
Hierarchical Shortest-Path Graph Kernel Network

Jiaxin Wang1 Wenxuan Tu2∗ Jieren Cheng1,2∗
1School of Cyberspace Security, Hainan University

2School of Computer Science and Technology, Hainan University
{twx,992730}@hainanu.edu.cn

Abstract

Graph kernels have emerged as a fundamental and widely adopted technique in
graph machine learning. However, most existing graph kernel methods rely on
fixed graph similarity estimation that cannot be directly optimized for task-specific
objectives, leading to sub-optimal performance. To address this limitation, we pro-
pose a kernel-based learning framework called Hierarchical Shortest-Path Graph
Kernel Network (HSP-GKN), which seamlessly integrates graph similarity estima-
tion with downstream tasks within a unified optimization framework. Specifically,
we design a hierarchical shortest-path graph kernel that efficiently preserves both
the semantic and structural information of a given graph by transforming it into
hierarchical features used for subsequent neural network learning. Building upon
this kernel, we develop a novel end-to-end learning framework that matches hierar-
chical graph features with learnable hidden graph features to produce a similarity
vector. This similarity vector subsequently serves as the graph embedding for end-
to-end training, enabling the neural network to learn task-specific representations.
Extensive experimental results demonstrate the effectiveness and superiority of the
designed kernel and its corresponding learning framework compared to current com-
petitors. Code is available at https://github.com/JXWANG-GRAPH/HSP-GKN.

1 Introduction

Graph neural networks (GNNs) have become a prominent approach in graph machine learning
[1, 2, 3, 4, 5, 6, 7, 8, 9]. Most GNN models belong to the family of message-passing neural networks,
where node representations are updated by passing messages and aggregating information from
neighboring nodes [10, 11, 12, 13, 14, 15]. However, existing GNNs typically use permutation-
invariant readout functions to aggregate the node representations into a graph embedding. Recent
studies have shown that their expressive power is constrained by the 1-Weisfeiler-Lehman (1-WL) test
[16, 17], which limits their ability to capture complex graph structures and affects their performance
on graph-level tasks [18, 19, 20].

Thanks to the ability to model complex relationships, graph kernel methods have been powerful
tools for analyzing and learning from graph-structured data [21]. By employing mechanisms such
as substructure matching and topological feature extraction, these graph kernels have been able to
effectively capture the structural information of graphs [22]. Despite their great successes, graph
kernels rely on handcrafted kernel functions, which pose challenges in adapting flexibly to diverse
task requirements. On the one hand, most graph kernel methods measure graph similarity in an
implicit manner, thereby limiting their ability to incorporate with neural networks for learning task-
relevant representations. On the other hand, certain kernel methods, such as the Neighborhood Hash
Kernel [23] and Graphlet [24], employ the approach of explicit feature mappings. However, these
methods typically represent graphs using the frequency of substructure occurrences or symbolic

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/JXWANG-GRAPH/HSP-GKN

labels, ignoring the semantic information crucial for accurate graph similarity matching [25]. Unlike
kernel methods, neural networks are capable of extracting task-relevant features from the data driven
by the objective function. Moreover, the high computational complexity of kernel methods renders
them impractical for large-scale datasets. Consequently, it is critically important to develop a novel
framework that combines the structural feature-capturing advantages of graph kernels with the
representation learning capabilities of neural networks.

features

Similarity
measurement

Similarity
measurement

Mapped
features in

Mapped
features in

Figure 1: Optimization pipeline comparison
of existing graph kernel methods and pro-
posed HSP-GKN framework.

An intuitive solution is to design a framework that
facilitates the negotiation between the graph kernel
learning and neural network optimization processes.
Within this framework, a kernel serves as a measure-
ment of graph similarity, while the neural network is
incorporated to integrate this process with the task
objective for task-specific representation learning. To
fulfill this, there are two key challenges to be ad-
dressed, i.e., 1) the selected kernel should capture
both the semantic and structural information of the
graph; and 2) the similarity measurement process
driven by the kernel is supposed to be differentiable,
enabling the network to be end-to-end trainable. For
the first challenge, inspired by the findings from pre-
vious work [26, 27] that distance encoding is more
expressive than the 1-WL algorithm, we attempt to
design the kernel based on the shortest paths. Since the nodes on the shortest paths provide rich
semantic information, the positions of different nodes on the shortest path reflect the topological
information of the path. For the second challenge, we explicitly map the graph into a vector space
where similarity can be measured using the vector inner product. Since the vector inner product is
differentiable, it facilitates the joint learning between kernel-induced features and the neural network
to obtain more useful representations for specific tasks [28].

In this paper, we propose a simple yet effective kernel-based graph learning framework, termed
Hierarchical Shortest-Path Graph Kernel Network (HSP-GKN). Specifically, we first design a com-
putationally efficient graph kernel based on the shortest paths in the graph, which constructs an
explicit feature mapping that transforms the graph into hierarchical features to preserve both the
semantic and structural information of the given graph. Next, we integrate task objective and similar-
ity measurement into a unified optimization framework. In this framework, we first define a set of
trainable hidden graph features and then use the designed kernel to measure their similarity with the
hierarchical features. The resultant similarity vector serves as the graph embedding that is fed into
a multilayer perceptron (MLP) for training. Unlike previous graph kernel methods that isolate the
learning processes of graph representations and objective optimization [29], the proposed HSP-GKN
integrates them into a unified framework to learn representations that are more relevant to specific
tasks, as illustrated in Figure 1. The dashed lines represent the optimization process of the task
objective, with the blue borders indicating trainable components and H denoting a Hilbert space.

Our contributions include: (1) We design a computationally efficient kernel based on the shortest
paths. It can be flexibly integrated with neural networks while preserving both the semantic and
structural information of a given graph. (2) We develop a novel framework termed HSP-GKN
which integrates the kernel we proposed with neural networks, enabling objective-driven learning of
representations beneficial for specific tasks. (3) Experimental results on graph classification datasets
across various domains demonstrate the proposed kernel and framework outperform traditional
graph kernel methods and state-of-the-art models in terms of both performance and computational
efficiency.

2 Related Work

Graph kernels. Most graph kernels follow the R-convolution framework [30], which decomposes
graphs into substructures and computes similarities via kernel functions, aggregating them to yield
the overall graph similarity. Different graph kernels are computed in distinct ways, we categorize
them into explicitly and implicitly computed graph kernels in this work. The idea of explicitly
computing graph kernels involves mapping a graph into a feature vector and measuring the similarity

2

between the feature vectors of two graphs [23, 24, 31, 32]. These methods typically map graphs into
feature vectors composed of the frequency of substructure occurrences, focusing mainly on graph
topology while neglecting node semantic information. Unlike these methods, implicit computed
kernels measure similarity between substructures that are hard to represent explicitly. The RW
kernel [33] is one of the first methods that implicitly measures graph similarity based on the number
of common walks between two graphs. Unlike random walks, shortest paths capture both local
and global structures, while node attributes along paths provide rich semantics, motivating various
shortest-path-based kernels [31, 34, 35, 36]. Despite their success, the implicit similarity computation
limits the ability to integrate neural networks for learning task-specific representations. Moreover,
the high computational complexity (e.g., SP kernel [34] has a complexity of O(n4) with respect to
the sample size n) restricts their applicability to large-scale datasets. In this paper, we design a graph
kernel with a computational complexity of O(n2 log n). It employs explicit computation, allowing
the similarity measurement process to be optimized end-to-end, facilitating both model efficiency
and task-specific learning.

Graph kernel neural networks (GKNNs). Recent research has explored the integration of graph
kernels and neural networks, leading to notable performance improvements [37, 38, 39, 40]. For
example, RWNN [37] introduces random walk-based mechanisms to capture higher-order dependen-
cies and improve node representation by incorporating both local and global structural information.
GNN-lofi [39] leverages localized feature-based histogram intersection to enhance the representation
learning of graph by focusing on local feature distribution matching. The success of GKNNs lies in
their ability to combine the complementary strengths of graph kernels and neural networks [38, 41].
Kernel functions allow GKNNs to effectively capture structural similarities between graphs, while
neural networks provide the capacity to learn complex and abstract graph representations. Despite
their success, GKNNs still face several challenges. Scalability remains a major concern, particularly
when applied to large-scale graph datasets. Moreover, existing methods either rely on implicitly
computed kernels, which prevent the model from learning task-relevant representations, or focus
solely on substructures while overlooking rich semantic information in graphs. In this paper, we
construct an computationally efficient explicit feature mapping that incorporates both structural and
semantic information, mapping graphs into vector space amenable to neural network processing.

3 Methodology

In this section, we first introduce key notations employed throughout the paper. Next, we describe the
proposed Hierarchical Shortest-Path (HSP) graph kernel, which serves as the theoretical foundation of
our framework. Finally, we present the end-to-end learning framework, i.e., Hierarchical Shortest-Path
Graph Kernel Networks (HSP-GKN).

3.1 Notations

Let G = (V,E, a) be an undirected graph, where V is the vertex set and E is the edge set, and
a : V → Σ is a function that assigns attributes, either discrete or continuous, from a set Σ to nodes
in the graph. Given two nodes va, vb ∈ V , a path π of length n − 1 from va to vb in G is defined
as a sequence of nodes π = [v1, v2, . . . , vn], where v1 = va, vn = vb, and [vi, vi+1] ∈ E for all
i = 1, . . . , n − 1. Let π(i) = vi denote the i-th node encountered while traversing along the path.
In particular, we denote by a(π) the concatenation of node attributes along this path. Let |π| be the
discrete length of π, and the diameter δ(G) of G is the maximum length of the shortest path between
any two nodes in the graph. We use X ∈ Rn×d to denote the node attribute matrix of a graph, where
n is the number of nodes and d is the dimension of node attribute. The attribute of a given node vi
corresponds to the i-th row of X.

3.2 Hierarchical Shortest-Path Graph Kernel

In this subsection, we introduce the Hierarchical Shortest Path-Graph Kernel, which encodes both
the semantic and topological information of graphs into explicit features and describes an efficient
method for its computation.

Definition 3.1. GraphHopper (GH) kernel [36]. Given two graphs, G and G′, let SP l (G) and
SP l (G

′) denote the set of all shortest paths of length l in graph G and G′. We can then define the

3

GH kernel as:

k (G,G′) =

L∑
l=1

 ∑
π∈SPl(G)

∑
π′∈SPl(G′)

kpath (π, π
′)

 , (1)

where L denotes the results of min
(
δ (G) , δ (G′)

)
, and kpath the sum of the kernel over all nodes

along the shortest paths.

However, all shortest paths need to be compared in GH kernel, and a graph can have at most |V |2
shortest paths, the computational complexity of k(G,G′) results in O(|V |2|V ′|2). This makes
computation infeasible for large graphs. Moreover, like other kernels based on shortest paths, the GH
kernel performs implicit computation, resulting in a computational complexity that is quadratic in
relation to the number of graphs. Consequently, we design a computationally efficient instance of the
GH kernel, referred to as the Hierarchical Shortest-Path (HSP) Graph Kernel.

In the HSP kernel, we restrict the node-level kernel knode to a linear kernel, that is:

kpath(π, π
′) =

|π|+1∑
i=1

knode
(
π (i) , π′ (i)

)
, with knode(v, v

′) = ⟨a (v) , a (v′)⟩ . (2)

Since the linear kernel is positive definite and the sum of linear kernels is still a linear kernel, kpath
remains a linear kernel and is also positive definite. By exploiting the linear additivity property of the
linear kernel, we construct a hierarchical feature mapping that aggregates the set of shortest paths of
the same length into a cohesive shortest-path.

3.3 Hierarchical Graph Feature Mapping

Differing from previous graph feature mapping, which maps the graph to a fixed-dimensional feature,
we transform the graph into a feature set organized by the shortest-path length. The hierarchical graph
feature mapping steps are grouping all shortest paths of the same length and aggregating the node
attributes at the corresponding indices along the shortest paths, therefore preserving the semantic
information of nodes and their relative positions along the shortest-path.
Definition 3.2. Given a graph G, let SP l(G) denote the set of shortest paths of length l in G. We
define the hierarchical graph feature mapping as:

Φ(G) = {ϕl(G) | l = 1, 2, . . . , δ(G)}, with ϕl(G) =
∑

π∈SPl(G)

a(π). (3)

This formula aggregates the shortest paths of the same length into a single cohesive shortest-path,
and we can view the graph G as one that contains only δ(G) shortest paths. This approach eliminates
the need to compare each pair of shortest paths of the same length between the two graphs, thereby
significantly reducing computational cost. We can now simplify Eq. (1) as follows:

k (G,G′) =
L∑

l=1

⟨ϕl (G) , ϕl (G
′)⟩ , (4)

where L denotes the results of min
(
δ (G) , δ (G′)

)
. The derivation of Eq. (4) see Appendix A.1. In

this case, the computational complexity of k (G,G′) is O
(
δ(G)2δ(G′)2

)
, where δ(G) is the diameter

of graph G, in real-world graphs δ(G) is typically much smaller than |V |. However, computing Φ(G)
requires at most |V |2 addition operations on a(π), which remains a high-complexity operation. In
the following, we further discuss how to compute Φ(G) efficiently.

Given the node attribute matrix X and the set of all shortest paths of length l in the graph G, denoted
as SP l(G). ϕl(G) essentially represents the weighted sum of all nodes on the shortest paths of length
l. Therefore, when searching for the shortest paths in the graph, we simultaneously maintain a matrix
Ml ∈ Rn×(l+1), where the entry [Ml]ij counts how many times node i appears at the j-th coordinate
of the shortest paths in SP l(G). To avoid confusion, it is worth noting that Ml is different from
M(v) as defined in the GH kernel, where [M(v)]i,j represents the number of times v appears as the
ith node on a shortest path of discrete length j. From this, it is straightforward to derive that:

ϕl(G) = vec(X⊤Ml), (5)

4

Figure 2: An overview of HSP-GKN. Φ(·) is the hierarchical graph feature mapping.

where vec(·) denotes the vectorization operator, which transforms a matrix into a vector by stacking
the columns of the matrix one after another. Now, computing Φ(G) only need to perform δ(G)× |V |
multiplication and addition operations, which is much smaller than the |V |2 additions required.

Explicit feature mapping. It is known that if a positive definite kernel k(·, ·) is defined on X × X ,
there exists a mapping ϕ : X → H that maps the set X into a Hilbert space H with inner product
⟨·, ·⟩, such that for ∀xi, xj ∈ X , it holds that:

k (xi, xj) = ⟨ϕ (xi) , ϕ (xj)⟩H . (6)

Therefore, for a positive definite kernel, there exists a feature space where similarity can be computed
using an inner product. However, the hierarchical feature mapping that we define represents graphs in
the form of sets, which cannot be computed using standard inner products. Therefore, the set-based
representation does not constitute the feature space associated with our kernel.

Since our goal is to construct an explicit feature mapping that transforms graphs into vector represen-
tations suitable for neural network processing, we next explore how to explicitly map this set into a
vector space corresponding to the HSP kernel.

Lemma 3.1. The hierarchical shortest-path graph kernel is positive definite.

Lemma 3.2. If a graph contains the shortest path of length l, then the shortest paths of length
1, 2, . . . , l − 1 must also exist.

The proof of Lemma 3.1 and Lemma 3.2 can be found in Appendix A.2. According to Lemma
3.2, we can conclude that although some graphs have different diameters, sorting the shortest paths
of two graphs in ascending order of length allows their path lengths to overlap partially within a
certain range. Now, we arrange ϕl(G) into an ordered set by sorting according to the corresponding
shortest-path length l in ascending order. Subsequently, by applying a concatenation operation, we
obtain the feature vector representation of G:

Φ(G) = CONCAT
(
ϕ1(G),ϕ2(G), . . . ,ϕδ(G)(G)

)
, (7)

where CONCAT(·) is the vertical concatenation of vectors. It follows that ϕl(G) and ϕl(G
′) have

corresponding positions in Φ(G) and Φ(G′). Let ⊙ denote the aligned inner product of vectors of
possibly different lengths, e.g.

[a, b, c]⊙ [d, e] = [a, b] · [d, e]. (8)

Referring to Eq. (4), we obtain:

k (G,G′) = Φ(G)⊙Φ(G′). (9)

We now further discuss the feature vector representation of G. If we zero-extend Φ(G) to a sufficiently
large dimension that exceeds the dimension of any possible graph, Eq. (9) can be extended to the
standard inner product computation. Therefore, the extended vector is essentially the mapped feature
vector induced by the HSP kernel in the feature space H.

5

3.4 Graph Kernel Network Based on HSP

In this subsection, we present our proposed learning framework, HSP-GKN, and explain how to
integrate the similarity measurement of the HSP kernel with objective optimization into a unified
framework. An overview of HSP-GKN is illustrated in Figure 2.

As defined previously, hierarchical graph feature mapping transforms a graph into a set of graph
features, referred to as hierarchical features. The main steps of HSP-GKN begin with defining a set
of learnable hidden graph features. Then, a similarity vector is obtained by measuring the similarity
between these learnable features and the hierarchical features. Finally, we feed this similarity vector
as the graph embedding into MLP and optimize the framework via an objective function.

Hidden graph features. From Eq. (9), we know that the similarity measurement process in HSP
kernels is non-learnable, as each graph is mapped to a fixed vector representation. Inspired by RWNN
[37], we extend the concept of hidden graph features, i.e., parameterized graph features into paths.
Specifically, the set of hidden graph features is defined as:

{ϕ(i)
l (G) | i = 1, . . . , nl; l = 1, . . . , L}, with n1 + n2 + · · ·+ nL = N. (10)

Here, L and N are hyperparameters to adjust the hierarchy and number of hidden graph features, nl

and the number of shortest paths of length l in all the graphs of the training set are proportional. It
is worth noting that G is not an actual graph; instead, it was introduced to facilitate the definition.
We can consider this set as consisting of features derived from N learnable graphs, each obtained
through the feature mapping.

End-to-end optimization framework. After defining the hidden graph features, we use the linear
kernel used by the HSP kernel to measure the similarity between graph G and these features, resulting
in a similarity vector:

hG = [
〈
ϕl(G), ϕ

(i)
l (G)

〉
| i = 1, . . . , nl; l = 1, . . . , L]. (11)

In what follows, we provide more details about the implementation of the proposed HSP-GKN
framework.

Given an input graph G, we first obtain the hierarchical feature vector representations set of the graph
{ϕl(G) | l = 1, 2, . . . , δ(G)} through Eq. (5). Then, we define a set of trainable parameters that
correspond to the set of hidden graph features:

W = {W1,W2, . . . ,WL}, (12)

where Wl ∈ R[(l+1)×d]×nl , and d is the dimension of the node attributes.The i-th column of Wl

represents the vector representation of ϕ(i)
l (G). Subsequently, we can obtain the similarity vector

between the graph G and the feature vectors:

hG = [ϕ1(G)⊤W1,ϕ2(G)⊤W2, . . . ,ϕL(G)⊤WL],

with
ϕl(G) = 0 if l > δ(G). (13)

This similarity vector is then used as the graph embedding and fed into the MLP for learning. Since
the inner product calculation of vectors is differentiable, the entire framework can be trained end-
to-end. Under the guidance of the objective function, HSP-GKN can learn hidden graph features
that are better aligned with downstream tasks, achieving improved performance compared to fixed
similarity measurements.

3.5 Computational Complexity Analysis

For feature mapping, we use Dijkstra’s algorithm to compute the all-pairs shortest paths for each
graph, with a time complexity of O

(
n2 log n+ nm

)
, where n is the number of vertices and m

is the number of edges in the graph. When generating the hierarchical feature vector representa-
tion, matrix multiplication X⊤ (

M1,M2, . . . ,Mδ(G)

)
is required, where the time complexity is

O
(
(δ + 1)nd

)
, where δ is the graph diameter and d is the dimension of node attributes. Similarity

computation uses the inner product of vectors with a time complexity of O
(
(δ + 1)δd

)
. Therefore,

6

Table 1: Classification accuracy (± standard deviation) of our HSP, HSP-GKN, and the baselines on
the TUDatasets. Best performance is highlighted in bold. The second-best performance is indicated
with an underline. OOT means cannot completed within 24 hours. We use * to indicate the best
performance among kernel methods.

MUTAG NCI1 PTC_MR DD BZR PROTEINS

SP 82.4 ± 5.5 72.5 ± 2.0 60.2 ± 9.4 77.9 ± 4.5 83.7 ± 4.5 74.9 ± 3.6
WL-SP 81.4 ± 8.7 60.8 ± 2.4 54.5 ± 9.8 76.0 ± 3.5 OOT 72.1 ± 3.1
GH 82.5 ± 5.8 71.0 ± 2.3 60.2 ± 9.4 OOT 82.3 ± 7.2 74.8 ± 2.4
CORE-SP 85.1 ± 6.8 73.8 ± 1.4 57.3 ± 9.7 79.3 ± 3.8 OOT 76.5 ± 3.9

GraphSAGE 83.6 ± 9.6 76.0 ± 1.8 61.7 ± 4.9 72.9 ± 2.0 81.2 ± 4.2 74.3 ± 3.8
DiffPool 79.8 ± 6.7 76.9 ± 1.9 61.1 ± 5.6 75.0 ± 3.5 84.5 ± 4.2 72.5 ± 3.5
DGCNN 84.0 ± 7.1 76.4 ± 1.7 59.5 ± 6.9 76.6 ± 4.3 81.8 ± 4.4 73.2 ± 3.2
GIN 84.7 ± 6.7 80.0 ± 1.4 59.1 ± 7.0 75.3 ± 2.9 85.4 ± 5.1 72.8 ± 3.6

KerGNN 84.2 ± 5.1 82.8 ± 1.8 68.4 ± 2.7 78.9 ± 3.5 81.8 ± 3.9 76.5 ± 3.9
PathNN 87.3 ± 6.1 81.1 ± 1.2 65.6 ± 2.4 77.0 ± 3.1 86.6 ± 4.2 75.2 ± 3.9
MMD 91.5 ± 6.5 58.4 ± 2.6 62.8 ± 1.6 60.2 ± 2.0 91.0 ± 11 77.6 ± 2.5
GPN 79.3 ± 5.7 80.8 ± 0.5 67.7 ± 1.2 77.0 ± 0.8 84.2 ± 1.1 75.6 ± 0.8
Cosmo’2024 [40] 85.2 ± 2.2 71.5 ± 1.2 60.1 ± 1.9 75.3 ± 2.7 85.5 ± 1.9 75.3 ± 1.1
DHAKR 89.9 ± 1.0 77.3 ± 1.3 68.8 ± 0.9 74.6 ± 1.7 87.2 ± 2.8 77.5 ± 0.6

HSP 85.8 ± 6.3∗ 75.2 ± 1.5∗ 62.4 ± 7.2∗ 78.3 ± 2.7 84.8 ± 5.1∗ 73.3 ± 3.8
HSP-GKN 97.5 ± 2.297.5 ± 2.297.5 ± 2.2 83.6 ± 1.983.6 ± 1.983.6 ± 1.9 76.3 ± 3.476.3 ± 3.476.3 ± 3.4 84.2 ± 2.684.2 ± 2.684.2 ± 2.6 93.4 ± 3.693.4 ± 3.693.4 ± 3.6 79.5 ± 1.779.5 ± 1.779.5 ± 1.7

ENZYMES COLLAB IMDB-B IMDB-M REDDIT-B REDDIT-M-5K

SP 37.3 ± 8.7 58.8 ± 1.2 58.2 ± 4.7 39.2 ± 2.3 81.7 ± 2.5 47.9 ± 1.9
WL-SP 27.3 ± 7.4 58.8 ± 1.2 58.2 ± 4.7 39.2 ± 2.3 OOT OOT
GH 67.7 ± 6.5 60.0 ± 1.4 59.4 ± 3.4 39.5 ± 2.6 OOT OOT
CORE-SP 39.5 ± 9.3 OOT 68.5 ± 3.9 49.4 ± 0.5 91.0 ± 1.8 54.35 ± 0.1

GraphSAGE 58.2 ± 6.0 73.9 ± 1.7 68.8 ± 4.5 47.6 ± 3.5 84.3 ± 1.9 50.0 ± 1.3
DiffPool 59.5 ± 5.6 68.9 ± 2.0 68.4 ± 3.3 45.6 ± 3.4 89.1 ± 1.6 53.8 ± 1.4
DGCNN 38.9 ± 5.7 71.2 ± 1.9 69.2 ± 3.0 45.6 ± 3.4 87.8 ± 2.5 49.2 ± 1.2
GIN 59.6 ± 4.5 75.6 ± 2.3 71.2 ± 3.9 48.5 ± 3.3 89.9 ± 1.9 56.1 ± 1.756.1 ± 1.756.1 ± 1.7

KerGNN 62.1 ± 5.5 75.1 ± 2.3 74.4 ± 4.3 51.6 ± 3.1 89.5 ± 1.6 52.7 ± 1.2
PathNN 73.0 ± 5.273.0 ± 5.273.0 ± 5.2 76.9 ± 3.4 72.6 ± 3.3 50.8 ± 4.5 89.2 ± 1.1 53.9 ± 1.3
MMD 48.4 ± 3.3 57.9 ± 1.5 59.1 ± 2.7 37.2 ± 2.1 71.3 ± 2.7 37.0 ± 1.2
GPN 65.6 ± 1.3 83.6 ± 0.583.6 ± 0.583.6 ± 0.5 75.1 ± 2.2 49.4 ± 0.9 82.7 ± 1.4 46.9 ± 0.9
Cosmo’2024 [40] 66.4 ± 3.2 73.6 ± 1.1 69.9 ± 1.4 45.6 ± 1.2 84.9 ± 2.5 42.6 ± 1.1
DHAKR 64.4 ± 4.7 73.8 ± 1.7 75.2 ± 2.6 52.1 ± 2.5 87.4 ± 1.3 49.2 ± 1.6

HSP 54.6 ± 6.8 75.4 ± 2.7∗ 71.5 ± 4.9∗ 50.7 ± 3.1∗ 83.6 ± 3.6 51.3 ± 2.2
HSP-GKN 70.4 ± 3.1 80.1 ± 1.8 78.5 ± 2.878.5 ± 2.878.5 ± 2.8 55.4 ± 1.755.4 ± 1.755.4 ± 1.7 91.7 ± 1.291.7 ± 1.291.7 ± 1.2 55.7 ± 1.3

the overall time complexity for computing the similarity is O
(
n2 log n+ nm+ (δ + 1)(δ + n)d

)
.

Since real-world graphs are typically sparse (i.e., m ≪ n2) and the graph diameter δ is usually much
smaller than n [42], the computational cost of the HSP kernel primarily depends on the number
of nodes in the graph. Furthermore, since each graph requires feature mapping computation only
once, the computational complexity of average similarity calculation is significantly lower than the
aforementioned complexity. Our experiments show a linear in the number of graphs and quadratic in
the number of nodes.

4 Experiments

In this section, we first evaluate the performance of the HSP kernel and its corresponding HSP-GKN
framework on graph classification datasets. Next, we study the runtime behaviour of proposed
methods on synthetic graphs and real-world datasets. Finally, we conduct ablation experiments and
hyperparameter analysis on HSP-GKN.

4.1 Graph Classification

Datasets. We evaluate the proposed kernel and framework on 12 datasets from different domains and
of varying scales, all included in the TUDatasets collection [43]. These datasets are categorized as
follows: small molecule datasets (BZR, MUTAG, NCI1, PTC_MR), bioinformatics datasets (DD,

7

ENZYMES, PROTEINS), and social network datasets (COLLAB, IMDB-B, IMDB-M, REDDIT-B,
REDDIT-M-5K). More details about these datasets can be found in the Appendix B.

In the HSP-GKN framework, each graph is transformed into a vector of dimension (L + 1)Ld/2
before being fed into the model for training, which is much more compact than the original graph.
Although additional preprocessing time is required, the HSP avoids processing the entire graph at
each iteration. Therefore, it is comparable with GNNs in terms of overall training time.

Baselines. We compare the proposed kernel and model against the following graph kernels based
on shortest path: shortest path kernel (SP) [34], Weisfeiler-Lehman shortest path kernel (WL-SP)
[31], graphHopper kernel (GH) [36] and core shortest path kernel (CORE-SP) [35]. We also compare
our model against various GNNs, including (1) classical GNNs such as GraphSAGE [44], DiffPool
[45], DGCNN [46] and GIN [16]; (2) state-of-the-art GNNs such as PathNN [47], MMD [41], and
GPN [48]. Furthermore, we compare our method against recently GKNNs including kerGNN [38],
Cosmo’2024 [40], and DHAKR [49].

250 500 750 1000
Number of graphs N

2.5

5.0

7.5

R
un

ti
m

e
in

se
co

nd
s

250 500 750 1000
Graph size n

0

100

200

R
un

ti
m

e
in

se
co

nd
s

250 500 750 1000
Node attribute dimensionality d

0.00

0.25

0.50

0.75

1.00

R
un

ti
m

e
in

se
co

nd
s

0.25 0.50 0.75
Graph density c

0.4

0.5

0.6

0.7

0.8

R
un

ti
m

e
in

se
co

nd
s

Figure 3: Dependence of runtime on N , n, d and
c on synthetic graphs.

Table 2: Running time of different graph kernels
on TUDatasets (seconds). OOT: timeout over 24
hours.

ENZYMES NCI1 REDDIT-M-5K

SP 7.92 16.33 12944.24
WL-SP 49.47 367.21 OOT
GH 356.80 2935.79 OOT
CORE-SP 26.48 49.87 31779.70

HSP 1.71 12.70 3869.14

Table 3: One-epoch running time of different
GNNs on TUDatasets (seconds).

ENZYMES NCI1 REDDIT-M-5K

GraphSAGE 0.326 0.902 5.420
DiffPool 2.195 13.785 26.427
DGCNN 0.292 0.974 4.093
GIN 0.412 2.322 5.193

HSP-GKN 0.013 0.009 0.011

Configurations. We follow [50] and evaluate TUDatasets using a 10-fold cross-validation using
their provided data splits for a fair comparison. For datasets without predefined splits, we adopt the
splitting method provided in [50] and apply the same split across all baseline models. We run each
experiment 10 times to obtain the average accuracy and standard deviation. For the HSP-GKN model
configuration, we use a two-layer MLP, where each layer’s dimension is half of the previous layer’s
dimension. For the selection of hyperparameters, we use Optuna [51] to tune the hyperparameters
through an automated search process.

Result analysis. Table 1 illustrates average prediction accuracies and standard deviations. We
observe that the proposed HSP-GNN framework outperforms the baselines on 9 out of the 12 datasets
while it provides the second-best accuracy on the remaining 3 datasets. On the MUTAG, PTC_MR,
and DD datasets, our framework achieves absolute accuracy improvements of 6.0%, 7.5%, and 5.3%,
respectively, over the second-best accuracy. It is worth noting that, although we restrict the node
kernel of HSP to a linear kernel, it still outperforms the shortest-path-based kernel baselines on 7 out
of the 12 datasets. Furthermore, HSP-GKN achieves significantly higher classification accuracy than
HSP across all datasets, demonstrating the effectiveness of our end-to-end framework. Overall, our
results show that HSP-GKN achieves high performance levels on the TUDatasets.

4.2 Runtime Behaviour Study

Here, we experimentally examine the runtime performance of the HSP kernel and HSP-GKN
framework.

Datasets. We assessed the behaviour on randomly generated graphs with respect to four parameters:
dataset size N , graph size n, node attribute dimensionality d, and graph density c. For read-world

8

Table 4: Classification accuracy improvement over the HSP kernel. HSP-MLP refers to removing
hidden graph features and directly inputting the graph feature vectors into the MLP for training.

ENZYMES NCI1 REDDIT-M-5K PROTEINS

HSP-MLP 7.5 ↑ 2.1 ↑ 0.3 ↑ 2.8 ↑
HSP-GKN 15.8 ↑ 8.4 ↑ 4.4 ↑ 6.2 ↑

datasets, we selected 3 datasets from the TUDatasets. These datasets include large-scale dataset
COLLAB, large graph dataset REDDIT-M-5K, and continuous attribute dataset ENZYMES.

Baselines. We compared the runtime with other graph kernel methods on real-world datasets,
including SP, WL-SP, GH and CORE-SP kernel. We also evaluate the runtime in comparison to
classical GNNs, including GraphSAGE, DiffPool, DGCNN and GIN.

Configurations. For randomly generated graphs, we kept 3 out of 4 parameters fixed at their default
values and varied the fourth parameter. The default values we used were 100 for N , 100 for n, 100
for d, and 0.3 for the graph density c. All experiments were conducted on a system equipped with an
8-core Intel Xeon E5-2667v4@3.2GHz with 256 GB of RAM and an NVIDIA 3090 GPU. For the
graph kernel methods used for comparison, we utilized the library provided by [52] to measure the
runtime. All graph kernel methods were executed on the CPU using a single core.

Results analysis. On synthetic graphs, as shown in Figure 3, we observe that the HSP kernel scales
linearly with dataset size N . When varying the number of nodes n per graph, we observe that the
runtime of the HSP kernel scales quadratically with n, as mentioned in the complexity analysis. We
also observe that changing the dimension of node attributes d does not significantly increase the
computation time. However, when varying the graph density c, the computation time peaks at a
density of 0.1 and 0.9. This is because, at low density, the graph diameter δ becomes large, while at
high density, the number of edges m is significantly higher than n.

With real-world datasets, as shown in Table 2, our kernel shows significantly lower computation
time across all datasets, particularly on large graphs. For example, REDDIT-M-5K contains 4,999
graphs, with average node counts of 508. Some kernels even fail to complete computation within
24 hours. Since the HSP kernel is insensitive to the dimension of node attributes, it exhibits high
scalability on ENZYMES datasets. In the comparison with GNNs, as shown in Table 3. Even though
our method requires preprocessing, which takes slightly less time than computing the kernel matrix
(see Table 2), the overall training time is significantly lower than other models on the ENZYMES and
NCI1 datasets. Although preprocessing takes longer on the REDDIT-M-5K dataset due to the larger
average node count, it can be parallelized to reduced preprocessing time.

4.3 Ablation Study

10
12

14
16

18L 200

300

400

500

600

N

86

88

90

92

94

A
cc

ur
ac

y
(%

)

BZR

56
58

60
62

64
L 200

300

400

500

600

N

72

74

76

78

80

82

A
cc

ur
ac

y
(%

)

PROTEINS

66
68

70
72

74
L 200

300

400

500

600

N

76

78

80

82

84

86

A
cc

ur
ac

y
(%

)

DD

10
12

14
16

18L 200

300

400

500

600

N

84

86

88

90

92

94

A
cc

ur
ac

y
(%

)

REDDIT-B

Figure 4: The sensitivity of HSP-GKN with
the variation of L and N on four datasets.

To validate the effectiveness of the proposed hidden
graph features, we removed the hidden graph fea-
tures and directly input the graph feature vectors into
the MLP for training. As shown in Table 4, HSP-
GKN achieves a more significant performance im-
provement over the HSP kernel. This underscores the
importance of employing a trainable similarity mea-
surement and confirms that integrating the HSP with
hidden graph features facilitates learning task-specific
graph representations that offer better performance.

4.4 Analysis of Hyperparameter L and N

As can be seen in Eq. (10), HSP-GKN introduces two
hyperparameters L and N . We conduct experiments
to show the effect of this parameter on four datasets.
Figure 4 illustrates the performance variation of HSP-
GKN when L and N varies. From these figures, we
observe that 1) as the size of dataset increases, the
performance of the method becomes less sensitive to

9

hyperparameters; 2) the performance of the method
is overall stable across a wide range of L and N .

5 Conclusion and Future Discussion

We propose the Hierarchical Shortest-Path Graph Kernel Network (HSP-GKN). In our method,
we introduce the hidden graph features to integrate the HSP kernel similarity measurement and
downstream tasks into a unified framework. Moreover, our proposed HSP kernel simultaneously
preserves both the semantic and structural information of the graphs. Extensive experimental results
demonstrate the effectiveness and superiority of the HSP kernel and HSP-GKN framework compared
to state-of-the-art methods. In the future, we plan to extend our methods to graph regression and
other tasks.

Limitations and broader impacts. HSP incorporates the node attribute while ignoring the edge
features in graphs. We mainly focus on leveraging node features and graph topology in this work,
making it broadly applicable across a wide range of datasets. However, the framework is flexible and
can be extended to support edge attributes in several ways. One possible extension is concatenating
the edge attributes along the shortest path with the corresponding node attributes into a unified vector
representation. Since the shortest paths are already computed as part of the kernel, this concatenation
would introduce minimal additional computational overhead. Alternatively, we can define a separate
kernel for edge features to measure the similarity between two shortest paths based on their edge
attributes. This edge-based similarity can then be combined with node-based similarity to provide
a more comprehensive comparison between shortest paths. We leave this as a promising direction
for future work and believe that such an extension can further enhance the model’s expressiveness
on attributed graphs with rich edge information. The end-to-end manner in graph kernel methods is
inspiring for the community.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No.
62506102, 62562026), the Key Research and Development Program of Hainan Province (Grant
No. ZDYF2024GXJS014, ZDYF2023GXJS163), and the Natural Science Foundation of Hainan
University (No. XJ2400009401).

References
[1] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A

comprehensive survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst.,
32(1):4–24, 2021.

[2] Jingxin Liu, Renda Han, Wenxuan Tu, Haotian Wang, Junlong Wu, and Jieren Cheng. Feder-
ated node-level clustering network with cross-subgraph link mending. In Proceedings of the
International Conference on Machine Learning, 2025.

[3] Lele Fu, Bowen Deng, Sheng Huang, Tianchi Liao, Shirui Pan, and Chuan Chen. Less is more:
Federated graph learning with alleviating topology heterogeneity from a causal perspective. In
Proceedings of the Forty-second International Conference on Machine Learning, 2025.

[4] Sheng Huang, Lele Fu, Tianchi Liao, Bowen Deng, Chuanfu Zhang, and Chuan Chen. Fedbg:
Proactively mitigating bias in cross-domain graph federated learning using background data. In
Proceedings of the International Joint Conference on Artificial Intelligence, pages 5408–5416,
2025.

[5] Wenxuan Tu, Renxiang Guan, Sihang Zhou, Chuan Ma, Xin Peng, Zhiping Cai, Zhe Liu, Jieren
Cheng, and Xinwang Liu. Attribute-missing graph clustering network. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages 15392–15401, 2024.

[6] Wenxuan Tu, Sihang Zhou, Xinwang Liu, Xifeng Guo, Zhiping Cai, En Zhu, and Jieren
Cheng. Deep fusion clustering network. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 9978–9987, 2021.

10

[7] Wenxuan Tu, Sihang Zhou, Xinwang Liu, Yue Liu, Zhiping Cai, En Zhu, Changwang Zhang,
and Jieren Cheng. Initializing then refining: A simple graph attribute imputation network. In
Proceedings of the International Joint Conference on Artificial Intelligence, pages 3494–3500,
2022.

[8] Renxiang Guan, Wenxuan Tu, Siwei Wang, Jiyuan Liu, Dayu Hu, Chang Tang, Yu Feng,
Junhong Li, Baili Xiao, and Xinwang Liu. Structure-adaptive multi-view graph clustering for
remote sensing data. In Proceedings of the AAAI Conference on Artificial Intelligence, pages
16933–16941, 2025.

[9] Yaowen Hu, Wenxuan Tu, Yue Liu, Miaomiao Li, Wenpeng Lu, Zhigang Luo, Xinwang Liu,
and Ping Chen. Divide-then-rule: A cluster-driven hierarchical interpolator for attribute-missing
graphs. In Proceedings of the ACM International Conference on Multimedia, 2025.

[10] Zhao Kang, Chong Peng, Qiang Cheng, Xinwang Liu, Xi Peng, Zenglin Xu, and Ling Tian.
Structured graph learning for clustering and semi-supervised classification. Pattern Recognition,
110:107627, 2021.

[11] Luca Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M. Bronstein.
Latent-graph learning for disease prediction. In Medical Image Computing and Computer
Assisted Intervention, pages 643–653, 2020.

[12] Wenxuan Tu, Sihang Zhou, Xinwang Liu, Zhiping Cai, Yawei Zhao, Yue Liu, and Kunlun
He. Wage: Weight-sharing attribute-missing graph autoencoder. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 47(7):5760–5777, 2025.

[13] Wenxuan Tu, Sihang Zhou, Xinwang Liu, Chunpeng Ge, Zhiping Cai, and Yue Liu. Hierarchi-
cally contrastive hard sample mining for graph self-supervised pre-training. IEEE Transactions
on Neural Networks and Learning Systems, 35(11):16748–16761, 2024.

[14] Yaowen Hu, Wenxuan Tu, Yue Liu, Xinhang Wan, Junyi Yan, Taichun Zhou, and Xinwang Liu.
Scalable attribute-missing graph clustering via neighborhood differentiation. In Proceedings of
the International Conference on Machine Learning, 2025.

[15] Wenxuan Tu, Bin Xiao, Xinwang Liu, Sihang Zhou, Zhiping Cai, and Jieren Cheng. Revis-
iting initializing then refining: An incomplete and missing graph imputation network. IEEE
Transactions on Neural Networks and Learning Systems, 36(3):3244–3257, 2025.

[16] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proceedings of the International Conference on Learning Representations, 2019.

[17] Jiarui Feng, Lecheng Kong, Hao Liu, Dacheng Tao, Fuhai Li, Muhan Zhang, and Yixin Chen.
Extending the design space of graph neural networks by rethinking folklore weisfeiler-lehman.
In Advances in Neural Information Processing Systems, pages 9029–9064, 2023.

[18] Kamilia Zaripova, Luca Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Michael M Bronstein,
and Nassir Navab. Graph-in-graph (gig): Learning interpretable latent graphs in non-euclidean
domain for biological and healthcare applications. Medical Image Anal., 88:102839, 2023.

[19] Jingxin Liu, Jieren Cheng, Renda Han, Wenxuan Tu, Jiaxin Wang, and Xin Peng. Federated
graph-level clustering network. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 18870–18878, 2025.

[20] Peng Zhou, Xinwang Liu, Liang Du, and Xuejun Li. Self-paced adaptive bipartite graph learning
for consensus clustering. ACM Transactions on Knowledge Discovery from Data, 17(5):1–35,
2023.

[21] Wei Ju, Zheng Fang, Yiyang Gu, Zequn Liu, Qingqing Long, Ziyue Qiao, Yifang Qin, Jianhao
Shen, Fang Sun, Zhiping Xiao, Junwei Yang, Jingyang Yuan, Yusheng Zhao, Yifan Wang, Xiao
Luo, and Ming Zhang. A comprehensive survey on deep graph representation learning. Neural
Networks, 173:106207, 2024.

11

[22] Zhengyang Mao, Wei Ju, Siyu Yi, Yifan Wang, Zhiping Xiao, Qingqing Long, Nan Yin,
Xinwang Liu, and Ming Zhang. Learning knowledge-diverse experts for long-tailed graph
classification. ACM Transactions on Knowledge Discovery from Data, 19(2):1–24, 2025.

[23] Shohei Hido and Hisashi Kashima. A linear-time graph kernel. In IEEE International Confer-
ence on Data Mining, pages 179–188, 2009.

[24] Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten M.
Borgwardt. Efficient graphlet kernels for large graph comparison. In Proceedings of the
International Conference on Artificial Intelligence and Statistics, pages 488–495, 2009.

[25] Yaxu Xie, Alain Pagani, and Didier Stricker. SG-PGM: partial graph matching network
with semantic geometric fusion for 3d scene graph alignment and its downstream tasks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
28401–28411, 2024.

[26] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design
provably more powerful neural networks for graph representation learning. Advances in Neural
Information Processing Systems, pages 4465–4478, 2020.

[27] Caterina Graziani, Tamara Drucks, Fabian Jogl, Monica Bianchini, Franco Scarselli, and
Thomas Gärtner. The expressive power of path-based graph neural networks. In Proceedings of
the International Conference on Machine Learning, 2024.

[28] Wei Ju, Siyu Yi, Yifan Wang, Zhiping Xiao, Zhengyang Mao, Hourun Li, Yiyang Gu, Yifang
Qin, Nan Yin, Senzhang Wang, Xinwang Liu, Xiao Luo, Philip S. Yu, and Ming Zhang. A
survey of graph neural networks in real world: Imbalance, noise, privacy and OOD challenges.
CoRR, abs/2403.04468, 2024.

[29] Zhenyu Yang, Ge Zhang, Jia Wu, Jian Yang, Quan Z. Sheng, Shan Xue, Chuan Zhou, Charu
Aggarwal, Hao Peng, Wenbin Hu, Edwin R. Hancock, and Pietro Liò. State of the art and
potentialities of graph-level learning. ACM Comput. Surv., 57(2):28:1–28:40, 2025.

[30] David Haussler et al. Convolution kernels on discrete structures. Technical report, Citeseer,
1999.

[31] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. J. Mach. Learn. Res., 12(9):2539–2561, 2011.

[32] Xinwang Liu, Jianping Yin, Lei Wang, Lingqiao Liu, Jun Liu, Chenping Hou, and Jian Zhang.
An adaptive approach to learning optimal neighborhood kernels. IEEE transactions on cyber-
netics, 43(1):371–384, 2012.

[33] Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized kernels between labeled
graphs. In Proceedings of the international conference on machine learning, pages 321–328,
2003.

[34] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Proceedings
of the IEEE international conference on data mining, pages 8–pp, 2005.

[35] Giannis Nikolentzos, Polykarpos Meladianos, Stratis Limnios, and Michalis Vazirgiannis. A
degeneracy framework for graph similarity. In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 2595–2601, 2018.

[36] Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and Karsten M. Borg-
wardt. Scalable kernels for graphs with continuous attributes. Advances in neural information
processing systems, pages 216–224, 2013.

[37] Giannis Nikolentzos and Michalis Vazirgiannis. Random walk graph neural networks. Advances
in Neural Information Processing Systems, pages 16211–16222, 2020.

[38] Aosong Feng, Chenyu You, Shiqiang Wang, and Leandros Tassiulas. Kergnns: Interpretable
graph neural networks with graph kernels. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 6614–6622, 2022.

12

[39] Alessandro Bicciato, Luca Cosmo, Giorgia Minello, Luca Rossi, and Andrea Torsello. Gnn-lofi:
A novel graph neural network through localized feature-based histogram intersection. Pattern
Recognit., 148:110210, 2024.

[40] Luca Cosmo, Giorgia Minello, Alessandro Bicciato, Michael M. Bronstein, Emanuele Rodolà,
Luca Rossi, and Andrea Torsello. Graph kernel neural networks. IEEE Trans. Neural Networks
Learn. Syst., 36(4):6257–6270, 2025.

[41] Yan Sun and Jicong Fan. MMD graph kernel: Effective metric learning for graphs via maximum
mean discrepancy. In Proceedings of the International Conference on Learning Representations,
2024.

[42] Maximilien Danisch, Oana Balalau, and Mauro Sozio. Listing k-cliques in sparse real-world
graphs. In Proceedings of the World Wide Web Conference on World Wide Web, pages 589–598,
2018.

[43] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. CoRR,
2020.

[44] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. Advances in neural information processing systems, pages 1024–1034, 2017.

[45] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. In Advances
in Neural Information Processing Systems, 2018.

[46] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the AAAI conference on artificial
intelligence, pages 4438–4445, 2018.

[47] Gaspard Michel, Giannis Nikolentzos, Johannes F. Lutzeyer, and Michalis Vazirgiannis. Path
neural networks: Expressive and accurate graph neural networks. In Proceedings of the
International Conference on Machine Learning, pages 24737–24755, 2023.

[48] Yunchong Song, Siyuan Huang, Xinbing Wang, Chenghu Zhou, and Zhouhan Lin. Graph
parsing networks. In Proceedings of the International Conference on Learning Representations,
2024.

[49] Feifei Qian, Lu Bai, Lixin Cui, Ming Li, Ziyu Lyu, Hangyuan Du, and Edwin R. Hancock.
DHAKR: learning deep hierarchical attention-based kernelized representations for graph classi-
fication. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 19995–20003,
2025.

[50] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. In Proceedings of the International Conference on
Learning Representations, 2020.

[51] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the International
Conference on Knowledge Discovery & Data Mining, pages 2623–2631, 2019.

[52] Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos Skianis,
and Michalis Vazirgiannis. Grakel: A graph kernel library in python. Journal of Machine
Learning Research, 21(54):1–5, 2020.

13

A Proof of the Statements in Section 3.2

A.1 Derivation of Eq. (4)

Given two shortest path πl = [v1, v2, . . . , vl+1] and π′
l = [v′1, v

′
2, . . . , v

′
l+1]. As mentioned in

preliminary work, we have a(π) = concat(a(v1), a(v2), . . . , a(vl+1)). From Eq. (2), we know

kpath(π, π
′) =

|π|+1∑
i=1

⟨a (vi) , a (v′i)⟩. (14)

Now we have
kpath(π, π

′) = ⟨a(π), a(π′)⟩. (15)
By substituting into Eq. (1), we can get

khsp(G,G′) =

L∑
l=1

 ∑
π∈SPl(G)

∑
π′∈SP(G′)

⟨a(π), a(π′)⟩


=

L∑
l=1

〈 ∑
π∈SPl(G)

a(π),
∑

π′∈SP(G′)

a(π′)

〉

=

L∑
l=1

⟨ϕl(G), ϕl(G
′)⟩ . (16)

Eq. (4) has been derived.

A.2 Proof of Lemma 3.1

Definition A.1. (Positive definite kernel) Let k : X be a set. k : X × X → R is a positive definite
kernel if k(x, y) = k(y, x) and for any n ∈ N, x1, . . . , xn ∈ X and c1, . . . , cn ∈ R

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0. (17)

In Eq. (9), we mentioned that
k (Gi, Gj) = Φ(Gi)⊙Φ(Gj).

Now we zero-extend Φ(Gj) and Φ(Gj) to a sufficiently large dimension D that exceeds the dimen-
sion of any possible graph, that is, Φpad(G) = [Φ(G), 0] ∈ RD, this operation does not change the
process of feature mapping. Now we have

k (Gi, Gj) = ⟨Φpad(Gi),Φpad(Gj)⟩ . (18)
First, k(Gi, Gj) is obviously symmetric. Given any n ∈ N, non-empty set of graphs
{G1, G2, . . . , Gn} and c1, . . . , cn ∈ R. We first define the quadratic form:

Q =

n∑
i=1

n∑
j=1

cicjk(Gi, Gj).

With refernce to Eq. (18), we have:

Q =

n∑
i=1

n∑
j=1

cicj ⟨Φpad(Gi),Φpad(Gj)⟩

=

〈
n∑

i=1

ciΦpad(Gi),

n∑
j=1

cjΦpad(Gj)

〉

=

〈
n∑

i=1

ciΦpad(Gi),

n∑
i=1

ciΦpad(Gi)

〉
. (19)

14

Table 5: Dataset statistics and properties of TUDatasets.

Dataset Properties

Number of graphs Number of classes Avg number of vertices Avg number of edges Vertex labels Continuous vertex attributes

MUTAG 188 2 17.93 19.79 ✓ ×
NCI1 4110 2 29.87 32.30 ✓ ×
PTC_MR 344 2 14.29 14.69 ✓ ×
DD 1178 2 284.32 715.66 ✓ ×
BZR 405 2 35.75 38.36 ✓ ✓
PROTEINS 1113 2 39.06 72.82 ✓ ✓
ENZYMES 600 6 32.6 62.14 ✓ ✓

COLLAB 5000 3 74.49 2457.78 × ×
IMDB-BINARY 1000 2 19.77 96.53 × ×
IMDB-MULTI 1500 3 13.00 65.94 × ×
REDDIT-BINARY 2000 2 429.63 497.75 × ×
REDDIT-MULTI-5K 4999 5 508.52 594.87 × ×

Let v =
∑n

i=1 ciΦpad(Gi), now we have Q = ⟨v, v⟩ = ∥v∥2. Clearly, Q ≥ 0 , therefore k(Gi, Gj)
is positive definite.

A.3 Proof of Lemma 3.2

Assume there is a shortest-path of length l from vertex v1 to vl+1, denoted as πl = [v1, . . . , vl, vl+1].
Then, there exists a path of length l − 1 from vertex v1 to vl, πl−1 = [v1, v2, . . . , vl]. If πl−1 is
not the shortest-path in graph G, meaning there is a shorter shortest-path from v1 to vl, then there
must exist a shortest-path from v1 to vl+1 with length less than l, which contradicts the assumption.
Therefore, πl−1 is the shortest-path of length l − 1 from vertex v1 to vl. The proof for other lengths
is similar.

B Dataset statistics.

We evaluated the proposed methods on 12 publicly available graph classification datasets including
4 small molecule datasets: BZR, MUTAG, NCI1 and PTC_MR, 3 bioinformatics datasets: DD,
ENZYMES and PROTEINS, as well as 6 social network datasets: COLLAB, IMDB-B, IMDB-M,
REDDIT-B, REDDIT-M-5K).

A summary of the 12 datasets is given in Table 5.

15

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our contributions include: (1) We design a computationally efficient kernel
based on the shortest paths. It can be flexibly integrated with neural networks while
preserving both the semantic and structural information of a given graph; (2) We develop a
novel framework termed HSP-GKN which integrates the kernel we proposed with neural
networks, enabling objective-driven learning of representations beneficial for specific tasks.
These contributions are covered in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in terms of applicability on graphs with
edge attributes in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

16

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All proofs are provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the details of our method in Section 3 and Section 4. Further-
more, we provide the code of our proposed method in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

17

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include the code of our proposed method in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The complete hyperparameter configurations can be found in our code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: To ensure statistical reliability, we provide variance measurements for all
reported results. All experimental results were obtained from 10 independent runs with
variance calculated.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the compute workers in Section 4. Time of execution is also
reported in Section 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conduct the research with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide the broader impacts of our work in Section 5

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

19

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets, models, and code involved in our paper are open source.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

20

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

21

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Methodology
	Notations
	Hierarchical Shortest-Path Graph Kernel
	Hierarchical Graph Feature Mapping
	Graph Kernel Network Based on HSP
	Computational Complexity Analysis

	Experiments
	Graph Classiﬁcation
	Runtime Behaviour Study
	Ablation Study
	Analysis of Hyperparameter L and N

	Conclusion and Future Discussion
	Proof of the Statements in Section 3.2
	Derivation of Eq. (4)
	Proof of Lemma 3.1
	Proof of Lemma 3.2

	Dataset statistics.

