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Abstract

Tokenization is fundamental to Natural Lan-001
guage Processing (NLP), directly impacting002
model efficiency and linguistic fidelity. While003
Byte Pair Encoding (BPE) is widely used in004
Large Language Models (LLMs), it often dis-005
regards morpheme boundaries, leading to sub-006
optimal segmentation—particularly in morpho-007
logically rich languages. We introduce Mor-008
phBPE, a morphology-aware extension of BPE009
that integrates linguistic structure into subword010
tokenization while preserving statistical effi-011
ciency. Additionally, we propose two mor-012
phology based evaluation metrics: (i) Morpho-013
logical Consistency F1-Score, which quanti-014
fies the consistency between morpheme shar-015
ing and token sharing, contributing to LLM016
training convergence, and (ii) Morphological017
Edit Distance, which measures alignment be-018
tween morphemes and token concerning inter-019
pretability. Experiments on English, Russian,020
Hungarian, and Arabic across 300M and 1B021
parameter LLMs demonstrate that MorphBPE022
consistently reduces cross-entropy loss, acceler-023
ates convergence, and improves morphological024
alignment scores. Fully compatible with ex-025
isting LLM pipelines, MorphBPE requires026
minimal modifications for integration. The027
MorphBPE codebase, datasets, and the to-028
kenizer playground will be available with the029
publication of the work.030

1 Introduction031

Tokenization is a fundamental preprocessing step032

in NLP, converting raw text into structured units033

such as bytes (Gillick et al., 2016), characters (Al-034

Rfou et al., 2019), subwords (Sennrich et al., 2016),035

words, or multi-word expressions (Gee et al., 2023).036

Its effectiveness directly influences downstream037

tasks, as tokenization errors can propagate through038

the pipeline, impacting overall model performance039

(Sajjad et al., 2017; Adel et al., 2018). Over040

the years, tokenization has advanced from basic041

whitespace-based segmentation to sophisticated sta- 042

tistical and neural approaches (Smit et al., 2014; 043

Otani et al., 2020). In Large Language Mod- 044

els (LLMs), tokenization significantly affects ef- 045

ficiency, context length, and representational accu- 046

racy (Dagan et al., 2024). Although tokenization- 047

free architectures have been investigated as poten- 048

tial alternatives (Clark et al., 2022; Deiseroth et al., 049

2024), most state-of-the-art models—including 050

Gemma (Team et al., 2024), LLaMA (Touvron 051

et al., 2023), DeepSeek (Bi et al., 2024) and Ope- 052

nAI’s GPT series—still rely on Byte Pair Encoding 053

(BPE)-based tokenization for most languages, re- 054

taining both its benefits and inherent limitations. 055

The additive nature of Byte Pair Encoding (BPE) 056

makes it well-suited for concatenative morphol- 057

ogy, as seen in English, where morphemes are lin- 058

early appended. However, it struggles with non- 059

concatenative morphological systems, such as root- 060

and-pattern morphology in Arabic and Hebrew, 061

where meaning is encoded through non-linear in- 062

fixation (Khaliq and Carroll, 2013). Similarly, ag- 063

glutinative languages like Turkish, Hungarian, and 064

Korean pose challenges, as their highly produc- 065

tive affixation processes complicate adherence to 066

morpheme boundaries (Hakkani-Tür et al., 2000). 067

These languages require finer-grained tokeniza- 068

tion to preserve linguistically meaningful subword 069

structures. Standard BPE and byte-level tokeniza- 070

tion methods often struggle to represent these com- 071

plex morphological patterns effectively, empha- 072

sizing the necessity for morphology-sensitive to- 073

kenization approaches that better align with the 074

diverse structural properties of different word for- 075

mation processes (Marco and Fraser, 2024). 076

Analyzing BPE output across morphologically 077

rich languages, we observe that its segmentation 078

often disregards meaningful morpheme boundaries, 079

introducing ambiguity and disrupting semantic co- 080

herence. For instance, in Arabic, the word 	áÔgQË@ 081
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(Al-Rahman, “The Merciful”) may be incorrectly082

segmented into 	áÓ (min, “whom”) È@ (al, “the”) +083

hP (rah, an incomplete fragment). Here, 	áÓ (min),084

a frequent token, is semantically unrelated to the085

original word, increasing the model’s burden in re-086

constructing meaningful representations. Similar087

challenges arise in agglutinative and polysynthetic088

languages, where BPE’s greedy merging strategy089

often fails to align with true morpheme boundaries.090

While purely morphology-based segmentation091

could mitigate these issues, it has also shown092

limitations in aligning with naturally occurring093

linguistic patterns in corpus-based learning (Dur-094

rani et al., 2019; Marco and Fraser, 2024). Thus,095

developing tokenization methods that balance096

morphological integrity with statistical efficiency097

remains a critical challenge for multilingual NLP.098

099

Contributions: We introduce MorphBPE, an100

extension of Byte Pair Encoding (BPE) that inte-101

grates linguistic knowledge into subword tokeniza-102

tion. Our key contributions are:103

(i) A Morphology-Aware LLM Tokenizer:104

MorphBPE improves adherence to linguistic105

structures while identifying frequent patterns, bal-106

ancing token efficiency and interpretability, partic-107

ularly in morphologically rich languages. It ex-108

tends BPE by incorporating morphological struc-109

ture while remaining fully compatible with existing110

LLM training pipelines.111

(ii) Linguistically Informed Tokenizer Evalua-112

tion Metrics: We introduce morphology-aware113

evaluation metrics to assess tokenization quality:114

• Morph.-Edit Distance Score: Measures edit115

distance at the morpheme level, quantifying116

segmentation accuracy.117

• Morph.-Consistency F1-Score: Inspired by118

(Marco and Fraser, 2024), evaluates the seg-119

mentation consistency, offering a linguisti-120

cally grounded metric evaluating whether121

words that share the same morphemes are also122

assigned the same tokens, and vice versa.123

For benchmarking, we curate a dataset covering124

diverse morphological typologies (Ge and Comrie,125

2022):126

• English: Fusional, low complexity127

• Russian: Fusional, moderate complexity128

• Hungarian: Agglutinative, high complexity129

• Arabic: Templatic, high complexity130

MorphBPE achieves superior morphological 131

alignment and consistency, enhancing model in- 132

terpretability. 133

(iii) Empirical Evaluation on LLM Training: We 134

compare MorphBPE to vanilla BPE on 300M 135

and 1B parameter LLMs across the four languages, 136

demonstrating: 137

• Lower training loss, indicating improved lin- 138

guistic representations. 139

• Faster convergence, enhancing computa- 140

tional efficiency. 141

By integrating linguistic principles with mod- 142

ern tokenization strategies, MorphBPE bridges the 143

gap between traditional morphological analysis 144

and NLP, providing a computationally efficient 145

and morphologically interpretable tokenization ap- 146

proach for language modeling, particularly in mor- 147

phologically rich languages like Arabic. 148

2 Related Work 149

BPE, originally introduced as a text compression 150

algorithm (Shibata et al., 1999), was first adapted 151

for machine translation as a tokenization method in 152

2016 (Sennrich et al., 2016). Since then, it has be- 153

come the de facto standard in NLP and Large Lan- 154

guage Models (LLMs) due to its efficiency in man- 155

aging vocabulary size, handling out-of-vocabulary 156

words, and capturing frequent patterns, while offer- 157

ing partial improvements over morphology-based 158

tokenizers (Sennrich et al., 2016). 159

Despite its widespread adoption, vanilla BPE 160

has several notable limitations: its greedy merg- 161

ing strategy, inefficiencies in cross-lingual settings 162

where similar words with different character varia- 163

tions are not aligned, and inconsistent handling of 164

character-level information across languages. To 165

address these challenges, various extensions have 166

been proposed, including BPE dropout (Provilkov 167

et al., 2020), which introduces stochasticity to im- 168

prove generalization, sampling-based BPE (Asgari 169

et al., 2019, 2020), which enhances subword di- 170

versity, byte-level adaptations (Wang et al., 2020), 171

which aim to improve robustness across scripts, and 172

multilingual BPE variants (Liang et al., 2023), de- 173

signed to optimize token sharing across languages. 174

The importance of morphology-aware tokeniza- 175

tion for language models has been recognized in 176

several recent studies (Park et al., 2021; Jabbar, 177

2023; Marco and Fraser, 2024; Weller-Di Marco 178

and Fraser, 2024). However, an integrated solution 179
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that effectively balances morphological informa-180

tion with frequent pattern extraction while remain-181

ing fully compatible with modern LLM training182

pipelines has remained an open problem.183

3 Methods184

Figure 2 provides an overview of our approach. To185

systematically evaluate MorphBPE, we select four186

languages with distinct morphological typologies,187

where morphological segmentation is available for188

training and evaluation at the word level. We de-189

termine the vocabulary sizes for each language190

based on optimal alignment with morphological191

boundaries. Then we evaluate the vanilla BPE and192

MorphBPE on the selected vocabulary size using193

intrinsic metrics detailed in §3.3.194

3.1 Datasets195

3.1.1 Morphological Data196

Our dataset comprises morphologically segmented197

words from four morphologically diverse lan-198

guages (Ge and Comrie, 2022): English, Russian,199

Hungarian, and Arabic. The segmentation data200

for English, Russian, and Hungarian is sourced201

from the SIGMORPHON 2022 Shared Task on202

Morpheme Segmentation (Batsuren et al., 2022),203

which provides high-quality morpheme segmen-204

tations. To incorporate a root-based (templatic)205

morphological system, we include Arabic, where,206

we utilize multiple sources: the Arabic Treebank207

(ATB) dataset (Taji et al., 2017), the Dialectal208

Segmentation Dataset (Darwish et al., 2018), and209

Quranic morphology data (Dukes and Habash,210

2010). Additionally, we enrich this set with 1M211

high-confidence segmentations of frequent Arabic212

surfaceforms obtained using Farasa (Darwish and213

Mubarak, 2016). All datasets were cleaned and214

standardized. Manually annotated segmentations215

were split into 80% training, 10% validation, and216

10% test sets. Table 1 summarizes the dataset com-217

position.218

3.1.2 LLM Training Data219

For our study on Evaluating MorphBPE vs. BPE220

Across Languages with Diverse Morphologies:221

Hungarian, Arabic, Russian, and English, we re-222

quire a large-scale multilingual training dataset. We223

selected FineWeb2 (Penedo et al., 2024), a com-224

prehensive corpus covering over 1,000 languages,225

to ensure sufficient tokens for training, following226

the Chinchilla scaling law (Hoffmann et al., 2022).227

This choice enables a balanced token distribution228
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Figure 1: Comparison of morphological distance and
fertility rate for BPE and MorphBPE across four lan-
guages.

across the selected languages, ensuring fair and 229

robust evaluation of MorphBPE and BPE. 230

3.2 MorphBPE approach 231

MorphBPE is a simple yet effective extension of 232

BPE that prevents frequent symbol pair merges 233

from crossing morpheme boundaries while keeping 234

the rest of the algorithm unchanged (Algorithm 1). 235

This ensures compatibility with standard BPE infer- 236

ence, making MorphBPE easy to integrate into 237

existing pipelines without modifications. 238

Algorithm 1 Morphologically-aware Byte Pair Encoding
(MorphBPE)

1: Initialize vocabulary with individual characters
2: Segment the training corpus using morphological segmen-

tation
3: while number of merges < desired vocabulary size do
4: Compute byte-pair frequencies
5: Morph-aware Step: Merge the most frequent byte

pair without crossing morpheme boundaries
6: Update vocabulary with the merged symbol
7: end while

3.3 Tokenization Evaluation 239

Tokenization evaluation can be conducted using 240

intrinsic or extrinsic metrics. Extrinsic evaluation 241

assesses tokenizers in the broader context of LLM 242

performance across diverse capabilities, requiring 243

extensive pre/post training and high-level analysis, 244

which is beyond the scope of this work (Cecchini 245

et al., 2024; Chia et al., 2024). Before evaluating 246

tokenizers in downstream tasks, it is essential to 247

first examine fundamental properties to ensure ef- 248

ficiency and consistency. Therefore, we focus on 249

intrinsic evaluation metrics that provide insights 250
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Table 1: Token Statistics for Morphological Segmentation Datasets Used in BPE and MorphBPE Training and
Tokenizer Evaluation Across Languages.

Language Morphology Type # of Words Avg. Morphemes per Word

Hungarian Agglutinative 930,312 3.22
Russian Fusional (moderate complexity) 784,212 3.84
English Fusional (low complexity) 571,495 2.33
Arabic Root-based (Templatic) 1,395,835 2.50

Table 2: Morph.-consistency evaluation: Precision, Recall, and F1-score for BPE and MorphBPE in different
languages. A higher F1-score (µc) indicates greater consistency in segmenting words with similar or dissimilar
morphemes. Results are reported as mean ± standard deviation over multiple resamples over test sets.

Model Precision (Mean ± Std) Recall (Mean ± Std) Morph.-Consistency F1-score (µc)
English BPE (96K) 0.00 ± 0.00 0.03 ± 0.02 0.00
English MorphBPE (96K) 0.20 ± 0.42 0.30 ± 0.06 0.24
Russian BPE (64K) 0.10 ± 0.32 0.06 ± 0.01 0.07
Russian MorphBPE (64K) 0.69 ± 0.48 0.33 ± 0.06 0.45
Hungarian BPE (24K) 0.08 ± 0.25 0.29 ± 0.04 0.13
Hungarian MorphBPE (24K) 0.98 ± 0.03 0.78 ± 0.07 0.87
Arabic BPE (96K) 0.00 ± 0.00 0.08 ± 0.03 0.00
Arabic MorphBPE (96K) 0.89 ± 0.31 0.53 ± 0.05 0.66

into the core characteristics of tokenization in large251

language models (LLMs).252

(i) Fertility (ϕ): Fertility quantifies the number of253

tokens generated by a tokenizer relative to a base-254

line, typically a whitespace-based tokenizer (Rust255

et al., 2021). A lower fertility score generally in-256

dicates a more efficient representation, enabling257

longer contexts. However, this assumption is de-258

batable, particularly for agglutinative languages259

such as Hungarian and Turkish, where capturing260

morphological structure necessitates more tokens261

to provide adequate context for each surface form.262

As shown in Table 1, languages vary in the aver-263

age number of morphemes per word. For instance,264

Hungarian and Arabic require more tokenization265

compared to English to accurately represent their266

linguistic structures.267

(ii) Morph.-Edit Distance Score (µe): We intro-268

duce a new intrinsic evaluation metric, the morpho-269

logical edit distance, which assesses how well tok-270

enization aligns with the underlying morphological271

segmentation of words. This metric is computed272

using a pairwise alignment score based on dynamic273

programming, ensuring that the order of matching274

tokens with segmented morphemes is preserved.275

This approach quantitatively evaluates how effec-276

tively a tokenizer respects the morphological struc-277

ture of the language. We refer to this metric as the278

Morphology Edit Distance Score (µe), which eval-279

uates the interpretability of the tokenizer. While it280

can be normalized by the number of morphemes281

in each word, we retain its raw form to provide a 282

clearer indication of the average number of edits re- 283

quired. (iii) Morph.-Consistency Scores (F1: µc): 284

Inspired by the discussion in (Marco and Fraser, 285

2024), we propose a morphology consistency mea- 286

sure, which is crucial for language model training. 287

It ensures that words sharing the same morphemes 288

also share tokens (recall score) and that words with 289

shared tokens correspondingly share morphemes 290

(precision score). This evaluation is conducted over 291

a dataset of segmented words, where shared mor- 292

pheme/token relationships can be treated as either 293

binary events or weighted counts. For simplicity, 294

we adopt a binary scheme, checking whether shared 295

morphemes correspond to shared tokens and vice 296

versa. Since both precision and recall are essential 297

for avoiding unnecessary ambiguity and maintain- 298

ing a consistent representation of related words, 299

we use their harmonic mean, i.e., the F1-score of 300

morphological consistency, denoted as µc. 301

To ensure practical feasibility given large eval- 302

uation datasets, we employ k-means clustering 303

(k = 100) to group words with similar morphemes 304

and measure scores between C = 50 word pairs 305

within each cluster. Precision and recall are esti- 306

mated through a bootstrapping procedure, drawing 307

N = 10 resamples from clusters. 308

3.4 Vocabulary Size Selection 309

Vocabulary size is a critical hyperparameter in 310

LLM training, directly impacting model perfor- 311
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Figure 2: Overview of the MorphBPE study: We evaluate the effectiveness of MorphBPE over vanilla BPE
across four morphologically diverse languages (English, Russian, Hungarian, and Arabic) by aligning vocabulary
size with morphological segmentation. The we evaluate the tokenizers using the intrinsic evaluation metrics.
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Figure 3: Comparison of training cross-entropy loss between BPE and MorphBPE across four languages. Results
are shown for both the small (300M) and large (1B) models.

mance across languages. To determine the optimal312

vocabulary size in MorphBPE, for our four lan-313

guages, we employed a morphology distance score,314

µe, computed over the development set. We eval-315

uated vocabulary sizes from 8K to 96K in 8K in-316

crements, selecting the smallest size beyond which317

further increases did not yield statistically signif-318

icant improvements in morphological alignment319

(measured via a t-test over the dev. vocabular-320

ies). Through this approach, we determined opti-321

mal sizes of 24K for Hungarian and 64K for Rus-322

sian, where larger vocabularies showed diminish-323

ing returns. For English and Arabic, morphology324

distance continued improving with larger vocabu-325

laries, leading us to select 96K.326

We evaluated the selected tokenizers based on327

(i) fertility rate (ϕ), (ii) morphological edit distance328

score (µe), and (iii) morphological consistency329

score (µc) on the test sets of English, Russian, Hun-330

garian, and Arabic. Since fertility rate is a relative331

measure, we compare both MorphBPE and BPE332

against a strong multilingual baseline—Bloomz333

(256K) (Yong et al., 2023), which employs a large 334

vocabulary to accommodate multiple languages. In 335

contrast, µe and µc are directly computed from 336

the test data to evaluate tokenization quality with 337

respect to linguistic structure. 338

(iv) Cross Entropy Loss of Language Modeling 339

(lc) Cross-entropy loss in language modeling mea- 340

sures the divergence between predicted and ground 341

truth outputs. The trajectory of training cross- 342

entropy loss indicates how quickly a model con- 343

verges and improves next-token prediction. This 344

metric is closely related to model perplexity, a stan- 345

dard intrinsic evaluation measure for language mod- 346

els. However, cross-entropy loss is only compara- 347

ble across models with identical vocabulary sizes, 348

as vocabulary variations directly affect the model’s 349

branching factor. 350

3.5 Language Model Training 351

To assess the scalability of our approach, we 352

trained two model sizes—300M (small) and 1B 353

(large)—using decoder architectures within the 354
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LLaMA-Factory framework (Zheng et al., 2024).355

For each language, we trained models with both356

vanilla BPE and MorphBPE of the same vocab-357

ulary sizes, resulting in four models per language.358

Training loss was monitored and compared across359

languages and tokenization methods to evaluate360

their impact on learning efficiency. We ensured361

passing ≈ 6B tokens to the small and ≈ 20B to-362

kens to the large model compatible with the Chin-363

chilla scaling law (Hoffmann et al., 2022).364

4 Results365

4.1 Morphological Metrics and Fertility366

The results in Figure 1 and Table 2 show a clear367

trend: MorphBPE consistently achieves lower mor-368

phological edit distance (µe) and higher morpho-369

logical consistency (µc) compared to BPE, with a370

slight increase in fertility rate across all languages.371

The extent of improvement varies based on the372

morphological complexity of the language. The373

gap in µe and µc between MorphBPE and BPE is374

larger for Hungarian and Arabic, which have more375

complex morphological structures. These results376

indicate that MorphBPE better preserves linguistic377

structure, particularly in morphologically rich lan-378

guages, while BPE tends to over-fragment words379

based on subword frequency rather than morpheme380

boundaries. Higher µc of MorphBPE also reflects381

consistent tokenization which morphology, which382

can impact the convergence of language model383

training.384

4.2 Training cross-entropy loss385

The training cross-entropy loss for the four lan-386

guages, using the same vocabulary and comparing387

BPE and MorphBPE, is presented in Figure 3.388

The results are shown over a training window of389

≈ 14B tokens for both small and large models,390

with the selected interval chosen for clarity, as the391

overall trend remains consistent throughout train-392

ing. The results indicate that MorphBPE consis-393

tently improves cross-entropy loss across all lan-394

guages and model sizes, even for English language.395

This improvement is particularly pronounced in396

morphologically richer languages, where the reduc-397

tion in loss is more significant. The results demon-398

strate lower training loss, indicating improved lin-399

guistic representations as well as faster conver-400

gence.401

5 Discussions and Conclusion 402

In this work, we introduced MorphBPE, a 403

morphology-aware extension of BPE that integrates 404

linguistic knowledge into subword tokenization. 405

Through extensive empirical evaluation across En- 406

glish, Russian, Hungarian, and Arabic, we demon- 407

strated that MorphBPE consistently enhances 408

LLM training efficiency by reducing cross-entropy 409

loss, improving morphological alignment, and ac- 410

celerating convergence across both 300M and 1B 411

parameter models. 412

Another key contribution of this work is the in- 413

troduction of linguistically informed tokenizer eval- 414

uation metrics, addressing a critical gap in current 415

tokenization evaluation. The Morphological Con- 416

sistency F1-Score provides a structured measure 417

of segmentation stability, which is essential for en- 418

suring consistent morpheme-level representations 419

during LLM training. This stability directly con- 420

tributes to better generalization and improved learn- 421

ing efficiency, particularly for morphologically rich 422

languages. Meanwhile, the Morphological Align- 423

ment Score, based on edit distance at the morpheme 424

level, serves as a linguistically grounded metric, 425

that can contribute to the interpretability of the tok- 426

enizer. 427

We show that MorphBPE, despite having 428

higher fertility, results in a more interpretable 429

and more consistent and more efficient tokenizer 430

for LLM training. This suggests that fertility—a 431

commonly used metric in tokenization evalua- 432

tion—may not be the most reliable indicator of 433

tokenizer quality of an efficient LLM training. 434

An additional advantage of MorphBPE is its 435

full compatibility with existing LLM training and 436

inference pipelines, requiring minimal modifica- 437

tions to the tokenization process. This ensures 438

easy integration without disrupting standard work- 439

flows. Furthermore, an efficient implementation of 440

MorphBPE training and evaluation metrics will 441

be released with this work, enabling reproducibil- 442

ity and facilitating further research in morphology- 443

aware tokenization. 444

6 Limitations 445

We demonstrated the effectiveness of 446

MorphBPE across four languages with di- 447

verse morphological typologies. However, future 448

work can extend this evaluation to additional lan- 449

guages. One limitation is that MorphBPE relies 450

on the availability of morphological segmentation 451
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data, which is not yet accessible for all languages.452

Efforts such as UniMorph (Kirov et al., 2018) and453

MorphyNet (Batsuren et al., 2021) are helping454

bridge this gap, but further development is needed.455

Additionally, an important next step is the extrinsic456

evaluation of LLMs trained with MorphBPE,457

assessing their impact on higher-level capabilities.458
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