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Abstract
Using pre-trained models has been found to re-
duce the effect of data heterogeneity and speed up
federated learning algorithms. Recent works have
investigated the use of first-order statistics and
second-order statistics to aggregate local client
data distributions at the server and achieve very
high performance without any training. In this
work we propose a training-free method based
on an unbiased estimator of class covariance ma-
trices. Our method, which only uses first-order
statistics in the form of class means communi-
cated by clients to the server, incurs only a frac-
tion of the communication costs required by meth-
ods based on communicating second-order statis-
tics. We show how these estimated class covari-
ances can be used to initialize a linear classifier,
thus exploiting the covariances without actually
sharing them. When compared to state-of-the-
art methods which also share only class means,
our approach improves performance in the range
of 4-26% with exactly the same communication
cost. Moreover, our method achieves performance
competitive or superior to sharing second-order
statistics with dramatically less communication
overhead. Finally, using our method to initial-
ize classifiers and then performing federated fine-
tuning yields better and faster convergence.

1. Introduction
Federated learning (FL) is a widely used paradigm for dis-
tributed learning from multiple clients or participants. In
FL, each client trains their local model on their private data
and then send model updates to a common global server that
aggregates this information into a global model. The objec-
tive is to learn a global model that performs similarly to a
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model jointly trained on all the client data. A major concern
in existing federated optimization algorithms (McMahan
et al., 2017) is the poor performance when the client data is
not identically and independently distributed (iid) or when
classes are imbalanced between clients (Zhao et al., 2018;
Li et al., 2019; Acar et al., 2021; Karimireddy et al., 2020a).
Luo et al. (2021) showed that client drift in FL is mainly
due to drift in client classifiers which optimize to local data
distributions, resulting in forgetting knowledge from clients
of previous rounds (Legate et al., 2023b; Caldarola et al.,
2022). Another challenge in FL is the partial participation of
clients in successive rounds (Li et al., 2019), which becomes
particularly acute with large numbers of clients (Ruan et al.,
2021; Kairouz et al., 2021). To address these challenges,
recent works focused on algorithms to better tackle data
heterogeneity between clients (Luo et al., 2021; Tan et al.,
2022b; Legate et al., 2023a; Fanı̀ et al., 2024).

Motivated by results from transfer learning (He et al., 2019),
several recent works on FL have studied the impact of using
pre-trained models and observe that it can significantly re-
duce the impact of data heterogeneity (Legate et al., 2023a;
Nguyen et al., 2023; Tan et al., 2022b; Chen et al., 2022;
Qu et al., 2022; Shysheya et al., 2022; Luo et al., 2021;
Tan et al., 2022a). An important finding in several of these
works is that sending local class means to the server instead
of raw features is more efficient in terms of communication
costs, eliminates privacy concerns, and is robust to gradient-
based attacks (Chen et al., 2022; Zhu et al., 2019). Tan
et al. (2022b) used pre-trained models to compute and then
share class means as the representative of each class, and
Legate et al. (2023a) showed that aggregating local means
into global means and setting them as classifier weights
(FedNCM) achieves very good performance without any
training. FedNCM incurs very little communication cost
and enables stable initialization. Recently, the authors of
Fed3R (Fanı̀ et al., 2024) explored the impact of sharing
second-order feature statistics from clients to server to solve
the ridge regression problem (Boyd & Vandenberghe, 2004)
in federated learning and improves over FedNCM.

Fed3R communicates second-order statistics computed from
local features for classifier initialization, and Luo et al.
(2021) previously proposed using class means and covari-
ances from all clients for classifier calibration after feder-
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Exploiting Mean Distributions for Federated Learning with Pre-Trained Models

ated optimization. Although it is evident that exploiting
second-order feature statistics results in better and more sta-
ble classifiers, it poses new problems. Notably, transferring
second-order statistics for high-dimensional features from
clients to the server significantly increases the communica-
tion overhead and also exposes clients to privacy risks (Luo
et al., 2021; Fanı̀ et al., 2024). In order to reap the bene-
fits of second-order client statistics, while at the same time
mitigating these risks, we propose Federated learning with
COvariances for Free (FedCOF) which only communicates
class means from clients to the server. We show that, from
just these class means and exploiting the mathematical rela-
tionship between the covariance of class means and the class
covariance matrices, we can compute an unbiased estimator
of global class covariances on the server. Finally, we set the
classifier weights in terms of aggregated class means and
our estimated class covariances.

In this paper, we exploit pre-trained feature extractors and
propose a training-free method (FedCOF) that uses the same
communication budget as FedNCM while delivering perfor-
mance comparable to or even superior to Fed3R. FedCOF
is based on a provably unbiased estimator of class covari-
ances that requires only class means communicated from
clients to the server. We also show how to use the unbiased
estimator for a better classifier initialization than Fed3R and
FedNCM. We validate our proposed method across several
FL benchmarks, including the real-world non-iid iNaturalist-
Users-120K, and our results (see Figure 1) demonstrate that
– with only a fraction of the communication costs incurred by
methods communicating second-order statistics – FedCOF
can achieve state-of-the-art results. Furthermore, we com-
pare with training-based methods and show that FedCOF
can be used as an initialization for federated optimization
methods in order to achieve faster and better convergence.

2. Related Work
Federated learning. FL focuses on neural network training
in distributed environments (Zhang et al., 2021; Wen et al.,
2023). Initial works like FedAvg (McMahan et al., 2017)
proposed training by averaging of distributed models. Later
works focus more on non-iid settings, where data among the
clients is more heterogeneous (Li et al., 2019; Kairouz et al.,
2021; Wang et al., 2021; Li et al., 2021). FedNova (Wang
et al., 2020) normalizes local updates before averaging to ad-
dress objective inconsistency. Scaffold (Karimireddy et al.,
2020b) employs control variates to correct drift in local up-
dates. FedProx (Li et al., 2020) introduces a proximal term
in local objectives to stabilize the learning process. Reddi
et al. (2020) proposed use of adaptive optimization methods,
such as Adagrad, Adam and Yogi, at the server side. While
CCVR (Luo et al., 2021) proposed a classifier calibration
by aggregating class means and covariances from clients, Li
et al. (2023); Dong et al. (2022); Oh et al. (2021); Kim et al.
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Figure 1. Performance vs. communication cost using pre-trained
MobileNetv2 on iNaturalist-Users-120K. Our method (FedCOF)
achieves better accuracy than Fed3R while having the same com-
munication cost as FedNCM.

(2024) proposed using a fixed classifier motivated by the
neural collapse phenomenon After federated training with
fixed classifiers, FedBABU (Oh et al., 2021) proposed to
fine-tune the classifiers and SphereFed (Dong et al., 2022)
proposed a closed-form classifier calibration.

FL with pre-trained models. While conventional FL meth-
ods start training from scratch without any pre-training,
we focus on the FL setting using pre-trained models.
FedFN (Kim et al., 2023) recently highlighted that using
pre-trained weights can sometimes negatively impact per-
formance. However, there has been increasing interest in
incorporating pre-trained, foundation models into federated
learning. Multiple works propose using pre-trained weights
which reduces the impact of client data heterogeneity and
achieves faster model convergence (Nguyen et al., 2023; Tan
et al., 2022b; Chen et al., 2022; Qu et al., 2022; Shysheya
et al., 2022). Very recently, it has been shown that training-
free methods using pre-trained networks, achieves strong
performance without any training by exploiting feature class
means (Legate et al., 2023a) or second-order feature statis-
tics (Fanı̀ et al., 2024). In this work, we propose a training-
free method with pre-trained models that estimates class co-
variances from only client means for initializing the global
classifier.

3. Preliminaries
3.1. Problem Formulation

In the FL setting, we assume K clients have local datasets
Dk = (Xk, Yk), where k ∈ {1, ...,K}. We denote
the total number of images from all clients as N where
N =

∑K
k=1 Mk and Mk refers to the number of images in

client k. We represent the model as hW (fθ(x)) which can
be decomposed into two parts: the feature extractor f param-
eterized by θ which gives a d-dimensional embedding from
a given image and the final classifier layer h : Rd → RC

parameterized by W where C refers to the total number of

2
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classes. The objective of federated optimization is to learn
a global model that minimizes the sum of the losses across
all the clients as follows (Konečnỳ et al., 2016) :

argmin
θ,W

K∑
k=1

Mk

N
L(hW (fθ(Xk)), Yk) (1)

where L is classification loss function (e.g., cross-entropy).
With the growing quality of pre-trained models, recent
works has focused on scenarios where all clients start with a
pre-trained network (Chen et al., 2022; Legate et al., 2023a;
Nguyen et al., 2023; Tan et al., 2022b; Fanı̀ et al., 2024).

3.2. Training-free Federated Learning Methods

Federated NCM. Legate et al. (2023a) propose a Nearest
Class Mean (NCM) classifier where the global linear classi-
fier weights for class c denoted by Wc can be initialized as
µ̂c/∥µ̂c∥ where µ̂c refers to global class means which are
aggregated from the local class means µ̂k,c as follows:

µ̂c =
1

Nc

K∑
k=1

nk,c µ̂k,c; µ̂k,c =
1

nk,c

∑
x∈Xk,c

f(x) (2)

where Xk,c is subset of Xk having images of class c, nk,c

refers to number of images in Xk,c and Nc =
∑K

k=1 nk,c is
the number of images of class c across all clients.

Federated Ridge Regression. While FedNCM exploits
only class means, Fed3R (Fanı̀ et al., 2024) recently pro-
posed to use ridge regression which needs second-order
feature statistics from all clients to initialize the global clas-
sifier, leading to improved performance compared to Fed-
NCM. The ridge regression problem aims to find the optimal
weights that minimize the following objective:

W ∗ = arg min
W∈Rd×C

∥Y − F⊤W∥2 + λ∥W∥2, (3)

where F ∈ Rd×N is the feature matrix extracted from a pre-
trained model and Y ∈ RN×C contains one-hot encoding
labels for the N features with C classes. The closed-form
solution is given by:

W ∗ = (G+ λId)
−1B, (4)

with G = FF⊤ ∈ Rd×d and B = FY ∈ Rd×C , λ ∈ R is
an hyper-parameter and Id is the d× d identity matrix.

In Fed3R, each client k computes two local matrices Gk =
FkF

⊤
k ∈ Rd×d and Bk = FkYk ∈ Rd×C , where Fk and

Yk are the feature matrix and the labels of client k, and then
sends them to the global server. The server aggregates these
matrices as

G =

K∑
k=1

Gk, B =

K∑
k=1

Bk (5)

and then compute W ∗ (Equation (4)), which is normalized
and then used to initialize the global linear classifier.

Table 1. FedNCM (Legate et al., 2023a) shares only class means
µ̂k,c and has minimal communication. Fed3R (Fanı̀ et al., 2024)
requires sum of class features Bk and feature matrix Gk from all
clients, thereby increasing the communication cost by d2K. We
propose FedCOF, which shares only class means and estimates a
global class covariance Σ̂c to initialize the classifier weights. Here,
we ignore the cost of nk,c which is negligible.

Method Client Shares Server Uses Comm. Cost

FedNCM {µ̂k,c, nk,c}Cc=1 {{µ̂k,c, nk,c}Cc=1}Kk=1 dCK

Fed3R Gk, Bk {Gk, Bk}Kk=1 (dC + d2)K

FedCOF {µ̂k,c, nk,c}Cc=1 {{µ̂k,c, nk,c}Cc=1}Kk=1, {Σ̂c}Cc=1 dCK

4. Federated Learning with COvariances for
Free (FedCOF)

4.1. Motivation

Communication cost. While Fed3R is more effective than
FedNCM, it requires each client to send C vectors of size
d and a d× d matrix, significantly increasing the commu-
nication overhead by d2K compared to FedNCM which
only shares the class means (see Table 1). Fed3R scales
linearly with number of clients and quadratically with the
feature dimension. Smaller neural network models often
have a very high-dimensional feature space. For instance,
ResNet-50 has d = 2048 with 25.6 million parameters, Mo-
bileNetV2 has d = 1280 with 3.4 million parameters while
ViT-B/16 has more parameters (86 million) with d = 768.
Considering cross-device FL settings (Kairouz et al., 2021),
having millions of client devices, the communication cost
needed for Fed3R would be enormous. In settings with
low-bandwidth communication, using Fed3R is not realistic.
See Appendix I for more discussion.

Potential privacy concerns. Sharing only class means pro-
vides a higher level of data privacy compared to sharing
raw data, as prototypes represent the mean of feature repre-
sentations. It is not easy to reconstruct exact images from
prototypes with feature inversion attacks (Luo et al., 2021).
As a result, sharing class means is common in many recent
works (Tan et al., 2022b;a; Shysheya et al., 2022; Legate
et al., 2023a). On the other hand, Fed3R show that sharing
second-order statistics improves the performance compared
to sharing class means, but this could expose the feature
distribution of clients to the server since all clients employ
the same frozen pre-trained model to extract features (Fanı̀
et al., 2024). Sharing covariances makes clients more vul-
nerable to attacks if secure aggregation protocols are not
implemented (Bonawitz et al., 2016).

While exploiting second-order statistics (using Fed3R)
yields significant gains in accuracy as shown in Figure 1,
it faces the above mentioned issues. We propose instead
to estimate class covariances at the server using only class
means and counts from clients. This will allow us to exploit

3
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Figure 2. Federated Learning with COvariances for Free (FedCOF). Each client k communicates only its class means µ̂k,c and counts
nk,c. On the server side, (A) we use a provably unbiased estimator Σ̂c (denoted by solid lines) of population covariance Σc (denoted by
dashed lines) based on the received class means (see Section 4.2). (B) We initialize the linear classifier using the estimated second-order
statistics and remove the between-class scatter matrix as discussed in Section 4.3.

second-order statistics without actually sharing them from
clients. Following Legate et al. (2023a); Luo et al. (2021),
we use class frequencies from clients since it only quantifies
the client data while not revealing any information at the fea-
ture level. While this could raise minor privacy concerns, in
Appendix N, we discuss methods to address those concerns.

4.2. Estimating Covariances Using Only Client Means

Our method leverages the statistical properties of sample
means to derive an unbiased estimator of the class popula-
tion covariance based only on class means (see Figure 2).

Assume that features of a class c are drawn from a popula-
tion with mean µc and covariance Σc. The features com-
puted by each client are a random sample drawn from this
population distribution. Using statistical properties of the
sample mean we can prove the following proposition.
Proposition 1. Let {F j

k,c}
nk,c

j=1 be a random sample from a
multivariate population with mean µc and covariance Σc,
where F j

k,c is the j-th feature vector of class c assigned to
the client k and nk,c is the number of elements of class c

in the client k. Assuming that the per-class features F j
k,c

in each client are iid in the initialization, then the sample
mean of the features for class c

F k,c =
1

nk,c

nk,c∑
j=1

F j
k,c, (6)

is distributed with mean E[F k,c] = µc and covariance
Var[F k,c] =

Σc

nk,c
.

In Appendix B we provide the proof of this well-known re-
sult about the distribution of sample means and covariances.
Intuitively, since Σc = nk,cVar[F k,c], this proposition sug-
gests that by assigning multiple sets of nk,c features to a
single client, we can compute the empirical covariance of
the client’s class means over multiple assignments, provid-
ing an estimator of population covariance Σc.

However, in federated learning data are assigned only once

to each client, and there are K clients in the federation,
each with nk,c features and ni,c ̸= nj,c for i ̸= j. To
estimate the population covariance Σc, we need an estimator
that accounts for the contributions of all K clients. In the
following proposition, we propose such an estimator.

Proposition 2. Let K be the number of clients, each with
nk,c features, and let C be the total number of classes. Let
µ̂c =

1
Nc

∑Nc

j=1 F
j be the unbiased estimator of the popula-

tion mean µc and Nc =
∑K

k=1 nk,c be the total number of
features for a single class. Assuming the features for class c
are iid across clients at initialization, the estimator

Σ̂c =
1

K − 1

K∑
k=1

nk,c(F k,c − µ̂c)(F k,c − µ̂c)
⊤ (7)

is an unbiased estimator of the population covariance Σc,
for all c ∈ 1, . . . , C.

Proof. To prove that Σ̂c is an unbiased estimator of the pop-
ulation covariance, we show that E[Σ̂c] = Σc. Under the
iid assumption of client feature distribution with a frozen
pre-trained model, the class features of each client can be
considered as a random sample of size nk,c, and the global
class features as a sample of size Nc. By applying Proposi-
tion 1, we find that each client class mean has E[F k,c] = µc

and Var[F k,c] =
Σc

nk,c
, while the global class mean µ̂c has

E[µ̂c] = µc and Var[µ̂c] =
Σc

Nc
. Using this fact and apply-

ing the properties of expectation to E[Σ̂c], we complete the
proof. In Appendix C we provide the detailed proof.

Covariance shrinkage. Van Ness (1980) and Friedman
(1989) proposed adding an identity matrix to the covariance
matrix to stabilize the smaller eigenvalues. Shrinkage helps
especially when the number of samples is fewer than the
number of feature dimensions resulting in a low-rank covari-
ance matrix. Here, the covariance estimation using a limited
number of clients may poorly estimate the population co-
variance Σc. So, we perform shrinkage to better estimate

4
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the class covariances from the client means as follows:

Σ̂c =
1

K − 1

K∑
k=1

nk,c(µ̂k,c − µ̂c)(µ̂k,c − µ̂c)
⊤ + γId (8)

where µ̂k,c = F k,c represents a realization of client means
and γ > 0 is the shrinkage factor.

Impact of the number of clients. The quality of estimated
covariances depends on number of clients. More clients
will give more means and improve the estimate compared
to fewer clients. While realistic settings has thousands of
clients (Hsu et al., 2020; Kairouz et al., 2021), there can be
FL settings with fewer clients. In that case, we propose to
sample multiple means from each client to increase number
of means used for covariance estimation. This can be done
by randomly sampling subsets of features in each client
without replacement and computing a mean from each of
these subsets. We validate this in experiments (see Figure 5).

The iid assumption. In FL each client has its own data,
typically distributed in a statistically heterogeneous or
class-imbalanced manner according to a Dirichlet distri-
bution (Hsu et al., 2019). As a result, each client has data
belonging to a different set of classes in varying quanti-
ties, resulting in non-iid data distributions across clients.
However, note that the samples belonging to the same class
in different clients are sampled from the same distribution.
We exploit this fact in FedCOF. We later show empirically
that our method can be successfully applied to non-iid FL
scenarios involving thousands of heterogeneous clients on
iNaturalist-Users-120K (Hsu et al., 2020). We analyze the
bias of the estimator under non-iid assumptions for the same
class in Appendix E and evaluate the performance of Fed-
COF in feature shift settings (Li et al., 2021) in Appendix F.

4.3. Classifier Initialization with Estimated Covariances

Having derived how to compute class covariances from
client means, we now discuss how to use class covariances
to set the classifier weights and then replace the empirical
class covariances with our estimated class covariances.

Proposition 3. Let F ∈ Rd×N be a feature matrix with
empirical global mean µ̂g ∈ Rd, and Y ∈ RN×C be a
label matrix. The optimal ridge regression solution W ∗ =
(G + λId)

−1B, where B ∈ Rd×C and G ∈ Rd×d can be
written in terms of class means and covariances as follows:

B = [µ̂cNc]
C
c=1 , (9)

G =

C∑
c=1

(Nc−1)Ŝc+

C∑
c=1

Nc(µ̂c−µ̂g)(µ̂c−µ̂g)
⊤+Nµ̂gµ̂

⊤
g

(10)
where the first two terms

∑C
c=1(Nc − 1)Ŝc and∑C

c=1 Nc(µ̂c − µ̂g)(µ̂c − µ̂g)
⊤ represents the within-class

Algorithm 1 FedCOF: FL with Covariances for Free
Client-Side (Client k):
Input: C: set of all classes, fθ: pre-trained model, Xk,c: sam-
ples of class c in client k, nk,c: number of samples in Xk,c

for c = 1 to C do
µ̂k,c = 1

nk,c

∑
x∈Xk,c

fθ(x)

end for
Send the class means µ̂k,c and sample counts nk,c to the Server

Server-Side:
Input: µ̂k,c, nk,c sent from K clients, λ > 0, γ > 0
for c = 1 . . . C do

µ̂c = 1
Nc

∑K
k=1 nk,cµ̂k,c; Nc =

∑K
k=1 nk,c # class mean

Σ̂c=
1

K−1

K∑
k=1

nk,c(µ̂k,c − µ̂c)(µ̂k,c − µ̂c)
⊤+ γId, Eq.(8)

end for
µ̂g = 1

N

∑C
c=1 Ncµ̂c N =

∑C
c=1 Nc # global mean

B = [µ̂cNc]
C
c=1 , Eq.(9)

Ĝ =
∑C

c=1(Nc − 1)Σ̂c +Nµ̂gµ̂
⊤
g

W ∗ = (Ĝ+ λId)
−1B, Eq. (11)

Normalize W ∗: W ∗
c ←W ∗

c /∥W ∗
c ∥ c = 1, . . . , C

Table 2. Analysis showing improved accuracy by removing
between-class scatter for classifier weights initialization in central-
ized setting using pre-trained SqueezeNet model.

Using total scatter in G Using within-class scatter in Ĝ
Dataset Equation (10) Equation (11)

CIFAR100 57.1 57.3 (+0.2)
ImageNet-R 37.6 38.6 (+1.0)

CUB200 50.4 53.7 (+3.3)
Stanford Cars 41.4 44.8 (+3.4)

and between class scatter respectively, while µ̂c, Ŝc and Nc,
denote the empirical mean, covariance and sample size for
class c, respectively.

Proof. The proof is based on the observation that G = FF⊤

from ridge regression is an uncentered and unnormalized
empirical global covariance. By using the empirical global
covariance definition and decomposing it into within-class
and between-class scatter, we obtain the above formulation
of G. In Appendix D, we provide the detailed proof.

To analyze the impact of the two scatter matrices, we con-
sider the centralized setting in Table 2 and empirically find
that using only within-class scatter matrix performs slightly
better than using total scatter matrix in Equation (10). As a
result, we propose to remove the between-class scatter and
initialize the linear classifier at the end of the pre-trained
network using the within-class covariances Σ̂c which are
estimated from client means using Equation (8), as follows:

W ∗ = (Ĝ+ λId)
−1B; Ĝ =

C∑
c=1

(Nc − 1)Σ̂c +Nµ̂gµ̂
⊤
g .

(11)
Theoretically, we observe that a similar approach is used in
Linear Discriminant Analysis (Ghojogh & Crowley, 2019),
which employs only within-class covariances for finding

5
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Table 3. Evaluation of different training-free methods using 100 clients for four datasets and 9275 pre-defined clients on iNat-120K using
5 random seeds. We show the total communication cost (in MB) from all clients to server. We also show the FedCOF oracle in which full
class covariances are shared from clients to server. Best results from each section in bold.

SqueezeNet (d = 512) MobileNetv2 (d = 1280) ViT-B/16 (d = 768)
Method Acc (↑) Comm. (↓) Acc (↑) Comm. (↓) Acc (↑) Comm. (↓)

C
IF

A
R

10
0 FedNCM (Legate et al., 2023a) 41.5±0.1 5.9 55.6±0.1 14.8 55.2±0.1 8.9

Fed3R (Fanı̀ et al., 2024) 56.9±0.1 110.2 62.7±0.1 670.1 73.9±0.1 244.8
FedCOF (Ours) 56.1±0.2 5.9 63.5±0.1 14.8 73.2±0.1 8.9

FedCOF Oracle (Full Covs) 56.4±0.1 3015.3 63.9±0.1 18823.5 73.8±0.1 6780.0

IN
-R

FedNCM (Legate et al., 2023a) 23.8±0.1 7.1 37.6±0.2 17.8 32.3±0.1 10.7
Fed3R (Fanı̀ et al., 2024) 37.6±0.2 111.9 46.0±0.3 673.1 51.9±0.2 246.6

FedCOF (Ours) 37.8±0.4 7.1 47.4±0.1 17.8 51.8±0.3 10.7

FedCOF Oracle (Full Covs) 38.2±0.1 3645.7 48.0±0.3 22758.8 52.7±0.1 8197.4

C
U

B
20

0 FedNCM (Legate et al., 2023a) 37.8±0.3 4.8 58.3±0.3 12.0 75.7±0.1 7.2
Fed3R (Fanı̀ et al., 2024) 50.4±0.3 109.6 58.6±0.2 667.3 77.7±0.1 243.1

FedCOF (Ours) 53.7±0.3 4.8 62.5±0.4 12.0 79.4±0.2 7.2

FedCOF Oracle (Full Covs) 54.4±0.1 2472.1 63.1±0.5 15432.7 79.6±0.2 5558.6

C
ar

s

FedNCM (Legate et al., 2023a) 19.8±0.2 5.4 30.0±0.1 13.5 26.2±0.4 8.1
Fed3R (Fanı̀ et al., 2024) 39.9±0.2 110.2 41.6±0.1 668.8 47.9±0.3 244.0

FedCOF (Ours) 44.0±0.3 5.4 47.3±0.5 13.5 52.5±0.3 8.1

FedCOF Oracle (Full Covs) 44.6±0.1 2767.3 47.2±0.3 17275.7 53.1±0.1 6222.5

iN
at

-1
20

K FedNCM (Legate et al., 2023a) 21.2±0.1 111.8 36.0±0.1 279.5 53.9±0.1 167.7
Fed3R (Fanı̀ et al., 2024) 32.1±0.1 9837.3 41.5±0.1 61064.1 62.5±0.1 22050.2

FedCOF (Ours) 32.5±0.1 111.8 44.1±0.1 279.5 63.1±0.1 167.7

FedCOF Oracle (Full Covs) 32.4±0.1 57k 43.6±0.1 358k 62.9±0.1 128k

optimal weights. By removing between-class scatter, we
propose a more effective classifier initialization than Fed3R
(which uses G from Equation (10) and considers both within-
and between- class scatter matrices). We demonstrate this in
the centralized setting (see Table 2) and in our experiments
(see Table 3).

To summarize, we estimate the covariance matrix for each
class using only the client means (Equation (8)) and use the
estimated covariances to initialize the classifier as in Equa-
tion (11). Finally, we normalize the weights for every class
to account for class imbalance in the entire dataset. We
provide the summary in Algorithm 1.

FedCOF in multiple rounds. While the proposed estima-
tor requires class means from all clients in a single round,
this might not be realistic in settings in which clients ap-
pear in successive rounds based on availability. In the case
of multiround classifier initialization (see FedCOF in Fig-
ure 3 before fine-tuning), the server uses all class means and
counts received from all clients seen up to the current round
and stores the accumulated means and counts for future use.
As a result, FedCOF uses statistics from all clients seen
up to the current round, similar to Fed3R. Thus, FedCOF
converges when all clients are seen at least once. We discuss
more on convergence analysis in Appendix M.

5. Experiments
Datasets. We evaluate FedCOF on multiple datasets namely
CIFAR-100 (Krizhevsky, 2009), ImageNet-R (Hendrycks
et al., 2021), CUB200 (Wah et al., 2011), Stanford

Cars (Krause et al., 2013) and iNaturalist (Van Horn et al.,
2018). We distribute the first 4 datasets to 100 clients us-
ing a highly heterogeneous Dirichlet distribution (α = 0.1)
following standard practice (Hsu et al., 2019; Legate et al.,
2023a). We also use the real-world non-iid FL benchmark
of iNaturalist-Users-120K (Hsu et al., 2020) (iNat-120K)
having 1203 classes across 9275 clients and 120k training
images. We discuss the dataset details in Appendix H.

Implementation Details. We use three models: namely
SqueezeNet (Iandola et al., 2016) following Legate et al.
(2023a) and Nguyen et al. (2023), MobileNetV2 (Sandler
et al., 2018) following Fanı̀ et al. (2024); Hsu et al. (2020),
and ViT-B/16 (Dosovitskiy et al., 2021). All models are
pre-trained on ImageNet-1k (Deng et al., 2009). We use the
FLSim library and implement all methods in the same frame-
work. We use γ = 1 for all experiments with SqueezeNet
and ViT-B/16, and γ = 0.1 for all experiments with Mo-
bileNetV2 due to very high dimensionality d of the feature
space. Following Fanı̀ et al. (2024), we use λ = 0.01 for
both Fed3R and FedCOF for numerical stability. We com-
pare to FedCOF Oracle in which real class covariances are
shared from clients and aggregated in server instead of using
our estimated covariances (see Appendix G). For all experi-
ments, we set the client participation in each round to 30%,
and we show the training-free methods in multiple rounds
in Figures 3 and 4. We provide more details in Appendix J.

5.1. Evaluation for different training-free methods

We compare the performance of existing training-free meth-
ods and the proposed method in Table 3 using pre-trained
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Figure 3. Performance comparison when initialized with different methods and then fine-tuned with FedAdam (Reddi et al., 2020) and
FedAvg (McMahan et al., 2017). We also compare with FedAdam and FedAvg without any initialization (using random classifier
initilization and pre-trained backbone). The training-free initialization stage for FedNCM, Fed3R and FedCOF is shown in dotted lines,
star represents start of fine-tuning stage. We plot average accuracy of 3 random seeds.

Squeezenet, Mobilenetv2 and ViT-B/16 models. We ob-
serve that Fed3R (Fanı̀ et al., 2024) using second-order
statistics outperforms FedNCM (Legate et al., 2023a) sig-
nificantly ranging from 0.3% to 21% across all datasets.
However, Fed3R requires a higher communication cost com-
pared to FedNCM. In real-world iNat-120K benchmark,
Fed3R needs 61k MB compared to 280 MB for FedNCM
(see Figure 1), which is 218 times higher. FedCOF performs
better than Fed3R in most settings despite having the same
communication cost as FedNCM. FedCOF achieves similar
performance as the oracle setting using aggregated class
covariances requiring very high communication, which vali-
dates the effectiveness of the proposed method.

FedCOF maintains similar accuracy with Fed3R on CI-
FAR100 and ImageNet-R, with an improvement of about
1% when using MobileNetv2. FedCOF outperforms Fed3R
on CUB200 and Cars. On CUB200, FedCOF outperforms
Fed3R by 3.3%, 3.9% and 2.2% using SqueezeNet, Mo-
bileNetv2 and ViT-B/16 respectively. FedCOF improves
over Fed3R in the range of 4.1% to 5.7% on Cars. On iNat-
120K, FedCOF improves over Fed3R by 0.4%, 2.6% and
0.6% using different models. When comparing FedCOF
with FedNCM – both with equal communication costs and
same strategy in clients – one can observe that the usage of
second order statistics derived only from the class means
of clients leads to large performance gains, e.g. 24% using
SqueezeNet and 26% using ViT-B/16 on Cars, about 10%
using all architectures on large-scale iNat-120K.

5.2. Comparison with training-based methods

We compare training-free methods with FL baselines like
FedAvg and FedAdam with randomly initialized classifier
and pre-trained backbone in Table 4. We use adaptive opti-
mizer, FedAdam (Reddi et al., 2020) since it performs better
than most other optimizers as shown in Nguyen et al. (2023).
Without any training, FedCOF outperforms FedAvg in all
settings and FedAdam by 7.3% on CUB200 and 2.2% on
Cars, and achieves competitive performance in ImageNet-R.

Table 4. Comparison with training-based FL baselines (FedAvg
and FedAdam) using pre-trained SqueezeNet. For training-based
methods, we consider 100 rounds of training for fair comparison
and report accuracy of 3 random seeds.

Method Training ImageNet-R CUB200 Cars
FedAvg ! 30.0±0.6 30.3±6.7 24.9±1.6

FedAdam ! 38.8±0.6 46.4±0.8 41.8±0.6
FedNCM % 23.8±0.1 37.8±0.3 19.8±0.2
Fed3R % 37.6±0.2 50.4±0.3 39.9±0.2

FedCOF (Ours) % 37.8±0.4 53.7±0.3 44.0±0.3
FedNCM+FedAdam ! 44.7±0.1 50.2±0.2 48.7±0.2
Fed3R+FedAdam ! 45.9±0.3 51.2±0.3 47.4±0.4

FedCOF+FedAdam ! 46.0±0.4 55.7±0.4 49.6±0.6

We show in Figure 3 how FedCOF starts from a very high
accuracy compared to FedAdam and further improves on
fine-tuning. We provide more experiments with pre-trained
ResNet18 in Appendix K.

5.3. Analysis of Fine-tuning and Linear Probing

While we achieve very high accuracy without any train-
ing with FedCOF, we show in Figure 3 that further fine-
tuning the model with FL optimization methods achieves
better and faster convergence compared to federated opti-
mization from scratch. We show the performance of fine-
tuning after training-free classifier initialization in Figure 3.
These training-free methods end after all clients appear at
least once to share their local statistics to server. We fine-
tune the models after FedCOF and Fed3R for 100 rounds
since they achieve fast convergence, while we train for
200 rounds for FedAdam, FedAvg and fine-tuning after
FedNCM which takes longer to converge. Fine-tuning af-
ter FedCOF starts with a higher accuracy and converges
faster and better compared to FedNCM. Although FedCOF
and Fed3R initialization converges similarly in ImageNet-
R, FedCOF+FedAdam achieves a better accuracy than
Fed3R+FedAdam in CUB200 and Cars. We observe in Ta-
ble 4, that all training-free approaches followed by fine-
tuning for 100 rounds outperform FedAdam and FedAvg
with a random classifier initialization.
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Figure 4. Analysis of performance when initialized with different methods and then linear-probed with FedAvg (McMahan et al., 2017).
Here, FedAvg-LP (in blue) uses random classifier initialization and pre-trained backbone. The training-free initialization stage is shown in
dotted lines, star represents start of linear probing stage.
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Figure 5. Ablation: (left) shows how performance changes with the
number of clients and varying data heterogeneity; (right) shows
that sharing multiple class means per client improves FedCOF
performance with fewer clients.

Following Legate et al. (2023a) and Nguyen et al. (2023),
we perform federated linear probing (LP) of the models
using FedAvg after classifier initialization with training-free
methods. In FedAvg-LP, we perform FedAvg and learn only
the classifier weights of all client models. Linear probing
requires much less computation compared to fine-tuning the
entire model and were found to be effective with pre-trained
models. We observe in Figure 4 that linear probing after
FedCOF improves significantly compared to FedNCM and
Fed3R using ViT-B/16 on Cars and SqueezeNet on iNat-
120K. On the real-world dataset iNat-120K, FedAvg-LP
with random classifier initialization achieves 27.3% after
5000 rounds while FedCOF+FedAvg-Lp achieves 34% in
less than 1000 rounds. We plot accuracy vs communication
in Figure 4 (middle) to demonstrate the advantage of Fed-
COF over other methods. We provide more experiments
in Appendix K.

5.4. Ablation Studies

Impact of number of clients and data heterogeneity. We
analyze in Figure 5, the performance of FedCOF with vary-
ing number of clients and data heterogeneity. We observe
that the performance of FedCOF improves with increasing
number of clients and decreasing heterogeneity. This is due
to the fact that more clients provides more class means and
more uniform data distribution gives better representative
local means. While more clients are favourable for FedCOF,

it still performs well and outperforms FedNCM significantly
in the setting with 10 clients and high data heterogeneity.

Multiple class means per client. We analyze FL settings
with fewer clients ranging from 10 to 50 in Figure 5 and
show that sharing multiple class means from each client
improves the accuracy. Using only 10 clients, sharing 2
class means per client improves the accuracy by 2.6%.

We discuss the impact of shrinkage hyper-parameter and
present more ablation studies in Appendix L.

6. Conclusion
In this work, we proposed FedCOF, a novel training-free
approach for federated learning with pre-trained models. By
leveraging the statistical properties of client class sample
means, we show that second-order statistics can be estimated
using only class means from clients, thus reducing commu-
nication costs. We derive a provably unbiased estimator of
population class covariances, enabling accurate estimation
of a global covariance matrix. Applying shrinkage to the es-
timated class covariances and removing between-class scat-
ter matrices, we show that the server can effectively use this
global covariance to initialize the global classifier. Our ex-
periments show that FedCOF outperforms FedNCM (Legate
et al., 2023a) by significant margins while maintaining same
communication costs. Additionally, FedCOF delivers com-
petitive or even superior results to Fed3R (Fanı̀ et al., 2024)
across various model architectures and benchmarks while
substantially reducing communication costs. Moreover, we
empirically show that FedCOF can serve as a more effective
starting point for improving the convergence of standard
federated fine-tuning and linear probing methods.

Limitations. The quality of our estimator depends on num-
ber of clients, as shown in Figure 5 where using multiple
class means per client helps with fewer client settings. An-
other limitation is the assumption that samples of the same
class are iid across clients, which is, however, an assumption
underlying most of federated learning. We discuss the bias
in our estimator in non-iid settings in Appendix E.
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Impact Statement. In this paper we propose a highly
communication-efficient method for federated learning
which exploits pre-trained feature extractors. Reducing
communication between clients and the central server is
a critical aspect of federated learning to enhance its ap-
plication in practical scenarios. The proposed method is
training-free and thus does not require extensive training or
incur excessive computational costs across all client devices
like training-based federated learning methods. Our method
drastically reduces communication while achieving similar
or even better accuracy compared to existing approaches.
The proposed initialization can be used with different fed-
erated fine-tuning approaches. We believe that our work
will advance federated learning applications and make them
more efficient.
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Federated optimization: Distributed machine learning for
on-device intelligence. arXiv preprint arXiv:1610.02527,
2016.

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. 3d object
representations for fine-grained categorization. In In-
ternational Conference on Computer Vision (ICCV-W)
Workshops, 2013.

Krizhevsky, A. Learning multiple layers of features from
tiny images. University of Toronto Technical Report, pp.
32–33, 2009.

Legate, G., Bernier, N., Caccia, L., Oyallon, E., and
Belilovsky, E. Guiding the last layer in federated learning
with pre-trained models. In Advances in Neural Informa-
tion Processing Systems, 2023a.

Legate, G., Caccia, L., and Belilovsky, E. Re-weighted
softmax cross-entropy to control forgetting in federated
learning. In Proceedings of The 2nd Conference on Life-
long Learning Agents, 2023b.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. Proceedings of Machine learning and systems,
2:429–450, 2020.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On
the convergence of fedavg on non-iid data. arXiv preprint
arXiv:1907.02189, 2019.

Li, X., JIANG, M., Zhang, X., Kamp, M., and Dou, Q.
Fedbn: Federated learning on non-iid features via local
batch normalization. In International Conference on
Learning Representations, 2021.

Li, Z., Shang, X., He, R., Lin, T., and Wu, C. No fear of
classifier biases: Neural collapse inspired federated learn-
ing with synthetic and fixed classifier. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 5319–5329, 2023.

Luo, M., Chen, F., Hu, D., Zhang, Y., Liang, J., and Feng,
J. No fear of heterogeneity: Classifier calibration for
federated learning with non-iid data. Advances in Neural
Information Processing Systems, 2021.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Nguyen, J., Malik, K., Sanjabi, M., and Rabbat, M. Where
to begin? exploring the impact of pre-training and initial-
ization in federated learning. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Nguyen, T., Raghu, M., and Kornblith, S. Do wide and deep
networks learn the same things? uncovering how neural
network representations vary with width and depth. arXiv
preprint arXiv:2010.15327, 2020.

Oh, J., Kim, S., and Yun, S.-Y. Fedbabu: Towards enhanced
representation for federated image classification. arXiv
preprint arXiv:2106.06042, 2021.

Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., and Wang,
B. Moment matching for multi-source domain adaptation.
In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 1406–1415, 2019.

Qu, L., Zhou, Y., Liang, P. P., Xia, Y., Wang, F., Adeli, E.,
Fei-Fei, L., and Rubin, D. Rethinking architecture design
for tackling data heterogeneity in federated learning. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2022.

Reddi, S. J., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
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A. Scope and Summary of Notation
These appendices provide additional information, proofs, experimental results, and analyses that complement the main
paper. For clarity and convenience, here we first summarize the key notations used throughout the paper:

• N : total number of samples.

• K: number of clients.

• C: number of classes.

• d: dimensionality of the feature space.

• nk,c: number of samples from class c assigned to client k.

• Nc =
∑K

k=1 nk,c: total number of samples in class c.

• µ̂g, µ̂c ∈ Rd: empirical global mean and class mean for class c, respectively.

• µc ∈ Rd: population mean of class c.

• Ŝc ∈ Rd×d: empirical sample covariance for class c.

• Σc ∈ Rd×d: population covariance for class c.

• Σ̂c ∈ Rd×d: our unbiased estimator of the population covariance Σc employing only client means.

• F ∈ Rd×N : feature matrix, where each column F j ∈ Rd is a feature vector, for j = 1, . . . , N .

• F j
k,c ∈ Rd: j-th feature vector from class c assigned to client k.

• F k,c ∈ Rd: sample mean of the feature vectors for class c on client k, treated as a random vector. A specific realization
of this random vector is denoted by µ̂k,c.

• Var[F k,c] = Cov[F k,c, F k,c] represents the covariance matrix of the random vector F k,c.

B. Proof of Proposition 1
Proposition 1. Let {F j

k,c}
nk,c

j=1 be a random sample from a multivariate population with mean µc and covariance Σc, where
F j
k,c is the j-th feature vector of class c assigned to the client k and nk,c is the number of elements of class c in the client k.

Assuming that the per-class features F j
k,c in each client are iid in the initialization, then the sample mean of the features for

class c

F k,c =
1

nk,c

nk,c∑
j=1

F j
k,c, (12)

is distributed with mean E[F k,c] = µc and covariance Var[F k,c] =
Σc

nk,c
.

Proof. To prove this, we fix the class c and omit the dependencies on c for simplicity. Thus, we write nk,c = nk, F j
k,c = F j

k ,
F k,c = F k, and µc = µ, Σc = Σ.

Since {F j
k}

nk
j=1 is a random sample from a multivariate distribution with mean µ and covariance Σ, and the per-class features

F j
k in each client are i.i.d at initialization, it follows that:

E[F j
k ] = µ Var[F j

k ] = Σ, ∀j (13)

By computing the expectation of F k and using the linearity of expectation, we obtain:

E[F k] = E[
1

nk

nk∑
j=1

F j
k ] =

1

nk
E[F 1

k ] + . . .+
1

nk
E[Fnk

k ] =
1

nk
(nkµ) = µ,

12
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where in the last equality we used Equation (13). Thus the expectation of the sample mean is µ, which completes the first
part of the proof.

Next, we show that the variance of the sample mean is Σ
nk

. By computing the variance of F k and using the fact that the
variance scales by the square of the constant, we obtain:

Var[F k] = Var[
1

nk

nk∑
j=1

F j
k ] =

1

n2
k

(
Var[F 1

k ] + . . .+Var[Fnk

k ]
)
+

1

n2
k

nk∑
i=1

nk∑
j=1
j ̸=i

Cov[F i
k, F

j
k ].

By the independence assumption of {F j
k}

nk
j=1, the cross terms Cov[F i

k, F
j
k ] = 0 for i ̸= j. Applying Equation (13), we

have:

Var[F k] =
1

n2
k

(
Var[F 1

k ] + . . .+Var[Fnk

k ]
)
=

1

n2
k

(nkΣ) =
Σ

nk

C. Proof of Proposition 2
Proposition 2. Let K be the number of clients, each with nk,c features, and let C be the total number of classes. Let
µ̂c = 1

Nc

∑Nc

j=1 F
j be the unbiased estimator of the population mean µc and Nc =

∑K
k=1 nk,c be the total number of

features for a single class. Assuming the features for class c are iid across clients at initialization, the estimator

Σ̂c =
1

K − 1

K∑
k=1

nk,c(F k,c − µ̂c)(F k,c − µ̂c)
⊤ (14)

is an unbiased estimator of the population covariance Σc, for all c ∈ 1, . . . , C.

Proof. To prove this, we fix the class c and omit the dependencies on c for clarity. So we write nk,c = nk, F k,c = F k,
Nc = N , µ̂c = µ̂, Σ̂c = Σ̂, µc = µ, and Σc = Σ. By the definition of an unbiased estimator, we need to show that:

E[Σ̂] = E

[
1

K − 1

K∑
k=1

nk(F k − µ̂)(F k − µ̂)⊤

]
= Σ.

By the linearity of the expectation, the definition of sample mean F k = 1
nk

∑nk

j=1 F
j
k , and the definition of global class

mean µ̂ = 1
N

∑K
k=1

∑nk

j=1 F
j
k , we have:

E[Σ̂] =
1

K − 1

(
K∑

k=1

nkE[F kF
⊤
k ]−

K∑
k=1

nkE[F kµ̂
⊤]−

K∑
k=1

nkE[µ̂F
⊤
k ] +

K∑
k=1

nkE[µ̂µ̂⊤]

)

=
1

K − 1

 K∑
k=1

nkE[F kF
⊤
k ]− 2E[(

K∑
k=1

nk∑
j=1

F j
k )µ̂

⊤] +

K∑
k=1

nkE[µ̂µ̂⊤]


=

1

K − 1

(
K∑

k=1

nkE[F kF
⊤
k ]− 2NE[µ̂µ̂⊤] +

K∑
k=1

nkE[µ̂µ̂⊤]

)
. (15)

By applying the variance definition and proposition 1, we obtain:

E[F kF
⊤
k ] = Var[F k] + E[F k]E[F k]

⊤ =
Σ

nk
+ µµ⊤. (16)

Now, by considering the right term in Equation (15), since µ̂ is an unbiased estimator of the population mean, then
E[µ̂] = µ. Moreover, since we assume that the features for a single class across clients are i.i.d at initialization, we can

13
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re-use Proposition 1 by considering the all class features as a random sample of size N from a population with mean µ and
variance Σ. Consequently, the global sample mean µ̂ is has variance Var[µ̂] = Σ

N . Then

E[µ̂µ̂⊤] = Var[µ̂] + E[µ̂]E[µ̂]⊤ =
Σ

N
+ µµ⊤. (17)

By using Equation (16) and Equation (17) in Equation (15), and recalling that N =
∑K

k=1 nk, we obtain:

E[Σ̂] =
1

K − 1

(
K∑

k=1

nk(
Σ

nk
+ µµ⊤)− 2N(

Σ

N
+ µµ⊤) +

K∑
k=1

nk(
Σ

N
+ µµ⊤)

)

=
1

K − 1
(KΣ+ µµ⊤N − 2Σ− 2Nµµ⊤ + (

Σ

N
+ µµ⊤)N) =

1

K − 1
(K − 1)Σ = Σ.

D. Proof of Proposition 3
Proposition 3. Let F ∈ Rd×N be a feature matrix with empirical global mean µ̂g ∈ Rd, and Y ∈ RN×C be a label matrix.
The optimal ridge regression solution W ∗ = (G+ λId)

−1B, where B ∈ Rd×C and G ∈ Rd×d can be written in terms of
class means and covariances as follows:

B = [µ̂cNc]
C
c=1 , (18)

G =

C∑
c=1

(Nc − 1)Ŝc +

C∑
c=1

Nc(µ̂c − µ̂g)(µ̂c − µ̂g)
⊤ +Nµ̂gµ̂

⊤
g (19)

where the first two terms
∑C

c=1(Nc−1)Ŝc and
∑C

c=1 Nc(µ̂c−µ̂g)(µ̂c−µ̂g)
⊤ represents the within-class and between class

scatter respectively, while µ̂c, Ŝc and Nc, denote the empirical mean, covariance and sample size for class c, respectively.

Proof. The first part, regarding Equation (18), follows directly. From the ridge regression solution, B = FY , which is
obtained by summing the features for each class and arranging them into the columns of a matrix. This results in the product
of class means and samples per class.

Now, for computing the matrix G, we proceed with the definition of the global sample covariance:

Ŝ =
1

N − 1
(F − F )(F − F )⊤ =

1

N − 1

(
FF⊤ − FF

⊤ − FF⊤ + F F
⊤)

,

where F =
(

1
N

∑N
j=1 F

j
)
1⊤ = µ̂g1

⊤ ∈ Rd×N is the matrix obtained by replicating the global mean N times in each

column and 1 ∈ RN×1 is a column vector of ones. Recalling that G = FF⊤, we have:

Ŝ =
1

N − 1
(G− F1µ̂⊤

g − µ̂g1
⊤F⊤ + µ̂g1

⊤1µ̂⊤
g ) =

1

N − 1
(G− 2F1µ̂⊤

g +Nµ̂gµ̂
⊤
g )

since F1µ̂⊤
g = µ̂g1

TF⊤ and 1T1 = N .

Now, since F1 =
∑N

j=1 F
j , we can obtain the matrix G as:

G = (N − 1)Ŝ + 2

 N∑
j=1

F j

 µ̂⊤
g −Nµ̂gµ̂

⊤
g = (N − 1)Ŝ + 2Nµ̂gµ̂

⊤
g −Nµ̂gµ̂

⊤
g = (N − 1)Ŝ +Nµ̂gµ̂

⊤
g (20)

It is a well known result that the global covariance can be expressed as:

Ŝ =
1

N − 1

(
C∑

c=1

(Nc − 1)Σ̂c +

C∑
c=1

Nc(µ̂c − µ̂g)(µ̂c − µ̂g)
T

)
,

14
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Replacing the global covariance Ŝ in Equation (20), we obtain the final expression for G as:

G =

C∑
c=1

(Nc − 1)Ŝc +

C∑
c=1

Nc(µ̂c − µ̂g)(µ̂c − µ̂g)
⊤ +Nµ̂gµ̂

⊤
g

E. Bias of the Estimator with non-iid Client Features
In Appendix C we showed that, under the assumption that the per-class features are iid across clients, the proposed estimator
is an unbiased estimator. In this section, we theoretically quantify the bias when the i.i.d assumption is violated.

Under the i.i.d. assumption, the single class features assigned to clients can be treated as random samples from the same
population distribution with mean µc and covariance Σc. For simplicity, focusing on a single class and dropping the class
subscript c, the population distribution has mean µ and covariance Σ. As a result, recalling Equation (16), we can write:

E[F kF
⊤
k ] = Var[F k] + E[F k]E[F k]

⊤ =
Σ

nk
+ µµ⊤,

where nk is the number of samples assigned to client k, and F k is the sample mean for client k

Now, if the i.i.d assumption is violated the local features assigned to each client can be viewed as random samples drawn
from different client population distributions, each characterized by a mean µk and covariance Σk, with µi ̸= µj and
Σi ̸= Σj for i ̸= j, and i, j = 1, . . . ,K. In this case:

E[F kF
⊤
k ] = Var[F k] + E[F k]E[F k]

⊤ =
Σk

nk
+ µkµ

⊤
k . (21)

To compute the expectation of the estimator E[Σ̂], we follow the same procedure used to prove proposition in Appendix C
up to Equation (15):

E[Σ̂] =
1

K − 1

(
K∑

k=1

nkE[F kF
⊤
k ]− 2NE[µ̂µ̂⊤] +

K∑
k=1

nkE[µ̂µ̂⊤]

)
. (22)

Assuming the global feature dataset, regardless of client assignment, is a random sample from the population with mean µ
and covariance Σ, we can write:

E[µ̂µ̂⊤] = Var[µ̂] + E[µ̂]E[µ̂]⊤ =
Σ

N
+ µµ⊤. (23)

Substituting Equation (23) and Equation (21) into Equation (22), and recalling that N =
∑K

k=1 nk, we obtain:

E[Σ̂] =
1

K − 1

(
K∑

k=1

nk(
Σk

nk
+ µkµ

⊤
k )− 2N(

Σ

N
+ µµ⊤) +

K∑
k=1

nk(
Σ

N
+ µµ⊤)

)

=
1

K − 1

(
K∑

k=1

nk(
Σk

nk
+ µkµ

⊤
k )− Σ−Nµµ⊤

)

=
1

K − 1

K∑
k=1

(Σk − Σ

K
) +

1

K − 1

(
K∑

k=1

nkµkµ
⊤
k −

K∑
k=1

nkµµ
⊤

)

=
1

K − 1

K∑
k=1

(Σk − Σ

K
) +

1

K − 1

K∑
k=1

nk(µkµ
⊤
k − µµ⊤)

=
1

K − 1

K∑
k=1

(Σk − Σ

K
) +

1

K − 1

K∑
k=1

nk(µk − µ)(µk − µ)⊤,

where in the last step we used that
∑K

k=1 nkµk = Nµ.
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The bias of the estimator is thus given by:

Bias(Σ̂) = E[Σ̂]− Σ =
1

K − 1

K∑
k=1

(Σk − Σ) +
1

K − 1

(
K∑

k=1

nk(µk − µ)(µk − µ)⊤

)
. (24)

Note that if each client population covariance Σk is equal to the global population covariance Σ, and the mean of each client
µk is equal to the population mean, then the bias is zero (i.e., the estimator is unbiased). However, the bias formula reveals
that when the distribution of a class within a client differs from the global distribution of the same class, our estimator
introduces a systematic bias. This situation can arise in the feature-shift setting, in which each client is characterized by a
different domain. In the next section, we evaluate FedCOF under the feature-shift setting to quantify how this bias affects
performance in this specific scenario.

As a final note, we mention that we always assume the global distribution of a single class can be modeled with a distribution
having a single mean and covariance (see Eq. 24). This is how our classifier operates. As future work, it could be beneficial
to employ different types of classifiers that allow multiple class means and class covariances.

F. Experiments on feature shift settings

Table 5. Comparison of different training-free methods using
MobileNetV2 on the feature shift setting on DomainNet. We
show the total communication cost (in MB) from all clients to
server.

Method Acc (↑) Comm. (↓)
FedNCM 65.8 0.3
Fed3R 81.9 39.6

FedCOF 74.1 0.3
FedCOF (2 class means per client) 76.5 0.6

FedCOF (10 class means per client) 78.8 3.1

Following (Li et al., 2021), we perform experiments with
MobileNetv2 in a non-iid feature shift setting on the Do-
mainNet (Peng et al., 2019) dataset. DomainNet contains
data from six different domains: Clipart, Infograph, Paint-
ing, Quickdraw, Real, and Sketch. We use the top 10 most
common classes of DomainNet for our experiments following
the setting proposed by (Li et al., 2021). We consider six
clients where each client has i.i.d. data from one of the six
domains. As a result, different clients have data from different
feature distributions. We show in Table 5 how training-free
methods perform in feature shift settings and the accuracy to
communication trade-offs.

Fed3R achieves better overall performance then FedCOF, likely due to its use of exact class covariance, avoiding the bias
that FedCOF introduces. However, FedCOF achieves comparable results while significantly reducing communication costs.
FedNCM perform worse than FedCOF at the same communication budget. When we increase the number of means sampled
from each client, the performance of our approach improves. This is due to the fact that our method suffers with low number
of clients (only 6 in this experiments) and sampling multiple means helps.

G. The FedCOF Oracle (Sharing Full Covariances)
Similar to (Luo et al., 2021), we aggregate the class covariances from clients as follows:

Σ̂c =

K∑
k=1

nk,c − 1

Nc − 1
Σ̂k,c +

K∑
k=1

nk,c

Nc − 1
µ̂k,cµ̂

T
k,c −

Nc

Nc − 1
µ̂cµ̂

T
c . (25)

We use the aggregated class covariance from Equation (25) and apply shrinkage to obtain Σ̂c+γId and use it in Equation (11)
for the oracle setting of FedCOF.

H. Dataset Details
CIFAR-100 has 100 classes provided in 50k training and 10k testing images. ImageNet-R (IN-R) is composed of 30k
images covering 200 ImageNet classes. ImageNet-R (Hendrycks et al., 2021) is an out-of-distribution dataset and proposed
to evaluate out-of-distribution generalization using ImageNet pre-trained weights. It contains data with multiple styles like
cartoon, graffiti and origami which is not seen during pre-training. We also consider fine-grained datasets like CARS and
CUB200 for our experiments. CUB200 has as well 200 classes of different bird species provided in 5994 training and 5794

16
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testing images. Stanford Cars has 196 classes of cars with 8144 training images and 8041 test images. Finally, we also use
iNaturalist-Users-120k (Hsu et al., 2019) dataset in our experiments, which is a real-world, large-scale dataset (Van Horn
et al., 2018) proposed by (Hsu et al., 2019) for federated learning and contains 120k training images of natural species taken
by citizen scientists around the world, belonging to 1203 classes spread across 9275 clients. In datasets like ImageNet-R
and CARS, we also face class-imbalanced situations where there is a significant class-imbalance at the global level.

I. Communication Costs
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Figure 6. Analysis showing increasing communication cost for
Fed3R with increasing number of clients assuming 100 classes
per client. This is due to the high dimensionality of the features
(d = 512 for SqueezeNet, d = 768 for ViT-B/16 and d = 1280
for MobileNetV2).

We show in Figure 6 how the communication cost of Fed3R
increases drastically as the dimensionality of the feature space
increases and the number of clients increases since Fed3R
needs to share high dimensional second-order statistics from
clients to server. On the other hand, our proposed method
FedCOF has the same communication costs of FedNCM and
scales linearly with the feature dimensionality and the number
of clients.

When computing communication costs we consider that the
pre-trained models are on the clients and do not need to be
communicated. We do not include cost of backward commu-
nication of classifier parameters from server to clients, since it
is the same for all methods but is necessary only if the models
are fine-tuned after classifier initialization. All parameters are
considered to be 32-bit floating point numbers (i.e. 4 bytes)
in all our analysis and experiments.

J. Implementation Details
Here, we provide details on learning rate (lr) used for all fine-
tuning experiments with FedAdam. For ImageNet-R and Stanford Cars, we use a lr of 0.0001 for both server and clients
for FedNCM, Fed3R and FedCOF initializations. For CUB200, we use a server lr of 0.00001 and client lr of 0.00005 for
Fed3R and FedCOF, while for FedNCM, we use a higher lr of 0.0001 for clients. For random classifier initialization with
all datasets, we use a higher lr of 0.001 for clients and lr of 0.0001 for server. We use 1 local epoch, for all fine-tuning
experiments on 4 datasets. After training-free classifier initialization, we fine-tune the models for 100 rounds. When starting
from random classifier initialization, we train more for 200 rounds. When training with FedAvg and random classifier
initialization, we use a client lr of 0.005 for all datasets other than inat-120K.

For the linear probing experiments for 4 datasets other than inat-120K, with FedAvg we train for 200 rounds with 1 local
epoch and use a client lr of 0.01 and server lr of 1.0 for FedNCM. For Fed3R and FedCOF initializations, we use a client
lr of 0.001 and a server lr of 1.0. For LP experiments on iNat-120K, we use 3 local epochs, 30% client participation and
train for 5000 rounds. For iNat-120K, we use a client lr of 0.001 for FedAvg-LP without classifier initialization, client lr of
0.0005 for FedNCM and client lr of 0.00001 for Fed3R and FedCOF.

We use Nvidia RTX 6000 GPU for our experiments. We will make the code publicly available for reproducing our results
for all experiments.

K. Additional Experiments
Linear probing after initialization experiments. We show in Figure 7 that linear probing after FedCOF classifier
initialization improves the accuracy significantly compared to FedNCM and is marginally better than Fed3R initialization
across three datasets using SqueezeNet.

Comparison of training-free methods with linear probing. We also compare with our approach with the training-based
federated linear probing without any initialization (where we perform FedAvg and learn only the classifier weights of
models) and show in Table 6 that FedCOF is more robust and communication-efficient compared to federated linear probing
across several datasets. We follow the same settings as in Table 3. For first 4 datasets, we perform federated linear probing
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Figure 7. Analysis of the performance with federated linear probing using FedAvg (McMahan et al., 2017).

Table 6. Comparison of different training-free methods using SqueezeNet with training-based Fed-LP (federated linear probing with
FedAvg (McMahan et al., 2017) starting with pre-trained model and random classifier initialization) across 5 random seeds. FedNCM,
Fed3R and the proposed FedCOF does not involve any training. We show the total communication cost (in MB) from all clients to server.
The best results from each section are highlighted in bold.

CIFAR100 ImageNet-R CUB200 CARS iNat-120K
Method Acc (↑) Comm. (↓) Acc (↑) Comm. (↓) Acc (↑) Comm. (↓) Acc (↑) Comm. (↓) Acc (↑) Comm. (↓)
Fed-LP 59.9±0.2 2458 37.8±0.3 4916 46.8±0.8 4916 33.1±0.1 4817 28.0±0.6 1.6×106

FedNCM 41.5±0.1 5.9 23.8±0.1 7.1 37.8±0.3 4.8 19.8±0.2 5.4 21.2±0.1 111.8
Fed3R 56.9±0.1 110.2 37.6±0.2 111.9 50.4±0.3 109.6 39.9±0.2 110.2 32.1±0.1 9837.3

FedCOF (Ours) 56.1±0.2 5.9 37.8±0.4 7.1 53.7±0.3 4.8 44.0±0.3 5.4 32.5±0.1 111.8

for 200 rounds with 30 clients per round using FedAvg with a client learning rate of 0.01. For iNat-120k, we train more for
5000 rounds.

Impact of using pre-trained models. To quantify impact of using pre-trained models we performed experiments using a
randomly initialized model and show in Table 8 that federated training using a pre-trained model significantly outperforms a
randomly initialized model using standard methods like FedAvg and FedAdam on CIFAR-10 and CIFAR-100.

Experiments with ResNet18. We perform experiments with pre-trained ResNet18 in Table 7. For FedAvg and FedAdam,
we train for 200 rounds with 30 clients per round. For FedAvg, we train with a client learning rate of 0.001 and server
learning rate of 1.0. For FedAdam, we train with a client learning rate of 0.001 and a server learning rate of 0.0001. We show
that fine-tuning after FedCOF classifier initialization for 100 rounds outperforms competitive FL methods like FedAdam
(which are trained for 200 rounds) by 2.5% on CIFAR100 and 5.1% on ImageNet-R. The improved performance with
FedCOF initialization validates the effectiveness of the proposed method, as it reduces communication and computation
costs by half compared to FedAdam and FedAvg and still outperforms them.

L. Additional Ablations

Table 9. Ablation showing the impact of using shrinkage in Fed-
COF using pre-trained SqueezeNet.

Dataset γ = 0 γ = 0.01 γ = 0.1 γ = 1 γ = 10

ImageNet-R 36.53 36.98 36.96 37.25 36.07
CUB200 51.08 51.07 51.81 53.57 53.50

Impact of Shrinkage. We analyze the impact of using shrink-
age on the estimated class covariances in the proposed method
FedCOF using pre-trained SqueezeNet in Table 9. We use a
shrinkage γ = 1 for our experiments with SqueezeNet and
ViT-B/16. We observe that shrinkage has marginal improve-
ment for ImageNet-R and a bit more significant improvement
in accuracy by 2.5% on CUB200. This observation can be
attributed to the few-shot settings where the covariance estimation is not very good owing to lack of data and thus lesser
clients having access to each of the classes. The use of shrinkage in FedCOF stabilizes and improves the covariance
estimation leading to improved accuracy especially in few-shot settings.

Sampling multiple class means. We perform multiple class means sampling per client using ImageNet-R and show
in Figure 8 (left) that using FedCOF with more class means shared from each client improves the performance. We also
show in Figure 8 (middle) the total number of means used per class on an average in Figure 8 (left) to perform the covariance
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Table 7. Comparison of different training-free methods using pre-trained ResNet18 for 100 clients with training-based federated learning
baselines FedAvg (McMahan et al., 2017) and FedAdam (Reddi et al., 2020) starting from a pre-trained model. We train for 200 rounds
for FedAvg and FedAdam which uses pre-trained backbone and random classifier initialization. FedNCM, Fed3R and the proposed
FedCOF do not involve any training. We also show the performance of fine-tuning with FedAdam after classifier initialization. For
fine-tuning experiments we only train for 100 rounds after initialization. We show the total communication cost (in MB) from all clients
to server. The best results from each section are highlighted in bold.

CIFAR100 ImageNet-R
Method Acc (↑) Comm. (↓) Acc (↑) Comm. (↓)
FedAvg 67.7 538k 56.0 541k

FedAdam 74.4 538k 57.1 541k
FedNCM 53.8 5.9 37.2 7.1
Fed3R 63.5 110.2 45.9 111.9

FedCOF (Ours) 63.3 5.9 46.4 7.1
FedNCM+FedAdam 75.7 269k 60.3 271k
Fed3R+FedAdam 76.8 269k 60.6 271k

FedCOF+FedAdam 76.9 269k 62.2 271k

Table 8. Impact of using pre-trained SqueezeNet network with different federated learning methods on CIFAR10 and CIFAR100. We
show the total communication cost (in MB) from all clients to server. We train 100 clients with 30 clients per round for 200 rounds in
non-iid settings with dirichlet distribution of 0.1. When starting from random initialization (no pre-training), we train for 400 rounds.

CIFAR10 CIFAR100
Method Pre-trained Acc (↑) Comm. (↓) Acc (↑) Comm. (↓)
FedAvg × 37.3 74840 23.9 79248

FedAdam × 60.5 74840 44.3 79248
FedAvg ✓ 84.7 37420 56.7 39624

FedAdam ✓ 85.5 37420 62.5 39624

estimation. The number of means used to estimate each class covariance is less than the total number of clients due to the
class-imbalanced or dirichlet distribution used to sample data for clients. This is due to the fact that not all classes are
present in all clients.

Communicating diagonal or spherical covariances. While communicating diagonal or spherical covariances (mean of
the diagonal covariance) from clients to server and then estimating the global class covariance from them can significantly
reduce the communication cost, such estimates of global class covariance is poor compared to FedCOF. We show in Figure 8
(right) that FedCOF outperforms these covariance sharing baselines when communicating spherical or diagonal covariances.

M. Convergence Analysis
In our work, we claim that FedCOF initialization achieves faster and better convergence based on our empirical results
(Figure 3) using multiple datasets. We propose how to initialize the classifiers before performing federated optimization
methods like FedAvg (McMahan et al., 2017) and FedAdam (Reddi et al., 2020) which have already established the
theoretical guarantees of convergence in their respective works. Unlike gradient-based FL methods, our method is training-
free. Similar to Fed3R (Fanı̀ et al., 2024) and FedNCM (Legate et al., 2023a), the proposed FedCOF does not depend
on assumptions like bounded variance of stochastic gradients or smoothness of clients objectives. Similar to exisiting
training-free methods like FedNCM and Fed3R, FedCOF uses statistics from all clients seen up to the current round. As a
result, all these training-free methods including FedCOF converges when all clients are seen at least once.

While we do not propose any federated optimization step, we propose a training-free method that can be also used for
initializing federated fine-tuning. We would also like to highlight that all existing works in Federated learning with pre-
trained models (Tan et al., 2022b; Nguyen et al., 2020; Fanı̀ et al., 2024; Legate et al., 2023a; Chen et al., 2022; Qu et al.,
2022; Shysheya et al., 2022) focus only on empirical observations assuming that the theoretical guarantees of existing
federated optimization methods holds true when using pre-trained models. A more exhaustive study on convergence analysis
for FL with pre-trained models would be an interesting direction to explore in future works.
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Figure 8. (left) Analysis of FedCOF performance with multiple class means per client on ImageNet-R. (middle) Total number of means
per class on average that are used to estimate the covariance for FedCOF in Figure 8 (left). (right) Performance comparison of FedCOF
with full, diagonal, and spherical covariance matrix communication.

N. Privacy Concerns on sharing Class-wise Statistics
Our method requires transmitting class-wise statistics to compute the unbiased estimator of the population covariance
(Equation (14)) and classifier initialization, similar to other methods in federated learning (Legate et al., 2023a; Luo et al.,
2021). In general, transmitting the class-wise statistics may raise privacy concerns, since each client could potentially expose
its class distribution. Inspired by differential privacy (Dwork et al., 2006), we propose perturbing the class-wise statistics
of each client with different types and intensities of noise, before transmission to the global server. This analysis allows
us to evaluate how robust FedCOF is to variations in class-wise statistics and whether noise perturbation mechanisms can
effectively hide the true client class statistics. Specifically, we propose perturbing the class-wise statistics as follows:

ñk,c = max(nk,c + σnoise
ϵ , 0) (26)

where σnoise
ϵ is noise added to the statistics, and ϵ is a parameter representing the noise intensity. The max operator clips the

class statistics to zero if the added noise results in negative values, which is expected to happen in federated learning with
highly heterogeneous client distributions. When clipping is applied, the client does not send the affected class statistic and
class mean, and the server excludes them from the computation of the unbiased estimator.

We consider three types of noise:

• Uniform noise: σunif
ϵ ∼ U(−(1− ϵ)nk,c,+(1− ϵ)nk,c), proportional to the real class statistics.

• Gaussian noise: σgauss
ϵ ∼ N (0, 1

ϵ ), independent of the real class statistics.

• Laplacian noise σlaplace
ϵ ∼ L(0, 1

ϵ ), which is also independent of the real class statistics.

Lower ϵ values correspond to higher levels of noise in the statistics.

In Figure 9, we show that the performance of FedCOF is robust with respect to the considered noise perturbation, varying the
intensity of ϵ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. These results suggest that a differential privacy mechanism can be implemented to
mitigate privacy concerns arising from the exposure of client class-wise frequencies. In Figure 10, we provide a qualitative
overview of how the proposed Laplacian and uniform noise perturbation affect class-wise distributions.
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Figure 9. Performance of FedCOF with noisy class statistics on CIFAR-100 using SqueezeNet. The number of clients is fixed at 100 and
classes are distributed using a Dirichlet distribution with α = 0.1. Results are averaged over five random seeds, each generating different
noise in client statistics, and the standard deviation is reported. FedCOF demonstrates robustness to uniform, Gaussian, and Laplace
perturbations in class statistics, with performance showing a slight drop as noise, parameterized by ϵ, increases. Lower ϵ corresponds to
higher noise levels in the class statistics.
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Figure 10. Class frequency distributions for a single client under different noise types: uniform noise (left) and Laplacian noise (right) on
CIFAR-100. Both noise types are applied to the real class statistics with the highest noise intensity (ϵ = 0.1). The bar heights represent
the average class frequencies, and the error bars indicate the standard deviation across 5 seeds. Real class-wise frequencies and their noisy
counterparts are shown for comparison.
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