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ABSTRACT

Generalization in visual reinforcement learning (VRL) aims to learn agents that
can adapt to test environments with unseen visual distractions. Despite advances in
robust representations learning, many methods do not take into account the essen-
tial downstream task of sequential decision-making. This leads to representations
that lack critical long-term information, impairing decision-making abilities in test
environments. To tackle this problem, we propose a novel robust action-value
representation learning (ROUSER) under the information bottleneck (IB) frame-
work. ROUSER learns robust representations to capture long-term information
from the decision-making objective (i.e., action values). Specifically, ROUSER
uses IB to encode robust representations by maximizing their mutual information
with action values for long-term information, while minimizing mutual information
with state-action pairs to discard irrelevant features. As action values are unknown,
ROUSER proposes to decompose robust representations of state-action pairs into
one-step rewards and robust representations of subsequent pairs. Thus, it can use
known rewards to compute the loss for robust representation learning. Moreover,
we show that ROUSER accurately estimates action values using learned robust
representations, making it applicable to various VRL algorithms. Experiments
demonstrate that ROUSER outperforms several state-of-the-art methods in eleven
out of twelve tasks, across both unseen background and color distractions.

1 INTRODUCTION

Generalization in visual reinforcement learning (VRL) has received considerable attention (Mnih
et al., 2015; Yarats et al., 2021; Kirk et al., 2021; Zhu et al., 2023) due to its potential to learn
agents that can address complex tasks across diverse environments in real-world applications, such as
autonomous driving (Wang et al., 2021; Li et al., 2023) and robot control (Xing et al., 2021; Ahmed
et al., 2021; Liu et al., 2023). It refers to the capability of agents to directly use their learned skills to
unknown environments, where visual distractions (e.g., dynamic backgrounds or colors of objects
under control) may differ from those encountered during training (Li et al., 2021; Wang et al., 2023;
Ali et al., 2023; Zhou et al., 2023). Therefore, these generalizable agents can execute tasks with high
performance when encountering environments under unseen distractions without extensive retraining.

To learn generalizable agents, one of promising approaches in VRL aims to develop robust represen-
tations against visual distractions in environments (Hansen & Wang, 2021; Kemertas & Aumentado-
Armstrong, 2021; Mazoure et al., 2022). Specifically, some methods introduce data augmenta-
tions (Hansen & Wang, 2021; Huang et al., 2022) and contrastive learning (Laskin et al., 2020; Kim
et al., 2021) to learn representations that are robust to irrelevant and spurious information. Other meth-
ods apply metric learning (Zhang et al., 2021; Lopez et al., 2022) to encode task-relevant information
for robust representation learning. Then, based on the learned robust representations, these methods
can directly use traditional VRL algorithms (Schulman et al., 2017; Fujimoto et al., 2018; Haarnoja
et al., 2018) to optimize the objectives of the downstream task of sequential decision-making, i.e.,
maximizing the expected cumulative rewards (i.e., action values) over these environments.

However, the aforementioned representation learning approaches often do not take into account
the essential downstream decision-making. This results in the representations that cannot capture
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critical long-term robust information in sequential data, which is a key factor for generalization in
VRL (Wang et al., 2023; Qi et al., 2022). Although such representations are robust against visual
distractions, they cannot facilitate the generalization performance of sequential decision-making.

In this paper, we propose a novel robust action-value representation learning (ROUSER) for VRL
generalization under the information bottleneck (IB) framework. This approach introduces IB to
learn robust representations that capture long-term information from the sequential decision-making
objective (i.e., the action values).

Specifically, ROUSER first applies IB to propose a robust action-value representation, which is
correlated with the action value. This robust representation for each state-action pair maximizes
mutual information with the action value, while minimizing mutual information with the associated
state-action pair. Thus, this representation can capture long-term information without irrelevant
features. Then, as the true action values are unknown, we cannot directly predict action values to
learn the robust action-value representation. Inspired by task decomposition methods (Dietterich,
2000; Russell & Zimdars, 2003; Dayan, 1993; Barreto et al., 2017), ROUSER proposes to decompose
the robust action-value representation into a compressed reward representation—which captures only
information from a one-step reward—and a subsequent robust action-value representation. With this
recursive form, ROUSER can use the known one-step rewards instead of unknown action values to
compute the loss associated with robust action-value representations.

Moreover, for compressed reward representations, ROUSER introduces a reward model in the IB
framework. This model maximizes mutual information between one-step rewards and compressed
reward representations, while minimizing it between such representations and associated state-action
pairs. Therefore, ROUSER can use one-step rewards and state-action pairs to learn compressed
reward representations that encode only information from rewards.

This study proposes robust action-value representations in the IB framework, capturing long-term
information during the robust representation learning process. Thus, it significantly enhances per-
formance in sequential decision-making against unseen visual distractions. In addition, we provide
a theoretical guarantee for ROUSER, establishing a bound between the true action-value function
and the action-value function on top of learned robust action-value representations. This shows that
ROUSER can accurately estimate true action values using learned robust action-value representations.
Building upon this proof, we present an advantage of ROUSER, which is its applicability to various
VRL algorithms to improve generalization. We can integrate ROUSER with the VRL critic for action-
value estimation, using a critic’s embedding as a robust action-value representation. Experiments in
Section 5.2 demonstrate the applicability by combining ROUSER with traditional VRL algorithms,
including policy gradient (Yarats et al., 2022) and value-based (Hosu & Rebedea, 2016) methods.

It is worth noting that our study differs from task decomposition methods, which learn the representa-
tions from action values but do not take into account robustness against visual distractions. Moreover,
the representations learned by task decomposition methods often involve irrelevant information from
environment dynamics (Yang et al., 2022). Instead, we use one-step rewards to extract long-term
information from action values and leverage IB to discard irrelevant features in VRL. We summarize
the major contributions below.

• To the best of our knowledge, this study is the first to learn representations from action
values against visual distractions. It encodes robust and long-term information rather than
just robust features to facilitate downstream decision-making for generalization.

• We show that ROUSER can accurately estimate action values using the learned robust
action-value representations. With this proof, we can integrate ROUSER with various VRL
algorithms to estimate the action values, thereby enhancing robustness.

• Extensive experiments demonstrate that ROUSER outperforms several state-of-the-art VRL
methods in eleven out of twelve tasks across both unseen background and color distractions.

2 RELATED WORK

Representation Learning for Generalization in VRL. Representation learning approaches for
generalization in VRL aim to improve agents’ performance on unseen test environments by extracting
robust representations from training environments. Some approaches design an auxiliary contrastive
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task to maximize the mutual information between representations from similar observations while
minimizing the mutual information between representations from dissimilar observations (Kim et al.,
2019; Laskin et al., 2020; Fan & Li, 2022). To obtain similar observations, they always leverage data
augmentations to generate observations (Hansen et al., 2021; Hansen & Wang, 2021; Huang et al.,
2022). However, they often do not take into account the downstream task of sequential decision-
making, leading to representations that lack long-term information. Some approaches introduce the
bisimulation metric with a recursive form (Ferns & Precup, 2014; Castro, 2020; Agarwal et al., 2021;
Mazoure et al., 2022) to identify robust representations using long-term information, similar to our
approach. However, it is difficult to directly compute the recursive metric. Thus, for implementation,
they often simplify the computation to capture information from the immediate future. Other methods
directly predict reward sequences to learn robust representations (Yang et al., 2022; Zhou et al.,
2023), which captures long-term task-relevant information for generalization. Instead of using reward
sequences, our approach simply applies one-step rewards to encode the sequential information, and
we further introduce the IB principle to improve robustness.

Task Decomposition in RL. We use the task decomposition to represent methods that decompose a
task into independent sub-tasks, so that each task has the same environment dynamics but a different
reward function. Then, they propose to learn action-value representations invariant to different
tasks/reward functions. Some of them, namely successor feature methods (Dayan, 1993; Barreto
et al., 2017; 2018; 2020), use such representations to generalize to different tasks for transfer learning.
Others, namely value decomposition methods (Sutton et al., 1999; Russell & Zimdars, 2003; Makino,
2023), apply such representations to improve sample efficiency in new tasks. See Appendix A
for details. Motivated by their framework where action-value representations can be decomposed
into an infinite sequence of reward representations, we (1) learn the action-value representations
for long-term information using one-step rewards and (2) filter out irrelevant information from the
one-step reward representations to improve robustness of overall action-value representations.

It is worth noting that in this article, we aim to learn agents in training environments to generalize
to test environments with unseen visual distractions, while remaining a consistent reward function.
This differs from task decomposition methods, which primarily extract knowledge invariant to tasks
between tasks with varying reward functions and no visual distractions. Moreover, task decomposition
methods can easily encode irrelevant features in the setting of this article, as they learn representations
from environment dynamics, which involve visual distractions in VRL (Yang et al., 2022).

Information Bottleneck (IB). The IB principle in supervised learning (Tishby & Zaslavsky, 2015;
Alemi et al., 2017; Saxe et al., 2018) aims to learn compressed representations including minimal
information relevant to downstream tasks, improving generalization performance. Specifically, it
regularizes representations by minimizing the mutual information between inputs and representations,
while maximizing the mutual information between representations and labels. In VRL, recent
methods (Pei & Hou, 2019; Xiang et al., 2023) also focus on the IB principle that can learn compressed
representations to improve generalization capabilities of agents. Different from supervised learning,
in VRL, these approaches only have one-step rewards but action values, i.e., the targets in VRL
corresponding to labels in supervised learning. Thus, some of them (Federici et al., 2020; Fan
& Li, 2022) follow the unsupervised learning paradigm, using the IB framework to regularize
representations from similar inputs or multi-view image observations. Since the unsupervised learning
in the IB framework is more challenging than supervised learning (Federici et al., 2020), we use
one-step rewards—the known supervised signals in RL—to extract their compressed representations
for robust action-value representation learning.

3 PRELIMINARIES

Visual RL. We consider a family of environments E . Each environment e ∈ E is a block Markov
decision process (BMDP) (Zhang et al., 2020) denoted byMe = ⟨S,Oe,A,R, p, pe, γ⟩. Here, S
is the state space, Oe is the observation space in e, A is the action space, R is the reward space,
p (s′, r | s, a) is the state transition probability, pe (o′, r | o, a) is the observation transition probability
(i.e., environment dynamics) varying with the environment e ∈ E , and γ ∈ [0, 1) is the discount
factor. For simplicity, we use bold letters (e.g., o and a) to denote random variables, normal letters
(e.g., o and a) to denote samples, and O to denote the set of Oe for all e ∈ E .
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We suppose that an agent reaches an unseen latent state s and obtains an observation o on an
environment e ∈ E . In a BMDP, the observation is determined by a state and some task-irrelevant
visual factors varying with environments, e.g., backgrounds or agent colors in decision-making
process. Each state s does not involve irrelevant features in VRL and is invariant to the family of
environments. Formally, let X be the set of such visual factors. We introduce an observation function
g : S × X → O (Zhang et al., 2020; Song et al., 2020) such that o = g (s,x). Here, x is a random
variable in X , which is independent of s and a with a specific transition probability qe (x′ | x).
Moreover, we assume that the environments follow a generalized Block structure Zhang et al. (2020).
That is, an observation o ∈ O uniquely determines its generating state s and the visual factor x.
This assumption implies that the observation function g(s, x) is invertible with respect to both s
and x. Then, we have pe (o′, r | o, a) = p (s′, r | s, a) qe (x′ | x). Note that the expected reward
r(o, a) = r(s, a) = Ep [r|s, a] depends on the corresponding state-action pair rather than the
observation-action pair, where r is the random variable of the one-step reward.

We aim to learn an agent with a policy π : O → ∆(A) that maximizes the expected cumulative
reward Ee [

∑∞
t=0 γ

trt] simultaneously in all e ∈ E , where Ee[·] means that the expectation is taken
in e. We use Qπ(ot, at) = Qπ(st, at) = Eπ,p

[∑∞
i=0 γ

ir(ot+i, at+i)
]

to denote the action values.

4 ALGORITHM

In this paper, we propose to learn robust action-value representations that capture long-term infor-
mation for decision-making. Then, we introduce robust and compressed reward representations and
use temporal-difference (TD) learning (Sutton & Barto, 2018) paradigm to learn robust action-value
representations, guided by an IB-based objective to ensure robustness throughout the learning process.

4.1 ROBUST ACTION-VALUE REPRESENTATIONS IN THE IB FRAMEWORK

In this subsection, we propose robust action-value representations in the IB framework.

Firstly, motivated by task decomposition methods, we provide the action-value representation in
Definition 4.1. This action-value representation is linearly correlated with the action-value function
following a given policy, containing the long-term information from the action-value function.
Therefore, we propose using the action-value representation to facilitate the agent’s decision-making
performance in VRL test environments.
Definition 4.1. A representation in a D-dimensional space Z is an action-value representation
Hπ(ot, at) if there exists a linear mapping Φ : Z → R such that

Qπ(ot, at) = Φ
(
Hπ(ot, at)

)
=

〈
ω,Hπ(ot, at)

〉
, ∀ ot ∈ O, at ∈ A, (1)

where the dimension D > 1, ⟨·, ·⟩ denotes the inner product, and w denotes the weight vector of Φ.

Then, for VRL generalization, due to visual factors xt ∈ X , the action-value representation may
involve irrelevant information. This motivates us to introduce the IB principle, compressing the
action-value representation to discard irrelevant information. Specifically, we employ the conditional
IB (Chechik & Tishby, 2002) to provide Definition 4.2. In this definition, we propose a robust
action-value representation, the action-value representation for each observation-action pair main-
tains maximum mutual information with the corresponding action value while minimizing mutual
information with the observation-action pair given the action value.
Definition 4.2. An action-value representation is a robust action-value representation Zπ(ot, at) =
E [Zt] such that for all ot ∈ O and at ∈ A,

Zt = argmin
Ht

I (ut;Ht|Qt)− βI(Qt;Ht), (2)

where Ht is the random variable of Hπ(ot, at), Qt is the random variable of Qπ(ot, at), ut is the
random variable of (ot, at), I(y1;y2) is the mutual information between random variables y1 and
y2, I(y1;y2|y3) is the conditional mutual information to quantify the information between y1 and
y2 given y3, and β is a hyperparameter.

However, it is worth noting that we do not have the true action values during the training process of
VRL, and we thus cannot directly use Equations 1 and 2 to learn robust action-value representations.
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4.2 COMPRESSED REWARD REPRESENTATIONS FROM ONE-STEP REWARDS

To address the aforementioned challenge posed by unknown action values, we propose using one-step
rewards instead. We first present how to learn simple action-value representations, and we then
discuss how to learn our proposed robust action-value representations in this section.

The Recursive Form of Action-Value Representations and the Reward Representations. To
learn simple action-value representations, following task decomposition methods, we introduce a
reward representation h ∈ Z that is linearly related to the one-step reward, with a linear mapping
f : Z → R and the weight vector ω′.

r(ot, at) = f
(
h(ot, at)

)
=

〈
ω′, h(ot, at)

〉
. (3)

Based on the reward representations, we can derive the action-value representations such that

Hπ(ot, at) = Eπ,p

[ ∞∑
i=0

γih(ot+i, at+i)

]
, Qπ(ot, at) =

〈
ω′, Hπ(ot, at)

〉
. (4)

Equation 4 shows that the action-value representation is linearly correlated with the infinite sequence
of reward representations. We provide the details in Appendix C.1.

With Equation 4, we can derive a recursive form, i.e., the action-value representation for each
observation-action pair consists of a reward representation and the action-value representation of its
subsequent observation-action pair.

Hπ(ot, at) = h(ot, at) + γEπ,p [Hπ(ot+1, at+1)] . (5)
With the linear relation in Equation 3 and the recursive form in Equation 5, we can simply compute
the loss for learning such action-value representations. Moreover, we show that using Equation 5 can
converge in tabular settings in Appendix C.2.

Compressed Reward Representations for Robust Action-Value Representations. Based on
Definition 4.2, Equations 4, and 5, as the action-value representations are decomposed into an infinite
sequence of reward representations, which serve as their foundation, we can directly filter out task-
irrelevant information from such reward representations to improve robustness of overall action-value
representations, learning robust action-value representations without irrelevant features. Thus, we
propose using the IB framework to regulate the reward representations.

Since (1) the one-step reward is task-relevant without irrelevant features, and (2) the observation may
involve irrelevant visual factors, we propose a compressed reward representation in Definition 4.3.
This representation for each observation-action pair is linearly related to the corresponding one-step
reward and does not involve any irrelevant information by preserving maximum mutual information
with this one-step reward while minimizing mutual information with its observation-action pair.
Definition 4.3. A reward representation is a compressed reward representation z(ot, at) = E [zt]
such that for all ot ∈ O and at ∈ A,

zt = argmin
ht

I (ut;ht|rt)− βI(rt;ht), (6)

where ht is the random variable of h(ot, at), and β is a hyperparameter.

In Equation 6, given the one-step reward rt, the conditional mutual information I(ut;ht|rt) quantifies
information in ht that is irrelevant. The mutual information I(rt;ht) quantifies task-relevant
information shared between the reward rt and the representations ht. β is a hyperparameter that
determines the preference over the trade-off between task-relevant and task-irrelevant information.

Based on Definition 4.3 and Equation 4, the robust action-value representation is linearly correlated
with the infinite sequence of compressed reward representations. Thus, we can also use the recursive
form of robust action-value representations, as shown in Equation 5, to learn these representations.

Furthermore, in the following of this part, we discuss how to compute mutual information on
Equation 6. We provide detail formulas of Equation 6 given the joint distribution and conditional
joint distribution of ut, zt, and rt. Note that for simplicity, we use z instead of h.

I(ut; zt|rt) = Eut,zt,rt

[
log

p(zt|ut)
p(zt|rt)

]
, I(rt; zt) = Ert,zt

[
log

p(rt|zt)
p(rt)

]
. (7)
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To estimate the probability density p(zt|ut) on Equation 7, we assume that a compressed reward
representation z(ot,at) for any observation-action pair (ot,at) follows a Gaussian distribution Nψ ,
and we provide the detailed implementation in the next subsection.

However, due to the modelling of zt, the approximation of p(zt|rt) is intractable. Inspired by the
method that estimates conditional mutual information (Alemi et al., 2017; Fan & Li, 2022), we intro-
duce a new representation kt ∈ Z extracted directly from the one-step reward rt to estimate p(kt|rt)
instead of p(zt|rt). Thus, we can derive an upper bound of the conditional mutual information.

I(ut; zt|rt) ≤ DKL

(
p(zt|ut)∥p(kt|rt)

)
. (8)

We provide details in Appendix C.3. We then can minimize the upper bound—i.e., the Kullback-
Leibler (KL) divergence between p(zt|ut) and p(kt|rt)—to discard irrelevant and redundant infor-
mation for compressed reward representation learning. Moreover, the representation kt is directly
mapped from the one-step reward rt. To prevent this mapping from introducing potential redun-
dant information into kt, we first use I(rt;kt|ut) to quantify this information and then minimize
I(rt;kt|ut). Therefore, we have the whole optimization objective to minimize for compressed
reward representation learning.

Lcib = I(ut; zt|rt)− βI(rt; zt) + I(rt;kt|ut). (9)

4.3 ROUSER ALGORITHM

Here, we present the detailed algorithm of ROUSER. Firstly, we provide the losses for compressed
reward representations. Then, we introduce the loss with TD learning paradigm for robust action-value
representation learning. Moreover, we provide the theoretical analysis of learned robust action-value
representations. We provide the architecture and pseudocode of ROUSER in Appendix D.

IB-based Losses for Compressed Reward Representation Learning. The optimization objective
for learning compressed reward representations consists of two parts: a prediction loss based on
Equation 3 and a conditional IB loss based on Equation 9.

Firstly, we introduce a reward model ψ to encode the compressed reward representation from an
observation-action pair and assume that a compressed reward representation z(ot, at) = E[zt] for any
observation-action pair (ot, at) follows a Gaussian distribution Nψ = N

(
zψ(ot, at),Σψ(ot, at)

)
,

where zψ(ot, at) is the mean and Σψ(ot, at) is the diagonal covariance. We also provide a parameter-
ized model η to estimate the representation k(rt) = E[kt]. kt is drawn from the Gaussian distribution
Nη = N

(
kη(rt),Ση(rt)

)
, where kη(rt) is the mean of kt, and Ση(r) is the diagonal covariance.

Secondly, we provide the prediction loss based on Equation 3 to maintain the linear mapping
relationship between the compressed reward representations and corresponding one-step rewards.
Building upon model-based RL methods (Janner et al., 2019; Wang et al., 2022) that model one-
step rewards as a Gaussian distribution, we predict the mean and the standard deviation of reward
distribution to learn reward representations. We formulate the prediction loss based on KL divergence:

Lpred(ψ, ω
′, ω′′)=E(ot,at,rt)∼B

[∥∥〈ω′, zψ(ot,at)
〉
− rt

∥∥2
2

2 ·
〈
ω′′, zψ(ot,at)

〉2 + log
〈
ω′′, zψ(ot,at)

〉]
, (10)

where ω′ denote the weight vector mentioned in Equation 3 for the computation of the mean of
one-step rewards, ω′′ denote the weight vector to compute the standard deviation of one-step rewards,
and B denotes the replay buffer.

Finally, we propose the conditional IB loss based on Equation 9 to learn compressed reward represen-
tations, discarding task-irrelevant information while preserving task-relevant information. With the
models ψ and η, we can reformulate Equation 9 as:

Linfo(ψ, η) = EB

[
−I(zt;kt) + αDSKL

(
Nψ||Nη

)]
, (11)

where α derived from β is a hyperparameter that is tuned by an exponential scheduler during training,
and DSKL represents the symmetrized KL divergence (Jeffreys, 1998) obtained by averaging the KL
divergences DKL(Nψ||Nη) and DKL(Nη||Nψ). Please refer to Appendix C.3.
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The first term ofLinfo in Equation 11 maximizes mutual information between the representation zt and
the one-step reward rt. This term in fact maximizes task-relevant information in the representation
zt. The second term of Linfo minimizes the conditional mutual information between the observation-
action pair (ot,at) and the representation zt. It represents that we can minimize irrelevant and
redundant information in the representation zt. See Appendix C.3 for the derivation of Equation 11.

Further, to estimate the mutual information I(zt;kt) between zt and kt for a transition (o,a, r) ∼ B,
we can leverage the InfoNCE (van den Oord et al., 2018; Laskin et al., 2020) function. Thus, we have

I(zt;kt) = − log
exp(sim(zt,k

+
t ))

exp(sim(zt,k
+
t )) +

∑N−1
i=1 exp (sim (zt,kt,i))

, (12)

where sim(x,y) = xTy, N is the batch size.

TD-Based Loss for Robust Action-Value Representation Learning. As the robust action-value
representation has a recursive nature, we employ the TD learning paradigm—the commonly used
technique to learn an objective with a recursive form—to learn the representation.

Based on Equations 2, 5, and 6, we derive a recursive form of the robust action-value representation.
Zπ(ot,at) = z(ot,at) + γEπ,p [Zπ(ot+1,at+1)] , (13)

where Zπ and z subject to Equations 2 and 6, respectively.

Then, we model the critic using the parameter θ to estimate the action values. For robust action-value
representation learning, we do not change critic’s structure and directly use embeddings from critic’s
center layer as robust action-value representations (see Figure 1). Therefore, we also parameterize
the robust action-value representations as Zθ. Based on Equation 13, we have the TD-based loss as:

Lrobust(θ) = EB

[∥∥Zθ(ot,at)− Ẑ(ot,at)∥∥22], Ẑ(ot,at) = zψ(ot,at) + γEπ
[
Zθ̄

(
ot+1,at+1

)]
,

(14)
where (ot,at, rt,ot+1) ∼ B, and θ̄ denotes the parameter of the target critic that are obtained as an
exponentially moving average of the parameter θ of the critic (Mnih et al., 2015). Moreover, if we
apply the soft actor-critic framework (Haarnoja et al., 2018) that adds entropy of the policy to one-step
rewards, we will also add this entropy into each dimension of compressed reward representations.

According to Equation 14, we provide a theoretical guarantee for the robust action-value representa-
tion learning in the following theorem. It gives a bound between the true action-value function and
the action-value function on top of learned robust action-value representations (see Appendix C.4).
Theorem 4.4. Let Z be a learned robust action-value representation from any observation-action
pair (o, a) ∈ O ×A, Qπe : O × A → R be the true action-value function of a policy π in the
environment e ∈ E , f∗e : Z → R be the optimal linear mapping on the representation space, and ϵ be
a bound of estimation error for each compressed reward representation z, i.e., |f∗e (z)− r| ≤ ϵ. For
any (o, a) ∈ O ×A and e ∈ E , we have

0 ≤
∣∣Qπe (o, a)− f∗e (Z(o, a))∣∣ ≤ 1

1− γ
ϵ.

This theoretical proof allows us to directly use embeddings of the critic’s center layer as robust
action-value representations for estimating action values. This shows that ROUSER can be integrated
with various VRL methods. We combine ROUSER with traditional VRL methods in Section 5.2.

In addition, to alleviate the overestimation bias of action values, Fujimoto et al. (2018) introduces
double critics with θ1 and θ2. We note that our representation learning based on Equation 14 also suf-
fers from the overestimation bias as well as the action-value function approximation (Fujimoto et al.,
2018). Thus, we propose to leverage the overestimation bias of robust action-value representations to
alleviate the bias of estimated action values. We reformulate Equation 14 as:

Lrobust(θ1,θ2) = E(ot,at,rt,ot+1)∼B

[ ∑
i=1,2

∥∥Zθi(ot,at)− Ẑ(ot,at)∥∥22], (15)

Ẑ(ot,at) = zψ(ot,at) + γEπ
[

minI
i=1,2

Zθ̄i
(
ot+1,at+1

)]
,

minI
i=1,2

Zθ̄i(ot,at) = min
i=1,2

Iω′≥0 · Zθ̄i(ot,at) + max
i=1,2

Iω′<0 · Zθ̄i(ot,at), (16)
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Encoder𝒐𝒕

Actor

𝒂𝒕

𝒂𝒕

𝐐

Reward Model

ROUSER Critic

𝝍, 𝝎′, 𝝎′′

𝜼

Robust Loss

Reward Loss

Actor Loss

Critic Loss𝜃1, 𝜃2 Φ

𝒓𝒕

𝐳

𝐤

𝓛pred 𝝍, 𝝎′, 𝝎′′ 

+ 𝓛info 𝝍, 𝜼

𝓛robust 𝜃1, 𝜃2 

Figure 1: The architecture of ROUSER. We first input (ot, at, rt) into the reward model to compute
the reward loss, updating the reward model. Next, we input (ot, at) into the critic model to compute
the robust loss, which updates (θ1, θ2) to learn robust action-value representations. Moreover, we use
traditional actor and critic losses to update the actor and the entire critic model, respectively.

where θ̄1 and θ̄2 are parameters of target critics, Iω′≥0 and Iω′<0 denote D-dimensional vectors
of binary values from the indicator function I, and ω′ is the parameter of the linear mapping f
equivalent to Φ. With the operator minI, we select minimums of robust action-value representations
positively related to action values and maximums negatively related to action values. Thus, based on
the linear relation between action values and robust action-value representations, we can alleviate the
overestimation bias in the action-value estimation.

To clearly overview our method, we provide the architecture in Figure 1. It illustrates our proposed
two loss functions: the robust loss Lrobust(θ1, θ2) and the reward loss Lpred(ψ, ω

′, ω′′) + Linfo(ψ, η).
The detailed implementation of this architecture are presented in Appendix D.

5 EXPERIMENTS

We conduct extensive experiments to evaluate the generalization performance of ROUSER on testing
environments with unseen visual distractions. Firstly, we demonstrate the effectiveness of ROUSER
for solving the visual control tasks on DeepMind Control Suite (DMC, Tassa et al. (2018)) with
task-irrelevant visual distractions, including background and color distractions. Then, we assess the
applicability of ROUSER by combining it with traditional policy gradient and value-based VRL
algorithms. Finally, we visualize the captured long-term information and evaluate the robustness of
ROUSER. Moreover, we conduct careful ablation studies to show the effectiveness of ROUSER. We
provide additional results of ROUSER in Appendix E.

5.1 GENERALIZATION PERFORMANCE ON DMC BENCHMARK WITH CONTINUOUS ACTIONS

We apply visual distractions in DMC benchmark, including color and background distractions (Stone
et al., 2021), to investigate the generalization performance of VRL agents. For color distractions,
we train the agents in a training environment with a weak color change and evaluate in various test
environments with strong color changes. It is worth noting that the variance of the color distractions
we use is larger than the hard setting proposed in Stone et al. (2021), which poses greater challenges
for the agents. For background distractions, we follow the hard setting (Agarwal et al., 2021;
Yang et al., 2022) to use 2 videos as backgrounds during training and evaluate the generalization
performance on 30 unseen videos. See Appendix E.1 for more details. We conduct main experiments
on six tasks of DMC. For each task, we train the agents with six random seeds and present means and
standard errors of their cumulative rewards at 500,000 environment steps.

We integrate ROUSER with DrQv2 (Yarats et al., 2022) and SRM (Huang et al., 2022) to evaluate
the effectiveness of ROUSER on generalization. Note that in all experiments under both color and
background distractions, ROUSER-DrQv2 consistently outperforms DrQv2, and ROUSER-SRM

8
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Figure 2: We evaluate ROUSER on DMC with unseen color and video background distractions. Each
result is averaged over 100 episodes at 500K environment steps using six random seeds.

surpasses SRM. We also compare our approach ROUSER against several state-of-the-art (SOTA)
methods: (1) CURL (Laskin et al., 2020), (2) RAP (Chen & Pan, 2022), (3) CRESP (Yang et al.,
2022), (4) TACO (Zheng et al., 2024). See Appendix E.1 for detailed settings.

Figure 2 illustrates results under color and background distractions, demonstrating that ROUSER
outperforms other baselines in 11 out of 12 experiments. See Appendix E.1 for detailed results.

It is worth noting that although ROUSER uses one-step rewards to learn robust action-value represen-
tations, it significantly improves generalization performance on tasks with sparse reward functions
(e.g., ball_in_cup_catch, finger_spin, and reacher_easy tasks from DMC benchmark). Considering
that the actor-critic algorithms (Fujimoto et al., 2018; Haarnoja et al., 2018)—which estimate ac-
tion values using one-step rewards—also perform well on sparse reward tasks, we believe that our
approach ROUSER is also effective in the contexts beyond sparse rewards.

5.2 EXTENDING ROUSER TO PROCGEN WITH DISCRETE ACTIONS

dodgeball caveflyer bigfish
0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5 A

verage Test Score

ROUSER-QRDQN
QR-DQN
MixReg
PPO

Figure 3: Results on Procgen.

In this subsection, motivated by the result in Theorem 4.4,
we extend ROUSER to decision tasks with discrete actions,
assessing its applicability.

Firstly, Figure 2 shows that ROUSER can enhance general-
ization when combined with policy gradient VRL algorithms,
such as DrQv2 and SRM. Then, to demonstrate that ROUSER
can be integrated with value-based methods, we conduct ex-
periments in Procgen (Cobbe et al., 2020), a benchmark with
image observations where each game has multiple levels to
evaluate generalization. See Appendix E.2 for detailed settings.
We integrate ROUSER with QR-DQN (Dabney et al., 2018), a
prior SOTA value-based VRL method on Procgen for generalization.

Figure 3 shows Procgen scores on test levels that are averaged over five random seeds with a batch
size of 256 at 25M environment steps. The results demonstrate that ROUSER can also improve the
generalization performance of agents when combined with the value-based VRL method for discrete
control tasks. In addition, we provide the details of these results and the implementation for the
combination of ROUSER and QR-DQN in Appendix E.2.
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Figure 4: We report four results on cheetah_run task with unseen color distractions.

5.3 ANALYZING THE REPRESENTATIONS LEARNED BY ROUSER

Distraction Scale

(1e-4, 1e-3)
(1e-3, 1e-2)

(1e-2, 1e-1)

alpha

649.7  488.0  363.0  316.1

663.7  524.4  398.4  283.3

683.1  510.3  367.9  251.4

0.3  0.4  0.5  0.6

Figure 5: Results with differ-
ent α in different color scales.

Long-Term Robust Information. We assess how ROUSER can
capture long-term robust information. Specifically, we first collect
200K samples under unseen color distractions using a DrQv2’s
policy. Next, we compute the representations learned by each method
from state-action pairs in the collected data. Such representations
are extracted from the center layer of the critic in each method. Then,
we fix these representations and input them into a 2-layer trainable
MLP to predict the future reward sequences over a length of 300.
During the prediction process, we use the Adam optimizer with a
learning rate of 1e-4. As shown in Figure 4(a), we plot curves of the
MSE loss on 1K evaluation samples across three seeds. The lower
MSE losses of ROUSER indicate that its learned representations
capture long-term information more effectively.

Effectiveness of IB. To assess the effectiveness of IB, we remove the conditional IB loss from the
objectives of ROUSER. We then train agents to evaluate their generalization performance. Results
(i.e., means and standard deviations) over three seeds in Figure 4(b) demonstrate the effectiveness of
the conditional IB loss. Moreover, by tuning α in the conditional IB loss from Equation 11, we find
that larger values of α result in smaller DSKL, potentially improving generalization performance.
This observation aligns with our analysis in Section 4.3, demonstrating that minimizing DSKL (the
second term of Linfo) effectively discards irrelevant and redundant information. We illustrate the
results for different values of α over three seeds in Figure 5. Each result is evaluated at 200K steps on
cartpole-swingup task under color distractions (scale from 0.3 to 0.6, see Appendix E.5 for details).

Noisy One-Step Rewards. We add noise drawn from N (0, 0.1) for each reward to show how
ROUSER can be robust against noisy rewards. Figure 4(c) demonstrates that ROUSER-DrQv2
significantly outperforms DrQv2, remaining effective under the noisy reward setting.

Ablation Study for Dimension. We illustrate results of ROUSER-DrQv2 for different dimensions
of robust action-value representations in Figure 4(d). The results, averaged over three seeds on
cheetah_run task with color distractions, show that ROUSER is not sensitive to the dimension D.

6 CONCLUSION

Many existing VRL approaches focus on learning robust representations against irrelevant visual
distractions but often do not take into account the long-term decision-relevant information. This may
degrade generalization performance of VRL agents. In this paper, we propose robust action-value
representations in the IB framework, which encodes long-term information from action values while
discarding irrelevant features from image observations during the robust representation learning
process. Considering that action values are unknown, we propose to decompose robust action-value
representations into infinite sequences associated with rewards. Thus, we can directly use known
rewards to learn robust action-value representations. Experiments demonstrate that our approach
significantly enhances generalization capabilities in the majority of tasks. We believe this method is
general and applicable to other real-word applications, such as end-to-end autonomous driving.
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REPRODUCIBILITY STATEMENT

In this study, to ensure the reproducibility of our approach, we provide key information from the
main text and Appendix as follows.

1. Algorithm. We provide the architecture and pseudocode of our approach ROUSER in
Appendix D. We also provide the detailed implementation of ROUSER in Appendices E.1
and E.2. See Appendix E.5 for the hyperparameters of ROUSER.

2. Source Code. According to the architecture and pseudocode in Appendix D, our approach
ROUSER can directly build upon traditional VRL algorithms. Specifically, in Section 5.1,
we follow Yuan et al. (2023) to use the provided code for DrQv2 and SRM, available at
https://github.com/gemcollector/RL-ViGen. In Section 5.2, we apply the code from Wang
et al. (2020) for QR-DQN, available at https://github.com/kaixin96/mixreg. Moreover, we
are committed to providing the source code of our approach, if accepted.

3. Experimental Details. We provide detailed experiment settings in Section 5.1, Appen-
dices E.1, E.2, and E.3.

4. Theoretical Proofs. We provide all proofs in Appendix C.
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APPENDIX

A RELATED WORK OF TASK DECOMPOSITION

Value Decomposition. Some hierarchical RL approaches suggest that reusing learned skills from sim-
ple tasks can effectively improve the sample efficiency in solving the complex composite tasks (Sutton
et al., 1999; Dietterich, 2000; Russell & Zimdars, 2003; Makino, 2023). Thus, for a complex se-
quential decision-making task that can be divided into a series of simple individual sub-tasks, these
approaches estimate the action-value function for each sub-task to learn these reusable skills.

Inspired by this hierarchical RL, some methods propose the reward decomposition for composite
tasks, which decomposes the one-step rewards into a series of sub-rewards instead of breaking
down the composite task (van Seijen et al., 2017; Lin et al., 2019; Grimm & Singh, 2019; Fatemi
& Tavakoli, 2022). Specifically, under the assumption that one-step rewards of composite tasks are
linear combinations of independent sub-rewards, these methods decompose each one-step reward
either manually or automatically (i.e., leveraging deep learning techniques). Then, they combine the
action values for each sub-task associated with each sub-reward additively to estimate the overall
action-value function, thus efficiently addressing the complex composite task.

In this article, although the reward representations extracted by ROUSER are similar to the sub-
rewards from reward decomposition methods, they do not rely on the prior assumption that one-step
rewards are linear combinations of independent sub-rewards.

Successor Features. Successor features have garnered attention in the field of transfer RL, which
allows flexible knowledge transfer across tasks with different reward functions. Barreto et al. (2017)
assume a set of tasks with different reward functions but similar environment dynamics, and thus
propose the successor features, which represent the features from environment dynamics involving
the long-term sequential information. To learn such features, Barreto et al. (2017; 2018; 2020);
Ma et al. (2020); Carvalho et al. (2023) first decouple rewards into the component associated with
environment dynamics and the weight vector associated with different tasks. Then, they can use the
reward component to learn successor features from the environment dynamics. By using the successor
features and the weight vector, they can achieve the transfer learning. Moreover, based on successor
features, Abdolshah et al. (2021) propose transferring knowledge across different environments by
using a Gaussian distribution to capture the changes in environment dynamics.

Our study differs from these methods, which do not take into account robustness against visual
distractions. Also, the successor features learned by the aforementioned methods often involve
irrelevant information from environment dynamics in the VRL generalization challenge. Instead,
we use one-step rewards to extract long-term information from action values and leverage the IB
framework to discard irrelevant features. It is worth NOTING that in all the aforementioned successor
feature works, fine-tuning the successor features is essential when encountering unseen testing
environments. In contrast, our approach focuses on zero-shot generalization without any fine-tuning.

B IMPACT STATEMENTS AND LIMITATIONS

This paper proposes a novel approach called ROUSER to advance the field of generalization in
VRL, enhancing the potential of agents in real-world applications. Although our primary focus is on
technical innovation, we recognize the potential societal consequences of our work, as generalization
in VRL has the potential to influence various domains such as autonomous driving and the financial
field. We are committed to ethical research practices and attach great importance to the social
implications and ethical considerations in the development of generalization research in VRL.

It is essential for our approach to use the artificially designed rewards for robust action-value
representation learning. We look forward to advancing the representation learning in VRL using
inverse RL techniques that can derive the reward function from data. This will enable us to introduce
a framework that supports autonomic iterative optimization.
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C PROOFS

C.1 PROOF OF THE MAPPING

In this subsection, we prove that the action-value representation is linearly correlated with the infinite
sequence of reward representations.

Proof. Based on Equations 1, 3, and the definition of the action-value function, we have

Qπ(ot, at) = Eπ,p

[ ∞∑
i=0

γir(ot+i, at+i)

]
(17)

= Eπ,p

[ ∞∑
i=0

γi
〈
ω′, h(ot+i, at+i)

〉]
(18)

=

〈
ω′,Eπ,p

[ ∞∑
i=0

γih(ot+i, at+i)

]〉
(19)

=
〈
ω′, Hπ(ot, at)

〉
. (20)

Therefore, we derive an action-value representation Hπ(ot, at).

C.2 PROOF OF THE CONVERGENCE OF ACTION-VALUE REPRESENTATION LOSS

In this section, we provide a detailed derivation of the convergence of action-value representation.
ROUSER leverages the reward representations to introduce an auxiliary objective function with a
recursive form. Similar to the TD-learning of action-value functions, we prove that Equations 4
and 5 can be reformulated as a contraction mapping T. Here, we define Zπ as a generic function
Zπ : O ×A → Z , and we define the mapping T : Z → Z .

Theorem There exists a contraction mapping T : Z → Z defined as

(TZπ)(ot, at) = z(ot, at) + γ · Eπ,p [Zπ(ot+1, at+1)|ot, at] .

Proof. Let
∣∣Zπ(ot, at)∣∣d denote the L1 value of the d th-dimension of Zπ(ot, at), where 1 ≤ d ≤ D.

Due to the properties of contraction mappings, we can apply the operator T to compute the target
auxiliary loss function until convergence in tabular settings. T operator is a contraction in the
sup-norm, which we provide as follows.

||TZπ1 −TZπ2 ||∞ ≤ γ · ||Zπ1 − Zπ2 ||∞. (21)

We provide a detailed proof of Equation 21.

||TZπ1 −TZπ2 ||∞
= max

d
|z + γ · Eπ,p [Zπ1 (ot+1, at+1)|ot, at]− z − γ · Eπ,p [Zπ2 (ot+1, at+1)|ot, at]|d

= γ ·max
d
|Eπ,p [Zπ1 (ot+1, at+1)|ot, at]− Eπ,p [Zπ2 (ot+1, at+1)|ot, at]|d

= γ ·max
d
|Eπ,p [Zπ1 (ot+1, at+1)− Zπ2 (ot+1, at+1)|ot, at]|d

≤ γ ·max
d

Eπ,p [|Zπ1 (ot+1, at+1)− Zπ2 (ot+1, at+1)|d |ot, at]

≤ γ · max
d

ot+1∈O
at+1∈A

|Zπ1 (ot+1, at+1)− Zπ2 (ot+1, at+1)|d

= γ · ||Zπ1 − Zπ2 ||∞.

Based on Equation 21, we can derive the convergence of auxiliary loss similar to action-value function
estimation. So we can apply T to compute the auxiliary loss until convergence in tabular settings.
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C.3 INFORMATION BOTTLENECK

Here, we provide a derivation of the formulas involved in the IB techniques in our ROUSER approach.
We first list the mathematical formulas used in our proof.

(P.1) KL Divergence

DKL

(
p(x)||q(x)

)
= Ex

[
log

p(x)

q(x)

]
. (22)

(P.2) Mutual Information

I(x;y) = Ex,y

[
log

p(x,y)

p(x)p(y)

]
= DKL

(
p(x,y)||p(x)p(y)

)
. (23)

(P.3) Chain rule of Mutual Information
I(x,y; z) = I(y; z) + I(x; z|y). (24)

(P.4) Symmetry of Mutual Information
I(x;y) = I(y;x). (25)

Then, for Equation 6, we can leverage (P.2) to expand the computation of mutual information and
conditional mutual information as follows.

I(r; z) = Er,z

[
log

p(r, z)

p(r)p(z)

]
= Er,z

[
log

p(z)p(r|z)
p(r)p(z)

]
= Er,z

[
log

p(r|z)
p(r)

]
.

(26)

I(u; z|r) = Eu,z,r

[
log

p(u, z|r)
p(u|r)p(z|r)

]
= Eu,z,r

[
log

p(u|r)p(z|u, r)
p(u|r)p(z|r)

]
= Eu,z,r

[
log

p(z|u, r)
p(z|r)

]
∗
= Eu,z,r

[
log

p(z|u)
p(z|r)

]
.

(27)

Here in ∗, since z is the representation of u, we have p(z|u, r) = p(z|u). As discussed in Equation 8,
we can introduce a new feature k to provide an upper bound to estimate the conditional mutual
information. The details of the proof in Equation 8 are as follows,

I(u; z|r)

= Eu,z,r

[
log

p(z|u)
p(z|r)

]
= Eu,z,r

[
log

p(z|u)
p(k|r)

p(k|r)
p(z|r)

]
= Eu,z,r

[
log

p(z|u)
p(k|r)

]
− Eu,z,r

[
log

p(z|r)
p(k|r)

]
= Er|u,z

(
Eu,z

[
log

p(z|u)
p(k|r)

])
− Eu|z,r

(
Ez,r

[
log

p(z|r)
p(k|r)

])
= Eu,z

[
log

p(z|u)
p(k|r)

]
− Ez,r

[
log

p(z|r)
p(k|r)

]
= DKL

(
p(z|u)||p(k|r)

)
−DKL

(
p(z|r)||p(k|r)

)
≤ DKL

(
p(z|u)||p(k|r)

)
= DKL

(
Nψ||Nη

)
.

(28)
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Since the features z ∼ Nψ and k ∼ Nη, we can directly use the Gaussian distribution N to replace
the probability density function p. Note that the equality holds if the two distributions coincide.
Similar to I(u; z|r), I(r;k|u) is upper bounded by DKL

(
Nη||Nψ

)
.

We can also leverage k to provide a lower bound for the mutual information:

I(r; z) (P.3)
= I(k, r; z)− I(z;k|r) (29)
∗
= I(k, r; z) (30)

(P.3)
= I(k; z) + I(z; r|k) (31)
≥ I(k; z). (32)

Since k is the representation of r, we have I(z;k|r) = 0, and we thus derive the equality with * of
Equation 30. Moreover, the equality in Equation 32 holds if I(z; r|k) = 0, i.e., the representation k
captures all the information associated with the reward r.

Based on Equation 9, we can further derive the whole optimization objective Lcib as:

Lcib =
[
I(u; z|r) + I(r;k|u)

]
− βI(r; z)

≤ DKL
(
Nψ||Nη

)
+DKL

(
Nη||Nψ

)
− βI(k; z)

= DSKL(Nψ||Nη)− βI(k; z).

(33)

By reparameterizing the objective, we can derive the final loss function:

Linfo(ψ, η) = EB

[
−I(z;k) + αDSKL

(
Nψ||Nη

)]
. (34)

C.4 PROOF OF THE ACTION VALUE BOUND

We provide the detailed proof of the Theorem 4.4.

Theorem 4.4. Let Z be a learned robust action-value representation from any observation-action
pair (o, a) ∈ O ×A, Qπe : O × A → R be the true action-value function of a policy π in the
environment e ∈ E , f∗e : Z → R be the optimal linear mapping on the representation space, and ϵ be
a bound of estimation error for each compressed reward representation z, i.e., |f∗e (z)− r| ≤ ϵ. For
any (o, a) ∈ O ×A and e ∈ E , we have

0 ≤
∣∣Qπe (o, a)− f∗e (Z(o, a))∣∣ ≤ 1

1− γ
ϵ.

Proof.

∥∥Qπe (o, a)− f∗e (Z(o, a))∥∥1 =

∥∥∥∥∥Eeπ∗

[ ∞∑
t=0

γtrt

]
− Eeπ∗

[ ∞∑
t=0

γtf∗e (z)

]∥∥∥∥∥
1

=

∥∥∥∥∥Eeπ∗

[ ∞∑
t=0

γt (rt − f∗e (z))

]∥∥∥∥∥
1

≤ Eeπ∗

[ ∞∑
t=0

γt ∥rt − f∗e (z)∥1

]

≤ Eeπ∗

[ ∞∑
t=0

γt · ϵ

]

=
1

1− γ
ϵ.
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D ARCHITECTURE AND PSEUDOCODE

As we directly use the embeddings from critic’s center layer as robust action-value representations,
we do not need to change the architecture of commonly used VRL algorithms. Specifically, we follow
the traditional VRL actor-critic architecture to use a 3-layer feed-forward ConvNet with no residual
connection as the encoder. Then, we apply a 3-layer MLP with hidden size 1024 as each critic, and
we use Equation 15 to regulate the embeddings of the second layer of each critic. The actor uses the
same architecture as the critic. Moreover, we use an additional 2-layer MLP with hidden size 1024 as
the reward model ψ to output the compressed reward representations z, as well as η to output the
representations k from one-step rewards. As the inputs are image observations, the reward model ψ
is after the shared encoder for the actor and critic. We provide the architecture and the algorithm of
ROUSER in Figure 1 and Algorithm 1, respectively.

Algorithm 1 ROUSER in a general actor-critic framework
Initialize the critic network Qθ with parameters θ, actor network πϕ with parameters ϕ, reward
model ψ, and the linear mapping f .
Initialize target network Qθ̄ with weight θ̄ ← θ.
Initialize the replay buffer B.
for t = 1, . . . , T do

if t ≤ T0 then
Randomly select a under o.
Execute a to obtain r and o′.

else
a ∼ πϕ(·|o)
o′ ∼ p(o′|o, a)
Sample a batch {o, a, r, o′} from B.
Update:

f ← f − λf∇fLpred linear network
ψ ← ψ − λψ∇ψ

(
Lpred + Linfo

)
reward network

θ ← θ − λθ∇θ(Lrobust + Lcritic) critic network
ϕ← ϕ− λϕ∇ϕLactor actor network
θ̄ ← τθ + (1− τ)θ̄ target network

end if
B ← B ∪ {o, a, r, o′}

end for

E EXPERIMENTS

E.1 EXPERIMENTS ON DMC

Environment Setting. Color Distractions. On DMC benchmark, we apply the similar treatment of
dynamic color distraction (Stone et al., 2021) to the objects of the environments. Specifically, we
uniformly sample the color x0 ∼ U(x−β, x+β) for each channel at the start of each episode, where
x is the origin color in DCS, and β is a hyperparameter. We leverage a dynamic setting where the
color xt can change to xt+1 = clip(x̂t+1, xt − β, xt + β), where x̂t+1 ∼ N (xt, 0.03 · β). We train
the agents on the environment with weak dynamic color distractions (β = 0.2). Then, we evaluate all
agents in the test environments with strong dynamic color distractions (β = 0.5).

Background Distractions. We adopt the dynamic background settings from Stone et al. (2021). To
establish different training environments, we utilize N videos from the DAVIS 2017 training set,
where N represents the number of training environments. Each environment uses one video as the
background and randomly samples a scene and a frame from the video at the start of every episode.
Additionally, we set βbg = 1.0, indicating that we use the distracting background instead of the
original skybox. For evaluation, we apply 30 videos from the DAVIS 2017 validation dataset as the
unseen backgrounds. In each episode of the test environment, we randomly select one of the 30
dynamic backgrounds.
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Figure 6: The dynamics color and background distractions using in Section 5.1. The first row
illustrates the dynamic color changes, and the second row shows one of dynamic backgrounds.
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Figure 7: On cheetah_run task under color changes, the left of this figure shows the curves of MSE
loss for capturing long-term information, and the right illustrates the performance of weight c.

Network. For the shared encoder, we use the default setting of baselines combined with our
approach. For example, in ROUSER-SRM, we use a shared pixel encoder with 11 convolutional
layers to extract the image information, and employ 3× 3 kernels and 32 filters with a stride of 2 for
the first convolutional layer and 1 for others. After each convolution, following the commonly used
setting of VRL methods (e.g., DrQ, DrQv2, and SRM), we apply a fully connected layer to output
50-dimensional representations normalized by LayerNorm and a tanh activation. Note that the actor
and critic each have a fully connected layer.

After the fully connected layer, the actor network is parameterized with 3 fully connected layers using
ReLU activations up until the last layer. The critic network employs Double Q-learning technique,
where each Q-value is learned using a 3-layer fully connected network, similar to the one used in
the actor network. The output dimension of these hidden layers in the actor and the critic network is
1024. Moreover, the gradients of the shared pixel encoder are computed through the critic’s optimizer
rather than the actor’s.

The reward model also has a fully connected layer to output 50-dimensional representations normal-
ized by LayerNorm and a tanh activation from the outputs of the shared encoder. After the fully
connected layer, the reward model has a 3-layer MLP. The output dimension of these hidden layers
in the reward model is also 1024. The final outputs of the reward model is twice the dimension of
compressed reward representations, half of which is the mean and half of which is the variance. Thus,
we can use the outputs to model the Gaussian distribution of compressed reward representations.
Then, we use a linear layer, mapping compressed reward representations into the corresponding
one-step rewards. Moreover, we use a linear layer to get the representations k from one-step rewards.
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Figure 8: Training curves over six seeds on DMC benchmark with color and video background
distractions. Each point from the curves is evaluated over ten episodes on test environments with
unseen distractions.

Implementations. In the implementation of VRL, the multi-step reward is a commonly used trick
without any theoretical guarantee: r(ot, at) =

∑N
i=0 γ

ir̂(ot+i, at+i), where r̂(·, ·) is the raw reward
function. Many VRL methods (Yarats et al., 2022; Huang et al., 2022; Hessel et al., 2018) use N = 3.
In our approach, we do not change the default setting when combined with baselines. It is worth
noting that we change the mode of our reward model. Specifically, we map the outputs of reward
model into the N raw rewards instead of the multi-step reward, thus learning the compressed reward
representations. Unlike CRESP, which predicts reward sequence distributions to update the shared
encoder for representation learning, our reward model does not update the shared encoder with this
mapping, although it establishes a mapping from the shared encoder’s outputs to the multi-step
rewards. This is because that we believe the multi-step rewards with length of N = 3 do not involve
much long-term robust information for sequential decision-making. We demonstrate this in the left
of Figure 7. The experiment setting for this figure is the same as in Figure 4 (a). We use 200K
collected data to learn a 2-layer MLP projector that maps the fixed representations from CRESP and
ROUSER-DrQv2 to the long-term sequential rewards with the length of 300. The curves demonstrate
that ROUSER can effectively capture more long-term robust information than CRESP.

Compute Resource. We use NVIDIA GeForce RTX 3090 GPUs for six tasks on DMC benchmark
under backgrounds or color changes. Trials of DrQv2, SRM, ROUSER-DrQv2, and ROUSER-SRM
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Table 1: Means and standard errors on six DMC environments with unseen dynamic color changes.
Each result is averaged over 100 episodes at 500K environment steps using six random seeds.

ALGO ball_in_cup_catch cartpole_swingup cheetah_run finger_spin walker_walk reacher_easy

ROUSER-SRM 942.6 ± 12.3 683.5 ± 37.8 370.0 ± 25.1 853.4 ± 25.6 814.0 ± 19.2 754.8 ± 39.7
ROUSER-DrQv2 780.9 ± 60.3 461.4 ± 15.6 371.6 ± 23.7 424.2 ± 49.8 417.7 ± 22.7 154.6 ± 52.8
SRM 826.0 ± 125.6 640.2 ± 15.8 299.5 ± 23.4 779.7 ± 46.8 776.5 ± 27.8 659.4 ± 18.4
DrQv2 632.1 ± 49.5 377.0 ± 24.7 140.2 ± 10.2 234.0 ± 54.9 115.3 ± 41.8 93.7 ± 20.4
CRESP 584.8 ± 57.4 410.6 ± 15.2 241.5 ± 87.3 574.0 ± 204.2 394.1 ± 65.0 270.9 ± 17.6
CURL 339.2 ± 51.5 205.5 ± 31.5 173.3 ± 46.6 279.2 ± 27.6 278.2 ± 46.3 198.2 ± 37.4
TACO 360.5 ± 192.8 385.9 ± 26.3 138.7 ± 17.2 130.8 ± 45.7 177.8 ± 31.8 122.9 ± 28.2
RAP 149.2 ± 34.2 304.4 ± 44.4 90.8 ± 57.6 1.5 ± 0.5 86.5 ± 62.5 209.8 ± 59.7

Table 2: Means and standard errors on six DMC environments with unseen dynamic backgrounds.
Each result is averaged over 100 episodes at 500K environment steps using six random seeds.

ALGO ball_in_cup_catch cartpole_swingup finger_spin cheetah_run walker_walk reacher_easy

ROUSER-SRM 868.9 ± 47.0 822.4 ± 10.8 776.8 ± 24.0 372.9 ± 10.8 894.0 ± 12.6 901.5 ± 18.2
ROUSER-DrQv2 523.1 ± 67.5 731.9 ± 10.5 348.2 ± 174.1 408.0 ± 22.1 358.6 ± 74.7 440.0 ± 70.9
SRM 818.1 ± 47.6 807.7 ± 14.5 527.5 ± 27.2 333.8 ± 22.9 823.1 ± 17.5 889.2 ± 14.2
DrQv2 474.3 ± 72.6 717.8 ± 15.0 309.7 ± 113.8 359.2 ± 19.2 237.7 ± 106.9 404.5 ± 32.9
CRESP 665.3 ± 75.5 689.8 ± 20.0 778.1 ± 62.9 327.4 ± 20.1 794.1 ± 33.9 667.7 ± 33.5
CURL 167.0 ± 57.4 329.6 ± 18.4 745.9 ± 31.8 185.0 ± 15.9 746.1 ± 16.7 714.9 ± 33.1
TACO 816.1 ± 42.6 726.6 ± 67.4 737.2 ± 99.4 64.3 ± 59.5 505.4 ± 151.2 198.8 ± 51.2
RAP 76.1 ± 14.6 170.8 ± 21.7 6.9 ± 4.0 96.7 ± 12.4 115.1 ± 5.7 150.9 ± 16.4

on reacher_easy task from DMC under dynamic backgrounds are trained for 12.24, 10.83, 16.93,
and 15.83 hours on average. Moreover, the agents of ROUSER-DrQv2 and ROUSER-SRM require
approximately 2800MB and 3600MB of memory using the batch size of 256, respectively.

Results. We compare our approach ROUSER against several SOTA method: (1) CURL (Laskin
et al., 2020), which leverages contrastive learning to maximize the mutual information between
representations from observations and augmentations. (2) DrQv2 (Yarats et al., 2022), which is
the prior state-of-the-art DRL algorithm for sample efficiency. (3) SRM (Huang et al., 2022),
which adopts augmentation in the frequency domain to facilitate the learning of robust policies. (4)
RAP (Chen & Pan, 2022), which effectively enhances the robustness of representations by leveraging
the behavioral similarity. (5) CRESP (Yang et al., 2022), which predicts the characteristic function of
reward sequences to learn task-relevant representations for generalization. (6) TACO (Zheng et al.,
2024), which learns state and action representations that encompass sufficient information for control
to improve sample efficiency. Moreover, we illustrate image observations from the environments
with dynamic color and background distractions in Figure 6.

We provide the means and standard errors at 500K environment steps in Tables 1 and 2. Note that
Table 1 lists the detailed results of Figure 2 under unseen dynamic color changes, and Table 2 lists
the detailed results of Figure 2 under unseen dynamic video backgrounds. As shown in Tables 1 and
2, ROUSER outperforms other baselines in 11 out of 12 experiments. Even in finger_spin task under
dynamic backgrounds, our approach ROUSER is almost on par with the highest performance. In
addition, we illustrate the training curves over six seeds in Figure 8.

Analysis of learned Representations for Captuing Long-Term Robust Information. In Section 5.3,
we present results from a task where learned representations are used to predict the average of future
reward sequences over a length of 300. These results indicate the effectiveness of ROUSER in
capturing long-term information.

Moreover, we conduct additional experiments with varying reward sequence lengths, including
50, 100, 300, and 500. We report the results in Table 3, which are averaged over three seeds
on cheetah_run task with unseen color distractions. These results, averaged over three seeds on
cheetah_run task with unseen color distractions, demonstrate that the representations learned by
ROUSER are able to accurately predict reward sequences of different lengths, with performance
improving as the reward sequences become longer.
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Reward Sequence ROUSER-SRM SRM ROUSER-DrQv2 DrQv2

Length=50 0.0169 ± 0.0051 0.0170 ± 0.0056 0.0169 ± 0.0053 0.0173 ± 0.0029
Length=100 0.0213 ± 0.0070 0.0210 ± 0.0069 0.0205 ± 0.0065 0.0211 ± 0.0004
Length=300 0.0244 ± 0.0122 0.0268 ± 0.0179 0.0239 ± 0.0182 0.0283 ± 0.0029
Length=500 0.0294 ± 0.0091 0.0383 ± 0.0004 0.0287 ± 0.0087 0.0319 ± 0.0011

Table 3: MSE results and standard deviations with different reward sequence lengths over three seeds,
including 50, 100, 300, and 500.

Game PPO MixReg QR-DQN ROUSER-QRDQN

bigfish 3.7 ± 1.3 7.1 ± 1.6 12.2 ± 1.1 13.6 ± 5.2
caveflyer 5.1 ± 0.4 6.1 ± 0.6 6.0 ± 0.7 6.4 ± 0.4
dodgeball 1.6 ± 0.1 1.7 ± 0.4 7.2 ± 0.2 8.0 ± 0.4

Table 4: Average Procgen scores on test levels after training on 25M environment steps. The mean
and standard deviation are computed using five results with different random seeds. We boldface the
results that have highest means. This table corresponds to the results in Figure 3.

E.2 EXPERIMENTS ON PROCGEN

Settings. Procgen benchmark consists of 16 procedurally generated games. Each of these
games has procedurally generated levels which present agents with meaningful generalization chal-
lenges (Raileanu et al., 2021). All environments of these games use a discrete 15-dimensional action
space, and produce 64 × 64 × 3 RGB observations. Following Raileanu et al. (2021), we use the
easy setting, where agents are learned on the training environments with 200 levels and tested on
environments with unseen levels.

Implementations. Value-based VRL methods mainly focus on non-continuous control tasks. They
often use a critic to estimate the action-value function without a actor/policy network. Thus, their
critic inputs an image observation and outputs a vector of action values for all possible discrete
actions. Note that the last layer of their critic maps the representations of image observations into
the action values of all possible discrete actions. Therefore, in the combination of ROUSER and
QR-DQN, for the action value of each possible discrete action, we replace its last layer mapping into
a 2-layer ensemble MLP, where the ensemble size is the number of discrete actions. The inputs of
this 2-layer ensemble MLP are robust action-value representations, and this MLP outputs the quantile
values of the action-value function for each discrete action.

Moreover, we use the same design for the reward model ψ with a 3-layer MLP. Specifically, the reward
model uses the image observations as inputs and outputs the compressed reward representations for
each discrete action. It uses actions from a batch to select compressed representations for updating.

Results. We compare our approach with: (1) PPO (Schulman et al., 2017), a popular policy gradient
baseline upon which many competitive methods are developed; (2) MixReg (Wang et al., 2020), a
regularization method applicable to both policy gradient and value-based RL algorithms to enhance
generalization on Procgen; (3) QR-DQN, a prior SOTA value-based method on Procgen.

Table 4 lists the Procgen scores on test levels after training on 25M environment steps using the batch
size of 256. The mean and standard deviation are averaged over five runs with different random seeds.
We adapt the tables from Raileanu & Fergus (2021). These results demonstrate that ROUSER can be
also applicable to value-based RL algorithms, outperforming several previous methods.

E.3 EXPERIMENTS ON MUJOCO

To demonstrate that ROUSER can not only improve robustness in VRL but also enhance sample
efficiency in traditional state-based RL (i.e., RL using a vector as a state), we further conduct
experiments on MuJoCo (Todorov et al., 2012) using vector states. We combine our approach with
DDPG (Lillicrap et al., 2016) and SAC (Haarnoja et al., 2018), and further compare it against the
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Figure 9: Training curves during the training process with 1M steps over six random seeds.

Table 5: Hyperparameters of ROUSER on DMC and Procgen benchmarks.

Parameter DMC Value Procgen Value
Optimizer Adam Adam

learning rate of critic/action-value network 1 · 10−4 2.5 · 10−4

learning rate of robust action-value representations 1 · 10−5 2.5 · 10−5

learning rate of actor network 1 · 10−4 None
learning rate of reward model 1 · 10−4 2.5 · 10−4

target smoothing coefficient 0.01 0.005
update frequency of target network 2 1

dimension of robust action-value representations D 512 512
batch size 256 512

total environment steps T 106 2.5 · 107
α scheduler start value 10−3 10−2

α scheduler end value 10−2 10−1

reward model update times for each step 5 5
nstep 3 3

SOTA of task decomposition methods, VDFP (Tang et al., 2021). We illustrate training curves (mean
and standard deviation) on six tasks from MoJoCo during the training process in Figure 9. Each result
is run for 1 million time steps over six random seeds. Figure 9 shows that ROUSER outperforms
baselines, achieving an average improvement of +18.7%.

E.4 EXPERIMENTS ON DMC-GB

Environment Setting. To comprehensively evaluate our approach, we have conducted additional
experiments on six DMC-GB (Hansen & Wang, 2021) tasks across all their settings (i.e., color_easy,
color_hard, video_easy, and video_hard). All these experiment settings are the same as Hansen &
Wang (2021) and Hansen et al. (2021). Moreover, we compare our approach against several SOTA
generalization VRL methods, including PIE-G (Yuan et al., 2022), SVEA (Hansen et al., 2021),
DrG (Ha et al., 2023), SECANT (Fan et al., 2021), SGQN (Bertoin et al., 2022), and MIIR (Wang
et al., 2024). Most of the baseline results we report are taken directly from their respective papers.
For cases where results are not provided, we ran experiments using the available source code and
hyperparameters under three random seeds. Note that since SECANT and MIIR did not release their
source code, we only include the results reported in their respective papers.
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Table 6: Hyperparameters of ROUSER on MuJoCo benchmark for sample efficiency.

Parameter Value
Optimizer Adam

learning rate of critic network 1 · 10−3

learning rate of robust action-value representations 1 · 10−4

learning rate of actor network 1 · 10−4

learning rate of reward model 5 · 10−5

target smoothing coefficient 0.01
update frequency of target network 2

dimension of robust action-value representations D 512
batch size 256

total environment steps T 106

α scheduler start value 10−3

α scheduler end value 10−2

nstep 1

Table 7: Results and standard deviations on DMC-GB under the color_easy and color_hard settings.
Results of our approach are averaged over three random seeds.

color_easy ROUSER-SRM PIE-G DrG SVEA SGQN SECANT
ball_in_cup_catch 963 ± 8 955 ± 4 831 ± 92 959 ± 2 907 ± 71 -
cartpole_swingup 841 ± 20 624 ± 52 701 ± 43 826 ± 20 598 ± 92 -
cheetah_run 616 ± 13 429 ± 12 375 ± 31 587 ± 39 304 ± 43 -
finger_spin 933 ± 11 845 ± 5 876 ± 79 892 ± 59 628 ± 46 -
walker_walk 942 ± 6 909 ± 40 812 ± 33 907 ± 23 845 ± 26 -
walker_stand 971 ± 2 968 ± 4 910 ± 20 965 ± 10 963 ± 11 -

color_hard ROUSER-SRM PIE-G DrG SVEA SGQN SECANT
ball_in_cup_catch 964 ± 5 960 ± 3 607 ± 46 961 ± 7 905 ± 71 958 ± 7
cartpole_swingup 799 ± 24 520 ± 69 523 ± 38 837 ± 23 540 ± 76 866 ± 15
cheetah_run 562 ± 10 376 ± 27 219 ± 8 456 ± 62 277 ± 43 582 ± 64
finger_spin 979 ± 9 838 ± 10 758 ± 124 977 ± 5 461 ± 5 910 ± 115
walker_walk 916 ± 9 824 ± 92 725 ± 134 760 ± 145 692 ± 153 856 ± 31
walker_stand 962 ± 2 948 ± 15 731 ± 21 942 ± 26 905 ± 34 939 ± 7

Results. We provide all results in Tables 7 and 8. These results indicate that ROUSER outperforms
the aforementioned baselines in 17 out of 24 settings, demonstrating ROUSER’s robustness and
effectiveness in DMC-GB tasks.

E.5 HYPERPARAMETERS

Hyperparameters. We provide the hyperparameters for DMC, Procgen, and MuJoCo in Tables 5
and 6. In DMC benchmark, the hyperparameter α in the loss function Linfo can be tuned from a small
value 10−3 to 10−2 by an exponential scheduler.

Hyperparameter Search. In the right of Figure 7, we illustrate the results (mean and standard
deviation) of ROUSER-DrQv2 on cheetah_run task from DMC benchmark under color changes
for searching the learning rate l of robust action-value representations. Based on the learning rate
l̂ = 0.0001, we introduce the weight c such that l = c · l̂. Each curve is averaged over three seeds.

Moreover, in Figure 5 of the main text, we report the results without standard errors of different α
with three random seeds. Here, we provide the detailed results (refer to Table 9).
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Table 8: Results and standard deviations on DMC-GB under the video_easy and video_hard settings.
Results of our approach are averaged over three random seeds.

video_easy ROUSER PIE-G DrG SVEA SGQN MIIR SECANT
ball_in_cup_catch 979 ± 21 922 ± 20 701 ± 36 871 ± 22 950 ± 24 973 ± 2 903 ± 49
cartpole_swingup 830 ± 21 587 ± 61 572 ± 25 782 ± 27 761 ± 28 858 ± 16 752 ± 38
cheetah_run 397 ± 30 287 ± 20 547 ± 21 249 ± 20 308 ± 34 393 ± 57 428 ± 70
finger_spin 970 ± 6 837 ± 107 751 ± 43 808 ± 33 956 ± 26 978 ± 9 861 ± 102
walker_walk 925 ± 17 871 ± 22 902 ± 23 819 ± 71 910 ± 24 919 ± 30 842 ± 47
walker_stand 973 ± 3 957 ± 12 910 ± 17 961 ± 8 955 ± 9 971 ± 3 932 ± 15

video_hard ROUSER PIE-G DrG SVEA SGQN MIIR
ball_in_cup_catch 940 ± 5 786 ± 47 635 ± 26 403 ± 174 782 ± 57 929 ± 9 -
cartpole_swingup 769 ± 37 401 ± 21 545 ± 23 393 ± 45 544 ± 43 765 ± 22 -
cheetah_run 270 ± 12 154 ± 17 489 ± 11 105 ± 37 135 ± 44 268 ± 73 -
finger_spin 937 ± 10 762 ± 59 437 ± 61 335 ± 58 822 ± 24 956 ± 18 -
walker_walk 868 ± 59 600 ± 28 782 ± 37 377 ± 93 739 ± 21 821 ± 58 -
walker_stand 968 ± 4 852 ± 56 819 ± 58 834 ± 46 851 ± 24 965 ± 2 -

Table 9: The mean and standard error of the results in Figure 5.
α scale-0.3 scale-0.4 scale-0.5 scale-0.6

0.01-0.1 649.7 ± 9.1 488.0 ± 15.7 363.0 ± 17.3 316.1 ± 9.1
0.001-0.01 663.7 ± 7.5 524.4 ± 14.5 398.4 ± 19.4 283.3 ± 11.2
0.0001-0.001 683.1 ± 2.2 510.3 ± 16.8 367.9 ± 12.5 251.4 ± 11.5
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