
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING ROBUST REPRESENTATIONS WITH LONG-
TERM INFORMATION FOR GENERALIZATION IN VISUAL
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Generalization in visual reinforcement learning (VRL) aims to learn agents that
can adapt to test environments with unseen visual distractions. Despite advances in
robust representations learning, many methods do not take into account the essen-
tial downstream task of sequential decision-making. This leads to representations
that lack critical long-term information, impairing decision-making abilities in test
environments. To tackle this problem, we propose a novel robust action-value
representation learning (ROUSER) under the information bottleneck (IB) frame-
work. ROUSER learns robust representations to capture long-term information
from the decision-making objective (i.e., action values). Specifically, ROUSER
uses IB to encode robust representations by maximizing their mutual information
with action values for long-term information, while minimizing mutual information
with state-action pairs to discard irrelevant features. As action values are unknown,
ROUSER proposes to decompose robust representations of state-action pairs into
one-step rewards and robust representations of subsequent pairs. Thus, it can use
known rewards to compute the loss for robust representation learning. Moreover,
we show that ROUSER accurately estimates action values using learned robust
representations, making it applicable to various VRL algorithms. Experiments
demonstrate that ROUSER outperforms several state-of-the-art methods in eleven
out of twelve tasks, across both unseen background and color distractions.

1 INTRODUCTION

Generalization in visual reinforcement learning (VRL) has received considerable attention (Mnih
et al., 2015; Yarats et al., 2021; Kirk et al., 2021; Zhu et al., 2023) due to its potential to learn
agents that can address complex tasks across diverse environments in real-world applications, such as
autonomous driving (Wang et al., 2021; Li et al., 2023) and robot control (Xing et al., 2021; Ahmed
et al., 2021; Liu et al., 2023). It refers to the capability of agents to directly use their learned skills to
unknown environments, where visual distractions (e.g., dynamic backgrounds or colors of objects
under control) may differ from those encountered during training (Li et al., 2021; Wang et al., 2023;
Ali et al., 2023; Zhou et al., 2023). Therefore, these generalizable agents can execute tasks with high
performance when encountering environments under unseen distractions without extensive retraining.

To learn generalizable agents, one of promising approaches in VRL aims to develop robust represen-
tations against visual distractions in environments (Hansen & Wang, 2021; Kemertas & Aumentado-
Armstrong, 2021; Mazoure et al., 2022). Specifically, some methods introduce data augmenta-
tions (Hansen & Wang, 2021; Huang et al., 2022) and contrastive learning (Laskin et al., 2020; Kim
et al., 2021) to learn representations that are robust to irrelevant and spurious information. Other meth-
ods apply metric learning (Zhang et al., 2021; Lopez et al., 2022) to encode task-relevant information
for robust representation learning. Then, based on the learned robust representations, these methods
can directly use traditional VRL algorithms (Schulman et al., 2017; Fujimoto et al., 2018; Haarnoja
et al., 2018) to optimize the objectives of the downstream task of sequential decision-making, i.e.,
maximizing the expected cumulative rewards (i.e., action values) over these environments.

However, the aforementioned representation learning approaches often do not take into account
the essential downstream decision-making. This results in the representations that cannot capture

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

critical long-term robust information in sequential data, which is a key factor for generalization in
VRL (Wang et al., 2023; Qi et al., 2022). Although such representations are robust against visual
distractions, they cannot facilitate the generalization performance of sequential decision-making.

In this paper, we propose a novel robust action-value representation learning (ROUSER) for VRL
generalization under the information bottleneck (IB) framework. This approach introduces IB to
learn robust representations that capture long-term information from the sequential decision-making
objective (i.e., the action values).

Specifically, ROUSER first applies IB to propose a robust action-value representation, which is
correlated with the action value. This robust representation for each state-action pair maximizes
mutual information with the action value, while minimizing mutual information with the associated
state-action pair. Thus, this representation can capture long-term information without irrelevant
features. Then, as the true action values are unknown, we cannot directly predict action values to
learn the robust action-value representation. Inspired by task decomposition methods (Dietterich,
2000; Russell & Zimdars, 2003; Dayan, 1993; Barreto et al., 2017), ROUSER proposes to decompose
the robust action-value representation into a compressed reward representation—which captures only
information from a one-step reward—and a subsequent robust action-value representation. With this
recursive form, ROUSER can use the known one-step rewards instead of unknown action values to
compute the loss associated with robust action-value representations.

Moreover, for compressed reward representations, ROUSER introduces a reward model in the IB
framework. This model maximizes mutual information between one-step rewards and compressed
reward representations, while minimizing it between such representations and associated state-action
pairs. Therefore, ROUSER can use one-step rewards and state-action pairs to learn compressed
reward representations that encode only information from rewards.

This study proposes robust action-value representations in the IB framework, capturing long-term
information during the robust representation learning process. Thus, it significantly enhances per-
formance in sequential decision-making against unseen visual distractions. In addition, we provide
a theoretical guarantee for ROUSER, establishing a bound between the true action-value function
and the action-value function on top of learned robust action-value representations. This shows that
ROUSER can accurately estimate true action values using learned robust action-value representations.
Building upon this proof, we present an advantage of ROUSER, which is its applicability to various
VRL algorithms to improve generalization. We can integrate ROUSER with the VRL critic for action-
value estimation, using a critic’s embedding as a robust action-value representation. Experiments in
Section 5.2 demonstrate the applicability by combining ROUSER with traditional VRL algorithms,
including policy gradient (Yarats et al., 2022) and value-based (Hosu & Rebedea, 2016) methods.

It is worth noting that our study differs from task decomposition methods, which learn the representa-
tions from action values but do not take into account robustness against visual distractions. Moreover,
the representations learned by task decomposition methods often involve irrelevant information from
environment dynamics (Yang et al., 2022). Instead, we use one-step rewards to extract long-term
information from action values and leverage IB to discard irrelevant features in VRL. We summarize
the major contributions below.

• To the best of our knowledge, this study is the first to learn representations from action
values against visual distractions. It encodes robust and long-term information rather than
just robust features to facilitate downstream decision-making for generalization.

• We show that ROUSER can accurately estimate action values using the learned robust
action-value representations. With this proof, we can integrate ROUSER with various VRL
algorithms to estimate the action values, thereby enhancing robustness.

• Extensive experiments demonstrate that ROUSER outperforms several state-of-the-art VRL
methods in eleven out of twelve tasks across both unseen background and color distractions.

2 RELATED WORK

Representation Learning for Generalization in VRL. Representation learning approaches for
generalization in VRL aim to improve agents’ performance on unseen test environments by extracting
robust representations from training environments. Some approaches design an auxiliary contrastive

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

task to maximize the mutual information between representations from similar observations while
minimizing the mutual information between representations from dissimilar observations (Kim et al.,
2019; Laskin et al., 2020; Fan & Li, 2022). To obtain similar observations, they always leverage data
augmentations to generate observations (Hansen et al., 2021; Hansen & Wang, 2021; Huang et al.,
2022). However, they often do not take into account the downstream task of sequential decision-
making, leading to representations that lack long-term information. Some approaches introduce the
bisimulation metric with a recursive form (Ferns & Precup, 2014; Castro, 2020; Agarwal et al., 2021;
Mazoure et al., 2022) to identify robust representations using long-term information, similar to our
approach. However, it is difficult to directly compute the recursive metric. Thus, for implementation,
they often simplify the computation to capture information from the immediate future. Other methods
directly predict reward sequences to learn robust representations (Yang et al., 2022; Zhou et al.,
2023), which captures long-term task-relevant information for generalization. Instead of using reward
sequences, our approach simply applies one-step rewards to encode the sequential information, and
we further introduce the IB principle to improve robustness.

Task Decomposition in RL. We use the task decomposition to represent methods that decompose a
task into independent sub-tasks, so that each task has the same environment dynamics but a different
reward function. Then, they propose to learn action-value representations invariant to different
tasks/reward functions. Some of them, namely successor feature methods (Dayan, 1993; Barreto
et al., 2017; 2018; 2020), use such representations to generalize to different tasks for transfer learning.
Others, namely value decomposition methods (Sutton et al., 1999; Russell & Zimdars, 2003; Makino,
2023), apply such representations to improve sample efficiency in new tasks. See Appendix A
for details. Motivated by their framework where action-value representations can be decomposed
into an infinite sequence of reward representations, we (1) learn the action-value representations
for long-term information using one-step rewards and (2) filter out irrelevant information from the
one-step reward representations to improve robustness of overall action-value representations.

It is worth noting that in this article, we aim to learn agents in training environments to generalize
to test environments with unseen visual distractions, while remaining a consistent reward function.
This differs from task decomposition methods, which primarily extract knowledge invariant to tasks
between tasks with varying reward functions and no visual distractions. Moreover, task decomposition
methods can easily encode irrelevant features in the setting of this article, as they learn representations
from environment dynamics, which involve visual distractions in VRL (Yang et al., 2022).

Information Bottleneck (IB). The IB principle in supervised learning (Tishby & Zaslavsky, 2015;
Alemi et al., 2017; Saxe et al., 2018) aims to learn compressed representations including minimal
information relevant to downstream tasks, improving generalization performance. Specifically, it
regularizes representations by minimizing the mutual information between inputs and representations,
while maximizing the mutual information between representations and labels. In VRL, recent
methods (Pei & Hou, 2019; Xiang et al., 2023) also focus on the IB principle that can learn compressed
representations to improve generalization capabilities of agents. Different from supervised learning,
in VRL, these approaches only have one-step rewards but action values, i.e., the targets in VRL
corresponding to labels in supervised learning. Thus, some of them (Federici et al., 2020; Fan
& Li, 2022) follow the unsupervised learning paradigm, using the IB framework to regularize
representations from similar inputs or multi-view image observations. Since the unsupervised learning
in the IB framework is more challenging than supervised learning (Federici et al., 2020), we use
one-step rewards—the known supervised signals in RL—to extract their compressed representations
for robust action-value representation learning.

3 PRELIMINARIES

Visual RL. We consider a family of environments E . Each environment e ∈ E is a block Markov
decision process (BMDP) (Zhang et al., 2020) denoted byMe = ⟨S,Oe,A,R, p, pe, γ⟩. Here, S
is the state space, Oe is the observation space in e, A is the action space, R is the reward space,
p (s′, r | s, a) is the state transition probability, pe (o′, r | o, a) is the observation transition probability
(i.e., environment dynamics) varying with the environment e ∈ E , and γ ∈ [0, 1) is the discount
factor. For simplicity, we use bold letters (e.g., o and a) to denote random variables, normal letters
(e.g., o and a) to denote samples, and O to denote the set of Oe for all e ∈ E .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We suppose that an agent reaches an unseen latent state s and obtains an observation o on an
environment e ∈ E . In a BMDP, the observation is determined by a state and some task-irrelevant
visual factors varying with environments, e.g., backgrounds or agent colors in decision-making
process. Each state s does not involve irrelevant features in VRL and is invariant to the family of
environments. Formally, let X be the set of such visual factors. We introduce an observation function
g : S × X → O (Zhang et al., 2020; Song et al., 2020) such that o = g (s,x). Here, x is a random
variable in X , which is independent of s and a with a specific transition probability qe (x′ | x).
Moreover, we assume that the environments follow a generalized Block structure Zhang et al. (2020).
That is, an observation o ∈ O uniquely determines its generating state s and the visual factor x.
This assumption implies that the observation function g(s, x) is invertible with respect to both s
and x. Then, we have pe (o′, r | o, a) = p (s′, r | s, a) qe (x′ | x). Note that the expected reward
r(o, a) = r(s, a) = Ep [r|s, a] depends on the corresponding state-action pair rather than the
observation-action pair, where r is the random variable of the one-step reward.

We aim to learn an agent with a policy π : O → ∆(A) that maximizes the expected cumulative
reward Ee [

∑∞
t=0 γ

trt] simultaneously in all e ∈ E , where Ee[·] means that the expectation is taken
in e. We use Qπ(ot, at) = Qπ(st, at) = Eπ,p

[∑∞
i=0 γ

ir(ot+i, at+i)
]

to denote the action values.

4 ALGORITHM

In this paper, we propose to learn robust action-value representations that capture long-term infor-
mation for decision-making. Then, we introduce robust and compressed reward representations and
use temporal-difference (TD) learning (Sutton & Barto, 2018) paradigm to learn robust action-value
representations, guided by an IB-based objective to ensure robustness throughout the learning process.

4.1 ROBUST ACTION-VALUE REPRESENTATIONS IN THE IB FRAMEWORK

In this subsection, we propose robust action-value representations in the IB framework.

Firstly, motivated by task decomposition methods, we provide the action-value representation in
Definition 4.1. This action-value representation is linearly correlated with the action-value function
following a given policy, containing the long-term information from the action-value function.
Therefore, we propose using the action-value representation to facilitate the agent’s decision-making
performance in VRL test environments.
Definition 4.1. A representation in a D-dimensional space Z is an action-value representation
Hπ(ot, at) if there exists a linear mapping Φ : Z → R such that

Qπ(ot, at) = Φ
(
Hπ(ot, at)

)
=

〈
ω,Hπ(ot, at)

〉
, ∀ ot ∈ O, at ∈ A, (1)

where the dimension D > 1, ⟨·, ·⟩ denotes the inner product, and w denotes the weight vector of Φ.

Then, for VRL generalization, due to visual factors xt ∈ X , the action-value representation may
involve irrelevant information. This motivates us to introduce the IB principle, compressing the
action-value representation to discard irrelevant information. Specifically, we employ the conditional
IB (Chechik & Tishby, 2002) to provide Definition 4.2. In this definition, we propose a robust
action-value representation, the action-value representation for each observation-action pair main-
tains maximum mutual information with the corresponding action value while minimizing mutual
information with the observation-action pair given the action value.
Definition 4.2. An action-value representation is a robust action-value representation Zπ(ot, at) =
E [Zt] such that for all ot ∈ O and at ∈ A,

Zt = argmin
Ht

I (ut;Ht|Qt)− βI(Qt;Ht), (2)

where Ht is the random variable of Hπ(ot, at), Qt is the random variable of Qπ(ot, at), ut is the
random variable of (ot, at), I(y1;y2) is the mutual information between random variables y1 and
y2, I(y1;y2|y3) is the conditional mutual information to quantify the information between y1 and
y2 given y3, and β is a hyperparameter.

However, it is worth noting that we do not have the true action values during the training process of
VRL, and we thus cannot directly use Equations 1 and 2 to learn robust action-value representations.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.2 COMPRESSED REWARD REPRESENTATIONS FROM ONE-STEP REWARDS

To address the aforementioned challenge posed by unknown action values, we propose using one-step
rewards instead. We first present how to learn simple action-value representations, and we then
discuss how to learn our proposed robust action-value representations in this section.

The Recursive Form of Action-Value Representations and the Reward Representations. To
learn simple action-value representations, following task decomposition methods, we introduce a
reward representation h ∈ Z that is linearly related to the one-step reward, with a linear mapping
f : Z → R and the weight vector ω′.

r(ot, at) = f
(
h(ot, at)

)
=

〈
ω′, h(ot, at)

〉
. (3)

Based on the reward representations, we can derive the action-value representations such that

Hπ(ot, at) = Eπ,p

[∞∑
i=0

γih(ot+i, at+i)

]
, Qπ(ot, at) =

〈
ω′, Hπ(ot, at)

〉
. (4)

Equation 4 shows that the action-value representation is linearly correlated with the infinite sequence
of reward representations. We provide the details in Appendix C.1.

With Equation 4, we can derive a recursive form, i.e., the action-value representation for each
observation-action pair consists of a reward representation and the action-value representation of its
subsequent observation-action pair.

Hπ(ot, at) = h(ot, at) + γEπ,p [Hπ(ot+1, at+1)] . (5)
With the linear relation in Equation 3 and the recursive form in Equation 5, we can simply compute
the loss for learning such action-value representations. Moreover, we show that using Equation 5 can
converge in tabular settings in Appendix C.2.

Compressed Reward Representations for Robust Action-Value Representations. Based on
Definition 4.2, Equations 4, and 5, as the action-value representations are decomposed into an infinite
sequence of reward representations, which serve as their foundation, we can directly filter out task-
irrelevant information from such reward representations to improve robustness of overall action-value
representations, learning robust action-value representations without irrelevant features. Thus, we
propose using the IB framework to regulate the reward representations.

Since (1) the one-step reward is task-relevant without irrelevant features, and (2) the observation may
involve irrelevant visual factors, we propose a compressed reward representation in Definition 4.3.
This representation for each observation-action pair is linearly related to the corresponding one-step
reward and does not involve any irrelevant information by preserving maximum mutual information
with this one-step reward while minimizing mutual information with its observation-action pair.
Definition 4.3. A reward representation is a compressed reward representation z(ot, at) = E [zt]
such that for all ot ∈ O and at ∈ A,

zt = argmin
ht

I (ut;ht|rt)− βI(rt;ht), (6)

where ht is the random variable of h(ot, at), and β is a hyperparameter.

In Equation 6, given the one-step reward rt, the conditional mutual information I(ut;ht|rt) quantifies
information in ht that is irrelevant. The mutual information I(rt;ht) quantifies task-relevant
information shared between the reward rt and the representations ht. β is a hyperparameter that
determines the preference over the trade-off between task-relevant and task-irrelevant information.

Based on Definition 4.3 and Equation 4, the robust action-value representation is linearly correlated
with the infinite sequence of compressed reward representations. Thus, we can also use the recursive
form of robust action-value representations, as shown in Equation 5, to learn these representations.

Furthermore, in the following of this part, we discuss how to compute mutual information on
Equation 6. We provide detail formulas of Equation 6 given the joint distribution and conditional
joint distribution of ut, zt, and rt. Note that for simplicity, we use z instead of h.

I(ut; zt|rt) = Eut,zt,rt

[
log

p(zt|ut)
p(zt|rt)

]
, I(rt; zt) = Ert,zt

[
log

p(rt|zt)
p(rt)

]
. (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To estimate the probability density p(zt|ut) on Equation 7, we assume that a compressed reward
representation z(ot,at) for any observation-action pair (ot,at) follows a Gaussian distribution Nψ ,
and we provide the detailed implementation in the next subsection.

However, due to the modelling of zt, the approximation of p(zt|rt) is intractable. Inspired by the
method that estimates conditional mutual information (Alemi et al., 2017; Fan & Li, 2022), we intro-
duce a new representation kt ∈ Z extracted directly from the one-step reward rt to estimate p(kt|rt)
instead of p(zt|rt). Thus, we can derive an upper bound of the conditional mutual information.

I(ut; zt|rt) ≤ DKL

(
p(zt|ut)∥p(kt|rt)

)
. (8)

We provide details in Appendix C.3. We then can minimize the upper bound—i.e., the Kullback-
Leibler (KL) divergence between p(zt|ut) and p(kt|rt)—to discard irrelevant and redundant infor-
mation for compressed reward representation learning. Moreover, the representation kt is directly
mapped from the one-step reward rt. To prevent this mapping from introducing potential redun-
dant information into kt, we first use I(rt;kt|ut) to quantify this information and then minimize
I(rt;kt|ut). Therefore, we have the whole optimization objective to minimize for compressed
reward representation learning.

Lcib = I(ut; zt|rt)− βI(rt; zt) + I(rt;kt|ut). (9)

4.3 ROUSER ALGORITHM

Here, we present the detailed algorithm of ROUSER. Firstly, we provide the losses for compressed
reward representations. Then, we introduce the loss with TD learning paradigm for robust action-value
representation learning. Moreover, we provide the theoretical analysis of learned robust action-value
representations. We provide the architecture and pseudocode of ROUSER in Appendix D.

IB-based Losses for Compressed Reward Representation Learning. The optimization objective
for learning compressed reward representations consists of two parts: a prediction loss based on
Equation 3 and a conditional IB loss based on Equation 9.

Firstly, we introduce a reward model ψ to encode the compressed reward representation from an
observation-action pair and assume that a compressed reward representation z(ot, at) = E[zt] for any
observation-action pair (ot, at) follows a Gaussian distribution Nψ = N

(
zψ(ot, at),Σψ(ot, at)

)
,

where zψ(ot, at) is the mean and Σψ(ot, at) is the diagonal covariance. We also provide a parameter-
ized model η to estimate the representation k(rt) = E[kt]. kt is drawn from the Gaussian distribution
Nη = N

(
kη(rt),Ση(rt)

)
, where kη(rt) is the mean of kt, and Ση(r) is the diagonal covariance.

Secondly, we provide the prediction loss based on Equation 3 to maintain the linear mapping
relationship between the compressed reward representations and corresponding one-step rewards.
Building upon model-based RL methods (Janner et al., 2019; Wang et al., 2022) that model one-
step rewards as a Gaussian distribution, we predict the mean and the standard deviation of reward
distribution to learn reward representations. We formulate the prediction loss based on KL divergence:

Lpred(ψ, ω
′, ω′′)=E(ot,at,rt)∼B

[∥∥〈ω′, zψ(ot,at)
〉
− rt

∥∥2
2

2 ·
〈
ω′′, zψ(ot,at)

〉2 + log
〈
ω′′, zψ(ot,at)

〉]
, (10)

where ω′ denote the weight vector mentioned in Equation 3 for the computation of the mean of
one-step rewards, ω′′ denote the weight vector to compute the standard deviation of one-step rewards,
and B denotes the replay buffer.

Finally, we propose the conditional IB loss based on Equation 9 to learn compressed reward represen-
tations, discarding task-irrelevant information while preserving task-relevant information. With the
models ψ and η, we can reformulate Equation 9 as:

Linfo(ψ, η) = EB

[
−I(zt;kt) + αDSKL

(
Nψ||Nη

)]
, (11)

where α derived from β is a hyperparameter that is tuned by an exponential scheduler during training,
and DSKL represents the symmetrized KL divergence (Jeffreys, 1998) obtained by averaging the KL
divergences DKL(Nψ||Nη) and DKL(Nη||Nψ). Please refer to Appendix C.3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The first term ofLinfo in Equation 11 maximizes mutual information between the representation zt and
the one-step reward rt. This term in fact maximizes task-relevant information in the representation
zt. The second term of Linfo minimizes the conditional mutual information between the observation-
action pair (ot,at) and the representation zt. It represents that we can minimize irrelevant and
redundant information in the representation zt. See Appendix C.3 for the derivation of Equation 11.

Further, to estimate the mutual information I(zt;kt) between zt and kt for a transition (o,a, r) ∼ B,
we can leverage the InfoNCE (van den Oord et al., 2018; Laskin et al., 2020) function. Thus, we have

I(zt;kt) = − log
exp(sim(zt,k

+
t))

exp(sim(zt,k
+
t)) +

∑N−1
i=1 exp (sim (zt,kt,i))

, (12)

where sim(x,y) = xTy, N is the batch size.

TD-Based Loss for Robust Action-Value Representation Learning. As the robust action-value
representation has a recursive nature, we employ the TD learning paradigm—the commonly used
technique to learn an objective with a recursive form—to learn the representation.

Based on Equations 2, 5, and 6, we derive a recursive form of the robust action-value representation.
Zπ(ot,at) = z(ot,at) + γEπ,p [Zπ(ot+1,at+1)] , (13)

where Zπ and z subject to Equations 2 and 6, respectively.

Then, we model the critic using the parameter θ to estimate the action values. For robust action-value
representation learning, we do not change critic’s structure and directly use embeddings from critic’s
center layer as robust action-value representations (see Figure 1). Therefore, we also parameterize
the robust action-value representations as Zθ. Based on Equation 13, we have the TD-based loss as:

Lrobust(θ) = EB

[∥∥Zθ(ot,at)− Ẑ(ot,at)∥∥22], Ẑ(ot,at) = zψ(ot,at) + γEπ
[
Zθ̄

(
ot+1,at+1

)]
,

(14)
where (ot,at, rt,ot+1) ∼ B, and θ̄ denotes the parameter of the target critic that are obtained as an
exponentially moving average of the parameter θ of the critic (Mnih et al., 2015). Moreover, if we
apply the soft actor-critic framework (Haarnoja et al., 2018) that adds entropy of the policy to one-step
rewards, we will also add this entropy into each dimension of compressed reward representations.

According to Equation 14, we provide a theoretical guarantee for the robust action-value representa-
tion learning in the following theorem. It gives a bound between the true action-value function and
the action-value function on top of learned robust action-value representations (see Appendix C.4).
Theorem 4.4. Let Z be a learned robust action-value representation from any observation-action
pair (o, a) ∈ O ×A, Qπe : O × A → R be the true action-value function of a policy π in the
environment e ∈ E , f∗e : Z → R be the optimal linear mapping on the representation space, and ϵ be
a bound of estimation error for each compressed reward representation z, i.e., |f∗e (z)− r| ≤ ϵ. For
any (o, a) ∈ O ×A and e ∈ E , we have

0 ≤
∣∣Qπe (o, a)− f∗e (Z(o, a))∣∣ ≤ 1

1− γ
ϵ.

This theoretical proof allows us to directly use embeddings of the critic’s center layer as robust
action-value representations for estimating action values. This shows that ROUSER can be integrated
with various VRL methods. We combine ROUSER with traditional VRL methods in Section 5.2.

In addition, to alleviate the overestimation bias of action values, Fujimoto et al. (2018) introduces
double critics with θ1 and θ2. We note that our representation learning based on Equation 14 also suf-
fers from the overestimation bias as well as the action-value function approximation (Fujimoto et al.,
2018). Thus, we propose to leverage the overestimation bias of robust action-value representations to
alleviate the bias of estimated action values. We reformulate Equation 14 as:

Lrobust(θ1,θ2) = E(ot,at,rt,ot+1)∼B

[∑
i=1,2

∥∥Zθi(ot,at)− Ẑ(ot,at)∥∥22], (15)

Ẑ(ot,at) = zψ(ot,at) + γEπ
[

minI
i=1,2

Zθ̄i
(
ot+1,at+1

)]
,

minI
i=1,2

Zθ̄i(ot,at) = min
i=1,2

Iω′≥0 · Zθ̄i(ot,at) + max
i=1,2

Iω′<0 · Zθ̄i(ot,at), (16)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Encoder𝒐𝒕

Actor

𝒂𝒕

𝒂𝒕

𝐐

Reward Model

ROUSER Critic

𝝍, 𝝎′, 𝝎′′

𝜼

Robust Loss

Reward Loss

Actor Loss

Critic Loss𝜃1, 𝜃2 Φ

𝒓𝒕

𝐳

𝐤

𝓛pred 𝝍, 𝝎′, 𝝎′′

+ 𝓛info 𝝍, 𝜼

𝓛robust 𝜃1, 𝜃2

Figure 1: The architecture of ROUSER. We first input (ot, at, rt) into the reward model to compute
the reward loss, updating the reward model. Next, we input (ot, at) into the critic model to compute
the robust loss, which updates (θ1, θ2) to learn robust action-value representations. Moreover, we use
traditional actor and critic losses to update the actor and the entire critic model, respectively.

where θ̄1 and θ̄2 are parameters of target critics, Iω′≥0 and Iω′<0 denote D-dimensional vectors
of binary values from the indicator function I, and ω′ is the parameter of the linear mapping f
equivalent to Φ. With the operator minI, we select minimums of robust action-value representations
positively related to action values and maximums negatively related to action values. Thus, based on
the linear relation between action values and robust action-value representations, we can alleviate the
overestimation bias in the action-value estimation.

To clearly overview our method, we provide the architecture in Figure 1. It illustrates our proposed
two loss functions: the robust loss Lrobust(θ1, θ2) and the reward loss Lpred(ψ, ω

′, ω′′) + Linfo(ψ, η).
The detailed implementation of this architecture are presented in Appendix D.

5 EXPERIMENTS

We conduct extensive experiments to evaluate the generalization performance of ROUSER on testing
environments with unseen visual distractions. Firstly, we demonstrate the effectiveness of ROUSER
for solving the visual control tasks on DeepMind Control Suite (DMC, Tassa et al. (2018)) with
task-irrelevant visual distractions, including background and color distractions. Then, we assess the
applicability of ROUSER by combining it with traditional policy gradient and value-based VRL
algorithms. Finally, we visualize the captured long-term information and evaluate the robustness of
ROUSER. Moreover, we conduct careful ablation studies to show the effectiveness of ROUSER. We
provide additional results of ROUSER in Appendix E.

5.1 GENERALIZATION PERFORMANCE ON DMC BENCHMARK WITH CONTINUOUS ACTIONS

We apply visual distractions in DMC benchmark, including color and background distractions (Stone
et al., 2021), to investigate the generalization performance of VRL agents. For color distractions,
we train the agents in a training environment with a weak color change and evaluate in various test
environments with strong color changes. It is worth noting that the variance of the color distractions
we use is larger than the hard setting proposed in Stone et al. (2021), which poses greater challenges
for the agents. For background distractions, we follow the hard setting (Agarwal et al., 2021;
Yang et al., 2022) to use 2 videos as backgrounds during training and evaluate the generalization
performance on 30 unseen videos. See Appendix E.1 for more details. We conduct main experiments
on six tasks of DMC. For each task, we train the agents with six random seeds and present means and
standard errors of their cumulative rewards at 500,000 environment steps.

We integrate ROUSER with DrQv2 (Yarats et al., 2022) and SRM (Huang et al., 2022) to evaluate
the effectiveness of ROUSER on generalization. Note that in all experiments under both color and
background distractions, ROUSER-DrQv2 consistently outperforms DrQv2, and ROUSER-SRM

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1
2
3
4
5
6
7
8
9

C
um

ul
at

iv
e

R
ew

ar
d Color - ball_in_cup_catch1e2

0
1
2
3
4
5
6
7
8

C
um

ul
at

iv
e

R
ew

ar
d 1e2 Color - finger_spin

0
1
2
3
4
5
6
7
8
9

C
um

ul
at

iv
e

R
ew

ar
d 1e2Video - ball_in_cup_catch

0
1
2
3
4
5
6
7
8

C
um

ul
at

iv
e

R
ew

ar
d 1e2 Video - finger_spin

1
2
3
4
5
6
7

C
um

ul
at

iv
e

R
ew

ar
d Color - cartpole_swingup1e2

0
1
2
3
4
5
6
7
8

C
um

ul
at

iv
e

R
ew

ar
d 1e2 Color - walker_walk

2
3
4
5
6
7
8

C
um

ul
at

iv
e

R
ew

ar
d Video - cartpole_swingup1e2

1
2
3
4
5
6
7
8
9

C
um

ul
at

iv
e

R
ew

ar
d 1e2 Video - walker_walk

0

1

2

3

4

C
um

ul
at

iv
e

R
ew

ar
d 1e2 Color - cheetah_run

1
2
3
4
5
6
7
8

C
um

ul
at

iv
e

R
ew

ar
d 1e2 Color - reacher_easy

0

1

2

3

4

C
um

ul
at

iv
e

R
ew

ar
d 1e2 Video - cheetah_run

2
3
4
5
6
7
8
9

C
um

ul
at

iv
e

R
ew

ar
d 1e2 Video - reacher_easy

ROUSER-SRM
SRM

CRESP
RAP

ROUSER-DrQv2
DrQv2

CURL
TACO

Figure 2: We evaluate ROUSER on DMC with unseen color and video background distractions. Each
result is averaged over 100 episodes at 500K environment steps using six random seeds.

surpasses SRM. We also compare our approach ROUSER against several state-of-the-art (SOTA)
methods: (1) CURL (Laskin et al., 2020), (2) RAP (Chen & Pan, 2022), (3) CRESP (Yang et al.,
2022), (4) TACO (Zheng et al., 2024). See Appendix E.1 for detailed settings.

Figure 2 illustrates results under color and background distractions, demonstrating that ROUSER
outperforms other baselines in 11 out of 12 experiments. See Appendix E.1 for detailed results.

It is worth noting that although ROUSER uses one-step rewards to learn robust action-value represen-
tations, it significantly improves generalization performance on tasks with sparse reward functions
(e.g., ball_in_cup_catch, finger_spin, and reacher_easy tasks from DMC benchmark). Considering
that the actor-critic algorithms (Fujimoto et al., 2018; Haarnoja et al., 2018)—which estimate ac-
tion values using one-step rewards—also perform well on sparse reward tasks, we believe that our
approach ROUSER is also effective in the contexts beyond sparse rewards.

5.2 EXTENDING ROUSER TO PROCGEN WITH DISCRETE ACTIONS

dodgeball caveflyer bigfish
0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5 A

verage Test Score

ROUSER-QRDQN
QR-DQN
MixReg
PPO

Figure 3: Results on Procgen.

In this subsection, motivated by the result in Theorem 4.4,
we extend ROUSER to decision tasks with discrete actions,
assessing its applicability.

Firstly, Figure 2 shows that ROUSER can enhance general-
ization when combined with policy gradient VRL algorithms,
such as DrQv2 and SRM. Then, to demonstrate that ROUSER
can be integrated with value-based methods, we conduct ex-
periments in Procgen (Cobbe et al., 2020), a benchmark with
image observations where each game has multiple levels to
evaluate generalization. See Appendix E.2 for detailed settings.
We integrate ROUSER with QR-DQN (Dabney et al., 2018), a
prior SOTA value-based VRL method on Procgen for generalization.

Figure 3 shows Procgen scores on test levels that are averaged over five random seeds with a batch
size of 256 at 25M environment steps. The results demonstrate that ROUSER can also improve the
generalization performance of agents when combined with the value-based VRL method for discrete
control tasks. In addition, we provide the details of these results and the implementation for the
combination of ROUSER and QR-DQN in Appendix E.2.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

2 3 4
1e1

1e 2
ROUSER-DrQv2
ROUSER-SRM
DrQv2
SRM

M
SE

 L
os

s 4

3

0 1 5
Epochs

(a) Long-Term Information

0 1 2 3 4 5
1e5

1

2

3

4 1e2
ROUSER-DrQv2

noIB

C
um

ul
at

iv
e

R
ew

ar
ds

Environment Steps

(b) Conditional IB Loss

0 1 2 3 4 5
1e5

1

2

3

4
1e2

ROUSER-DrQv2

DrQv2

C
um

ul
at

iv
e

R
ew

ar
ds

Environment Steps

(c) Noise in Rewards

1

2

3

4
1e2

D1024
D512
D256
D100
D50
D10
D5

C
um

ul
at

iv
e

R
ew

ar
ds

at 500K Environment Steps

(d) Different Dimensions

Figure 4: We report four results on cheetah_run task with unseen color distractions.

5.3 ANALYZING THE REPRESENTATIONS LEARNED BY ROUSER

Distraction Scale

(1e-4, 1e-3)
(1e-3, 1e-2)

(1e-2, 1e-1)

alpha

649.7 488.0 363.0 316.1

663.7 524.4 398.4 283.3

683.1 510.3 367.9 251.4

0.3 0.4 0.5 0.6

Figure 5: Results with differ-
ent α in different color scales.

Long-Term Robust Information. We assess how ROUSER can
capture long-term robust information. Specifically, we first collect
200K samples under unseen color distractions using a DrQv2’s
policy. Next, we compute the representations learned by each method
from state-action pairs in the collected data. Such representations
are extracted from the center layer of the critic in each method. Then,
we fix these representations and input them into a 2-layer trainable
MLP to predict the future reward sequences over a length of 300.
During the prediction process, we use the Adam optimizer with a
learning rate of 1e-4. As shown in Figure 4(a), we plot curves of the
MSE loss on 1K evaluation samples across three seeds. The lower
MSE losses of ROUSER indicate that its learned representations
capture long-term information more effectively.

Effectiveness of IB. To assess the effectiveness of IB, we remove the conditional IB loss from the
objectives of ROUSER. We then train agents to evaluate their generalization performance. Results
(i.e., means and standard deviations) over three seeds in Figure 4(b) demonstrate the effectiveness of
the conditional IB loss. Moreover, by tuning α in the conditional IB loss from Equation 11, we find
that larger values of α result in smaller DSKL, potentially improving generalization performance.
This observation aligns with our analysis in Section 4.3, demonstrating that minimizing DSKL (the
second term of Linfo) effectively discards irrelevant and redundant information. We illustrate the
results for different values of α over three seeds in Figure 5. Each result is evaluated at 200K steps on
cartpole-swingup task under color distractions (scale from 0.3 to 0.6, see Appendix E.5 for details).

Noisy One-Step Rewards. We add noise drawn from N (0, 0.1) for each reward to show how
ROUSER can be robust against noisy rewards. Figure 4(c) demonstrates that ROUSER-DrQv2
significantly outperforms DrQv2, remaining effective under the noisy reward setting.

Ablation Study for Dimension. We illustrate results of ROUSER-DrQv2 for different dimensions
of robust action-value representations in Figure 4(d). The results, averaged over three seeds on
cheetah_run task with color distractions, show that ROUSER is not sensitive to the dimension D.

6 CONCLUSION

Many existing VRL approaches focus on learning robust representations against irrelevant visual
distractions but often do not take into account the long-term decision-relevant information. This may
degrade generalization performance of VRL agents. In this paper, we propose robust action-value
representations in the IB framework, which encodes long-term information from action values while
discarding irrelevant features from image observations during the robust representation learning
process. Considering that action values are unknown, we propose to decompose robust action-value
representations into infinite sequences associated with rewards. Thus, we can directly use known
rewards to learn robust action-value representations. Experiments demonstrate that our approach
significantly enhances generalization capabilities in the majority of tasks. We believe this method is
general and applicable to other real-word applications, such as end-to-end autonomous driving.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

In this study, to ensure the reproducibility of our approach, we provide key information from the
main text and Appendix as follows.

1. Algorithm. We provide the architecture and pseudocode of our approach ROUSER in
Appendix D. We also provide the detailed implementation of ROUSER in Appendices E.1
and E.2. See Appendix E.5 for the hyperparameters of ROUSER.

2. Source Code. According to the architecture and pseudocode in Appendix D, our approach
ROUSER can directly build upon traditional VRL algorithms. Specifically, in Section 5.1,
we follow Yuan et al. (2023) to use the provided code for DrQv2 and SRM, available at
https://github.com/gemcollector/RL-ViGen. In Section 5.2, we apply the code from Wang
et al. (2020) for QR-DQN, available at https://github.com/kaixin96/mixreg. Moreover, we
are committed to providing the source code of our approach, if accepted.

3. Experimental Details. We provide detailed experiment settings in Section 5.1, Appen-
dices E.1, E.2, and E.3.

4. Theoretical Proofs. We provide all proofs in Appendix C.

REFERENCES

Majid Abdolshah, Hung Le, Thommen George Karimpanal, Sunil Gupta, Santu Rana, and Svetha
Venkatesh. A new representation of successor features for transfer across dissimilar environ-
ments. In Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 1–9. PMLR, 2021.

Rishabh Agarwal, Marlos C. Machado, Pablo Samuel Castro, and Marc G. Bellemare. Contrastive
behavioral similarity embeddings for generalization in reinforcement learning. In 9th International
Conference on Learning Representations, 2021.

Ossama Ahmed, Frederik Träuble, Anirudh Goyal, Alexander Neitz, Manuel Wuthrich, Yoshua
Bengio, Bernhard Schölkopf, and Stefan Bauer. Causalworld: A robotic manipulation bench-
mark for causal structure and transfer learning. In 9th International Conference on Learning
Representations, 2021.

Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information
bottleneck. In 5th International Conference on Learning Representations, 2017.

Haider Ali, Dian Chen, Matthew Harrington, Nathaniel Salazar, Mohannad Al Ameedi, Ahmad Faraz
Khan, Ali Raza Butt, and Jin-Hee Cho. A survey on attacks and their countermeasures in deep
learning: Applications in deep neural networks, federated, transfer, and deep reinforcement
learning. IEEE Access, 11:120095–120130, 2023.

André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, David Silver, and Hado
van Hasselt. Successor features for transfer in reinforcement learning. In Advances in Neural
Information Processing Systems 30, pp. 4055–4065, 2017.

André Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel J.
Mankowitz, Augustin Zídek, and Rémi Munos. Transfer in deep reinforcement learning using
successor features and generalised policy improvement. In Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
510–519. PMLR, 2018.

André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast reinforcement
learning with generalized policy updates. Proc. Natl. Acad. Sci. USA, 117(48):30079–30087, 2020.

David Bertoin, Adil Zouitine, Mehdi Zouitine, and Emmanuel Rachelson. Look where you look!
saliency-guided q-networks for generalization in visual reinforcement learning. In Sanmi Koyejo,
S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35, 2022.

11

https://github.com/gemcollector/RL-ViGen
https://github.com/kaixin96/mixreg

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wilka Carvalho, Andre Saraiva, Angelos Filos, Andrew K. Lampinen, Loic Matthey, Richard L.
Lewis, Honglak Lee, Satinder Singh, Danilo Jimenez Rezende, and Daniel Zoran. Combining
behaviors with the successor features keyboard. In Advances in Neural Information Processing
Systems 36, 2023.

Pablo Samuel Castro. Scalable methods for computing state similarity in deterministic markov
decision processes. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, pp. 10069–
10076. AAAI Press, 2020.

Gal Chechik and Naftali Tishby. Extracting relevant structures with side information. In Advances in
Neural Information Processing Systems 15, pp. 857–864, 2002.

Jianda Chen and Sinno Jialin Pan. Learning representations via a robust behavioral metric for deep
reinforcement learning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho,
and A. Oh (eds.), Advances in Neural Information Processing Systems 35, 2022.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 2048–2056.
PMLR, 2020.

Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.), Proceed-
ings of the Thirty-Second AAAI Conference on Artificial Intelligence, pp. 2892–2901. AAAI Press,
2018.

Peter Dayan. Improving generalization for temporal difference learning: The successor representation.
Neural Comput., 5(4):613–624, 1993.

Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decompo-
sition. J. Artif. Intell. Res., 13:227–303, 2000.

Jiameng Fan and Wenchao Li. DRIBO: robust deep reinforcement learning via multi-view information
bottleneck. In International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pp. 6074–6102. PMLR, 2022.

Linxi Fan, Guanzhi Wang, De-An Huang, Zhiding Yu, Li Fei-Fei, Yuke Zhu, and Animashree
Anandkumar. SECANT: self-expert cloning for zero-shot generalization of visual policies. In
Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 3088–3099. PMLR,
2021.

Mehdi Fatemi and Arash Tavakoli. Orchestrated value mapping for reinforcement learning. In The
Tenth International Conference on Learning Representations. OpenReview.net, 2022.

Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust
representations via multi-view information bottleneck. In 8th International Conference on Learning
Representations. OpenReview.net, 2020.

Norman Ferns and Doina Precup. Bisimulation metrics are optimal value functions. In Proceedings
of the Thirtieth Conference on Uncertainty in Artificial Intelligence, pp. 210–219. AUAI Press,
2014.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1582–1591. PMLR, 2018.

Christopher Grimm and Satinder Singh. Learning independently-obtainable reward functions. CoRR,
abs/1901.08649, 2019.

Jeongsoo Ha, Kyungsoo Kim, and Yusung Kim. Dream to generalize: Zero-shot model-based
reinforcement learning for unseen visual distractions. In Brian Williams, Yiling Chen, and Jennifer
Neville (eds.), Thirty-Seventh AAAI Conference on Artificial Intelligence, pp. 7802–7810. AAAI
Press, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 1856–1865. PMLR, 2018.

Nicklas Hansen and Xiaolong Wang. Generalization in reinforcement learning by soft data augmen-
tation. In IEEE International Conference on Robotics and Automation, pp. 13611–13617. IEEE,
2021.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Stabilizing deep q-learning with convnets and vision
transformers under data augmentation. In Advances in Neural Information Processing Systems 34,
pp. 3680–3693, 2021.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining im-
provements in deep reinforcement learning. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, pp. 3215–3222. AAAI Press, 2018.

Ionel-Alexandru Hosu and Traian Rebedea. Playing atari games with deep reinforcement learning
and human checkpoint replay. CoRR, abs/1607.05077, 2016.

Yangru Huang, Peixi Peng, Yifan Zhao, Guangyao Chen, and Yonghong Tian. Spectrum random
masking for generalization in image-based reinforcement learning. In Advances in Neural Infor-
mation Processing Systems 35, 2022.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. In Advances in Neural Information Processing Systems 32, pp. 12498–12509,
2019.

Harold Jeffreys. The theory of probability. OuP Oxford, 1998.

Mete Kemertas and Tristan Aumentado-Armstrong. Towards robust bisimulation metric learning. In
Advances in Neural Information Processing Systems 34, pp. 4764–4777, 2021.

Hyoungseok Kim, Jaekyeom Kim, Yeonwoo Jeong, Sergey Levine, and Hyun Oh Song. EMI:
exploration with mutual information. In Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of
Proceedings of Machine Learning Research, pp. 3360–3369. PMLR, 2019.

Jaekyeom Kim, Minjung Kim, Dongyeon Woo, and Gunhee Kim. Drop-bottleneck: Learning
discrete compressed representation for noise-robust exploration. In 9th International Conference
on Learning Representations. OpenReview.net, 2021.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of generalisation in
deep reinforcement learning. CoRR, abs/2111.09794, 2021.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: contrastive unsupervised representations
for reinforcement learning. In Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 5639–5650. PMLR,
2020.

Bonnie Li, Vincent François-Lavet, Thang Doan, and Joelle Pineau. Domain adversarial reinforcement
learning. CoRR, abs/2102.07097, 2021.

Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang, Zhenghai Xue, and Bolei Zhou. Metadrive:
Composing diverse driving scenarios for generalizable reinforcement learning. IEEE Trans. Pattern
Anal. Mach. Intell., 45(3):3461–3475, 2023.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In 4th
International Conference on Learning Representations, 2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zichuan Lin, Li Zhao, Derek Yang, Tao Qin, Tie-Yan Liu, and Guangwen Yang. Distributional
reward decomposition for reinforcement learning. In Advances in Neural Information Processing
Systems 32, pp. 6212–6221, 2019.

Qiyuan Liu, Qi Zhou, Rui Yang, and Jie Wang. Robust representation learning by clustering with
bisimulation metrics for visual reinforcement learning with distractions. In Thirty-Seventh AAAI
Conference on Artificial Intelligence, pp. 8843–8851. AAAI Press, 2023.

Martin Bertran Lopez, Walter Talbott, Nitish Srivastava, and Joshua M. Susskind. Efficient embedding
of semantic similarity in control policies via entangled bisimulation. CoRR, abs/2201.12300, 2022.

Chen Ma, Dylan R. Ashley, Junfeng Wen, and Yoshua Bengio. Universal successor features for
transfer reinforcement learning. CoRR, abs/2001.04025, 2020.

Hiroshi Makino. Arithmetic value representation for hierarchical behavior composition. Nature
Neuroscience, 26(1):140–149, 2023.

Bogdan Mazoure, Ahmed M. Ahmed, R. Devon Hjelm, Andrey Kolobov, and Patrick MacAlpine.
Cross-trajectory representation learning for zero-shot generalization in RL. In The Tenth Interna-
tional Conference on Learning Representations. OpenReview.net, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. Nat.,
518(7540):529–533, 2015.

Yingjun Pei and Xinwen Hou. Learning representations in reinforcement learning: An information
bottleneck approach. CoRR, abs/1911.05695, 2019.

Han Qi, Yi Su, Aviral Kumar, and Sergey Levine. Data-driven offline decision-making via invariant
representation learning. In Advances in Neural Information Processing Systems 35, 2022.

Roberta Raileanu and Rob Fergus. Decoupling value and policy for generalization in reinforcement
learning. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 8787–8798.
PMLR, 2021.

Roberta Raileanu, Maxwell Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Automatic
data augmentation for generalization in reinforcement learning. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems 34, pp. 5402–5415, 2021.

Stuart Russell and Andrew Zimdars. Q-decomposition for reinforcement learning agents. In Machine
Learning, Proceedings of the Twentieth International Conference, pp. 656–663. AAAI Press, 2003.

Andrew M. Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D.
Tracey, and David D. Cox. On the information bottleneck theory of deep learning. In 6th
International Conference on Learning Representations. OpenReview.net, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, and Behnam Neyshabur. Observational overfitting
in reinforcement learning. In 8th International Conference on Learning Representations, 2020.

Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski. The distracting control suite -
A challenging benchmark for reinforcement learning from pixels. CoRR, abs/2101.02722, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artif. Intell., 112(1-2):181–211, 1999.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hongyao Tang, Zhaopeng Meng, Guangyong Chen, Pengfei Chen, Chen Chen, Yaodong Yang, Luo
Zhang, Wulong Liu, and Jianye Hao. Foresee then evaluate: Decomposing value estimation with
latent future prediction. In Thirty-Fifth AAAI Conference on Artificial Intelligence, pp. 9834–9842.
AAAI Press, 2021.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A. Riedmiller.
Deepmind control suite. CoRR, abs/1801.00690, 2018.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In 2015
IEEE Information Theory Workshop, pp. 1–5. IEEE, 2015.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748, 2018.

Harm van Seijen, Mehdi Fatemi, Romain Laroche, Joshua Romoff, Tavian Barnes, and Jeffrey
Tsang. Hybrid reward architecture for reinforcement learning. In Advances in Neural Information
Processing Systems 30, pp. 5392–5402, 2017.

Guan Wang, Haoyi Niu, Desheng Zhu, Jianming Hu, Xianyuan Zhan, and Guyue Zhou. A ver-
satile and efficient reinforcement learning framework for autonomous driving. arXiv preprint
arXiv:2110.11573, 2021.

Jie Wang, Rui Yang, Zijie Geng, Zhihao Shi, Mingxuan Ye, Qi Zhou, Shuiwang Ji, Bin Li, Yongdong
Zhang, and Feng Wu. Generalization in visual reinforcement learning with the reward sequence
distribution. CoRR, abs/2302.09601, 2023.

Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improving generalization in reinforcement
learning with mixture regularization. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33, 2020.

Shuo Wang, Zhihao Wu, Jinwen Wang, Xiaobo Hu, Youfang Lin, and Kai Lv. How to learn domain-
invariant representations for visual reinforcement learning: An information-theoretical perspective.
In Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, pp.
1389–1397. ijcai.org, 2024.

Zhihai Wang, Jie Wang, Qi Zhou, Bin Li, and Houqiang Li. Sample-efficient reinforcement learn-
ing via conservative model-based actor-critic. In Thirty-Sixth AAAI Conference on Artificial
Intelligence, pp. 8612–8620. AAAI Press, 2022.

Guofei Xiang, Songyi Dian, Shaofeng Du, and Zhonghui Lv. Variational information bottleneck
regularized deep reinforcement learning for efficient robotic skill adaptation. Sensors, 23(2):762,
2023.

Eliot Xing, Abhinav Gupta, Sam Powers, and Victoria Dean. Kitchenshift: Evaluating zero-shot
generalization of imitation-based policy learning under domain shifts. In NeurIPS 2021 Workshop
on Distribution Shifts: Connecting Methods and Applications, 2021.

Rui Yang, Jie Wang, Zijie Geng, Mingxuan Ye, Shuiwang Ji, Bin Li, and Feng Wu. Learning
task-relevant representations for generalization via characteristic functions of reward sequence
distributions. In The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 2242–2252. ACM, 2022.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In 9th International Conference on Learning Representations.
OpenReview.net, 2021.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. In The Tenth International Conference on
Learning Representations. OpenReview.net, 2022.

Zhecheng Yuan, Zhengrong Xue, Bo Yuan, Xueqian Wang, Yi Wu, Yang Gao, and Huazhe Xu.
Pre-trained image encoder for generalizable visual reinforcement learning. In Sanmi Koyejo,
S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35, 2022.

Zhecheng Yuan, Sizhe Yang, Pu Hua, Can Chang, Kaizhe Hu, Xiaolong Wang, and Huazhe Xu.
Rl-vigen: A reinforcement learning benchmark for visual generalization. CoRR, abs/2307.10224,
2023.

Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau, Yarin
Gal, and Doina Precup. Invariant causal prediction for block mdps. In Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 11214–11224. PMLR, 2020.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. In 9th International
Conference on Learning Representations. OpenReview.net, 2021.

Ruijie Zheng, Xiyao Wang, Yanchao Sun, Shuang Ma, Jieyu Zhao, Huazhe Xu, Hal Daumé III, and
Furong Huang. Temporal latent action-driven contrastive loss for visual reinforcement learning.
Advances in Neural Information Processing Systems, 36, 2024.

Qi Zhou, Jie Wang, Qiyuan Liu, Yufei Kuang, Wengang Zhou, and Houqiang Li. Learning robust
representation for reinforcement learning with distractions by reward sequence prediction. In
Robin J. Evans and Ilya Shpitser (eds.), Uncertainty in Artificial Intelligence, volume 216 of
Proceedings of Machine Learning Research, pp. 2551–2562. PMLR, 2023.

Zhuangdi Zhu, Kaixiang Lin, Anil K. Jain, and Jiayu Zhou. Transfer learning in deep reinforcement
learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell., 45(11):13344–13362, 2023.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

APPENDIX

A RELATED WORK OF TASK DECOMPOSITION

Value Decomposition. Some hierarchical RL approaches suggest that reusing learned skills from sim-
ple tasks can effectively improve the sample efficiency in solving the complex composite tasks (Sutton
et al., 1999; Dietterich, 2000; Russell & Zimdars, 2003; Makino, 2023). Thus, for a complex se-
quential decision-making task that can be divided into a series of simple individual sub-tasks, these
approaches estimate the action-value function for each sub-task to learn these reusable skills.

Inspired by this hierarchical RL, some methods propose the reward decomposition for composite
tasks, which decomposes the one-step rewards into a series of sub-rewards instead of breaking
down the composite task (van Seijen et al., 2017; Lin et al., 2019; Grimm & Singh, 2019; Fatemi
& Tavakoli, 2022). Specifically, under the assumption that one-step rewards of composite tasks are
linear combinations of independent sub-rewards, these methods decompose each one-step reward
either manually or automatically (i.e., leveraging deep learning techniques). Then, they combine the
action values for each sub-task associated with each sub-reward additively to estimate the overall
action-value function, thus efficiently addressing the complex composite task.

In this article, although the reward representations extracted by ROUSER are similar to the sub-
rewards from reward decomposition methods, they do not rely on the prior assumption that one-step
rewards are linear combinations of independent sub-rewards.

Successor Features. Successor features have garnered attention in the field of transfer RL, which
allows flexible knowledge transfer across tasks with different reward functions. Barreto et al. (2017)
assume a set of tasks with different reward functions but similar environment dynamics, and thus
propose the successor features, which represent the features from environment dynamics involving
the long-term sequential information. To learn such features, Barreto et al. (2017; 2018; 2020);
Ma et al. (2020); Carvalho et al. (2023) first decouple rewards into the component associated with
environment dynamics and the weight vector associated with different tasks. Then, they can use the
reward component to learn successor features from the environment dynamics. By using the successor
features and the weight vector, they can achieve the transfer learning. Moreover, based on successor
features, Abdolshah et al. (2021) propose transferring knowledge across different environments by
using a Gaussian distribution to capture the changes in environment dynamics.

Our study differs from these methods, which do not take into account robustness against visual
distractions. Also, the successor features learned by the aforementioned methods often involve
irrelevant information from environment dynamics in the VRL generalization challenge. Instead,
we use one-step rewards to extract long-term information from action values and leverage the IB
framework to discard irrelevant features. It is worth NOTING that in all the aforementioned successor
feature works, fine-tuning the successor features is essential when encountering unseen testing
environments. In contrast, our approach focuses on zero-shot generalization without any fine-tuning.

B IMPACT STATEMENTS AND LIMITATIONS

This paper proposes a novel approach called ROUSER to advance the field of generalization in
VRL, enhancing the potential of agents in real-world applications. Although our primary focus is on
technical innovation, we recognize the potential societal consequences of our work, as generalization
in VRL has the potential to influence various domains such as autonomous driving and the financial
field. We are committed to ethical research practices and attach great importance to the social
implications and ethical considerations in the development of generalization research in VRL.

It is essential for our approach to use the artificially designed rewards for robust action-value
representation learning. We look forward to advancing the representation learning in VRL using
inverse RL techniques that can derive the reward function from data. This will enable us to introduce
a framework that supports autonomic iterative optimization.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C PROOFS

C.1 PROOF OF THE MAPPING

In this subsection, we prove that the action-value representation is linearly correlated with the infinite
sequence of reward representations.

Proof. Based on Equations 1, 3, and the definition of the action-value function, we have

Qπ(ot, at) = Eπ,p

[∞∑
i=0

γir(ot+i, at+i)

]
(17)

= Eπ,p

[∞∑
i=0

γi
〈
ω′, h(ot+i, at+i)

〉]
(18)

=

〈
ω′,Eπ,p

[∞∑
i=0

γih(ot+i, at+i)

]〉
(19)

=
〈
ω′, Hπ(ot, at)

〉
. (20)

Therefore, we derive an action-value representation Hπ(ot, at).

C.2 PROOF OF THE CONVERGENCE OF ACTION-VALUE REPRESENTATION LOSS

In this section, we provide a detailed derivation of the convergence of action-value representation.
ROUSER leverages the reward representations to introduce an auxiliary objective function with a
recursive form. Similar to the TD-learning of action-value functions, we prove that Equations 4
and 5 can be reformulated as a contraction mapping T. Here, we define Zπ as a generic function
Zπ : O ×A → Z , and we define the mapping T : Z → Z .

Theorem There exists a contraction mapping T : Z → Z defined as

(TZπ)(ot, at) = z(ot, at) + γ · Eπ,p [Zπ(ot+1, at+1)|ot, at] .

Proof. Let
∣∣Zπ(ot, at)∣∣d denote the L1 value of the d th-dimension of Zπ(ot, at), where 1 ≤ d ≤ D.

Due to the properties of contraction mappings, we can apply the operator T to compute the target
auxiliary loss function until convergence in tabular settings. T operator is a contraction in the
sup-norm, which we provide as follows.

||TZπ1 −TZπ2 ||∞ ≤ γ · ||Zπ1 − Zπ2 ||∞. (21)

We provide a detailed proof of Equation 21.

||TZπ1 −TZπ2 ||∞
= max

d
|z + γ · Eπ,p [Zπ1 (ot+1, at+1)|ot, at]− z − γ · Eπ,p [Zπ2 (ot+1, at+1)|ot, at]|d

= γ ·max
d
|Eπ,p [Zπ1 (ot+1, at+1)|ot, at]− Eπ,p [Zπ2 (ot+1, at+1)|ot, at]|d

= γ ·max
d
|Eπ,p [Zπ1 (ot+1, at+1)− Zπ2 (ot+1, at+1)|ot, at]|d

≤ γ ·max
d

Eπ,p [|Zπ1 (ot+1, at+1)− Zπ2 (ot+1, at+1)|d |ot, at]

≤ γ · max
d

ot+1∈O
at+1∈A

|Zπ1 (ot+1, at+1)− Zπ2 (ot+1, at+1)|d

= γ · ||Zπ1 − Zπ2 ||∞.

Based on Equation 21, we can derive the convergence of auxiliary loss similar to action-value function
estimation. So we can apply T to compute the auxiliary loss until convergence in tabular settings.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.3 INFORMATION BOTTLENECK

Here, we provide a derivation of the formulas involved in the IB techniques in our ROUSER approach.
We first list the mathematical formulas used in our proof.

(P.1) KL Divergence

DKL

(
p(x)||q(x)

)
= Ex

[
log

p(x)

q(x)

]
. (22)

(P.2) Mutual Information

I(x;y) = Ex,y

[
log

p(x,y)

p(x)p(y)

]
= DKL

(
p(x,y)||p(x)p(y)

)
. (23)

(P.3) Chain rule of Mutual Information
I(x,y; z) = I(y; z) + I(x; z|y). (24)

(P.4) Symmetry of Mutual Information
I(x;y) = I(y;x). (25)

Then, for Equation 6, we can leverage (P.2) to expand the computation of mutual information and
conditional mutual information as follows.

I(r; z) = Er,z

[
log

p(r, z)

p(r)p(z)

]
= Er,z

[
log

p(z)p(r|z)
p(r)p(z)

]
= Er,z

[
log

p(r|z)
p(r)

]
.

(26)

I(u; z|r) = Eu,z,r

[
log

p(u, z|r)
p(u|r)p(z|r)

]
= Eu,z,r

[
log

p(u|r)p(z|u, r)
p(u|r)p(z|r)

]
= Eu,z,r

[
log

p(z|u, r)
p(z|r)

]
∗
= Eu,z,r

[
log

p(z|u)
p(z|r)

]
.

(27)

Here in ∗, since z is the representation of u, we have p(z|u, r) = p(z|u). As discussed in Equation 8,
we can introduce a new feature k to provide an upper bound to estimate the conditional mutual
information. The details of the proof in Equation 8 are as follows,

I(u; z|r)

= Eu,z,r

[
log

p(z|u)
p(z|r)

]
= Eu,z,r

[
log

p(z|u)
p(k|r)

p(k|r)
p(z|r)

]
= Eu,z,r

[
log

p(z|u)
p(k|r)

]
− Eu,z,r

[
log

p(z|r)
p(k|r)

]
= Er|u,z

(
Eu,z

[
log

p(z|u)
p(k|r)

])
− Eu|z,r

(
Ez,r

[
log

p(z|r)
p(k|r)

])
= Eu,z

[
log

p(z|u)
p(k|r)

]
− Ez,r

[
log

p(z|r)
p(k|r)

]
= DKL

(
p(z|u)||p(k|r)

)
−DKL

(
p(z|r)||p(k|r)

)
≤ DKL

(
p(z|u)||p(k|r)

)
= DKL

(
Nψ||Nη

)
.

(28)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Since the features z ∼ Nψ and k ∼ Nη, we can directly use the Gaussian distribution N to replace
the probability density function p. Note that the equality holds if the two distributions coincide.
Similar to I(u; z|r), I(r;k|u) is upper bounded by DKL

(
Nη||Nψ

)
.

We can also leverage k to provide a lower bound for the mutual information:

I(r; z) (P.3)
= I(k, r; z)− I(z;k|r) (29)
∗
= I(k, r; z) (30)

(P.3)
= I(k; z) + I(z; r|k) (31)
≥ I(k; z). (32)

Since k is the representation of r, we have I(z;k|r) = 0, and we thus derive the equality with * of
Equation 30. Moreover, the equality in Equation 32 holds if I(z; r|k) = 0, i.e., the representation k
captures all the information associated with the reward r.

Based on Equation 9, we can further derive the whole optimization objective Lcib as:

Lcib =
[
I(u; z|r) + I(r;k|u)

]
− βI(r; z)

≤ DKL
(
Nψ||Nη

)
+DKL

(
Nη||Nψ

)
− βI(k; z)

= DSKL(Nψ||Nη)− βI(k; z).

(33)

By reparameterizing the objective, we can derive the final loss function:

Linfo(ψ, η) = EB

[
−I(z;k) + αDSKL

(
Nψ||Nη

)]
. (34)

C.4 PROOF OF THE ACTION VALUE BOUND

We provide the detailed proof of the Theorem 4.4.

Theorem 4.4. Let Z be a learned robust action-value representation from any observation-action
pair (o, a) ∈ O ×A, Qπe : O × A → R be the true action-value function of a policy π in the
environment e ∈ E , f∗e : Z → R be the optimal linear mapping on the representation space, and ϵ be
a bound of estimation error for each compressed reward representation z, i.e., |f∗e (z)− r| ≤ ϵ. For
any (o, a) ∈ O ×A and e ∈ E , we have

0 ≤
∣∣Qπe (o, a)− f∗e (Z(o, a))∣∣ ≤ 1

1− γ
ϵ.

Proof.

∥∥Qπe (o, a)− f∗e (Z(o, a))∥∥1 =

∥∥∥∥∥Eeπ∗

[∞∑
t=0

γtrt

]
− Eeπ∗

[∞∑
t=0

γtf∗e (z)

]∥∥∥∥∥
1

=

∥∥∥∥∥Eeπ∗

[∞∑
t=0

γt (rt − f∗e (z))

]∥∥∥∥∥
1

≤ Eeπ∗

[∞∑
t=0

γt ∥rt − f∗e (z)∥1

]

≤ Eeπ∗

[∞∑
t=0

γt · ϵ

]

=
1

1− γ
ϵ.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D ARCHITECTURE AND PSEUDOCODE

As we directly use the embeddings from critic’s center layer as robust action-value representations,
we do not need to change the architecture of commonly used VRL algorithms. Specifically, we follow
the traditional VRL actor-critic architecture to use a 3-layer feed-forward ConvNet with no residual
connection as the encoder. Then, we apply a 3-layer MLP with hidden size 1024 as each critic, and
we use Equation 15 to regulate the embeddings of the second layer of each critic. The actor uses the
same architecture as the critic. Moreover, we use an additional 2-layer MLP with hidden size 1024 as
the reward model ψ to output the compressed reward representations z, as well as η to output the
representations k from one-step rewards. As the inputs are image observations, the reward model ψ
is after the shared encoder for the actor and critic. We provide the architecture and the algorithm of
ROUSER in Figure 1 and Algorithm 1, respectively.

Algorithm 1 ROUSER in a general actor-critic framework
Initialize the critic network Qθ with parameters θ, actor network πϕ with parameters ϕ, reward
model ψ, and the linear mapping f .
Initialize target network Qθ̄ with weight θ̄ ← θ.
Initialize the replay buffer B.
for t = 1, . . . , T do

if t ≤ T0 then
Randomly select a under o.
Execute a to obtain r and o′.

else
a ∼ πϕ(·|o)
o′ ∼ p(o′|o, a)
Sample a batch {o, a, r, o′} from B.
Update:

f ← f − λf∇fLpred linear network
ψ ← ψ − λψ∇ψ

(
Lpred + Linfo

)
reward network

θ ← θ − λθ∇θ(Lrobust + Lcritic) critic network
ϕ← ϕ− λϕ∇ϕLactor actor network
θ̄ ← τθ + (1− τ)θ̄ target network

end if
B ← B ∪ {o, a, r, o′}

end for

E EXPERIMENTS

E.1 EXPERIMENTS ON DMC

Environment Setting. Color Distractions. On DMC benchmark, we apply the similar treatment of
dynamic color distraction (Stone et al., 2021) to the objects of the environments. Specifically, we
uniformly sample the color x0 ∼ U(x−β, x+β) for each channel at the start of each episode, where
x is the origin color in DCS, and β is a hyperparameter. We leverage a dynamic setting where the
color xt can change to xt+1 = clip(x̂t+1, xt − β, xt + β), where x̂t+1 ∼ N (xt, 0.03 · β). We train
the agents on the environment with weak dynamic color distractions (β = 0.2). Then, we evaluate all
agents in the test environments with strong dynamic color distractions (β = 0.5).

Background Distractions. We adopt the dynamic background settings from Stone et al. (2021). To
establish different training environments, we utilize N videos from the DAVIS 2017 training set,
where N represents the number of training environments. Each environment uses one video as the
background and randomly samples a scene and a frame from the video at the start of every episode.
Additionally, we set βbg = 1.0, indicating that we use the distracting background instead of the
original skybox. For evaluation, we apply 30 videos from the DAVIS 2017 validation dataset as the
unseen backgrounds. In each episode of the test environment, we randomly select one of the 30
dynamic backgrounds.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 6: The dynamics color and background distractions using in Section 5.1. The first row
illustrates the dynamic color changes, and the second row shows one of dynamic backgrounds.

0 1 2 3 4
1e1

2

3

4

5

6 1e 2
TAILOR-DrQv2
TAILOR-SRM
DrQv2
SRM
CRESP

0 1 2 3 4
1e1

2

3

4

5

6 1e 2
ROUSER-DrQv2
ROUSER-SRM
DrQv2
SRM
CRESP

M
SE

 L
os

s

0.00 0.25 0.50 0.75 1.00
Environment Steps 1e6

1

2

3

4
C

um
ul

at
iv

e
R

ew
ar

d 1e2

weight-0.01
weight-0.1
weight-0.5
weight-1

Figure 7: On cheetah_run task under color changes, the left of this figure shows the curves of MSE
loss for capturing long-term information, and the right illustrates the performance of weight c.

Network. For the shared encoder, we use the default setting of baselines combined with our
approach. For example, in ROUSER-SRM, we use a shared pixel encoder with 11 convolutional
layers to extract the image information, and employ 3× 3 kernels and 32 filters with a stride of 2 for
the first convolutional layer and 1 for others. After each convolution, following the commonly used
setting of VRL methods (e.g., DrQ, DrQv2, and SRM), we apply a fully connected layer to output
50-dimensional representations normalized by LayerNorm and a tanh activation. Note that the actor
and critic each have a fully connected layer.

After the fully connected layer, the actor network is parameterized with 3 fully connected layers using
ReLU activations up until the last layer. The critic network employs Double Q-learning technique,
where each Q-value is learned using a 3-layer fully connected network, similar to the one used in
the actor network. The output dimension of these hidden layers in the actor and the critic network is
1024. Moreover, the gradients of the shared pixel encoder are computed through the critic’s optimizer
rather than the actor’s.

The reward model also has a fully connected layer to output 50-dimensional representations normal-
ized by LayerNorm and a tanh activation from the outputs of the shared encoder. After the fully
connected layer, the reward model has a 3-layer MLP. The output dimension of these hidden layers
in the reward model is also 1024. The final outputs of the reward model is twice the dimension of
compressed reward representations, half of which is the mean and half of which is the variance. Thus,
we can use the outputs to model the Gaussian distribution of compressed reward representations.
Then, we use a linear layer, mapping compressed reward representations into the corresponding
one-step rewards. Moreover, we use a linear layer to get the representations k from one-step rewards.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5
1e5

0.0

0.2

0.4

0.6

0.8

1.0 1e3 color_ball_in_cup_catch

0 1 2 3 4 5
1e5

0.0

0.2

0.4

0.6

0.8

1.0 1e3 color_cartpole_swingup

0 1 2 3 4 5
1e5

0

1

2

3

4

5 1e2 color_cheetah_run

0 1 2 3 4 5
1e5

0.0

0.2

0.4

0.6

0.8

1.0 1e3 color_finger_spin

0 1 2 3 4 5
1e5

0.0

0.2

0.4

0.6

0.8

1.0 1e3 color_walker_walk

0 1 2 3 4 5
1e5

0.0

0.2

0.4

0.6

0.8

1.0 1e3 color_reacher_easy

0 1 2 3 4 5
1e5

0.00

0.25

0.50

0.75

1.00 1e3 video_ball_in_cup_catch

0 1 2 3 4 5
1e5

0.00

0.25

0.50

0.75

1.00 1e3 video_cartpole_swingup

0 1 2 3 4 5
1e5

0

2

4

1e2 video_cheetah_run

0 1 2 3 4 5
1e5

0.00

0.25

0.50

0.75

1.00 1e3 video_finger_spin

0 1 2 3 4 5
1e5

0.00

0.25

0.50

0.75

1.00 1e3 video_walker_walk

0 1 2 3 4 5
1e5

0.00

0.25

0.50

0.75

1.00 1e3 video_reacher_easy

ROUSER-SRM
SRM

CRESP
RAP

ROUSER-DrQv2
DrQv2

CURL
TACO

Figure 8: Training curves over six seeds on DMC benchmark with color and video background
distractions. Each point from the curves is evaluated over ten episodes on test environments with
unseen distractions.

Implementations. In the implementation of VRL, the multi-step reward is a commonly used trick
without any theoretical guarantee: r(ot, at) =

∑N
i=0 γ

ir̂(ot+i, at+i), where r̂(·, ·) is the raw reward
function. Many VRL methods (Yarats et al., 2022; Huang et al., 2022; Hessel et al., 2018) use N = 3.
In our approach, we do not change the default setting when combined with baselines. It is worth
noting that we change the mode of our reward model. Specifically, we map the outputs of reward
model into the N raw rewards instead of the multi-step reward, thus learning the compressed reward
representations. Unlike CRESP, which predicts reward sequence distributions to update the shared
encoder for representation learning, our reward model does not update the shared encoder with this
mapping, although it establishes a mapping from the shared encoder’s outputs to the multi-step
rewards. This is because that we believe the multi-step rewards with length of N = 3 do not involve
much long-term robust information for sequential decision-making. We demonstrate this in the left
of Figure 7. The experiment setting for this figure is the same as in Figure 4 (a). We use 200K
collected data to learn a 2-layer MLP projector that maps the fixed representations from CRESP and
ROUSER-DrQv2 to the long-term sequential rewards with the length of 300. The curves demonstrate
that ROUSER can effectively capture more long-term robust information than CRESP.

Compute Resource. We use NVIDIA GeForce RTX 3090 GPUs for six tasks on DMC benchmark
under backgrounds or color changes. Trials of DrQv2, SRM, ROUSER-DrQv2, and ROUSER-SRM

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 1: Means and standard errors on six DMC environments with unseen dynamic color changes.
Each result is averaged over 100 episodes at 500K environment steps using six random seeds.

ALGO ball_in_cup_catch cartpole_swingup cheetah_run finger_spin walker_walk reacher_easy

ROUSER-SRM 942.6 ± 12.3 683.5 ± 37.8 370.0 ± 25.1 853.4 ± 25.6 814.0 ± 19.2 754.8 ± 39.7
ROUSER-DrQv2 780.9 ± 60.3 461.4 ± 15.6 371.6 ± 23.7 424.2 ± 49.8 417.7 ± 22.7 154.6 ± 52.8
SRM 826.0 ± 125.6 640.2 ± 15.8 299.5 ± 23.4 779.7 ± 46.8 776.5 ± 27.8 659.4 ± 18.4
DrQv2 632.1 ± 49.5 377.0 ± 24.7 140.2 ± 10.2 234.0 ± 54.9 115.3 ± 41.8 93.7 ± 20.4
CRESP 584.8 ± 57.4 410.6 ± 15.2 241.5 ± 87.3 574.0 ± 204.2 394.1 ± 65.0 270.9 ± 17.6
CURL 339.2 ± 51.5 205.5 ± 31.5 173.3 ± 46.6 279.2 ± 27.6 278.2 ± 46.3 198.2 ± 37.4
TACO 360.5 ± 192.8 385.9 ± 26.3 138.7 ± 17.2 130.8 ± 45.7 177.8 ± 31.8 122.9 ± 28.2
RAP 149.2 ± 34.2 304.4 ± 44.4 90.8 ± 57.6 1.5 ± 0.5 86.5 ± 62.5 209.8 ± 59.7

Table 2: Means and standard errors on six DMC environments with unseen dynamic backgrounds.
Each result is averaged over 100 episodes at 500K environment steps using six random seeds.

ALGO ball_in_cup_catch cartpole_swingup finger_spin cheetah_run walker_walk reacher_easy

ROUSER-SRM 868.9 ± 47.0 822.4 ± 10.8 776.8 ± 24.0 372.9 ± 10.8 894.0 ± 12.6 901.5 ± 18.2
ROUSER-DrQv2 523.1 ± 67.5 731.9 ± 10.5 348.2 ± 174.1 408.0 ± 22.1 358.6 ± 74.7 440.0 ± 70.9
SRM 818.1 ± 47.6 807.7 ± 14.5 527.5 ± 27.2 333.8 ± 22.9 823.1 ± 17.5 889.2 ± 14.2
DrQv2 474.3 ± 72.6 717.8 ± 15.0 309.7 ± 113.8 359.2 ± 19.2 237.7 ± 106.9 404.5 ± 32.9
CRESP 665.3 ± 75.5 689.8 ± 20.0 778.1 ± 62.9 327.4 ± 20.1 794.1 ± 33.9 667.7 ± 33.5
CURL 167.0 ± 57.4 329.6 ± 18.4 745.9 ± 31.8 185.0 ± 15.9 746.1 ± 16.7 714.9 ± 33.1
TACO 816.1 ± 42.6 726.6 ± 67.4 737.2 ± 99.4 64.3 ± 59.5 505.4 ± 151.2 198.8 ± 51.2
RAP 76.1 ± 14.6 170.8 ± 21.7 6.9 ± 4.0 96.7 ± 12.4 115.1 ± 5.7 150.9 ± 16.4

on reacher_easy task from DMC under dynamic backgrounds are trained for 12.24, 10.83, 16.93,
and 15.83 hours on average. Moreover, the agents of ROUSER-DrQv2 and ROUSER-SRM require
approximately 2800MB and 3600MB of memory using the batch size of 256, respectively.

Results. We compare our approach ROUSER against several SOTA method: (1) CURL (Laskin
et al., 2020), which leverages contrastive learning to maximize the mutual information between
representations from observations and augmentations. (2) DrQv2 (Yarats et al., 2022), which is
the prior state-of-the-art DRL algorithm for sample efficiency. (3) SRM (Huang et al., 2022),
which adopts augmentation in the frequency domain to facilitate the learning of robust policies. (4)
RAP (Chen & Pan, 2022), which effectively enhances the robustness of representations by leveraging
the behavioral similarity. (5) CRESP (Yang et al., 2022), which predicts the characteristic function of
reward sequences to learn task-relevant representations for generalization. (6) TACO (Zheng et al.,
2024), which learns state and action representations that encompass sufficient information for control
to improve sample efficiency. Moreover, we illustrate image observations from the environments
with dynamic color and background distractions in Figure 6.

We provide the means and standard errors at 500K environment steps in Tables 1 and 2. Note that
Table 1 lists the detailed results of Figure 2 under unseen dynamic color changes, and Table 2 lists
the detailed results of Figure 2 under unseen dynamic video backgrounds. As shown in Tables 1 and
2, ROUSER outperforms other baselines in 11 out of 12 experiments. Even in finger_spin task under
dynamic backgrounds, our approach ROUSER is almost on par with the highest performance. In
addition, we illustrate the training curves over six seeds in Figure 8.

Analysis of learned Representations for Captuing Long-Term Robust Information. In Section 5.3,
we present results from a task where learned representations are used to predict the average of future
reward sequences over a length of 300. These results indicate the effectiveness of ROUSER in
capturing long-term information.

Moreover, we conduct additional experiments with varying reward sequence lengths, including
50, 100, 300, and 500. We report the results in Table 3, which are averaged over three seeds
on cheetah_run task with unseen color distractions. These results, averaged over three seeds on
cheetah_run task with unseen color distractions, demonstrate that the representations learned by
ROUSER are able to accurately predict reward sequences of different lengths, with performance
improving as the reward sequences become longer.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Reward Sequence ROUSER-SRM SRM ROUSER-DrQv2 DrQv2

Length=50 0.0169 ± 0.0051 0.0170 ± 0.0056 0.0169 ± 0.0053 0.0173 ± 0.0029
Length=100 0.0213 ± 0.0070 0.0210 ± 0.0069 0.0205 ± 0.0065 0.0211 ± 0.0004
Length=300 0.0244 ± 0.0122 0.0268 ± 0.0179 0.0239 ± 0.0182 0.0283 ± 0.0029
Length=500 0.0294 ± 0.0091 0.0383 ± 0.0004 0.0287 ± 0.0087 0.0319 ± 0.0011

Table 3: MSE results and standard deviations with different reward sequence lengths over three seeds,
including 50, 100, 300, and 500.

Game PPO MixReg QR-DQN ROUSER-QRDQN

bigfish 3.7 ± 1.3 7.1 ± 1.6 12.2 ± 1.1 13.6 ± 5.2
caveflyer 5.1 ± 0.4 6.1 ± 0.6 6.0 ± 0.7 6.4 ± 0.4
dodgeball 1.6 ± 0.1 1.7 ± 0.4 7.2 ± 0.2 8.0 ± 0.4

Table 4: Average Procgen scores on test levels after training on 25M environment steps. The mean
and standard deviation are computed using five results with different random seeds. We boldface the
results that have highest means. This table corresponds to the results in Figure 3.

E.2 EXPERIMENTS ON PROCGEN

Settings. Procgen benchmark consists of 16 procedurally generated games. Each of these
games has procedurally generated levels which present agents with meaningful generalization chal-
lenges (Raileanu et al., 2021). All environments of these games use a discrete 15-dimensional action
space, and produce 64 × 64 × 3 RGB observations. Following Raileanu et al. (2021), we use the
easy setting, where agents are learned on the training environments with 200 levels and tested on
environments with unseen levels.

Implementations. Value-based VRL methods mainly focus on non-continuous control tasks. They
often use a critic to estimate the action-value function without a actor/policy network. Thus, their
critic inputs an image observation and outputs a vector of action values for all possible discrete
actions. Note that the last layer of their critic maps the representations of image observations into
the action values of all possible discrete actions. Therefore, in the combination of ROUSER and
QR-DQN, for the action value of each possible discrete action, we replace its last layer mapping into
a 2-layer ensemble MLP, where the ensemble size is the number of discrete actions. The inputs of
this 2-layer ensemble MLP are robust action-value representations, and this MLP outputs the quantile
values of the action-value function for each discrete action.

Moreover, we use the same design for the reward model ψ with a 3-layer MLP. Specifically, the reward
model uses the image observations as inputs and outputs the compressed reward representations for
each discrete action. It uses actions from a batch to select compressed representations for updating.

Results. We compare our approach with: (1) PPO (Schulman et al., 2017), a popular policy gradient
baseline upon which many competitive methods are developed; (2) MixReg (Wang et al., 2020), a
regularization method applicable to both policy gradient and value-based RL algorithms to enhance
generalization on Procgen; (3) QR-DQN, a prior SOTA value-based method on Procgen.

Table 4 lists the Procgen scores on test levels after training on 25M environment steps using the batch
size of 256. The mean and standard deviation are averaged over five runs with different random seeds.
We adapt the tables from Raileanu & Fergus (2021). These results demonstrate that ROUSER can be
also applicable to value-based RL algorithms, outperforming several previous methods.

E.3 EXPERIMENTS ON MUJOCO

To demonstrate that ROUSER can not only improve robustness in VRL but also enhance sample
efficiency in traditional state-based RL (i.e., RL using a vector as a state), we further conduct
experiments on MuJoCo (Todorov et al., 2012) using vector states. We combine our approach with
DDPG (Lillicrap et al., 2016) and SAC (Haarnoja et al., 2018), and further compare it against the

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10
1e5

 0
 2
 4
 6
 8
 10
 12
 14

C
um

ul
at

iv
e

R
ew

ar
d 1e3 HalfCheetah

0 2 4 6 8 10
1e5

0
1
2
3
4
5
6 1e3 Walker

8 10
1e5

 0
 5
 10
 15
 20
 25
 30
 35
 40

1e2 Hopper

4 60 2

0
1
2
3
4
5

C
um

ul
at

iv
e

R
ew

ar
d 1e3 Humanoid

0 2 6 8 10
 Environment Steps 1e5

4 0 2 4 6 8 10
Environment Steps 1e5

0
2
4
6

1e3 Ant

4 6 8 10
Environment Steps 1e5

1e3InvertedDoublePen ulum

8
6

10

4
2
0
2
0 2

d

ROUSER-SAC
SAC

VDFP
DDPG

ROUSER-DDPG

Figure 9: Training curves during the training process with 1M steps over six random seeds.

Table 5: Hyperparameters of ROUSER on DMC and Procgen benchmarks.

Parameter DMC Value Procgen Value
Optimizer Adam Adam

learning rate of critic/action-value network 1 · 10−4 2.5 · 10−4

learning rate of robust action-value representations 1 · 10−5 2.5 · 10−5

learning rate of actor network 1 · 10−4 None
learning rate of reward model 1 · 10−4 2.5 · 10−4

target smoothing coefficient 0.01 0.005
update frequency of target network 2 1

dimension of robust action-value representations D 512 512
batch size 256 512

total environment steps T 106 2.5 · 107
α scheduler start value 10−3 10−2

α scheduler end value 10−2 10−1

reward model update times for each step 5 5
nstep 3 3

SOTA of task decomposition methods, VDFP (Tang et al., 2021). We illustrate training curves (mean
and standard deviation) on six tasks from MoJoCo during the training process in Figure 9. Each result
is run for 1 million time steps over six random seeds. Figure 9 shows that ROUSER outperforms
baselines, achieving an average improvement of +18.7%.

E.4 EXPERIMENTS ON DMC-GB

Environment Setting. To comprehensively evaluate our approach, we have conducted additional
experiments on six DMC-GB (Hansen & Wang, 2021) tasks across all their settings (i.e., color_easy,
color_hard, video_easy, and video_hard). All these experiment settings are the same as Hansen &
Wang (2021) and Hansen et al. (2021). Moreover, we compare our approach against several SOTA
generalization VRL methods, including PIE-G (Yuan et al., 2022), SVEA (Hansen et al., 2021),
DrG (Ha et al., 2023), SECANT (Fan et al., 2021), SGQN (Bertoin et al., 2022), and MIIR (Wang
et al., 2024). Most of the baseline results we report are taken directly from their respective papers.
For cases where results are not provided, we ran experiments using the available source code and
hyperparameters under three random seeds. Note that since SECANT and MIIR did not release their
source code, we only include the results reported in their respective papers.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 6: Hyperparameters of ROUSER on MuJoCo benchmark for sample efficiency.

Parameter Value
Optimizer Adam

learning rate of critic network 1 · 10−3

learning rate of robust action-value representations 1 · 10−4

learning rate of actor network 1 · 10−4

learning rate of reward model 5 · 10−5

target smoothing coefficient 0.01
update frequency of target network 2

dimension of robust action-value representations D 512
batch size 256

total environment steps T 106

α scheduler start value 10−3

α scheduler end value 10−2

nstep 1

Table 7: Results and standard deviations on DMC-GB under the color_easy and color_hard settings.
Results of our approach are averaged over three random seeds.

color_easy ROUSER-SRM PIE-G DrG SVEA SGQN SECANT
ball_in_cup_catch 963 ± 8 955 ± 4 831 ± 92 959 ± 2 907 ± 71 -
cartpole_swingup 841 ± 20 624 ± 52 701 ± 43 826 ± 20 598 ± 92 -
cheetah_run 616 ± 13 429 ± 12 375 ± 31 587 ± 39 304 ± 43 -
finger_spin 933 ± 11 845 ± 5 876 ± 79 892 ± 59 628 ± 46 -
walker_walk 942 ± 6 909 ± 40 812 ± 33 907 ± 23 845 ± 26 -
walker_stand 971 ± 2 968 ± 4 910 ± 20 965 ± 10 963 ± 11 -

color_hard ROUSER-SRM PIE-G DrG SVEA SGQN SECANT
ball_in_cup_catch 964 ± 5 960 ± 3 607 ± 46 961 ± 7 905 ± 71 958 ± 7
cartpole_swingup 799 ± 24 520 ± 69 523 ± 38 837 ± 23 540 ± 76 866 ± 15
cheetah_run 562 ± 10 376 ± 27 219 ± 8 456 ± 62 277 ± 43 582 ± 64
finger_spin 979 ± 9 838 ± 10 758 ± 124 977 ± 5 461 ± 5 910 ± 115
walker_walk 916 ± 9 824 ± 92 725 ± 134 760 ± 145 692 ± 153 856 ± 31
walker_stand 962 ± 2 948 ± 15 731 ± 21 942 ± 26 905 ± 34 939 ± 7

Results. We provide all results in Tables 7 and 8. These results indicate that ROUSER outperforms
the aforementioned baselines in 17 out of 24 settings, demonstrating ROUSER’s robustness and
effectiveness in DMC-GB tasks.

E.5 HYPERPARAMETERS

Hyperparameters. We provide the hyperparameters for DMC, Procgen, and MuJoCo in Tables 5
and 6. In DMC benchmark, the hyperparameter α in the loss function Linfo can be tuned from a small
value 10−3 to 10−2 by an exponential scheduler.

Hyperparameter Search. In the right of Figure 7, we illustrate the results (mean and standard
deviation) of ROUSER-DrQv2 on cheetah_run task from DMC benchmark under color changes
for searching the learning rate l of robust action-value representations. Based on the learning rate
l̂ = 0.0001, we introduce the weight c such that l = c · l̂. Each curve is averaged over three seeds.

Moreover, in Figure 5 of the main text, we report the results without standard errors of different α
with three random seeds. Here, we provide the detailed results (refer to Table 9).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 8: Results and standard deviations on DMC-GB under the video_easy and video_hard settings.
Results of our approach are averaged over three random seeds.

video_easy ROUSER PIE-G DrG SVEA SGQN MIIR SECANT
ball_in_cup_catch 979 ± 21 922 ± 20 701 ± 36 871 ± 22 950 ± 24 973 ± 2 903 ± 49
cartpole_swingup 830 ± 21 587 ± 61 572 ± 25 782 ± 27 761 ± 28 858 ± 16 752 ± 38
cheetah_run 397 ± 30 287 ± 20 547 ± 21 249 ± 20 308 ± 34 393 ± 57 428 ± 70
finger_spin 970 ± 6 837 ± 107 751 ± 43 808 ± 33 956 ± 26 978 ± 9 861 ± 102
walker_walk 925 ± 17 871 ± 22 902 ± 23 819 ± 71 910 ± 24 919 ± 30 842 ± 47
walker_stand 973 ± 3 957 ± 12 910 ± 17 961 ± 8 955 ± 9 971 ± 3 932 ± 15

video_hard ROUSER PIE-G DrG SVEA SGQN MIIR
ball_in_cup_catch 940 ± 5 786 ± 47 635 ± 26 403 ± 174 782 ± 57 929 ± 9 -
cartpole_swingup 769 ± 37 401 ± 21 545 ± 23 393 ± 45 544 ± 43 765 ± 22 -
cheetah_run 270 ± 12 154 ± 17 489 ± 11 105 ± 37 135 ± 44 268 ± 73 -
finger_spin 937 ± 10 762 ± 59 437 ± 61 335 ± 58 822 ± 24 956 ± 18 -
walker_walk 868 ± 59 600 ± 28 782 ± 37 377 ± 93 739 ± 21 821 ± 58 -
walker_stand 968 ± 4 852 ± 56 819 ± 58 834 ± 46 851 ± 24 965 ± 2 -

Table 9: The mean and standard error of the results in Figure 5.
α scale-0.3 scale-0.4 scale-0.5 scale-0.6

0.01-0.1 649.7 ± 9.1 488.0 ± 15.7 363.0 ± 17.3 316.1 ± 9.1
0.001-0.01 663.7 ± 7.5 524.4 ± 14.5 398.4 ± 19.4 283.3 ± 11.2
0.0001-0.001 683.1 ± 2.2 510.3 ± 16.8 367.9 ± 12.5 251.4 ± 11.5

28

	Introduction
	Related work
	Preliminaries
	Algorithm
	Robust Action-Value Representations in the IB Framework
	Compressed Reward Representations from One-Step Rewards
	ROUSER Algorithm

	Experiments
	Generalization Performance on DMC Benchmark with Continuous Actions
	Extending ROUSER to Procgen with Discrete Actions
	Analyzing the Representations learned by ROUSER

	Conclusion
	Related Work of Task Decomposition
	Impact Statements and Limitations
	Proofs
	Proof of the Mapping
	Proof of the Convergence of Action-value Representation Loss
	Information Bottleneck
	Proof of the Action Value Bound

	Architecture and Pseudocode
	Experiments
	Experiments on DMC
	Experiments on Procgen
	Experiments on MuJoCo
	Experiments on DMC-GB
	Hyperparameters

