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Abstract

Foundation models have advanced computer vision by enabling strong perfor-
mance across diverse tasks through large-scale pretraining and supervised fine-
tuning. However, they may underperform in domains with distribution shifts and
scarce labels, where supervised fine-tuning may be infeasible. While continued
self-supervised learning for model adaptation is common for generative language
models, this strategy has not proven effective for vision-centric encoder models.
To address this challenge, we introduce a novel formulation of self-supervised
fine-tuning for vision foundation models, where the model is adapted to a new
domain without requiring annotations, leveraging only short multi-view object-
centric videos. Our method is referred to as VESSA: Video-based objEct-centric
Self-Supervised Adaptation for visual foundation models. VESSA’s training tech-
nique is based on a self-distillation paradigm, where it is critical to carefully tune
prediction heads and deploy parameter-efficient adaptation techniques — otherwise,
the model may quickly forget its pretrained knowledge and reach a degraded state.
VESSA benefits significantly from multi-view object observations sourced from
different frames in an object-centric video, efficiently learning robustness to var-
ied capture conditions, without the need of annotations. Through comprehensive
experiments with 3 vision foundation models on 2 datasets, VESSA demon-
strates consistent improvements in downstream classification tasks, compared to
the base models and previous adaptation methods. Code is publicly available at
https://github.com/jesimonbarreto/VESSA.

1 Introduction

Visual foundation models (VFMs) trained with self-supervised learning on large image datasets
have become a powerful tool for a wide range of computer vision tasks [, 2]. Techniques such as
contrastive learning and self-distillation allow these models to learn high-quality visual representations
without manual labels [3, 4]. Despite their generality, performance can suffer when applied to
specialized domains with different characteristics from the pre-training data. For this reason, after
the VFM is pre-trained, fine-tuning is commonly employed before applying it to downstream tasks.
Supervised fine-tuning, in particular, has been the dominant approach, with impressive results across
a variety of datasets and applications [2, 5] such as remote sensing [6, 7], medical imaging [&, 9] and
place recognition [10, 1 1]. These successes demonstrate the adaptability of pre-trained models, but
also highlight their reliance on labeled data, which can be expensive or impractical to obtain in many
real-world scenarios.
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Figure 1: We present VESSA, a novel and efficient method for adapting vision foundation models
using self-supervised fine-tuning with videos. Starting from a pretrained foundation model applied
to a classification problem in a target domain, VESSA adapts the model without using labels by
leveraging simple, object-centric videos. The resulting model learns improved representations that
better structure the feature space in the target domain, boosting downstream classification accuracy.

Significant challenges may arise in scenarios where labeled data are unavailable for supervised
fine-tuning. Despite its potential in cases where collecting annotations is costly, time-consuming, or
even infeasible, unsupervised fine-tuning for foundation models remains largely underexplored in
vision [12, 13]. By contrast, the natural language processing (NLP) community has long adopted
unsupervised fine-tuning as a standard method to specialize large language models to new data
distributions, typically via continued pretraining on unlabeled in-domain text [14, 15, 16]. While this
strategy has proven successful for generative language models, its adaptation to visual data remains
an open and challenging problem. For this reason, a few natural questions arise: how can we adapt a
pre-trained vision model to a specific context without supervision? What forms of unlabeled visual
data are best suited for adapting vision foundation models to new data distributions? What type of
learning technique can effectively adapt pre-trained visual representations under the constraints in
this scenario?

To answer the aforementioned questions, we propose VESSA (Video-based objEct-centric Self-
Supervised Adaptation), a self-supervised fine-tuning method for VFMs that is both simple and
effective, leveraging only short object-centric videos. A conceptual overview of the application of
our model is presented in Fig. . VESSA employs a self-distillation training algorithm with critical
adaptations to make it work in a fine-tuning setup. We show that a naive application of self-distillation
to the fine-tuning stage may lead to a degraded model state, but this can be avoided with the careful
adjustments proposed in this work. In particular, we introduce a training schedule which adjusts the
self-distillation prediction head before unfreezing the rest of the model. Then, an efficient method is
used to gently tune the backbone parameters towards the new domain without disrupting the encoded
pre-trained knowledge, also leveraging uncertainty weighting to prioritize harder training examples.
Finally, we propose to source observations of target objects in the new domain from short videos,
which are easy to capture and require no labeling, but enhance the model performance significantly.

Experimentally, we leverage three existing foundation models and two downstream classification
applications to comprehensively assess the proposed VESSA technique. Our results demonstrate
that the proposed video-based self-supervised fine-tuning significantly outperforms base foundation
models or other fine-tuning strategies.



2 Related Work

Recent advances in visual foundation models have reshaped the landscape of computer vision by
enabling scalable, general-purpose representations trained on massive datasets. To tailor these
representations to specific downstream tasks, task-adaptive fine-tuning strategies have emerged as a
solution for many applications, aiming to bridge the gap between foundation model generality and
task-specific performance. Complementary to this, approaches in video-to-image knowledge transfer
explore how temporal and multimodal supervision in video models can be distilled into stronger static
image representations. In this section, we provide a structural overview of these areas, highlighting
their connections to our proposed formulation and identifying key gaps our method addresses.

Self-supervised Visual Foundation Models. Self-supervised transformer-based foundation models
have achieved state-of-the-art results across a wide range of computer vision tasks [17, 18, 19]. For
image classification, image-level self-supervised models such as DINO [3], DINOv2 [4], iBOT [18],
and SimCLR [19] have shown strong performance, with DINO and DINOv2 notably relying on
label-free self-distillation for scalable pretraining. The widely adopted Masked Autoencoders (MAE)
[17] build on the idea of reconstructive pretraining by randomly masking a large portion of input
patches and training the model to reconstruct them, enabling efficient learning of high-capacity visual
representations that scale well with data and model size. A key advantage shared by all these methods
is their independence from human annotations, which allows them to leverage large-scale unlabeled
datasets without the constraints and costs associated with manual labeling. This characteristic makes
them especially powerful in scenarios where labeled data is scarce or unavailable, enabling the use of
virtually all accessible visual data for representation learning.

Task-Adaptive Fine-Tuning. Task-adaptive or continual pretraining has yielded notable gains in
natural language processing, enabling foundation models to specialize for downstream domains
[14, 15, 16]. In computer vision, the use of self-supervised learning to adapt models to different
domains has been widely studied [20, 21, 22, 23], where the goal is to bridge the gap between a
labeled source domain and an unlabeled target domain. In contrast, we aim to adapt a pretrained VFM
to a specific domain using only unlabeled data. Many approaches for adapting vision foundation
models have been proposed, such as AdaptFormer [24] and Visual Prompt Tuning [25], but they
rely on supervised learning and often involve more complex adaptation pipelines. Recent works
such as [26, 27] employ continual pretraining to adapt image-based foundation models to satellite
imagery. These approaches aim to construct new domain-specific foundation models, which are
subsequently fine-tuned with supervision for downstream tasks. ExXPLoRA [28], the most similar
to our approach in terms of weight adaptation, builds a new foundation model for satellite images
by adapting self-supervised models trained on other domains—such as DINOv2 [4] or Masked
Autoencoders [ 7]—and incorporates LoRA [29] for efficient continual self-supervised learning. It
reuses the training procedures and heads of the base models, but ultimately still relies on supervised
fine-tuning to complete the adaptation. In contrast, our method does not propose a new foundation
model. We reuse the original DINO architecture [3] and perform direct adaptation to downstream
tasks without requiring labeled data. We adapt it not only with a new loss function, but also with a new
training method, with careful tuning of different parts and the integration of an efficient parameter
learning component. This enables effective representation learning even in settings with limited
domain-specific data.

Video to Image Knowledge Transfer. Videos provide rich supervisory signals due to their inherent
spatio-temporal consistency, natural motion, and realistic object transformations [30, 31, 32, 33,

, 35]. Recently, several works have investigated transferring knowledge from video to image
representations [36]. Methods such as VITO [37] and ViC-MAE [38] build joint models for video and
image tasks, involving costly frame selection pipelines and hybrid loss formulations (e.g., masking and
contrastive objectives). These models often require substantial architectural modifications and exhibit
training instability, with heavy reliance on masking to guide object learning. Time Does Tell [39]
introduces a dense frame-wise module to extract visual features from all frames. This highlights
the potential of video data and its valuable contribution to unsupervised representation learning. In
contrast, we propose a lightweight approach using object-centric videos with minimal visual clutter.
Our method emphasizes learning unified and robust representations from simple videos, enabling
improved generalization without extensive frame curation or resource consumption. Importantly,
most prior video-based methods target pixel-level tasks (e.g., segmentation, detection) and show
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Figure 2: The proposed training pipeline. The model input consists of videos, which first undergo a
Frame Selection stage, where n pairs of frames are sampled from each video. These pairs are then
passed through the Preprocessing and Augmentation stage, where distinct transformations are applied
to the first and second images of each pair. The resulting views are fed into teacher and student
networks, both initialized from the same foundation model; LoRA is applied to their architectures for
parameter-efficient fine-tuning. Finally, the uncertainty-weighted self-distillation loss (UWSD) is
applied to align their representations.

limited improvements for frame-level classification. These methods also typically require fine-tuning
to be competitive.

3 VESSA

In this section, we describe the methodological foundations of our work and introduce our novel
formulation of self-supervised fine-tuning for vision foundation models. We begin by revisiting prior
methods that serve as the basis for our formulation, highlighting their key mechanisms. Building on
this foundation, we then present our novel self-supervised fine-tuning strategy for vision foundation
models, designed to enhance adaptation.

3.1 Background

Our method builds on recent advances in self-supervised learning and parameter-efficient adaptation.
We focus on two core components: DINO [3], a self-distillation framework for label-free represen-
tation learning, and LoRA [29], a lightweight technique for adapting large models with minimal
trainable parameters. We review them briefly in the following.

DINO [3] is a self-supervised learning framework that trains a student network to match the output
of a teacher network, with both networks receiving different augmented views of the same image.
The teacher’s parameters are updated using an exponential moving average (EMA) of the student’s
weights, ensuring stable training and consistent representations. The method aligns the output
probability distributions of the student and teacher using a cross-entropy loss:

Lowo = — Y _ fil®ei)log fo(ws) €]

where x; ; and x5 ; denote the augmented views for the 4-th image, and f;(-) and f(-) represent the
outputs of the teacher and student networks, respectively. This objective minimizes the discrepancy
between their normalized output distributions, encouraging the student network to learn meaningful
representations without the need for labeled data. DINO has demonstrated strong performance across
a variety of visual tasks, producing robust and transferable features.



Low-Rank Adaptation (LoRA) [29] is a parameter-efficient fine-tuning technique that enables the
adaptation of pre-trained models by injecting trainable low-rank matrices into their weight structure.
Rather than updating the full weight matrix W € R** of a linear layer during training, LoRA keeps
W frozen and instead learns an additive update in the form of a low-rank decomposition:

AW = AB, AeR¥" BeR™*F )

where r < min(d, k). Here, A and B are the newly introduced trainable matrices, and AW is the
low-rank adaptation added to the original weight matrix. This approach significantly reduces the
number of trainable parameters and memory requirements while preserving model performance,
making it particularly effective for adapting large-scale models in resource-constrained environments.

3.2 Video-based objEct-centric Self-Supervised Adaptation (VESSA)

The VESSA pipeline is illustrated in Figure 2, and consists of three main modules: Frame Selection,
Preprocessing and Augmentation, and Model Fine-tuning. Each input video V, with T' frames
{F;}L, is first processed by the Frame Selection module, which samples n frame pairs per video.
For each pair of frames that we aim to construct, we first randomly sample a starting frame index
t ~ UL, T — Omax), where dpayx is a predefined maximum temporal offset, and U denotes the
uniform distribution. Then, we sample frames based on a temporal gap 6 ~ U(1, dyax), ensuring a
minimum offset of one frame. Each selected pair of frames is then formed according to the rule:

NS [L(smax]a te [1,T*(§]

This randomized strategy introduces temporal diversity by allowing variable distances between
frames, which helps the model learn more robust representations across different viewpoints. At
the end of this module, we obtain a batch composed of frame pairs sampled from different videos,
represented as:
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where each (Fy, , Fy, 15, ) is a pair of frames from the k-th video in the batch, and v is the batch size.
The temporal index ¢, and offset J; are sampled independently for each pair. This setup ensures that
the batch contains diverse video content and temporal gaps.

In the Preprocessing and Augmentation module, each frame in the pair % is transformed indepen-
dently using two distinct pipelines of random augmentations. This results in two augmented views:

Ft(a) and Ft(i)é, which are designed to promote appearance diversity and representation robustness.
This module also generates the local crops used in our adaptation. Inspired by the reference method,
which employs multiple local crops per image to stabilize fine-tuning, we adapt this strategy by
sampling local crops as pairs—one from each frame. This pairing ensures temporal consistency while
preserving local variability, contributing to more robust and transferable representations. At the end
of this module, we have
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where:

. Ft(ka ) and Ft(:}|r 5, two temporally separated frames from the k-th video, with distinct global
transformations a and b applied;
: {Ft(fi), Ft(;fg 5 } : a set of u pairs of local crops, where ¢; denotes a distinct transforma-
i=1
tion involving a small crop on the main frame; and u the number of local crop pairs.

In the Model Fine-tuning stage, training is performed in batches; however, for clarity, we describe

the process using a single pair of images and associated local crops. The pair k, given by (Ft(a), Ft(i)é),
is passed through both the student and teacher networks, while the local crops are processed only by
the student. Both networks are initialized from the same pretrained vision foundation model. The
outputs of the student and teacher are denoted as follows:
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s, q denote the outputs of the projection head applied to the global frame representations. The
final representations of all local crops (i.e., s;.1 and s;.2), along with s, are also compared to ¢
as part of the DINO loss computation. The fine-tuning training objective is a weighted form of
the formulation presented in Section 3.1. To prioritize uncertain teacher outputs, we introduce
an Uncertainty-Weighted Self-Distillation (UWSD) loss, which modulates the contribution of each
sample to the loss based on the estimated uncertainty of the teacher’s predictions. The entropy of the
teacher’s distribution is computed. The entropy is used to compute the weight:

w(q) =1+v-H(q),

where 7 is a hyperparameter controlling the influence of uncertainty. The final training objective
becomes:

1
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Critical optimization considerations. Continuing self-supervised training from a pretrained founda-
tion model requires careful handling due to potential gradient instabilities. These are often caused
by shifts in data distribution and the use of a randomly initialized projection head, which introduces
abrupt gradient changes early in training. In standard training regimes, all network parameters are
typically updated simultaneously, which can lead to unbalanced gradient flow and degrade the pre-
trained representations. To mitigate this, we initially freeze the backbone and train only the projection
head for a few epochs, allowing it to adapt to the existing embedding space. As another strategy to
mitigate this issue, we gradually unfreeze the backbone, applying different strategies to different
parts of the network. Specifically, we enable fine-tuning of the first H layers using LoRA [29], which
restricts updates to low-rank adaptations of the attention weights—specifically in the Query, Key, and
Value projections of each self-attention layer—while keeping the normalization layers trainable. This
design helps preserve the low-level visual features encoded in early layers, such as edges and textures,
which are generally transferable across domains. In contrast, the last L layers of the backbone are
fully unfrozen and updated normally, allowing the model to adapt high-level semantic representations
to the new domain. This staged unfreezing strategy mitigates representational drift while preserving
stability and efficiency during fine-tuning.

4 Experiments

4.1 Experimental Setup

Datasets. MVImageNet[40] and CO3D [41] are large-scale video datasets offering multi-view
images. MVImageNet comprises 6.5 million frames from over 219,000 videos across 238 object
categories, while CO3D includes 1.5 million frames from 19,000 videos spanning 50 categories.
Captured from various viewpoints under real-world conditions, these datasets enable learning of
viewpoint-consistent representations. To adapt them for classification, we designed a protocol that
splits each class into training and testing sets (75%-25%), selecting one frame per video and using
k-Nearest Neighbors (KNN) to evaluate the quality of learned embeddings across different views and
instances.

Implementation details. Our experiments were performed on TPU v3-8, featuring 8 cores and
128 GB of high-bandwidth memory. All implementations used the scenic library [42] in JAX. We
adopted the ViT-Base architecture to balance performance and efficiency, as preliminary tests showed
that the Small model underfit and the Large model offered minimal gains at higher cost. Our training
followed the base hyperparameter configuration of the DINO protocol [3], except for the specific
settings detailed below. As a reference, we adopted 10 training epochs for both the initial projection
head adaptation and the subsequent full model training, using a batch size of 256 and an input image
resolution of 224x224. For each video, we sampled 3 frame pairs. The hyperparameter ~y, which
controls the weight of the distillation loss, was set to 1. For the image-based baseline, we used the



first frame of each pair as the reference image. This frame was then processed through the subsequent
steps as a single-image input, following the standard image-based pipeline.

Statistical significance test. To assess the significance of the observed differences, we performed
statistical tests using three independent runs for each experimental configuration. We employed an
unpaired Student’s #-test with a 90% confidence level. In supplementary material we report confi-
dence intervals for the main comparisons to highlight cases where the differences were statistically
significant.

Visual Foundation Models Our experiments were conducted using widely adopted and state-of-the-
art VFMs, including DINO [3], DINOv2 [4], and TIPS [43]. These models represent a strong set of
visual backbones commonly used in computer vision tasks. In order to standardize the experiments,
an input size of 224 was used for all VFMs. However, please note that TIPS can achieve improved
results with an input size of 448, which would match its pretraining setup.

We compare our method with EXPLoRA [28], a recent approach for improving transfer learning of
pretrained vision transformers (ViTs) under domain shifts. To ensure a fair comparison with our
video-based approach, we extend EXPLoRA to operate on short object-centric videos. Experiments
using TIPS + ExPLoRA were not reported since the original work EXPLoRA clearly specifies that it
is designed for continual self-supervised learning using training heads from self-supervised models
(e.g., the projection head from DINO for self-distillation or autoencoder-based modeling such as
MAE [44]). TIPS, however, is not a self-supervised model.

4.2 Results

We begin our evaluation by analyzing the individual contributions of each component of the VESSA
approach through a comprehensive ablation study. This analysis provides insights into the effective-
ness of leveraging video data for self-supervised adaptation and highlights the critical design choices
that enable our approach to outperform existing alternatives. In what follows, we systematically
isolate and compare different configurations, followed by comparisons to state-of-the-art baselines
across multiple datasets and model architectures.

A series of experiments conducted on the MVImageNet dataset using the vision transformer-small
(ViT-S) to isolate and evaluate the contributions of each component of our method are shown in Table 1.
Given the challenge of adapting to a new domain with limited and unlabeled data, we first trained
DINO from scratch using both image and video data. As expected, the results were suboptimal due to
the limited data, with a final accuracy of 33.86%. However, training with video (i.e., using different
views of the object from the video) consistently outperformed the image-based counterpart, achieving
39.39% accuracy—an improvement of 5.53 percentage points (p.p.) aligning with our motivation
to leverage temporal information—though the results remain relatively low overall. Subsequently,
we applied the pretrained DINO model directly, which yielded solid performance and served as a
strong baseline, achieving 89.69% accuracy. We also evaluated a naive continuation of training using
only images, which similarly led to performance degradation, resulting in a slightly lower accuracy
of 88.54%. Notably, switching from image input with local crops (88.54%) to video input without
local crops (90.53%) already provided a larger gain (1.99 p.p.), indicating that temporal information
plays a stronger role than local crops alone. Careful decision of the training head projection before
fine-tuning had a significant impact, improving performance by approximately 10 p.p.. For instance,
using video input with local crops but without training the head achieved 80.87%, whereas enabling
head training in the same setup increased accuracy to 91.87%, underscoring that head training is the
dominant factor. This result indicates the importance of carefully designed adaptations to achieve
such improvements. Finally, we compared our full method against its individual variants, confirming
that our complete approach achieves the best results, validating the importance of each design choice
in the overall effectiveness of VESSA. The best-performing configuration achieved 91.87% accuracy,
representing an improvement of 2.18 p.p. over the pretrained DINO baseline, with the optimal setting
obtained by unfreezing the last 2 layers during adaptation.

Across all experiments, leveraging video consistently outperforms frame-based alternatives. To
better understand the source of these gains—whether from motion cues or temporal continuity—we
conducted an additional experiment on the CO3D dataset using DINO and DINOv2. Specifically, we
evaluated the impact of frame distance (4) during self-supervised fine-tuning, as detailed in Table 2.
The results show that varying the temporal gap between frames affects performance, with the highest



Table 1: Ablation study on components for video-based self-supervised ViT fine-tuning. All
models use ViT-S/16 and are evaluated with k-NN (k=1) on the MVImageNet dataset. We analyze
the impact of architectural choices, local crops, training heads, and data modalities.

UWSD Unfrozen Local Train

Method Loss Last Layers Crops Head Input  Accuracy (%)
v 2 v v Video 91.87
v 2 v Video 90.53
2 v v Video 90.92
v 1 v v Video 87.14
VESSA v 3 v v Video 90.80
v 4 v v Video 90.55
v 2 v Video 80.87
v 2 v v Image 88.54
DINO [3] v Image 33.86
DINO [3] v Video 39.39
DINO [3] Pretrained Image 89.69

accuracy achieved when ¢ was randomly sampled from the range [5, 10], yielding 85.03% with DINO
and 91.85% with DINOv2. This suggests that exposing the model to diverse temporal relationships
between frames contributes positively to representation learning.

Table 2: Top-1 accuracy (%) on the CO3D dataset using different frame distance strategies.
We report k-Nearest Neighbors (k=1) classification accuracy for models pretrained with DINO and
DINOvV2. Each value of § defines the temporal distance between frames selected from videos during
self-supervised fine-tuning.

Frame Distance () DINO [3] DINOV2 [4]

1 85.00 91.51

2 84.73 91.52

3 84.90 91.39

4 84.27 91.42

5 84.66 91.80

10 85.00 91.74

15 84.54 91.25

20 84.82 91.23

Random [5, 10] 85.03 91.85
Random [10, 30] 82.46 91.52

After analyzing the individual components of our approach, we now turn to a broader evaluation of
VESSA applied to different backbone models across two datasets. As shown in Table 3, all other
methods significantly outperform the base pretrained models without fine-tuning (the first row of
the tables), except for a few cases involving a baseline variant of our method that employs static
images only, which we refer to as Static-baseline. In particular, when video data is used, unsupervised
fine-tuning generally leads to superior performance across both datasets and architectures, with the
exception of Explora with video and DINO in MVImgNet, where performance decreases relative to
the pretrained model. The performance gap between VESSA and Static-baseline, as well as between
the ExPLoRA baseline and EXPLoRA + video, confirms the effectiveness of adapting models to the
target domain using unlabeled video data in both CO3D and MVImageNet datasets. In contrast, the
results of the Static-baseline indicate that a naive image-based self-supervised continual learning
approach is not sufficient to achieve successful fine-tuning.

Considering the CO3D dataset, applying VESSA to DINOv2 yields the best result of 91.85% =+
0.56, which is 2.21 p.p. higher than EXPLoRA + video (89.64 4 0.47); this difference is statistically
significant. On the other hand, for the MVImageNet dataset, VESSA achieved 96.01 4 1.08 while
ExPLoRA + video reached 96.15 £ 0.87; however, the difference is not statistically significant (see
supplementary material for details). Nevertheless, when considering DINO, VESSA outperforms
again the ExXPLoRA results. Moreover, our approach also performs better with TIPS against its
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Figure 3: Qualitative examples of nearest neighbor retrieval (k = 1) on the CO3D validation set. We
selected some of the most challenging validation samples and retrieved the nearest neighbors using
two methods, shown row-wise: the first row displays the query (validation) images; the second row
presents the retrievals using raw DINOv?2 features; the third row shows the retrievals produced by our
method. Images with red borders indicate incorrect retrievals, while green-bordered images represent
correct ones. These examples illustrate the effectiveness of leveraging multi-frame video information
for representation learning. Notably, our method demonstrates greater focus on the object of interest,
whereas the baseline often retrieves matches dominated by background similarity.

pretrained version. It is important to present these results—alongside those in Table 1—as they
demonstrate that simply continuing self-supervised training with domain-specific image data, while
seemingly straightforward, does not yield consistent improvements. As the results show, this strategy
often leads to performance degradation or, at best, no noticeable gains.

Table 3: Top-1 accuracy (%) on CO3D and MVImageNet datasets using k-Nearest Neighbors
(k=1). We compare pretrained vision foundation models, an image-based baseline, and our proposed
video-based fine-tuning method. All results are reported on the validation set using representations
extracted from the backbone and evaluated via KNN. Our method achieves superior performance by
leveraging object-centric videos for unsupervised adaptation.

CO3D MVImageNet
Method DINO [3] DINOv2[4] TIPS[43] | DINO[3] DINOv2[4] TIPS [43]
Pretrained 78.86 87.86 60.02 90.44 95.75 78.65
ExPLoRA [28] 79.78 88.31 — 90.94 95.79 —
ExPLoRA [28]+video 83.64 89.64 — 87.74 96.15 —
Static-baseline 80.31 81.60 55.59 89.39 92.53 76.05
VESSA 85.03 91.85 70.56 92.51 96.01 80.54

To qualitatively illustrate the benefits of video-based self-supervised training, Figure 3 shows examples
of top retrievals using KNN based on the learned embeddings. When comparing the pretrained
DINOvV2 model with our proposed VESSA method, we observe that DINOv2 produces embeddings
that focus primarily on the background and broad scene structures. In contrast, VESSA clearly attends
to the object of interest, even in challenging cases where the texture or color of the retrieved object
differs from the query image. This demonstrates that VESSA learns more semantically meaningful
and object-centric representations, which improves robustness and task relevance.



5 Conclusions

In this work, we presented VESSA (Video-based objEct-centric Self-Supervised Adaptation),
a simple and effective strategy for unsupervised fine-tuning of visual foundation models using
object-centric videos. Our approach requires no labeled data and leverages temporal coherence by
treating distinct frames from the same video as positive pairs in a contrastive setup. Inspired by
advances in NLP, we showed that unsupervised fine-tuning in vision is both feasible and valuable. We
demonstrated that our method consistently improves classification performance on domain-specific
datasets while remaining lightweight and easy to apply. This opens up new directions for adapting
foundation models to new visual contexts without additional supervision, making them more versatile
and accessible in practice.

Limitations A notable limitation of our approach is the tendency to forget previously acquired
knowledge during fine-tuning —a known drawback of fine-tuning methods in general. Additionally,
our experimental setup relies on video data that offer multiple viewpoints of the same object, a
characteristic that is not commonly available in many real-world datasets. This may limit the
applicability of the approach to scenarios where such structured multi-view data is not present.
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A Technical Appendices and Supplementary Material

In this Technical Appendix and Supplementary Material, we present the complementary experiments
of the paper. These evaluations include the main experiments with confidence intervals for the primary
results, demonstrating the statistical significance of the observed differences. We further analyze the
input differences between DINO and VESSA, and investigate the impact of applying stronger image
augmentations, aiming to reduce the gap between static images and the visual variability observed
in video data. We also present an additional study examining the extent of catastrophic forgetting
when adapting visual foundation models with VESSA, highlighting its impact on general-purpose
performance. Finally, we provide a detailed analysis of the training cost associated with VESSA,
offering quantitative insights into its computational efficiency and practical feasibility.

The main results with confidence intervals are shown in Tables 4 and 5, which report the top-
performing models along with confidence intervals to highlight the significance of the performance
differences. The results suggest that VESSA achieves significantly better performance in several cases.
We employed an unpaired Student’s ¢-test with a 90% confidence level. We report confidence intervals
for the main comparisons to highlight cases where the differences were statistically significant. For
the CO3D dataset, the variation in accuracy across runs was 0.52 for DINO, 0.56 for DINOv2,
and 1.03 for TIPS. In all cases, the differences were statistically significant when compared to the
second-best performing method, which in this case was ExXPLoRA—a method also based on video
data. In contrast, on the MVImageNet dataset, the variations were 1.11 for DINO, 1.08 for DINOv2,
and 1.71 for TIPS. In this scenario, non-overlapping confidence intervals between the DINO-based
baseline and VESSA (ours) indicate a statistically significant difference. In the case of DINOv2
pretrained on MVImageNet, a noticeable overlap between the two video-based methods can be
observed.

VESSA (ours) DINO/DINOV2

Figure 4: Example frames from the MVImageNet dataset illustrating the differences between global
crop input pairs used for the teacher and student networks during training with DINO and VESSA
(ours). Our method, VESSA, introduces substantially greater variability in the appearance of the
evaluated object. The temporal distance between the selected frames is § = 5 frames. The first image
of each pair shows the global crop from the transformation of view 1, and the second image of each
pair shows the global crop corresponding to the transformations of view 2.

Approximate video-like image transformations. Motivated by the strong performance observed
when training with videos, we investigated whether additional image transformations—beyond those
used in the standard DINO pipeline—could simulate the benefits of camera motion. To this end, we
applied a set of motion-inspired augmentations to one of the views during training, aiming to mimic
the effect of slight viewpoint changes. Specifically, we incorporated translations of up to 10% of the
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Table 4: Top-1 accuracy (%) on the CO3D dataset using k-Nearest Neighbors (k=1). We
compare pretrained vision foundation models, an image-based baseline, and our proposed video-
based fine-tuning method. ExXPLoRA and VESSA results are reported on the validation set using
representations extracted from the backbone and evaluated via k-NN. We report confidence intervals
to highlight the statistical significance of the improvements.

Method DINO-B [3] DINOV2 [4] TIPS [43]

ExPLoRA [28] + video 83.64 + 0.84 89.64 £+ 0.47 —

VESSA (ours) 85.03 £ 0.52 91.85+ 0.56 70.56+ 1.03

Table 5: Top-1 accuracy (%) on the MVImageNet dataset using k-Nearest Neighbors (k=1). We
compare pretrained vision foundation models, an image-based baseline, and our proposed video-
based fine-tuning method. EXPLoRA and VESSA results are reported on the validation set using
representations extracted from the backbone and evaluated via k-NN. We report confidence intervals
to highlight the statistical significance of the improvements.

Method DINO-B [3] DINOV2-B [4] TIPS-B [43]

ExPLoRA [28] + video 87.74 £ 1.03 96.15 + 0.87 —

VESSA (ours) 92.51 £ 1.11 96.01 £ 1.08 80.54 £ 1.71

image dimensions, rotations up to 10 degrees, scaling variations up to 5%, brightness shifts of 0.1,
and contrast adjustments in the range of 0.9 to 1.1. These transformations were carefully selected to
approximate changes in camera perspective while avoiding the introduction of unrealistic artifacts. As
shown in Table 6, these modifications did not yield significant performance improvements compared
to the baseline using standard image augmentations, suggesting that the advantages observed with
real videos may stem from cues beyond simple geometric or photometric variation.

The data augmentation pipeline consists of two global views and multiple local crops, each
subjected to a specific set of transformations, as detailed below.

* Global crops: Two crops are sampled with scale ranges between (0.4, 1.0). The transfor-
mations applied to these global crops are as follows:

— Transformation view 1: horizontal flip (probability 0.5), color jitter (strength 0.8),
grayscale conversion (probability 0.2), and Gaussian blur (probability 1.0).

— Transformation view 2: horizontal flip (probability 0.5), color jitter (strength 0.8),
grayscale conversion (probability 0.2), Gaussian blur (probability 0.1), and solarization
(probability 0.2).

* Local crops: A set of u local crops per image are sampled with a scale range (0.05,0.25)
defined by the configuration and resized to 96 x 96 pixels. Each local crop undergoes the
following transformations independently:

— Color jitter with parameters (strength 0.8, brightness 0.4, contrast 0.4, saturation 0.2,
hue 0.1).

— Grayscale conversion (probability 0.2).

— Gaussian blur (probability 0.5).

Impact of using video-based inputs. To highlight the differences between the view generation
strategies employed by VESSA and those used in DINO, we present illustrative examples of view
pairs from both approaches. It is important to note that in both VESSA and DINO, the same groups
of transformations are applied independently to each view. To assess the impact of video-based inputs
on representation learning, we analyze input variability by contrasting the frame selection strategy
used in VESSA with the standard augmentation-based sampling in DINO and DINOv2. As shown in
Figure 4, frame pairs selected by VESSA—based on a fixed temporal offset of 6 = 5 frames—exhibit
substantially greater visual diversity than those generated through standard augmentations. In contrast,
the views generated by DINO/DINOvV2 tend to be more visually homogeneous. This enhanced
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Table 6: Performance comparison using our method and images and transformations to simulate
camera movement in images with DINO and DINOv2 on the CO3D dataset with k£ = 1.

Method DINO - B DINOv2 - B
VESSA 85.03 91.85
Static-baseline 80.31 81.60
Static-baseline + Transf. simulate video 80.60 81.49

variability introduced by real video frames is likely a key factor in the performance differences
observed when training with video data, as opposed to relying solely on static image augmentations.

Impact of catastrophic forgetting and cross-dataset generalization. We also investigate the impact
of domain-specific adaptation with VESSA on the original pretraining task. To this end, we evaluate
the performance of DINO, DINOv2, and TIPS on ImageNet classification using a k-nearest neighbors
(KNN) classifier, both in their pretrained form and after adaptation on CO3D and MVImageNet.
As shown in Table 7, while the pretrained models achieve competitive accuracy on ImageNet, their
performance drops drastically once adapted with VESSA on either domain. This result confirms the
presence of catastrophic forgetting and underscores the infeasibility of applying the adapted models
in a general-purpose setting. Nonetheless, this outcome aligns with the intended design of VESSA:
the method is tailored to specialize visual foundation models for unsupervised adaptation in a target
domain, where it delivers strong performance despite losing generality.

Table 7: Effect of catastrophic forgetting on ImageNet classification after VESSA adaptation.

Model DINO DINOvV2 TIPS
Pretrained 76.10 82.10 80.00
VESSA (CO3D) 15.46 17.15 18.10
VESSA (MVImgnet) 15.68 16.78 17.10

Moreover, we conducted an experiment in which training was performed using VESSA exclusively
on the MVImageNet dataset, followed by evaluation on the held-out test set of the CO3D dataset. As
shown in Table 8, this cross-dataset setting reveals a marked drop in performance—approximately 5
to 7 percentage points—when compared to the baseline results obtained by pretraining and evaluating
on the same dataset. This performance degradation highlights the presence of catastrophic forgetting
and limited generalization capabilities when the model is exposed to a distribution shift, even when
trained on a diverse and temporally rich video corpus.

Table 8: Performance comparison between DINO and DINOv2 models using the pretrained base
model, our proposed VESSA method, and the cross-dataset evaluation. The cross-dataset model
was trained on MVImageNet and tested on CO3D to analyze forgetting behavior, demonstrating
the degradation experienced when a model is trained on one dataset and evaluated on another. All
experiments utilized the ViT-B architecture.

Method DINO DINOv2

Pretrained 78.86 87.86
Cross dataset  74.40 80.36

Training cost and computational efficiency. We also analyze the computational requirements of
adapting visual foundation models with VESSA to assess its practical feasibility. For the Co3D
dataset (20, 412 training pairs and 4, 535 test samples) using a ViT-Base backbone, the adaptation
stage required only 1.97 hours of training, corresponding to 7.04 core-hours on a TPU v3-8, which
consists of 4 TPUs, each with 2 cores (total of 8 cores). The process ran for 20 epochs, processing
407,040 examples at a throughput of 135 images per second (16.88 images per second per core),
with a total energy consumption of 13.86 kWh and an estimated carbon footprint of 5.55kg CO,.
Importantly, VESSA adapts a pre-trained model rather than training from scratch, and the minor
additional overhead introduced by processing paired video frames (or local crops) is negligible due to
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offline video decoding. This efficiency contrasts sharply with the full pretraining of models such as
DINO or DINOV2, which require thousands of GPU-hours and result in CO, emissions on the order
of tons.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction claim the introduction of our novel method for
self-supervised adaptation of vision foundation models using videos, showing improvements
in downstream tasks. The method is introduced in detail in Section 3 and experiments
backing up our results are presented in Section 4.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to the Limitations paragraph in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: There are no theoretical results in the paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All of the implementation details are described in the submission, so all the
information needed to reproduce all the experimental results is provided. The code will be
made public upon acceptance of the paper, to additionally aid reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The code used to perform the experiments of this work are not included as
part of the submission, but it will be made available with Open Access in the case of the
acceptance of the paper. The data we use is publicly available already.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details regarding training and testing are provided in the "Experimental
setup" section of the submission.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This is discussed in Section 4. We report confidence intervals in the main
tables, to reflect the statistical significance of the experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: This is described in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper focuses on adapting discriminative vision foundation models to
specific domains without annotations. This opens doors for a number of application with
positive societal impact, so that organizations without significant resources can adapt such
models to their needs. We do not believe that there are significantly direct paths to negative
applications, especially since our model is not generative.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code that is used to support the experiments are part of the Scenic
framework repository [42], which is cited in the submission. Additionally, the used datasets
[40, 41] are cited in the submission.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: The paper does not release new assets at the time of submission. In case of
acceptance, the Code with the corresponding licenses will be released.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method developed in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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