whose proof simply follows from Property (iv) and Lemmas 4.3 and 4.1.

Lemma 6.1. Given any κ ≥ 4 and d = 22·κ, let n =
∑κ

ℓ=1
d
2ℓ

and w be the random weight

assignment of elements of F2d
2 × [n] sampled according to the Procedure 3. Then, for any distinct

pairs of labeled vectors vi,uj ∈ F
2d
2 × [n], and ℓ, ℓ′ ∈ [κ] we have

Pr[w(vi) = 2ℓ ∧w(uj) = 2ℓ
′

] = Pr[w(vi) = 2ℓ] ·Pr[w(uj) = 2ℓ
′

].

Proof. We consider three cases:

• Case 1 (i /∈ Lℓ or j /∈ Lℓ′): We observe that Pr[w(vi) = 2ℓ ∧w(uj) = 2ℓ
′

] = Pr[w(vi) =
2ℓ] ·Pr[w(uj) = 2ℓ

′

] = 0.

• Case 2 (ℓ = ℓ′ and i, j ∈ Lℓ): Property (iv) and Lemma 4.3 ensures that the events
{vi ∈ Aℓ} and {vi ∈ Aℓ} are independent.
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Procedure 3. Pairwise Independent Weight Assignments to Matroid F
2d
2 × [n]

Input: Dimension of column vector d, Number of levels κ.
Output: Weight assignment w and λ.

• Construction of random matrices with pairwise independent columns.

(1) Let Σ1,Σ2, . . .Σκ be random matrices satisfying (i), (ii), (iii) (iv).

(2) Let matrix R ∈ F
2d×d
2 to be a random matrix with entries rij ∼ Ber(1/2) independently.

(3) Define Xℓ = RΣℓ ∈ F
2d×d/2ℓ

2 for each ℓ ∈ [κ].

(4) Define n :=
∑κ

ℓ=1
d
2ℓ
.

• Conversion from matrices to pairwise independent sets and weight assignment.

(5) Define labels of level ℓ as Lℓ :=
{∑ℓ−1

j=1
d
2j

+ 1, . . . ,
∑ℓ

j=1
d
2j

}
⊆ [n].

(6) For each ℓ ∈ [κ], call Procedure 1 with Xℓ and Lℓ to obtain Aℓ ← MatrixToSet(Xℓ, Lℓ).

(7) For each vi ∈ F
2d
2 × Lℓ, assign weight w(vi) =





2ℓ if vi ∈ Aℓ,

0 otherwise.

• Definition of a worst-case deterministic order.

(10) Let λℓ be an arbitrary ordering of elements {vi : v ∈ F
2d
2 and i ∈ Lℓ} = F

2d
2 × Lℓ.

(11) Concatenate λℓ in increasing order of ℓ to form the ordering λ = λ1, . . . λκ of F2d
2 × [n].

• Case 3 (ℓ 6= ℓ′ and i ∈ Lℓ and j ∈ Lℓ′): We have marginal probabilities Pr[vi = 2ℓ] =
Pr[uj = 2ℓ

′

] = 1
2d

. Recall that Aℓ sampled according to mixture of two distributions D1

and D2 in MatrixToSet for each level ℓ. We compute the joint probability as

Pr[vi =2ℓ ∧ uj = 2ℓ
′

]

= Pr[{xi = v} ∧ {xj = u} | Aℓ ∼ D1 ∧Aℓ′ ∼ D1] ·Pr[Aℓ ∼ D1 ∧Aℓ′ ∼ D1]

+ Pr[{xi = v} ∧
{
uj ∈ Aℓ′

}
| Aℓ ∼ D1 ∧Aℓ′ ∼ D2] ·Pr[Aℓ ∼ D1 ∧Aℓ′ ∼ D2]

+ Pr[
{
vi ∈ Aℓ

}
∧ {xj = u} | Aℓ ∼ D2 ∧Aℓ′ ∼ D1] ·Pr[Aℓ ∼ D2 ∧Aℓ′ ∼ D1]

+ Pr[
{
vi ∈ Aℓ

}
∧
{
uj ∈ Aℓ′

}
| Aℓ ∼ D2 ∧Aℓ′ ∼ D2] ·Pr[Aℓ ∼ D2 ∧Aℓ′ ∼ D2]

=
1

22d

(
1−

1

2d

)2

+
1

23d

(
1−

1

2d

)
+

1

23d

(
1−

1

2d

)
+

1

24d
=

1

22d
.
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6.2 Upper Bounding the Approximation Ratio

In this section, we prove the following theorem.

Theorem 6.2. For any integers κ ≥ 4 and d = 22·κ, let n =
∑κ

ℓ=1
d
2ℓ

and M×n = (E×n,In)

where M = (E,I) is the full binary matroid with rank 2d, i.e., E = F
2d
2 . Then, there is no

ω(1/ log d)-competitive pairwise independent prophet inequality algorithm for matroid M×n.

In order to prove the above theorem, we show that when the weights w and the order λ are
determined according to Procedure 3, the prophet is able to secure a reward of Ω(d · log d), where
as any gambler is limited to obtaining a reward at most O(d). To prove this claim, we first identify
a high probability event which makes the problem challenging for the gambler. Let Ehard be the
event when the following two events happen together:

(1) The random matrix R sampled in Step (2) of Procedure 3 has full column rank,

(2) The set Aℓ constructed in the Step (6) of Procedure 3, is sampled according to D1 in Proce-
dure 1 for all ℓ ∈ [κ] simultaneously.

Notice that the two described events are mutually independent. The first event occurs with a
probability of 1 − 1

2d
, as R ∈ F

2d×d
q . The second event occurs with a probability of

(
1− 1

22d

)κ
≥

1− κ
22d

. Together, these events imply that Ehard occurs with a probability of at least 1− κ+1
2d

.
Furthermore, when the latter event happens only labeled copies of columns in Xℓ will have a

non-zero weight for each ℓ ∈ [κ]. Additionally, if the first event occurs, at most one labeled copy of
each vector will have a non-zero weight. Conceptually, when Ehard occurs, one can imagine that w
assigns non-zero weights to columns of Xℓ and so vectors of F2d

2 , rather than their labeled copies,
since there is only one labeled copy of each item with a non-zero weight.

Next, we demonstrate two lemmas that lower-bound the prophet’s reward and upper-bound the
any gambler’s utility respectively, under the condition that Ehard happens.

Lemma 6.3 (Lower-bound Prophet’s Reward). Given κ ≥ 4, d = 22·κ, n =
∑κ

ℓ=1
d
2ℓ

andM = F
2d
2 ,

let w be the random weight assignment over elements ofM×n determined according to Procedure 3.
Then,

E[reward of prophet | Ehard] ≥
κ · d

10
.

Lemma 6.4 (Upper-bound Gambler’s Reward). Given κ ≥ 4, d = 22·κ, n =
∑κ

ℓ=1
d
2ℓ

andM = F
2d
2 ,

let w be the random weight assignment over elements ofM×n and λ be the order of these elements
determined according to Procedure 3. Then,

E[reward of gambler | Ehard] ≤ 2d.

Finally, we utilize these lemmas to prove the main result of this section.

Proof of Theorem 6.2. Due to Lemma 6.3, we have

E[reward of prophet] ≥ E[reward of prophet | Ehard] ·Pr[Ehard] (3)

≥
κ · d

4
·

(
1−

κ + 1

2d

)
≥

κ · d

5
(κ ≥ 4) (4)
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and due to Lemma 6.4, we have

E[reward of gambler] ≤ E[reward of gambler | Ehard] + 2κ ·Rank(M×n) · (1−Pr [Ehard])

≤ 2d + (d · 2κ) ·
κ + 1

2d
≤ 2d + 1. (κ ≥ 4)

Therefore, combining two inequalities concludes the desired result.

E[reward of gambler]

E[reward of prophet]
≤

10

κ
= O

(
1

log d

)
.

In the remaining part of this section, we condition on the event Ehard and prove the two lemmas.

6.2.1 Proof of Lemma 6.3: Lower-bound for Prophet’s Reward

To compute a lower-bound for prophet’s reward, or equivalently E[Rankw(M×n)], we will construct
a feasible solution S and show that its expected weight is at least κ·d

2 . Let A1, . . . Aκ be the random
sets constructed in Step (6) of Procedure 3. Given that we have conditioned on Ehard, each set Aℓ

contains nℓ = d
2ℓ

vectors, and at most one labeled copy of a vector v ∈ F
2d
2 appears in any of the

sets {Aℓ}ℓ∈[κ].

Then, for each level ℓ in decreasing order, let Ãℓ be a maximal subset of Aℓ such that
⋃κ

i=ℓ Ãℓ

is an independent set. We form the solution S :=
⋃κ

ℓ=1 Ãℓ. Essentially, S is the outcome of a
greedy algorithm that processes elements in descending order of their weights. By construction, S
constitutes a feasible set. The matroid exchange property then implies that

|Ãℓ| = Rank

(
κ⋃

i=ℓ

Ai

)
−Rank

(
κ⋃

i=ℓ+1

Ai

)
.

Consequently, for any 1 ≤ i ∈ ⌈κ/2⌉,

|Ã2i−1|+ |Ã2i| = Rank




κ⋃

j=2i−1

Aj


−Rank




κ⋃

j=2i+1

Aj




≥ Rank(A2i−1)−Rank(B2i+1)




κ⋃

j=2i+1

Aj ⊆ Span(B2i+1)




=
d

22i−1
−

d

22i
=

1

2
·

d

22i−1
.

Therefore, we can bound the weighted rank of the matroid as follows:

Rankw(M×n) ≥ w(S) =

κ∑

ℓ=1

w(Ãℓ) ≥

⌈κ/2⌉∑

i=1

(|Ã2i−1|+ |Ã2i|) · 2
2i−1

≥

⌈κ/2⌉∑

i=1

1

2
·

d

22i−1
· 22i−1 =

⌈κ/2⌉∑

i=1

d

2
=

κ · d

4

where the second inequality follows from the fact that w(vi) ≥ 22i−1 for any vi ∈ Ã2i−1∪ Ã2i. This
concludes the proof of Lemma 6.3.
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6.2.2 Proof of Lemma 6.4: Upper-bound for Gambler’s Reward

Let S be the set of elements selected by the gambler and define Sℓ as its subset which contains
elements from level ℓ, i.e., Sℓ = S ∩ F

2d
q × Lℓ, and let S≤ℓ =

⋃ℓ
i=1 Si. We assume without loss of

generality that the gambler only selects elements with non-zero weight. Recall that λ first presents
all elements with first level labels L1, then all elements with second level labels L2, and so on.
Thus, any algorithm visits non-zero-weight elements of the matroid in increasing order of weight.
Therefore, Sℓ is a random set which is independent of Bℓ+1, Bℓ+2, . . . , Bκ given the information
revealed by the elements up to level ℓ. This independence remains even when conditioned on R.

We define ρℓ := |Sℓ| and γℓ := |S≤ℓ ∩ Span(RBℓ × [n])| for each ℓ ∈ [κ]. To simplify the
notation and reduce clutter, we will use a shorthand for Span(·), where Span(V ) will represent
Span(V × [n]), effectively omitting labels for the ease of understanding. The following claim
establishes a relationship between the two series {ρℓ}ℓ∈[κ] and {γℓ}ℓ∈[κ] in expectation.

Claim 6.5. E[ρℓ] ≤ E[γℓ]−
E[γℓ−1]

2 .

Before we prove the claim, we utilize it to complete the proof of Lemma 6.4. Remember that
all expectations are conditioned on the event Ehard.

E[w(S)] =
κ∑

ℓ=1

E[2ℓ · |Sℓ|]

=
κ∑

ℓ=1

E[2ℓ · ρℓ]

≤ 2 · E[γ1] +
κ∑

ℓ=2

2ℓ ·
(
E[γℓ]− E

[γℓ−1

2

])
(Claim 6.5)

= 2κ · E[γκ] +
κ−1∑

ℓ=1

(
2ℓ · E[γℓ]− 2ℓ+1 · E

[γℓ
2

])

≤ 2κ ·Rank(RBκ) (S≤κ ∩ Span(RBκ) ⊆ Span(RBκ))

= 2κ ·
d

2κ−1
= 2d.

We complete the discussion with the following proof of Claim 6.5.

Proof of Claim 6.5. First, we bound ρℓ as follows.

ρℓ ≤ |S≤ℓ ∩ Span(RBℓ)| − |S≤ℓ−1 ∩ Span(RBℓ)| = γℓ − |S≤ℓ−1 ∩ Span(RBℓ)|.

Here, the inequality follows from the fact that Sℓ ⊆ Span(RBℓ) and S≤ℓ is an independent set.
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We re-express the expectation of |S≤ℓ−1 ∩ Span(RBℓ)| to complete the proof.

E[|S≤ℓ−1 ∩ Span(RBℓ)|] =

ℓ−1∑

ℓ′=1

E[|Sℓ′ ∩ Span(RBℓ)|] (disjoint)

=
ℓ−1∑

ℓ′=1

E



∑

e∈Sℓ′

Pr[e ∈ Span(RBℓ)]




=

ℓ−1∑

ℓ′=1

E



∑

e∈Sℓ′

1

2ℓ−ℓ′


 (Property (iii))

=
ℓ−1∑

ℓ′=1

E


1

2
·
∑

e∈Sℓ′

1

2(ℓ−1)−ℓ′




=

ℓ−1∑

ℓ′=1

E


1

2
·
∑

e∈Sℓ′

Pr[e ∈ Span(RBℓ−1)]


 (Property (iii))

=
1

2
·
ℓ−1∑

ℓ′=1

E[|Sℓ−1 ∩ Span(RBℓ−1)|]

=
1

2
· E[γℓ−1]. (disjoint)

Each of our two invocations Property (iii) uses the conditional independence of Sℓ′ of Bℓ given the
information revealed by elements at levels up to ℓ′.

6.3 Construction of Σ

This section is dedicated to presenting a method for constructing a random matrix Σ, along
with a nested system of subspaces. Each subspace is defined as the span of a subset of principal
basis vectors Bℓ for every level ℓ ∈ [κ]. The goal is to demonstrate that this construction adheres
to Properties (i), (ii), (iii), and (iv) simultaneously. We will prove the following lemma.

Lemma 6.6. The matrices Σ1, . . . ,Σκ and sets B1 . . . , Bκ constructed by Procedure 4 satisfy Prop-
erties (i), (ii), (iii), and (iv).

To aid understanding, we now give a brief explanation of our construction. The procedure starts
at the first level by defining the “alive” basis vectors as B1 = {e1, . . . , ed}, which are the principal
basis vectors in F

d
2. It then organizes these vectors into consecutive pairs to create the set P1, a

partition of B1. We use P1(j) = {e2j−1, e2j} to denote the jth pair in P1, for j ∈ [d/2]. We let
Σ1(j) ∈ F

d×1
2 be a matrix consisting of a single non-zero column, chosen as a linear combination

of the two vectors in P1(j). These matrices are then concatenated to form the d × d
2 matrix

Σ1 =
[
Σ1(1), . . . ,Σ1

(
d
2

)]
with full column rank.

In the second level, the procedure randomly selects half of the elements from P1 to form P̃1.

For simplicity in our discussion, we will renumber the selected parts in P̃1 as
{
P̃1(i) : i ∈ [d/4]

}
.

Following this, we combine consecutive parts in P̃1 to create the second level partition, formally
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Procedure 4. Construction of Pairwise Linearly Independent Collection of Vectors Σ

Input: Dimension of column vector d, Number of levels κ.

(1) Base level ℓ = 1:

(a) B1 = {e1, . . . , ed} be the principal basis of Fd
2.

(b) P1 = {P1(i) : i ∈ [d/2]} be a partition of B1 where P1(i) = {e2i−1, e2i}.

(2) Level ℓ > 1:

(a) Let P̃ℓ−1 be a uniformly random half of Pℓ−1, written P̃ℓ−1 := {P̃ℓ−1(i) : i ∈ [d/22ℓ−2]}.

(b) Define Pℓ(i) = P̃ℓ−1(2i−1)∪P̃ℓ−1(2i) for i ∈
[

d
22ℓ−1

]
and let Pℓ = {Pℓ(i) : i ∈ [d/22ℓ−1]}.

(c) Define Bℓ =
⋃d/22ℓ−1

i=1 Pℓ(i), which we refer to as the alive basis vectors of level ℓ.

(3) For each ℓ ∈ [κ] and j ∈ [d/22ℓ−1], define Σℓ(j) ∈ F
d×2ℓ−1

2 as follows. Let v′
1, . . . v

′
2ℓ

be an

arbitrary enumeration of Pℓ(j), and let the t-th column of Σℓ(j) be σt :=
∑t+2ℓ−1−1

i=t v′
i.

(4) Let Σℓ =
[
Σℓ(1) Σℓ(2) . . . Σℓ(d/22ℓ−1)

]
∈ F

d×d/2ℓ

2 .

Output: [Σ1,Σ2, . . . ,Σκ].

denoted as P2 = {P2(j) : j ∈ [d/8]}, where P2(j) = P̃1(2j−1)∪P̃1(2j). The basis vectors appearing
in a part of P2 are designated the “alive” basis vectors at level two, and denoted by B2. Note that
the B2 consists of half the vectors in B1. In a manner akin to the first level, vectors in each part
P2(j) in P2 are linearly combined to create a matrix Σ2(j) ∈ F

d×2
2 , with two linearly-independent

columns lying within Span(P2(j)). Moreover, the procedure ensures that columns of each Σ2(j)
are distinct from the columns of Σ1. These matrices are then concatenated to form Σ2.

For each subsequent level ℓ, the process follows a similar pattern. Given Bℓ−1,Pℓ−1 and Σℓ−1,

1. We let P̃ℓ−1 be the random half of Pℓ−1 and then obtain Pℓ whose parts are formed by
merging two consecutive parts from P̃ℓ−1 after an arbitrary enumeration. We let Bℓ consist
of the vectors appearing in Pℓ. Here, note that |Pℓ| =

1
4 |Pℓ−1| =

d
22ℓ−1 . Moreover, |Pℓ(j)| = 2ℓ

for any j ∈ [d/22ℓ−1], and |Bℓ| =
d

2ℓ−1
. We refer the reader to Figure 1 for a visualization of

the construction of Bℓ, Pℓ, and P̃ℓ for the initial three levels.

2. For each part Pℓ(j) in Pℓ, a matrix Σℓ(j) ∈ F
d×|Pℓ(j)|/2
2 with full column rank is constructed.

Its columns lie within Span(Pℓ(j)), and are distinct from the columns of Σ1, . . . ,Σℓ−1.

3. The matrices Σℓ(j) are concatenated to form Σℓ.

Since each Σℓ(j) has linearly-independent columns in Span(Pℓ(j)), and Pℓ partitions the linearly-
independent set of vectors Bℓ, it follows that each Σℓ has full column rank with its columns in
Span(Bℓ).
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P1

P1(1) P1(2) P1(3) P1(4) P1(5) P1(6) P1(7) P1(8) P1(9) P1(10) P1(11) P1(12) P1(13) P1(14) P1(15) P1(16)

P2

P2(1) P2(2) P2(3) P2(4)

P2

P3(1)

P3

Figure 1: A snapshot of the construction of Bℓ and partition Pℓ for the initial 3 levels. In
this illustration, vertically aligned dots in groups of three represent the same basis vector. At any
given level ℓ, vectors indicated in solid colors comprise the alive vectors Bℓ of level ℓ. Furthermore,
the colored boxes at each level ℓ, along with their constituent alive basis vectors, represent the parts
Pℓ(i) of the partition of Pℓ. Random parts P̃ℓ that survive through to the next level are indicated
by upward arrows.

P3(j) =
{

σ1 = v′1, , v′2, , v′3, , v′4, , v′5, , v′6, , v′7, , v′8

}

Σ3(j) =




σ1 = v′1+ v′2+ v′3+ v′4+

σ2 = v′2+ v′3+ v′4+ v′5+

σ3 = v′3+ v′4+ v′5+ v′6+

σ4 = v′4+ v′5+ v′6+ v′7aaaaa




T

Figure 2: Construction of Σ3(j) matrix.

Our construction also guarantees that the columns of all the matrices Σℓ, across all the different
levels ℓ, are distinct and therefore pairwise linearly-independent in F2. Each column of Σℓ(j) is
formulated as a sum of distinct subsets (which may overlap) of vectors from Pℓ(j), with each subset
containing 2ℓ−1 vectors. Given that the number of columns in Σℓ(j) is half the size Pℓ(j), such a
construction is possible. In detail, given Pℓ(j) = {v′

1, . . . ,v
′
2ℓ
}, the t-th column of Σℓ(j) is defined

as:

σt :=

t+2ℓ−1−1∑

i=t

v′
i.

As an illustrative example, we depict the construction of Σ3(j) for j ∈ [d/22ℓ−1] in Figure 2.

The final matrix Σ is the concatenation of the matrices across all levels, namely Σ :=
[
Σ1 Σ2 . . . Σκ

]
.

The precise construction is described in Procedure 4.
We now present two essential observations about our construction, which are vital for the proof

of Lemma 6.6.
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Observation 6.7. For each level ℓ ∈ [κ] and part Pℓ(j) ∈ Pℓ, there exists level ℓ′ such that
ℓ ≤ ℓ′ ≤ κ and

1. Pℓ(j) ⊆ Bi for all i ≤ ℓ′,

2. Pℓ(j) ∩Bi = ∅ for all i > ℓ′.

Proof. Considering a specific part Pℓ(j) within Pℓ, it is constructed such that either it becomes
part of a subsequent part Pℓ+1(j′) in Pℓ+1, or it does not intersect with any part in Pℓ+1. This
pattern holds for any two consecutive levels. Therefore, for any two levels ℓ < ℓ′ and a given part
Pℓ(j), it is either entirely contained within a part Pℓ′(j

′) in Pℓ′ , or it shares no common elements
with any part in Pℓ′ . Since Pℓ′ is a partition of Bℓ′ , this implies that Pℓ(j) is either a subset of Bℓ′

or has no overlap with Bℓ′ . Since {Bi}i∈[κ] form a nested system, i.e., Bi ⊆ Bi+1 for each i ∈ [κ−1],
the proof is complete.

The following observation directly follows from the fact that each part survives to the next level
with probability 1/2 independently.

Observation 6.8. For any level ℓ ∈ [κ− 1] and part Pℓ(j) ∈ Pℓ for j ∈ [d/22ℓ−1],

Pr[Pℓ(j) ⊆ Bℓ+1 | Pℓ(j) ⊆ Bℓ] =
1

2
.

We are now ready to prove the Lemma 6.6.

Proof of Lemma 6.6. We will demonstrate separately that each property is met by the construction:

(i) At each level, precisely half of the “alive” basis vectors continue to the next level. Initially,
at the first level, there are d alive basis vectors, i.e., |B1| = d. We conclude Property (i).

(ii) By construction, each column of Σℓ is a sum of standard basis vectors in Bℓ. It remains to show
linear independence. Recall that Σℓ = [Σℓ(1), . . . ,Σℓ(d/22ℓ−1)], with Σℓ(j) ⊆ Span(Pℓ(j)).
Also recall that Pℓ is a partition of Bℓ. Consider an arbitrary column e of Σℓ, corresponding
to the tth column of a particular Σℓ(j). From Step (3) of Procedure 4, e =

∑s
i=t v

′
i for

s = t + 2ℓ−1 − 1, where v′
1, . . . v

′
2ℓ

is a fixed enumeration of Pℓ(j). All columns of Σℓ to the
left of e, whether in Σℓ(j) or otherwise, are orthogonal to v′s, whereas e is not. Therefore,
e is linearly independent of all columns to its left. Applying this argument inductively, we
conclude that Σℓ has full column rank. Therefore, our construction satisfies Property (ii).

(iii) Fix two levels ℓ, ℓ′ ∈ [κ] such that ℓ′ > ℓ. Let e ∈ Σℓ be an arbitrary column of Σℓ. Let j be
such that e is a column of Σℓ(j). By construction, we have that e ∈ Span(Pℓ(j)). Then,

Pr[e ∈ Span(Bℓ′) | {e ∈ Σℓ(j)},Σ1, . . . ,Σℓ, B1, . . . , Bℓ]

= Pr[Pℓ(j) ⊆ Span(Bℓ′) | Σ1, . . . ,Σℓ, B1, . . . , Bℓ]

=

ℓ′∏

i=ℓ+1

Pr [Pℓ(j) ⊆ Span(Bi) | Pℓ(j) ⊆ Span(Bi−1),Σ1, . . . ,Σℓ, B1, . . . , Bℓ]

=
ℓ′∏

i=ℓ+1

Pr [Pℓ(j) ⊆ Span(Bi) | Pℓ(j) ⊆ Span(Bi−1)]

=

(
1

2

)ℓ′−ℓ

.
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Above, the first equality follows from Observation 6.7. The second one follows from the fact
that {Bℓ}ℓ∈[κ] forms a nested system. The third equality is because Σ1, . . . ,Σℓ and B1, . . . , Bℓ

are functions of P1, . . . ,Pℓ, conditionally independent of what transpires at higher levels. The
last equality follows from Observation 6.8. Therefore, the construction satisfies Property (iii).

(iv) Each Σℓ has full column rank, and therefore it’s columns are distinct. It remains to compare
columns σ ∈ Σℓ and σ′ ∈ Σℓ′ for ℓ 6= ℓ′. The vector σ is the sum of 2ℓ−1 principal basis
vectors, while σ′ is the sum of 2ℓ

′−1 principal basis vectors. It follows that σ and σ′ are
distinct. This confirms Property (iv).

6.4 Optimal Pairwise Independent Matroid Prophet Inequality

In this section, we present an optimal (up to a constant factor) algorithm for the pairwise indepen-
dent matroid prophet inequality problem against the almighty adversary. It is important to note
that although our algorithm is designed to perform against the strongest adversary, the almighty
adversary; our impossibility result holds against the weakest adversary, namely the oblivious ad-
versary.

The following theorem is the main result of the section.

Theorem 6.9. There exists an Ω
(

1
logRank

)
-competitive algorithm for the pairwise independent

prophet inequality problem against the almighty adversary for any given matroid M = (E,I).
Here, Rank is a shorthand notation for Rank(M).

The algorithm defines the strategy for the gambler by dividing elements into weight buckets.
Let M = (E,I) be a matroid and w ∼ D be a pairwise independent weight distribution. We use
OPT to denote the expected value of Rankw(M) under D. To proceed, we set k as the ceiling of
log(8Rank) and introduce k + 2 buckets: B0, B1, . . . Bk, along with B∞. The buckets are defined
as follows:

B0 =

[
0,

OPT

2Rank

)
, B1 =

[
OPT

2Rank
,

2OPT

2Rank

)
, . . . , Bk =

[
·
2k−1OPT

2Rank
,
2kOPT

2Rank

)
, B∞ =

[
2kOPT

2Rank
,∞

)
.

Given any draw of the weights w ∼ D, we partition the elements into random sets E0, E1, . . . Ek

and E∞ based on their realization. We define Ei = {e ∈ E : w(e) ∈ Bi} for any i ∈ {0, . . . k,∞},
which represents the elements whose weight lies in bucket Bi. It is important to note that the sets
Ei for i ∈ {0, . . . , k,∞} are random.

We define the expected optimal reward from bucket Bi for any i ∈ {0, 1, . . . , k,∞} as

OPT(Bi) = E

[
max

S⊆Ei,S∈I
Rankw(S)

]
.

This represents the maximum expected weighted rank of elements belonging to bucket Bi. We
further define

B∗ = max
i∈{1,...,k,∞}

OPT(Bi).

Note that we ignore bucket B0 because every element e ∈ E0 has weight w(e) ≤ OPT

2·Rank
, and

therefore OPT(B0) ≤ OPT

2 . Next, we aim to upper-bound the expected reward of the prophet
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Algorithm 1 Pairwise Independent Matroid Prophet Inequality Algorithm.

Input: Matroid M = (E,I) and pairwise independent joint weight distribution w ∼ D.
Output: S.

Compute OPT and buckets B0, . . . , Bk+1

Let B∗ = argmaxBi∈{B1,...,Bk,B∞}OPT(Bi)
Set S ← ∅
while Visit elements e ∈ E in given order do

if w(e) ∈ B∗ and S ∪ {e} ∈ I then
Update S ← S ∪ {e}

end if
end while

by considering the total expected optimal rewards from each bucket. By invoking the fact that
OPT(B0) ≤

OPT

2 , we obtain:

OPT ≤
k∑

i=0

OPT(Bi) + OPT(B∞) ≤ 2 ·

(
k∑

i=1

OPT(Bi) + OPT(B∞)

)
. (5)

Based on these observations, we define Algorithm 1.
To prove the competitive ratio of the algorithm, we consider two cases: (i) when B∗ = Bi for

some i ∈ [k], and (ii) when B∗ = B∞. First, we demonstrate that within each bucket Bi (where
i ∈ {1, . . . , k}), the greedy algorithm obtains a substantial portion of the optimal solution. This is
because the weights of items in each bucket differ by at most a factor of 2

Lemma 6.10. Let S be the output of Algorithm 1. If B∗ ∈ {B1, . . . Bk} then

E[w(S)] ≥
1

2
· E[Rankw(B∗)].

Proof. Let Bi = B∗ for some i ∈ [k] and ℓ = 2i−1 · OPT

Rank
2 . Then, observe that ℓ ≤ w(e) ≤ 2 ·ℓ for all

e ∈ Bi and Rankw(Ei) ≤ 2 · ℓ ·Rank(Ei). Since the greedy algorithm guarantees an independent
set S such that |S| = Rank(E∗) with probability 1, we have

Rankw(S) ≥ ℓ · |S| = ℓ ·Rank(Ei) ≥
1

2
·Rankw(Ei).

which completes the proof.

Next, we consider the scenario when B∗ = B∞.

Lemma 6.11. Let S be the output of Algorithm 1. If B∗ = B∞ then

E[w(S)] ≥
1

2
· E[Rankw(B∗)].

Proof. First of all, observe that w(e) ≥ 2k·OPT

2 ≥ 4 ·OPT as k = ⌈log(8Rank)⌉. Therefore,

Pr[|E∞| ≥ 1] · 4 ·OPT ≤ E[Rankw(E∞)] ≤ OPT,
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and so Pr[E∞ 6= ∅] ≤ 1
4 . As we have pairwise independent random weights, we use Lemma 2.2 to

obtain

Pr[E∞ 6= ∅] = Pr

[
∨

e∈E
{e ∈ E∞}

]
≥

∑
e∈E Pr[e ∈ E∞]

1 +
∑

e∈E Pr[e ∈ E∞]
.

Rearranging terms implies that
∑

e∈E Pr[e ∈ E∞] ≤ Pr[E∞ 6=∅]
1−Pr[E∞ 6=∅] ≤

1
3 . Thus, by using pairwise

independence we obtain that for any element e ∈ E and value v ∈ B∞,

Pr[|E∞| > 1 | w(e) = v] ≤
∑

f∈E\{e}
Pr[f ∈ E∞ | w(e) = v] =

∑

f∈E\{e}
Pr[f ∈ E∞] ≤

1

3
.

Above, the first inequality is due to union bound. The equality follows from pairwise independence
of the weights. This imply that for any value v ∈ B∞, we have Pr[E∞ = {e} | w(e) = v] ≥ 2

3 .
Finally, we compute the expected weight of S as

E[w(S)] =
∑

e∈E
E[w(e) · 1[e ∈ S]]

≥
∑

e∈E
E[w(e) · 1[|E∞| = 1] · 1[w(e) ∈ B∞]]

=
∑

e∈E
E[Pr[|E∞| = 1 | w(e) ∧w(e) ∈ B∞] ·w(e) · 1[w(e) ∈ B∞]]

≥
∑

e∈E
E

[
2

3
·w(e) · 1[w(e) ∈ B∞]

]

=
2

3
· E[w(B∞)] ≥

2

3
· E[Rankw(B∞)]

We now complete the proof of Theorem 6.9.

Proof. Let B∗ := argmaxBi∈{B1,...Bk,B∞} OPT(Bi) as defined in Algorithm 1. We observe that

E[Rankw(E∗)] = max
i∈{1,...k,∞}

OPT(Bi) ≥
1

k + 1
·

∑

i∈{1,...,k,∞}
OPT(Bi) ≥

1

k + 1
·

1

2
·OPT.

By Lemma 6.10 and Lemma 6.11, we know that E[w(S)] ≥ 1
2 ·E[Rankw(E∗)] = 1

2 ·OPT(B∗). Thus,
E[w(S)] ≥ 1

4(k+1) ·OPT completes the proof as k = Θ(logRank). Since our algorithm is determin-
istic and the probabilistic guarantees are valid regardless of the arrival order, the approximation
guarantee holds even against the almighty adversary.

7 The Partition Property and its Implications

In this section, our focus is on matroids that exhibit a constant partition property. We demonstrate
that such matroids admit constant factor guarantees for both pairwise-independent contention
resolution and prophet inequalities. We also state structural implications of these results for the
partition property.

A simple partition matroid is the disjoint union of rank one matroids, as defined in Section 2.2.
We use the following definition of the partition property from [10].
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Constraint Offline CRS OCRS
Prophet
Inequality

Notes & References

Partition
Matroid

1
1.299 ·

(
1− 1

e

)
1

1.299 ·
(
1− 1

e

)
· 13

1
3 Theorem 7.3 7.4 7.6

Graphic
Matroid

1
1.299 ·

(
1− 1

e

)
· 12

1
1.299 ·

(
1− 1

e

)
· 1
12

1
6

Theorem 7.3 7.4 7.6
and [10]

Co-Graphic
Matroid

1
1.299 ·

(
1− 1

e

)
· 13

1
1.299 ·

(
1− 1

e

)
· 1
27

1
9

Theorem 7.3 7.4 7.6
and [51]

Laminar
Matroid

1
1.299 ·

(
1− 1

e

)
· 1
3
√
3

1
1.299 ·

(
1− 1

e

)
· 1
34

1
9
√
3

Theorem 7.3 7.4 7.6
and [37]

Low Density
Matroid

1
1.299 ·

(
1− 1

e

)
· 1
2γ

1
1.299 ·

(
1− 1

e

)
· 1
12γ2

1
6γ

Theorem 7.3 7.4 7.6
and [51],

γ = maxS⊆E
|S|

Rank(S)

Column k
Sparse Matroid

1
1.299 ·

(
1− 1

e

)
· 1
2k

1
1.299 ·

(
1− 1

e

)
· 1
12k2

1
6k

Theorem 7.3 7.4 7.6
and [51]

Table 1: Summary of our results for matroids that satisfy the partition property.

Definition 7.1 (Partition Property). We say a matroid M = (E,I) satisfies the α-partition
property for α ∈ (0, 1] if there exists a random simple partition matroid M′ = (E′,I ′) satisfying

1. E′ ⊆ E and I ′ ⊆ I, and

2. Rankw(M) ≥ EM′ [Rankw(M′)] ≥ α ·Rankw(M) for every nonnegative weight vector w.

It is known that many classes of matroids that are frequently encountered in discrete optimiza-
tion satisfy an α-partition property with α = O(1) [10, 51].

We show that if a matroid M satisfies the α partition property, then it admits a pairwise
independent (i) α

3 -competitive prophet inequality against the almighty adversary, (ii) α
1.299 ·(1−1/e)-

balanced offline CRS, and (iii) α2

3.897 · (1 − 1/e)-balanced OCRS against the almighty adversary.
These are proven in Theorem 7.3, 7.4, and 7.6 respectively. Essentially, we demonstrate these
results by reducing the stochastic selection problems with pairwise independent priors for such
matroids to those of one-uniform matroids, utilizing the partition property. In doing so, we assume
our algorithms can sample a simple partition matroidM′ satisfying the conditions of Definition 7.1.
We summarize the corollaries derived from our results in Table 1.

7.1 Prophet Inequalities

We now exhibit an α
3 -competitive algorithm for pairwise-independent prophet inequalities on ma-

troids satisfying the α-partition property. First, we recall a result from [19] which shows the
existence of a 1

3 -competitive pairwise independent prophet inequality for rank one matroids. The
analysis of their threshold-based algorithm can easily be seen to hold even against the almighty
online adversary.

35



Algorithm 2 Partition-Based Algorithm for Pairwise Independent Matroid Prophet Inequalities.

Input: A matroid M = (E,I) satisfying the α partition property, distribution D ∈ ∆pw(2E),
black-box access to algorithm A for single-choice pairwise-independent prophet inequalities

LetM′ be a random partition matroid α-approximatingM as in Definition 7.1, and let P1, . . . , Pr

be its parts.
Separately for each part Pi, invoke A for the rank one matroid on Pi using the restriction of D
to Pi, and let Si be its output.

Output: Set S ←
⋃r

i=1 Si .

Theorem 7.2 ([19]). Given a rank one matroid over elements E and a pairwise independent value
distribution D ∈ ∆pw(2E), there exists a 1

3 -competitive prophet inequality algorithm against the
almighty adversary.

Our algorithm samples a partition matroidM′ as in Definition 7.1, then applies the 1
3 -competitive

prophet inequality to each part of M′ separately. This is shown in Algorithm 2.

Theorem 7.3. For matroids satisfying the α-partition property for some α ∈ (0, 1], there is an
α
3 -competitive pairwise-independent prophet inequality against the almighty adversary.

Proof. We invoke Algorithm 2 with black box access to a 1
3 -competitive prophet inequality algorithm

A for rank one matroids and pairwise independent distributions as in Theorem 7.2. Let M, D,
M′, {Pi}

r
i=1 and S = ∪iSi be as in Algorithm 2, and let w ∼ D be the realized stochastic weights.

We have the following guarantee on the weight of the output S conditioned on M′.

E[w(S) | M′] =

r∑

i=1

E[w(Si) | M
′] (Linearity of expectation)

≥
r∑

i=1

E

[
1

3
·RankM′

w (Pi) | M
′
]

(Theorem 7.2)

=
1

3
· E

[
r∑

i=1

RankM′

w (Pi) | M
′
]

(Linearity of expectation)

=
1

3
· E
[
Rankw(M′) | M′] (M′ is a partition matroid) (6)

Next, taking expectations over M′, we have

E[w(S)] = E
[
E[w(S) | M′]

]

≥ E

[
1

3
· E
[
Rankw(M′) | M′]

]
(Equation 6)

=
1

3
E
[
E
[
Rankw(M′) | w

]]

≥
1

3
E [α ·Rankw(M)] (α-partition property)

=
α

3
· E [Rankw(M)] .
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Above, the second equality holds due to Fubini’s theorem since Rankw(M′) is a non-negative
random variable with a finite expectation. We conclude that Algorithm 2 is α

3 -competitive, as
needed. We note that since the competitive ratio of A holds against the almighty adversary, so
does ours.

7.2 Contention Resolution

Now, we turn our attention to proving the existence of O(α)-balanced offline and O(α2)-balanced
online pairwise independent CRS for matroids that satisfy α partition property. We begin with the
offline result.

Theorem 7.4. For matroids satisfying the α-partition property for some α ∈ (0, 1], there is a
1

1.299 ·
(
1− 1

e

)
· α-balanced pairwise-independent offline CRS.

Proof. Consider a matroid M = (E,I) and a distribution D ∈ ∆pw(2E)(µ) with µ ∈ P(M). Let
M′ = (E′,I ′) be a random partition matroid which α-approximatesM in the sense of Definition 7.1.
Let R̃ ⊆ E be sampled from the product distribution with marginals µ; i.e., each element e ∈ E is
included in R̃ independently with probability µ(e). It was shown in [22] that the class of product
distributions with marginals in P(M) admits a (1 − 1/e)-balanced offline CRS. Therefore, by
Theorem 2.1 the following holds for all sets of elements F ⊆ E.

ER̃[RankM(R̃ ∩ F )] ≥ (1− 1/e) · µ(F ). (7)

Moreover, the α-partition property implies that for every fixed R̃, EM′ [RankM′(R̃ ∩ F )] ≥ α ·
RankM(R̃ ∩ F ). Combining this with Equation 7, we obtain

EM′,R̃
[RankM′(R̃ ∩ F )] ≥ (1− 1/e) · α · µ(F ). (8)

Let P1, . . . , Pk be the parts of the matroidM′, and let R be sampled from the pairwise independent
distribution D. We have the following for any F ⊆ E.

E
R

[RankM(R ∩ F )] ≥ E
M′

[
E
R

[RankM′(R ∩ F )]

]
(I ′ ⊆ I)

= E
M′




k∑

i=1

Pr
R



∨

e∈F∩Pi

e ∈ R




 (Partition matroid)

≥ E
M′




k∑

i=1

1

1.299
·Pr

R̃



∨

e∈F∩Pi

e ∈ R̃




 (Lemma 2.2)

=
1

1.299
· EM′,R̃[RankM′(R̃ ∩ F )] (Partition matroid)

≥
1

1.299
·

(
1−

1

e

)
· α · µ(F ). (Equation 8)

Combining above inequality with the characterization from Theorem 2.1, we conclude that the
family of pairwise independent distributions ∆pw(µ) with µ ∈ PM admits

(
1

1.29 · (1− 1/e) · α
)
-

balanced CRS when matroid M satisfies the α-partition property.
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Next, we show how to combine our offline pairwise-independent CRS with our pairwise-independent
prophet inequality to obtain an online CRS. We use the following lemma, the proof of which closely
mirrors the arguments used in the proof of Theorem 4.1 from [25]. Hence, we omit its detailed
presentation here.

Lemma 7.5. If a matroid M admits a γ-competitive pairwise-independent prophet inequality
against the almighty adversary and a β-balanced offline pairwise-independent CRS, then it also
admits a β · γ-balanced OCRS against the almighty adversary.

Combining Lemma 7.5 and Theorem 7.4 and 7.3, we obtain the following theorem.

Theorem 7.6. For matroids satisfying the α-partition property for some α ∈ (0, 1], there is a
1

1.299 ·
(
1− 1

e

)
· α

2

3 -balanced pairwise-independent OCRS against the almighty adversary.

7.3 Structural Implications

We now shift our focus to showing that full linear matroids over a finite field do not admit a partition
property with strong approximation guarantees. We prove this by combining the offline CRS of
Theorem 7.4 with the impossibility result for contention resolution presented in Theorem 5.1.

Corollary 7.7. The full linear matroid F
d
q of rank d, with q ≥ d, does not satisfy an α-partition

property with α = ω
(
1
d

)
. Moreover, the full binary matroid F

d
2 of rank d does not satisfy an

α-partition property with α = ω
(
log d
d

)
.

Proof. First, we briefly argue that duplicating elements of a matroid preserves the partition prop-
erty. Suppose that M = (E,I) satisfies the α-partition property, as witnessed by a random
matroid M′ as in Definition 7.1. For a positive integer m, let M × m = (E×m,I×m) be the
matroid which includes m parallel duplicates e1, . . . , em of each element e of M, as described
in Section 2.2. Let M′ × m be defined similarly. For a weight vector w indexed by the ele-
ments E×m of M×m, let w̃ ∈ R

E be such that w̃(e) = maxm
i=1 w(ei). Similarly, for S ⊆ E×m

let S̃ =
{
e ∈ E : ei ∈ S for some i

}
. It is clear that RankM×m

w (S) = RankM
w̃

(S̃), and similarly

RankM′×m
w (S) = RankM′

w̃
(S̃). The following calculation for arbitrary S ⊆ E×m shows thatM×m

satisfies the α-partition property, as witnessed by M′ ×m.

EM′

[
RankM′×m

w (S)
]

= EM′

[
RankM′

w̃
(S̃)
]

≥ α ·RankM
w̃

(S̃)

= α ·RankM×m
w (S)

Given that the partition property is invariant to duplicating elements, combining Theorem 5.1
and 7.4 now yields the corollary.

8 Open Questions

Our results indicate that pairwise independence lends insufficient structure for constant approxi-
mations to contention resolution and prophet inequalities on matroids. More generally, it is natural
to investigate the same questions for k-wise independence, and to quantify the optimal ratios as
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a function of k. Our impossibility results rely on the recipe presented in Section 4, which easily
generalizes to k-wise independence only for ordered vector families. Generalizing our unordered
construction to arbitrary k promises to extend our results to k-wise independence. We conjecture
an optimal bound of O(k/rank) for contention resolution, and refrain from such conjecture for
prophet inequalities.

Due to the equivalence between the matroid secretary problem and the matroid prophet secre-
tary problem from [26], extending our impossibility result for prophet inequalities to the random
order model would disprove the matroid secretary conjecture. In fact, constructions which are k-
wise independent might be particularly promising, since they preclude any “learning” from samples
of size k. On the flip side, designing secretary algorithms for variants of our construction could
stimulate the development of pertinent algorithmic techniques.
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[5] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986.

[6] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple construction of al-
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A Missing Proofs from Section 4

Lemma 4.2. Let R ∈ F
d×m
q be a uniformly random matrix with entries ri,j ∼ Unif (0, 1, . . . , q − 1).

Then, for any m < d, we have Pr[Rank(R) = m] ≥ 1− 1
qd−m . In addition, for any Σ ∈ F

m×n
q with

distinct columns, the columns of X = RΣ are distinct with probability ≥ 1− 1
qd−m .

Proof. The proof of this lemma proceeds via induction on m. The base case where m = 1 is
straightforward, as Rank(R) ≥ 0, which validates the claim. For the induction step, consider
m > 1, and let R ∈ F

d×m
q be a matrix generated uniformly at random with column denoted by

r1, . . . rm. Then, we have the following:

Pr[Rank(R) = m]

= Pr[Rank(r1, . . . rm−1) = m− 1] ·Pr[rm /∈ Span(r1, . . . rm−1) | Rank(r1, . . . rm−1) = m− 1]

≥

(
1−

1

qd−m+1

)
·Pr[rm /∈ Span(r1, . . . rm−1) | Rank(r1, . . . rm−1) = m− 1]

=

(
1−

1

qd−m+1

)
·

(
1−

1

qd−m+1

)
≥ 1−

2

qd−m+1

≥ 1−
q

qd−m+1
= 1−

1

qd−m
.

Above, the first inequality follows from the induction on m. The second equality holds since rm is
a sampled independent of r1, . . . , rm−1 and uniformly from F

d
q\Span(r1, . . . , rm−1) once conditioned

on the event rm /∈ Span(r1, . . . , rm−1). Hence, Pr[rm /∈ Span(r1, . . . rm−1) | Rank(r1, . . . , rm−1)] =(
1− 1

qd−m+1

)
.

Lemma 4.3. Let X ∈ F
d×n
q be a random matrix with pairwise independent column vectors x1, . . . xn

for some n < qd where each vector xi is distributed uniformly in F
d
q . Then a random set A ⊆ F

d
q×L

generated by Procedure 1 given the inputs of X and L = {ℓ1, . . . ℓn} satisfies:

(1) For any vℓi ∈ F
d
q × L, Pr[vℓi ∈ A] = 1

qd
.

(2) For any two distinct vℓi ,uℓj ∈ F
d
q × L, the events {vℓi ∈ A} and {uℓj ∈ A} are independent.
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Proof. First we fix any vi ∈ F
d
q × [n]. We can express,

Pr[vi ∈ A] =

(
1−

1

qd

)
·Pr[vi ∈ A | A ∼ D1] +

1

qd
·Pr[vi ∈ A | A ∼ D2]

=

(
1−

1

qd

)
·Pr[xi = v] +

1

qd
·

1

qd

=

(
1−

1

qd

)
·

1

qd
+

1

qd
·

1

qd
=

1

qd
.

Above the second equality follows from the definition of the distribution D1 and D2. The second
equality follows because each xi is sampled uniformly from F

d
q . This concludes the proof of the first

part of the lemma.
Next, we fix any two distinct elements vi,uj ∈ F

d
q . We compute the joint probability of

Pr[vi ∈ A ∧ uj ∈ A] for two cases separately. First, we consider the case when i 6= j. We have,

Pr[vi ∈ A ∧ uj ∈ A] =

(
1−

1

qd

)
·Pr[vi ∈ A ∧ uj ∈ A | A ∼ D1] +

1

qd
·Pr[vi ∈ A ∧ uj ∈ A | A ∼ D2]

=

(
1−

1

qd

)
·Pr[xi = v ∧ xj = u] +

1

qd
·

1

q2d

=

(
1−

1

qd

)
·

1

q2d
+

1

qd
·

1

q2d
=

1

q2d
.

Above the second equality follows from the definition of the distribution D1 and D2. The second
equality follows because the ordered family of vectors x1, . . . , xn are pairwise independent and i 6= j.

Second, we consider the case when i = j. We have

Pr[vi ∈ A ∧ ui ∈ A] =

(
1−

1

qd

)
·Pr[vi ∈ A ∧ ui ∈ A | A ∼ D1] +

1

qd
·Pr[vi ∈ A ∧ ui ∈ A | A ∼ D2]

=
1

qd
·

1

qd
=

1

q2d
.

Above the second equality follows from the definition of the distribution D1 and D2. This concludes
the proof of the lemma.
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