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Abstract

Tokenization is fundamental to Natural Lan-
guage Processing (NLP), directly impacting
model efficiency and linguistic fidelity. While
Byte Pair Encoding (BPE) is widely used in
Large Language Models (LLMs), it often dis-
regards morpheme boundaries, leading to sub-
optimal segmentation—particularly in morpho-
logically rich languages. We introduce Mor-
phBPE, a morphology-aware extension of BPE
that integrates linguistic structure into subword
tokenization while preserving statistical effi-
ciency. Additionally, we propose two mor-
phology based evaluation metrics: (i) Morpho-
logical Consistency F1-Score, which quanti-
fies the consistency between morpheme shar-
ing and token sharing, contributing to LLM
training convergence, and (ii) Morphological
Edit Distance, which measures alignment be-
tween morphemes and token concerning inter-
pretability. Experiments on English, Russian,
Hungarian, and Arabic across 300M and 1B
parameter LLMs demonstrate that MorphBPE
consistently reduces cross-entropy loss, acceler-
ates convergence, and improves morphological
alignment scores. Fully compatible with ex-
isting LLM pipelines, M orph BPE requires
minimal modifications for integration. The
MorphBPE codebase, datasets, and the to-
kenizer playground will be available with the
publication of the work.

1 Introduction

Tokenization is a fundamental preprocessing step
in NLP, converting raw text into structured units
such as bytes (Gillick et al., 2016), characters (Al-
Rfou et al., 2019), subwords (Sennrich et al., 2016),
words, or multi-word expressions (Gee et al., 2023).
Its effectiveness directly influences downstream
tasks, as tokenization errors can propagate through
the pipeline, impacting overall model performance
(Sajjad et al., 2017; Adel et al., 2018). Over
the years, tokenization has advanced from basic

whitespace-based segmentation to sophisticated sta-
tistical and neural approaches (Smit et al., 2014;
Otani et al., 2020). In Large Language Mod-
els (LLMs), tokenization significantly affects ef-
ficiency, context length, and representational accu-
racy (Dagan et al., 2024). Although tokenization-
free architectures have been investigated as poten-
tial alternatives (Clark et al., 2022; Deiseroth et al.,
2024), most state-of-the-art models—including
Gemma (Team et al., 2024), LLaMA (Touvron
et al., 2023), DeepSeek (Bi et al., 2024) and Ope-
nAI’s GPT series—still rely on Byte Pair Encoding
(BPE)-based tokenization for most languages, re-
taining both its benefits and inherent limitations.

The additive nature of Byte Pair Encoding (BPE)
makes it well-suited for concatenative morphol-
ogy, as seen in English, where morphemes are lin-
early appended. However, it struggles with non-
concatenative morphological systems, such as root-
and-pattern morphology in Arabic and Hebrew,
where meaning is encoded through non-linear in-
fixation (Khaliq and Carroll, 2013). Similarly, ag-
glutinative languages like Turkish, Hungarian, and
Korean pose challenges, as their highly produc-
tive affixation processes complicate adherence to
morpheme boundaries (Hakkani-Tiir et al., 2000).
These languages require finer-grained tokeniza-
tion to preserve linguistically meaningful subword
structures. Standard BPE and byte-level tokeniza-
tion methods often struggle to represent these com-
plex morphological patterns effectively, empha-
sizing the necessity for morphology-sensitive to-
kenization approaches that better align with the
diverse structural properties of different word for-
mation processes (Marco and Fraser, 2024).

Analyzing BPE output across morphologically
rich languages, we observe that its segmentation
often disregards meaningful morpheme boundaries,
introducing ambiguity and disrupting semantic co-
herence. For instance, in Arabic, the word & J,H



(Al-Rahman, “The Merciful””) may be incorrectly
segmented into P (min, “whom”) d‘ (al, “the”) +

@ (rah, an incomplete fragment). Here, O (min),

a frequent token, is semantically unrelated to the
original word, increasing the model’s burden in re-
constructing meaningful representations. Similar
challenges arise in agglutinative and polysynthetic
languages, where BPE’s greedy merging strategy
often fails to align with true morpheme boundaries.
While purely morphology-based segmentation
could mitigate these issues, it has also shown
limitations in aligning with naturally occurring
linguistic patterns in corpus-based learning (Dur-
rani et al., 2019; Marco and Fraser, 2024). Thus,
developing tokenization methods that balance
morphological integrity with statistical efficiency
remains a critical challenge for multilingual NLP.

Contributions: We introduce MorphBPFE, an
extension of Byte Pair Encoding (BPE) that inte-
grates linguistic knowledge into subword tokeniza-
tion. Our key contributions are:

(i) A Morphology-Aware LLM Tokenizer:
MorphBPE improves adherence to linguistic
structures while identifying frequent patterns, bal-
ancing token efficiency and interpretability, partic-
ularly in morphologically rich languages. It ex-
tends BPE by incorporating morphological struc-
ture while remaining fully compatible with existing
LLM training pipelines.

(ii) Linguistically Informed Tokenizer Evalua-
tion Metrics: We introduce morphology-aware
evaluation metrics to assess tokenization quality:

* Morph.-Edit Distance Score: Measures edit
distance at the morpheme level, quantifying
segmentation accuracy.

* Morph.-Consistency F1-Score: Inspired by
(Marco and Fraser, 2024), evaluates the seg-
mentation consistency, offering a linguisti-
cally grounded metric evaluating whether
words that share the same morphemes are also
assigned the same tokens, and vice versa.

For benchmarking, we curate a dataset covering
diverse morphological typologies (Ge and Comrie,
2022):

* English: Fusional, low complexity
* Russian: Fusional, moderate complexity
* Hungarian: Agglutinative, high complexity

* Arabic: Templatic, high complexity

MorphBPE achieves superior morphological
alignment and consistency, enhancing model in-
terpretability.

(iii) Empirical Evaluation on LLM Training: We
compare MorphBPE to vanilla BPE on 300M
and /B parameter LL.Ms across the four languages,
demonstrating:

* Lower training loss, indicating improved lin-
guistic representations.

* Faster convergence, enhancing computa-
tional efficiency.

By integrating linguistic principles with mod-
ern tokenization strategies, MorphBPE bridges the
gap between traditional morphological analysis
and NLP, providing a computationally efficient
and morphologically interpretable tokenization ap-
proach for language modeling, particularly in mor-
phologically rich languages like Arabic.

2 Related Work

BPE, originally introduced as a text compression
algorithm (Shibata et al., 1999), was first adapted
for machine translation as a tokenization method in
2016 (Sennrich et al., 2016). Since then, it has be-
come the de facto standard in NLP and Large Lan-
guage Models (LLMs) due to its efficiency in man-
aging vocabulary size, handling out-of-vocabulary
words, and capturing frequent patterns, while offer-
ing partial improvements over morphology-based
tokenizers (Sennrich et al., 2016).

Despite its widespread adoption, vanilla BPE
has several notable limitations: its greedy merg-
ing strategy, inefficiencies in cross-lingual settings
where similar words with different character varia-
tions are not aligned, and inconsistent handling of
character-level information across languages. To
address these challenges, various extensions have
been proposed, including BPE dropout (Provilkov
et al., 2020), which introduces stochasticity to im-
prove generalization, sampling-based BPE (Asgari
et al., 2019, 2020), which enhances subword di-
versity, byte-level adaptations (Wang et al., 2020),
which aim to improve robustness across scripts, and
multilingual BPE variants (Liang et al., 2023), de-
signed to optimize token sharing across languages.

The importance of morphology-aware tokeniza-
tion for language models has been recognized in
several recent studies (Park et al., 2021; Jabbar,
2023; Marco and Fraser, 2024; Weller-Di Marco
and Fraser, 2024). However, an integrated solution



that effectively balances morphological informa-
tion with frequent pattern extraction while remain-
ing fully compatible with modern LLLM training
pipelines has remained an open problem.

3 Methods

Figure 2 provides an overview of our approach. To
systematically evaluate MorphBPE, we select four
languages with distinct morphological typologies,
where morphological segmentation is available for
training and evaluation at the word level. We de-
termine the vocabulary sizes for each language
based on optimal alignment with morphological
boundaries. Then we evaluate the vanilla BPE and
MorphBPE on the selected vocabulary size using
intrinsic metrics detailed in §3.3.

3.1 Datasets

3.1.1 Morphological Data

Our dataset comprises morphologically segmented
words from four morphologically diverse lan-
guages (Ge and Comrie, 2022): English, Russian,
Hungarian, and Arabic. The segmentation data
for English, Russian, and Hungarian is sourced
from the SIGMORPHON 2022 Shared Task on
Morpheme Segmentation (Batsuren et al., 2022),
which provides high-quality morpheme segmen-
tations. To incorporate a root-based (templatic)
morphological system, we include Arabic, where,
we utilize multiple sources: the Arabic Treebank
(ATB) dataset (Taji et al., 2017), the Dialectal
Segmentation Dataset (Darwish et al., 2018), and
Quranic morphology data (Dukes and Habash,
2010). Additionally, we enrich this set with 1M
high-confidence segmentations of frequent Arabic
surfaceforms obtained using Farasa (Darwish and
Mubarak, 2016). All datasets were cleaned and
standardized. Manually annotated segmentations
were split into 80% training, 10% validation, and
10% test sets. Table 1 summarizes the dataset com-
position.

3.1.2 LLM Training Data

For our study on Evaluating M orphBPFE vs. BPE
Across Languages with Diverse Morphologies:
Hungarian, Arabic, Russian, and English, we re-
quire a large-scale multilingual training dataset. We
selected FineWeb2 (Penedo et al., 2024), a com-
prehensive corpus covering over 1,000 languages,
to ensure sufficient tokens for training, following
the Chinchilla scaling law (Hoffmann et al., 2022).
This choice enables a balanced token distribution
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Figure 1: Comparison of morphological distance and
fertility rate for BPE and M orphBPFE across four lan-
guages.

across the selected languages, ensuring fair and
robust evaluation of MorphBPFE and BPE.

3.2 MorphBPE approach

MorphBPE is a simple yet effective extension of
BPE that prevents frequent symbol pair merges
from crossing morpheme boundaries while keeping
the rest of the algorithm unchanged (Algorithm 1).
This ensures compatibility with standard BPE infer-
ence, making MorphBPFE easy to integrate into
existing pipelines without modifications.

Algorithm 1 Morphologically-aware Byte Pair Encoding
(MorphBPE)

1: Initialize vocabulary with individual characters

2: Segment the training corpus using morphological segmen-
tation

3: while number of merges < desired vocabulary size do

4: Compute byte-pair frequencies

S: Morph-aware Step: Merge the most frequent byte
pair without crossing morpheme boundaries

6: Update vocabulary with the merged symbol

7: end while

3.3 Tokenization Evaluation

Tokenization evaluation can be conducted using
intrinsic or extrinsic metrics. Extrinsic evaluation
assesses tokenizers in the broader context of LLM
performance across diverse capabilities, requiring
extensive pre/post training and high-level analysis,
which is beyond the scope of this work (Cecchini
et al., 2024; Chia et al., 2024). Before evaluating
tokenizers in downstream tasks, it is essential to
first examine fundamental properties to ensure ef-
ficiency and consistency. Therefore, we focus on
intrinsic evaluation metrics that provide insights



Table 1: Token Statistics for Morphological Segmentation Datasets Used in BPE and M orph B P E Training and

Tokenizer Evaluation Across Languages.

Language  Morphology Type # of Words  Avg. Morphemes per Word
Hungarian Agglutinative 930,312 3.22
Russian Fusional (moderate complexity) 784,212 3.84
English Fusional (low complexity) 571,495 2.33
Arabic Root-based (Templatic) 1,395,835 2.50

Table 2: Morph.-consistency evaluation: Precision, Recall, and F1-score for BPE and MorphBPE in different
languages. A higher F1-score (u.) indicates greater consistency in segmenting words with similar or dissimilar
morphemes. Results are reported as mean =+ standard deviation over multiple resamples over test sets.

Model Precision (Mean + Std) Recall (Mean * Std) | Morph.-Consistency F1-score (.)
English BPE (96K) 0.00 £ 0.00 0.03 £0.02 0.00
English MorphBPE (96K) 0.20 £ 0.42 0.30 £ 0.06 0.24
Russian BPE (64K) 0.10£0.32 0.06 £ 0.01 0.07
Russian MorphBPFE (64K) 0.69 +0.48 0.33 £ 0.06 0.45
Hungarian BPE (24K) 0.08 £0.25 0.29 £ 0.04 0.13
Hungarian MorphBPE (24K) 0.98 £ 0.03 0.78 £0.07 0.87
Arabic BPE (96K) 0.00 £ 0.00 0.08 £0.03 0.00
Arabic MorphBPE (96K) 0.89 £0.31 0.53 £0.05 0.66

into the core characteristics of tokenization in large
language models (LLMs).

(i) Fertility (¢): Fertility quantifies the number of
tokens generated by a tokenizer relative to a base-
line, typically a whitespace-based tokenizer (Rust
et al., 2021). A lower fertility score generally in-
dicates a more efficient representation, enabling
longer contexts. However, this assumption is de-
batable, particularly for agglutinative languages
such as Hungarian and Turkish, where capturing
morphological structure necessitates more tokens
to provide adequate context for each surface form.
As shown in Table 1, languages vary in the aver-
age number of morphemes per word. For instance,
Hungarian and Arabic require more tokenization
compared to English to accurately represent their
linguistic structures.

(ii) Morph.-Edit Distance Score (..): We intro-
duce a new intrinsic evaluation metric, the morpho-
logical edit distance, which assesses how well tok-
enization aligns with the underlying morphological
segmentation of words. This metric is computed
using a pairwise alignment score based on dynamic
programming, ensuring that the order of matching
tokens with segmented morphemes is preserved.
This approach quantitatively evaluates how effec-
tively a tokenizer respects the morphological struc-
ture of the language. We refer to this metric as the
Morphology Edit Distance Score (i), which eval-
uates the interpretability of the tokenizer. While it
can be normalized by the number of morphemes

in each word, we retain its raw form to provide a
clearer indication of the average number of edits re-
quired. (iii) Morph.-Consistency Scores (F1: 1.):
Inspired by the discussion in (Marco and Fraser,
2024), we propose a morphology consistency mea-
sure, which is crucial for language model training.
It ensures that words sharing the same morphemes
also share tokens (recall score) and that words with
shared tokens correspondingly share morphemes
(precision score). This evaluation is conducted over
a dataset of segmented words, where shared mor-
pheme/token relationships can be treated as either
binary events or weighted counts. For simplicity,
we adopt a binary scheme, checking whether shared
morphemes correspond to shared tokens and vice
versa. Since both precision and recall are essential
for avoiding unnecessary ambiguity and maintain-
ing a consistent representation of related words,
we use their harmonic mean, i.e., the F1-score of
morphological consistency, denoted as ..

To ensure practical feasibility given large eval-
uation datasets, we employ k-means clustering
(k = 100) to group words with similar morphemes
and measure scores between C' = 50 word pairs
within each cluster. Precision and recall are esti-
mated through a bootstrapping procedure, drawing
N = 10 resamples from clusters.

3.4 Vocabulary Size Selection

Vocabulary size is a critical hyperparameter in
LLM training, directly impacting model perfor-
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Figure 2: Overview of the MorphBPE study: We evaluate the effectiveness of M orphBPE over vanilla BPE
across four morphologically diverse languages (English, Russian, Hungarian, and Arabic) by aligning vocabulary
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Figure 3: Comparison of training cross-entropy loss between BPE and M orph BPE across four languages. Results
are shown for both the small (300M) and large (1B) models.

mance across languages. To determine the optimal
vocabulary size in M orphBPFE, for our four lan-
guages, we employed a morphology distance score,
e, computed over the development set. We eval-
uated vocabulary sizes from 8K to 96K in 8K in-
crements, selecting the smallest size beyond which
further increases did not yield statistically signif-
icant improvements in morphological alignment
(measured via a t-test over the dev. vocabular-
ies). Through this approach, we determined opti-
mal sizes of 24K for Hungarian and 64K for Rus-
sian, where larger vocabularies showed diminish-
ing returns. For English and Arabic, morphology
distance continued improving with larger vocabu-
laries, leading us to select 96K.

We evaluated the selected tokenizers based on
(1) fertility rate (@), (ii) morphological edit distance
score (ue), and (iii) morphological consistency
score (y.) on the test sets of English, Russian, Hun-
garian, and Arabic. Since fertility rate is a relative
measure, we compare both MorphBPFE and BPE
against a strong multilingual baseline—Bloomz

(256K) (Yong et al., 2023), which employs a large
vocabulary to accommodate multiple languages. In
contrast, . and p. are directly computed from
the test data to evaluate tokenization quality with
respect to linguistic structure.

(iv) Cross Entropy Loss of Language Modeling
(lc) Cross-entropy loss in language modeling mea-
sures the divergence between predicted and ground
truth outputs. The trajectory of training cross-
entropy loss indicates how quickly a model con-
verges and improves next-token prediction. This
metric is closely related to model perplexity, a stan-
dard intrinsic evaluation measure for language mod-
els. However, cross-entropy loss is only compara-
ble across models with identical vocabulary sizes,
as vocabulary variations directly affect the model’s
branching factor.

3.5 Language Model Training

To assess the scalability of our approach, we
trained two model sizes—300M (small) and 1B
(large)—using decoder architectures within the



LLaMA-Factory framework (Zheng et al., 2024).
For each language, we trained models with both
vanilla BPE and M orph BPE of the same vocab-
ulary sizes, resulting in four models per language.
Training loss was monitored and compared across
languages and tokenization methods to evaluate
their impact on learning efficiency. We ensured
passing =~ 6B tokens to the small and =~ 208 to-
kens to the large model compatible with the Chin-
chilla scaling law (Hoffmann et al., 2022).

4 Results

4.1 Morphological Metrics and Fertility

The results in Figure 1 and Table 2 show a clear
trend: MorphBPE consistently achieves lower mor-
phological edit distance (i) and higher morpho-
logical consistency (u.) compared to BPE, with a
slight increase in fertility rate across all languages.
The extent of improvement varies based on the
morphological complexity of the language. The
gap in pe and p. between MorphBPE and BPE is
larger for Hungarian and Arabic, which have more
complex morphological structures. These results
indicate that MorphBPE better preserves linguistic
structure, particularly in morphologically rich lan-
guages, while BPE tends to over-fragment words
based on subword frequency rather than morpheme
boundaries. Higher . of MorphBPE also reflects
consistent tokenization which morphology, which
can impact the convergence of language model
training.

4.2 Training cross-entropy loss

The training cross-entropy loss for the four lan-
guages, using the same vocabulary and comparing
BPE and MorphBPF, is presented in Figure 3.
The results are shown over a training window of
~ 14B tokens for both small and large models,
with the selected interval chosen for clarity, as the
overall trend remains consistent throughout train-
ing. The results indicate that M orph B PE consis-
tently improves cross-entropy loss across all lan-
guages and model sizes, even for English language.
This improvement is particularly pronounced in
morphologically richer languages, where the reduc-
tion in loss is more significant. The results demon-
strate lower training loss, indicating improved lin-
guistic representations as well as faster conver-
gence.

5 Discussions and Conclusion

In this work, we introduced MorphBPE, a
morphology-aware extension of BPE that integrates
linguistic knowledge into subword tokenization.
Through extensive empirical evaluation across En-
glish, Russian, Hungarian, and Arabic, we demon-
strated that MorphBPE consistently enhances
LLM training efficiency by reducing cross-entropy
loss, improving morphological alignment, and ac-
celerating convergence across both 300M and 1B
parameter models.

Another key contribution of this work is the in-
troduction of linguistically informed tokenizer eval-
uation metrics, addressing a critical gap in current
tokenization evaluation. The Morphological Con-
sistency F1-Score provides a structured measure
of segmentation stability, which is essential for en-
suring consistent morpheme-level representations
during LLM training. This stability directly con-
tributes to better generalization and improved learn-
ing efficiency, particularly for morphologically rich
languages. Meanwhile, the Morphological Align-
ment Score, based on edit distance at the morpheme
level, serves as a linguistically grounded metric,
that can contribute to the interpretability of the tok-
enizer.

We show that MorphBPE, despite having
higher fertility, results in a more interpretable
and more consistent and more efficient tokenizer
for LLM training. This suggests that fertility—a
commonly used metric in tokenization evalua-
tion—may not be the most reliable indicator of
tokenizer quality of an efficient LLM training.

An additional advantage of MorphBPFE is its
full compatibility with existing LLM training and
inference pipelines, requiring minimal modifica-
tions to the tokenization process. This ensures
easy integration without disrupting standard work-
flows. Furthermore, an efficient implementation of
MorphBPFE training and evaluation metrics will
be released with this work, enabling reproducibil-
ity and facilitating further research in morphology-
aware tokenization.

6 Limitations

We  demonstrated the effectiveness of
MorphBPE across four languages with di-
verse morphological typologies. However, future
work can extend this evaluation to additional lan-
guages. One limitation is that Morph B PFE relies
on the availability of morphological segmentation



data, which is not yet accessible for all languages.
Efforts such as UniMorph (Kirov et al., 2018) and
MorphyNet (Batsuren et al., 2021) are helping
bridge this gap, but further development is needed.
Additionally, an important next step is the extrinsic
evaluation of LLMs trained with MorphBPFE,
assessing their impact on higher-level capabilities.
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