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ABSTRACT

Predicting the future motion of traffic agents is vital for self-driving vehicles to
ensure their safe operation. We introduce RedMotion, a transformer model for
motion prediction that incorporates two types of redundancy reduction. The first
type of redundancy reduction is induced by an internal transformer decoder and
reduces a variable-sized set of road environment tokens, such as road graphs with
agent data, to a fixed-sized embedding. The second type of redundancy reduc-
tion is a self-supervised learning objective and applies the redundancy reduction
principle to embeddings generated from augmented views of road environments.
Our experiments reveal that our representation learning approach can outperform
PreTraM, Traj-MAE, and GraphDINO in a semi-supervised setting. Our RedMo-
tion model achieves results that are competitive with those of Scene Transformer
or MTR++. We provide an anonymized open source implementation that is ac-
cessible via Colab: https://colab.research.google.com/drive/
16pwsmOTYdPpbNWf2nm1olXcx1ZmsXHB8

1 INTRODUCTION

It is essential for self-driving vehicles to understand the relation between the motion of traffic agents
and the surrounding road environment. Motion prediction aims to predict the future trajectory of
traffic agents based on past trajectories and the given traffic scenario. Recent state-of-the-art methods
(e.g., Shi et al. (2022); Wang et al. (2023); Nayakanti et al. (2023)) are deep learning methods trained
using supervised learning. As the performance of deep learning methods scales well with the amount
of training data (Sun et al., 2017; Kaplan et al., 2020; Zhai et al., 2022), there is a great research
interest in self-supervised learning methods, which generate supervisory signals from unlabeled
data. While self-supervised methods are well established in the field of computer vision (e.g., Chen
et al. (2020); Radford et al. (2021); He et al. (2020)), their application to motion prediction in self-
driving has only recently started to emerge (e.g., Xu et al. (2022); Azevedo et al. (2022)). One of
the main reasons contributing to this is the limited availability and relatively small size of datasets
for motion prediction in self-driving until recently (e.g., highD (Krajewski et al., 2018) 147 hours
recorded vs. Waymo Open Motion dataset (Ettinger et al., 2021) 570 hours recorded).

In this work, we focus on HD map assisted motion prediction. We introduce RedMotion, a trans-
former model for motion prediction that incorporates two types of redundancy reduction for road
environments. Specifically, our model learns augmentation-invariant features of road environments
as self-supervised pre-training. We hypothesize that by using these features, relations in the road
environment can be learned, providing important context for motion prediction.

We specifically target transformer models for three reasons: (a) Transformers are successfully ap-
plied to a wide range of applications in natural language processing (e.g., Vaswani et al. (2017);
Brown et al. (2020); OpenAI (2023)), computer vision (e.g., Dosovitskiy et al. (2020); Carion et al.
(2020); Meinhardt et al. (2022)), and time-series prediction (e.g., Zhou et al. (2021; 2022)). There-
fore, it is likely that enhancements in training mechanisms in a particular application will also ap-
ply to other applications. (b) Transformers have no inductive biases for generating features based
on spatial correlations (Raghu et al., 2021). Therefore, appropriate mechanisms must be learned
from data. (c) The performance of transformers on various downstream tasks scales very well with
datasets (Kaplan et al., 2020; Zhai et al., 2022).

Our main contributions are the two types of redundancy reduction incorporated in our model:
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Figure 1: RedMotion model. Our model consists of two encoders. The trajectory encoder generates
an embedding for the past trajectory of the current agent. The road environment encoder generates
sets of local and global road environment embeddings as context. All embeddings are fused via
cross-attention to yield trajectory proposals per agent.

1. Redundancy reduction induced by an internal transformer decoder that reduces a variable-
sized set of road environment tokens, such as road graphs with agent data, to a fixed-sized
embedding.

2. Self-supervised redundancy reduction between embeddings generated from augmented
views of road environments.

2 RELATED WORK

Recent works on motion prediction utilize a variety of deep learning model architectures, including
transformers, graph-neural networks (GNNs), or convolutional neural networks (CNNs).

Transformer models for motion prediction. Ngiam et al. (2022) use PointNet (Qi et al., 2017) to
encode polylines as a road graph. They fuse information from agent interactions across time steps
and the road graph using attention mechanisms. Nayakanti et al. (2023) combine early and late
fusion with two basic primitives: a self-attention encoder and a cross-attention decoder. They in-
vestigate how to use a pure transformer without domain-specific modifications resulting in a motion
prediction architecture that is similar to transformer architectures from other domains.

GNN models for motion prediction. Gao et al. (2020) generate vectorized representations of HD
maps and agent trajectories to use a fully-connected homogeneous graph for inspecting traffic scenes
from the viewpoint of every agent. For their homogeneous graph, they learn a node embedding for
every object in the scene. Later works utilizing GNNs use heterogeneous graphs (Monninger et al.,
2023; Grimm et al., 2023; Cui et al., 2023). Monninger et al. (2023) and Cui et al. (2023) high-
light that choosing a fixed reference coordinate frame is vulnerable to domain shift and aim for
viewpoint-invariant representations. These works store spatial information of lanes and agents in
edges. Compared to transformers, GNNs require additional modules to generate graph representa-
tions for multi-modal inputs. Furthermore, the scaling properties of GNNs can be undesirable.

CNN models for motion prediction. CNN-based approaches have emerged as straightforward yet
effective baselines in motion prediction. These approaches often employ a fixed CNN-head, with
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only the head being adapted to the specific requirements of the application. Recent works remain
competitive in motion prediction benchmarks (Chai et al., 2020; Konev et al., 2022; Varadarajan
et al., 2022). However, CNN architectures typically tend to require larger models compared to
GNNs or tranformers due to the low information content per pixel versus in vector representations.

Self-supervised learning for motion prediction. Labeled data requirements of preceding ap-
proaches motivate the application of self-supervised learning on motion prediction. Balestriero
et al. (2023) categorize self-supervised representation learning methods into major families. The
deep metric learning family: PreTraM (Xu et al., 2022) exploits for contrastive learning that a
traffic agent’s trajectory is correlated to the map. Inspired by CLIP (Radford et al., 2021), the
similarity of embeddings generated from rasterized HD map images and past agent trajectories is
maximized. Therefore, past trajectories are required, which limits the application of this method
to annotated datasets. Ma et al. (2021) improve modeling interactions between traffic agents via
contrastive learning with SimCLR (Chen et al., 2020). They rasterize images of intersecting agent
trajectories and train the corresponding module by maximizing the similarity of different views of
the same trajectory intersection. Accordingly, only a small part of the motion prediction pipeline is
trained in a self-supervised manner and annotations are required to determine the trajectory intersec-
tions. The masked sequence modeling family: Chen et al. (2023) and Yang et al. (2023) propose
masked autoencoding as pre-training for motion prediction. Inspired by masked autoencoders (He
et al., 2022), they mask out parts of the road environment and/or past trajectory points and train
to reconstruct them. When applied to past trajectory points, these approaches require annotated
trajectory data. The self-distillation family: GraphDINO (Weis et al., 2023) is a self-supervision
objective designed to learn rich representations of graph structures and thus can be applied to road
graphs used for motion prediction. Following DINO (Caron et al., 2021), the learning objective is
a self-distillation process between a teacher and a student model without using labels. Compared
to the previously mentioned methods, self-distillation methods tend to require more hyperparameter
tuning (e.g., for temperatures or teacher weight updates). Besides these families, Azevedo et al.
(2022) use graph representations of HD maps to generate possible traffic agent trajectories. Tra-
jectories are generated based on synthetic speeds and the connectivity of the graph nodes. The
pre-training objective is the same as for the subsequent fine-tuning: motion prediction. While this
method is well adapted to motion prediction, it requires non-trivial modeling of agent positions and
synthetic velocities when applied to non-annotated data.

3 METHOD

In this work, we propose a transformer model for motion prediction that generates road environment
descriptors via redundancy reduction as self-supervision objective.

3.1 REDUNDANCY REDUCTION FOR LEARNING RICH REPRESENTATIONS OF ROAD
ENVIRONMENTS

We use the redundancy reduction principle (Barlow, 2001; Zbontar et al., 2021) to learn rich rep-
resentations of road environments. Following Ulbrich et al. (2015), we define a road environment
as lane network and traffic agent data. In the context of deep learning, Zbontar et al. (2021) define
redundancy reduction as reducing redundant information between vector elements of embeddings
generated by deep learning models. We implement two types of redundancy reduction:

(a) Redundancy reduction between token sets. Reduction from a variable length set of road envi-
ronment tokens to a fixed set of road environment descriptors (RED). RED are a fixed sized set of
tokens that represent agent and lane features (see input road environment encoder in Figure 1). To
capture global context, i.e., environment and lane features, we use a global cross-attention mecha-
nism between RED tokens and road environment tokens (see parallel decoder in Figure 1). Accord-
ingly, every RED token can attend to every road environment token. The Wayformer (Nayakanti
et al., 2023) model employs a similar decoding mechanism. It uses learned embeddings to decode
a fixed set of trajectory proposals from a context embedding of variable length. Compared to Way-
former, we encode past agent trajectories and environment context with separated encoders, offering
more flexibility for specialized self-supervised pre-training.
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(b) Redundancy reduction between embeddings. These embeddings are generated from RED
tokens (see projector in Figure 1). This self-supervision objective, Road Barlow Twins (RBT), is
based on Barlow Twins (Zbontar et al., 2021), which aims to learn augmentation-invariant features
via redundancy reduction. For each training sample (XA in Figure 1) we generate an augmented
view (XB). We use uniform distributions to sample random rotation (max. +/- 10°) and shift
augmentations (max. +/- 1m). Afterwards, the local transformer and parallel decoder within the
road environment encoder generate a set of RED tokens per input view. Finally, an MLP-based
projector generates two embeddings (ZA and ZB) from the RED tokens. For the two embedding
vectors, a cross-correlation matrix is created. The training objective is to approximate this cross-
correlation matrix to the corresponding identity matrix, while reducing the redundancy between
individual vector elements. By approximating the identity matrix, similar RED token sets are learned
for similar road environments. The redundancy reduction mechanism prevents that multiple RED
tokens learn similar features of an environment, increasing diversity. Accordingly, our proposed
self-supervision objective belongs to canonical correlation analysis family (Balestriero et al., 2023).
The mentioned modules of the road environment encoder are shown with more details in Figure 2.
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Figure 2: Road environment encoder. The circles in the local road graphs denote the maximum
distance for considered lane network (outer) and agent nodes (inner). LBT is the Barlow Twins loss,
L is the number of modules.

3.2 ROAD ENVIRONMENT DESCRIPTION AND MOTION PREDICTION MODEL

Our proposed motion prediction model (RedMotion) is a transformer model that builds upon the
aforementioned two types of redundancy reduction. As input, we generate road environment tokens
for agents and lanes based on a local road graph (see Figure 1). In this local road graph, the current
agent is in the center and we consider lane nodes within a radius of 50 meters and agent nodes within
25 meters. As input for the road environment encoder, we use a list of these tokens sorted by token
type, polyline, and distance to the current agent. The road environment encoder learns a semantic
embedding for each token type, which is concatenated with the position relative to the current agent.
We use the current speed information to learn separate embeddings for static and dynamic agents,
i.e., we define agents with a current speed greater than 0.0m/s as dynamic. In Figure 3b static
vehicles are marked as grey squares and dynamic vehicles as blue squares.

Figure 3c shows the vocabulary size (number of individual embeddings), the dimension of individ-
ual embeddings, and whether they are learned during training. In the road environment encoder,
we additionally use a learned linear projection to project the concatenated semantic and positional
embedding to the model dimension.

Since local relations are especially important for processing lanes, we use local attention (Beltagy
et al., 2020) layers. Compared to classical attention layers, these have a local attention mecha-
nism within a limited window instead of a global attention mechanism. In addition to the focus on
local relations, this reduces memory requirements and allows us to process long input sequences
(max. 1200 tokens). Correspondingly, the receptive field of each token grows with an increasing
number of local attention layers. Figure 4 shows how a polyline-like representation is built up for a
traffic lane token. For a better illustration, we show an example of an attention window of 2 tokens
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(a) Local road environment (b) Lane graph with agents

Type Size Dimension Learned?

Local transformer in road env. encoder

Semantic 11 4 ✓
Positional - 2 ×
Parallel decoder in road env. encoder

Semantic 100 118 ✓
Positional 100 10 ✓

Trajectory encoder

Semantic 3 4 ✓
Positional - 2 ×
Temporal 10 1 ×
Fusion via cross-attention

Semantic 2 128 ✓

(c) Embedding tables

Figure 3: Road environment description. Local road environments are first represented as lane
graphs with agents, afterwards, we generate token sets as inputs by using embedding tables for
semantic types and temporal context. Positions are encoded relative to the current agent, except in
the parallel decoder for RED tokens, where positional embeddings are learned.

per layer. In our model, we use an attention window size of 16 tokens. The polyline-like structures
built in the local transformer are set in relation to all surrounding tokens in the parallel decoder of
RED tokens. This is implemented by a global cross-attention mechanism from RED tokens to road
env tokens (see Figure 1). Thus, global representation can be learned by RED tokens.

Local attention layer 1Lane graph with agents

...

As RED tokenLocal attention layer 2 Local attention layer 6

Figure 4: Receptive field of a traffic lane token. It expands with the increasing number of layers,
thereby enabling the token to cover related tokens within a larger surrounding area. Consequently,
the road environment tokens initially form a disconnected graph, but as the number of layers in-
creases, they gradually transform into a fully connected graph. Best viewed, zoomed in.

In addition to the road environment, we encode the past trajectory of the current agent with a stan-
dard transformer encoder (trajectory encoder in Figure 1). The trajectory encoder learns a semantic
embedding per agent type, which is concatenated with a temporal encoding and the position relative
to the current position of the agent. As temporal encoding, we use the number of time steps between
the encoded time step and the time step at which the prediction starts. The concatenated embedding
is then projected to the model dimension using a learned linear projection.

Afterwards, we fuse the embedding of the past trajectory with local and global (RED) road envi-
ronment embeddings in two steps. First, we use regular cross-attention to fuse the past trajectory
tokens with local road environment tokens. Second, we use a memory efficient implementation of
cross-attention to add information from our global RED tokens. As shown in Figure 5, we concate-
nate both input sequences with learned fusion tokens ([Fusion]). We use the local fusion token as
queries vector and concatenate it with our RED tokens to generate keys and values matrices for a
standard attention module. Hence, the attention module computes: softmax(QKT

√
dK

) · V , where Q,
K, and V are query, key, and value matrices, and dK is the dimension of key vectors. Then, we add
the local fusion token to the attention output to generate a local-global fusion token. Figure 5 fo-
cuses on the fusion mechanism of the local fusion token with our RED tokens (local-global fusion),
we proceed analogously when fusing the global fusion token with trajectory and local environment
tokens (global-local fusion). In this case, we replace the local fusion token with the global fusion
token and RED tokens with trajectory and local environment tokens during fusion. For both ways,
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we compute this cross-attention mechanism in a token-to-sequence manner. This reduces the com-
putational complexity compared to regular sequence-to-sequence attention from O(n2) to O(2n),
where n is the sequence length. Finally, the output sequence is generated by concatenating the fused
tokens with trajectory and local environment tokens.
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Figure 5: Efficient cross-attention for feature fusion. The output sequence contains features from
the past trajectory, the local road environment, and global RED tokens.

After the fusion step, we use global average pooling over the feature dimension to reduce the input
dimension for an MLP-based motion head. This MLP head regresses a configurable number of
trajectory proposals and the corresponding confidences per agent. During inference, we use an
agent-centric representation of the environment and predict trajectories marginally. In detail, each
agent in the scene becomes the agent in the center when we predict his future trajectory.

4 RESULTS

4.1 COMPARING PRE-TRAINING METHODS FOR MOTION PREDICTION

In this set of experiments, we compare our representation learning approach with approaches from
all other major families of self-supervised learning mechanisms (Balestriero et al., 2023). Specifi-
cally, we evaluate against contrastive learning with PreTraM (Xu et al., 2022), self-distillation using
GraphDINO (Weis et al., 2023), and masked sequence modeling with Traj-MAE (Chen et al., 2023).
Since self-supervised learning methods for motion prediction are only recently being developed,
there are no common baseline models to compare such methods. Therefore, we use a modified ver-
sion of our proposed model as baseline. Learning global environment features represented as RED
tokens is our contribution, hence we remove the parallel decoder in the road environment encoder
for the baseline version (see Figure 1). To allow a fair comparison, we increase the token dimension
for the baseline from 128 to 192 to give both models a similar capacity (RedMotion baseline 9.9M
params vs. RedMotion 9.2M params).

Dataset. We use the official training and validation splits of the Waymo Open Motion dataset
(Ettinger et al., 2021) version 1.0 as training and validation data. Correspondingly, 100% of the
training split is 2.2M agent-centric training samples. Since pre-training is particularly useful when
little annotated data is available, we use 100% of the training data for pre-training and fine-tune on
only 12.5%. Validation and evaluation are performed on 200K samples. In addition to the road
environment, the trajectories of all traffic agents from the last second are used as input during fine-
tuning for motion prediction. The dataset is sampled with 10 Hz, accordingly 10 past time points
are used as input.

Evaluation metrics. We use the L5Kit (Houston et al., 2021) to evaluate the multimodal trajectory
predictions of our models. Following common practice (Houston et al., 2021; Ettinger et al., 2021),
we use the final displacement error (FDE) and the average displacement error (ADE) to evaluate
trajectory proposals. The ADE and FDE scores are evaluated in the oracle/minimum mode. Ac-
cordingly, the distance errors of the trajectory proposal with the lowest distance error are measured.
minADE and minFDE metrics are computed at different prediction horizons of 3s and 5s and av-
eraged. Additionally, we introduce the ∆minADErel and ∆minFDErel scores, which measure the
relative change w.r.t. the baselines without pre-training. Accordingly, the ∆minADErel is computed
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with
∆minADErel =

minADEpre − minADEbase

minADEbase
· 100, (1)

where minADEpre is the minADE score achieved with pre-training and minADEbase without pre-
training. We compute all metrics considering 6 trajectory proposals per agent.

Experimental setup. For PreTraM, GraphDINO, and our pre-training method, we use the same
augmentations described in Section 3. For Traj-MAE pre-training, we mask 60% of the road envi-
ronment tokens and train to reconstruct them. For all methods, we train the pre-training objectives
using our local road environment tokens, so that the lane network and social context are included.
For PreTraM, we evaluate two configurations, map contrastive learning (MCL) and trajectory-map
contrastive learning (TMCL). For MCL, the similarity of augmented views of road environments
is maximized. For TMCL, the similarity of embeddings from road environments and past agent
trajectories of the same scene is maximized. For our method, we evaluate four configurations of
redundancy reduction: with mean feature aggregation (mean-ag), with learned feature aggregation
(learned-ag), with reconstruction (red-mae), and between environment and past trajectory embed-
dings (env-traj). Mean-ag refers to using the mean of the RED tokens as input to the projector
in Figure 1. For learned-ag, we use an additional transformer encoder layer to reduce the dimen-
sion of RED tokens to 16 and concatenate them as input for the reduction projector. The red-mae
configuration is inspired by masked sequence modeling and a form of redundancy reduction via re-
construction. In detail, we generate two views (XA and XB) of road environments, randomly mask
60% of their tokens, and reconstruct XA from the masked version of XB and vice versa. Since we
reconstruct cross-wise, the similarity between embedding representations of the augmented views
is maximized during pre-training. The env-traj configuration is inspired by TMCL and reduces the
redundancy between embeddings of past agent trajectories and RED tokens. Therefore, this config-
uration is inherently cross-modal but requires annotations of past agent trajectories.

For pre-training and fine-tuning, we use AdamW (Loshchilov & Hutter, 2019) as the optimizer.
The initial learning rate is set to 10−4 and reduced to 10−6 using a cosine annealing learning rate
scheduler. Following Konev et al. (2022), we minimize the negative multivariate log-likelihood loss
for fine-tuning on motion prediction.

Results. Table 1 shows the results of this experiment. Overall, all pre-training methods improve
the prediction accuracy in terms of minFDE and minADE. For our baseline model, our redundancy
reduction reduction mechanism (b) (see Section 3) ranks second for the minFDE metric, marginally
behind Traj-MAE and PreTraM in the TMCL configuration (only 0.3% worse). In terms of minADE,
our mechanism ranks third behind Traj-MAE and PreTraM-TMCL. However, in this comparison our
mechanism is much less complex and has less data requirements. Compared to Traj-MAE, no ran-
dom masking and no complex reconstruction decoder (transformer model) are required. Compared
to PreTraM-TMCL, no past agent trajectory data is required. When comparing to methods with
similar requirements, our method outperforms PreTraM-MCL (-9.2% vs. - 15.8% in minFDE) and
GraphDINO (-8.9% vs. -15.8% in minFDE). For PreTraM-MCL, the question arises, what is a
good negative road environment. Road environments of agents close to each other (e.g., a group of
pedestrians) are much more similar than, for example, images of different classes in ImageNet (e.g.,
cars and birds). During contrastive pre-training, all samples in a batch other than the current one
are treated as negative examples. Therefore, the pre-training objective becomes to learn dissimilar
embeddings for rather similar samples. For GraphDINO, we hypothesize that more hyperparameter
tuning could further improve the performance (e.g., loss temperature or teacher weight update de-
cay). When we combine our two redundancy reduction mechanisms a and b (lower group in Table
1), our RedMotion model outperforms all related methods by at least 4% in minFDE and achieves
similar performance in the minADE metric. We hypothesize that the reason for the comparable
worse performance in the minADE score is our trajectory decoding mechanism. Our MLP-based
motion head regresses all points in a trajectory at once, thus individual points in a predicted trajec-
tory are less dependent on each other than in recurrent decoding mechanisms. When fine-tuning,
the error for the final trajectory point is likely to be higher than for earlier points and our model can
learn to focus more on minimizing this loss term. Therefore, if pre-training improves the learning
behavior of our model, this will effect the minFDE error more.

When comparing different configurations of our combined redundancy reduction objective, the env-
traj configuration performs best and the mean-ag configuration performs worst. However, similar to
PreTraM-TMCL our env-traj configurations learns to map corresponding environment embeddings
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Model Pre-training Config minFDE ↓ ∆minFDErel minADE↓ ∆minADErel #Params

RedMotion None 1.375 0.668 9.9M
baseline Traj-MAE (Chen et al., 2023) 1.154 -16.1 0.541 -19.0 9.9M

PreTraM (Xu et al., 2022) MCL 1.249 -9.2 0.579 -13.3 9.9M
PreTraM (Xu et al., 2022) TMCL* 1.154 -16.1 0.526 -21.3 9.9M
GraphDINO (Weis et al., 2023) 1.252 -8.9 0.587 -12.1 9.9M
RBT (ours) mean-ag 1.158 -15.8 0.557 -16.6 9.9M

RedMotion RBT (ours) mean-ag 1.110 -19.3 0.568 -15.0 9.2M
RBT (ours) learned-ag 1.098 -20.1 0.555 -16.9 9.2M
RBT (ours) red-mae 1.093 -20.5 0.557 -16.6 9.2M
RBT (ours) env-traj* 1.055 -23.3 0.530 -20.7 9.2M

Table 1: Comparing pre-training methods for motion prediction. Best scores are bold, second
best are underlined. *Denotes methods that require past trajectory annotations.

and past trajectory embeddings close to each other in a shared embedding space. Therefore, past
trajectory data is required, which makes this objective less self-supervised and rather an improve-
ment in data (utilization) efficiency. The learned-ag and red-mae configurations perform both better
than the mean-ag configuration (1% improvement in minFDE and 2% improvement in minADE)
and rather similar to each other. Since the learned-ag configuration has a lower computational com-
plexity (no transformer-based reconstruction decoder but a simple MLP projector), we choose this
pre-training configuration in the following. Figure 6 shows some qualitative results of our RedMo-
tion model. Further qualitative results can be found in the Appendix.

Road environment Region of interest

max
confid

min
confid

Figure 6: Vehicle predictions. Dynamic vehicles are marked as blue boxes, pedestrians as orange
boxes, cyclists as green boxes, and static agents as grey boxes. Road markings are shown in white,
traffic lane centerlines are black lines, and bike lane centerlines are red lines. The past trajectory of
the ego agent is a dark blue line. The ground truth trajectory is cyan blue, the predicted trajectories
are color-coded based on the associated confidence score using the viridis colormap on the left.

4.2 COMPARING MOTION PREDICTION MODELS

We compare our RedMotion model with other recent models for motion prediction. We do not use
ensembling for our model, therefore we compare our model with the best single model version of
the other approaches. However, we include methods that employ ensembling for reference. As de-
scribed in Section 4.1, our model with a basic MLP-based head (MLP-head) tends to focus more on
later than on earlier trajectory points, which worsens the minADE score. Therefore, we addition-
ally train a version of our model with a transformer decoder (tra-dec) as head, which is common
amongst recent related methods (Girgis et al., 2022; Nayakanti et al., 2023; Zhang et al., 2023). In
detail, we use a decoder with learned query tokens, which are transformed into trajectory proposals
via attending to fused trajectory and road environment embeddings. For both variants, we use our

8



Under review as a conference paper at ICLR 2024

redundancy reduction mechanisms to learn road environment embeddings. As aggregation method,
we are using the learned-ag configuration from Section 4.1.

Dataset. We use 100% of the Waymo Open Motion training set for training to compare the perfor-
mance of our model with that of other recent models. We perform evaluation on the validation and
test splits.

Evaluation metrics. We use the same metrics for trajectories as in the previous set of experiments.
However, this time, as in the Waymo Open Motion Challenge (Ettinger et al., 2021), the minFDE
and minADE scores are computed for three prediction horizons of 3s, 5s, and 8s and then averaged.
Additionally, we report the minFDE and minADE scores for the prediction horizon of 8s. For the
test split, we also report this years challenge main metric, the Soft mAP score. Following the current
challenge rules, we compute the metrics for 6 trajectory proposals per agent.

Results. Table 2 shows the performance of our model in comparison to other motion prediction
models. On the validation split, our model with a basic MLP-based motion head achieves the lowest
minFDE6@8s score. Our model with a transformer decoder as motion head achieves the best scores
for the minFDE6, minADE6, and minADE6@8s metrics. This shows that a transformer decoder
adds modeling capacity and prevents our model from focusing too much on the final trajectory
points during training. On the test spilt, our model with a transformer decoder ranks second in
terms of minADE6 and minADE6@8s behind HPTR. For the Soft mAP6 score, our model ranks
fourth behind MTR++, MTR, and HPTR. For reference, the best scores are achieved by methods
that employ ensembling. However, in this work we focus on self-supervised representation learning,
rather than on the advantages of ensembling.

Split Method Config minFDE6 ↓ minADE6 ↓ minFDE6@8s ↓ minADE6@8s ↓ SoftmAP6 ↑

Val

MotionCNN (Konev et al., 2022) ResNet-18 1.640 0.815 - - -
MotionCNN (Konev et al., 2022) Xeption 1.496 0.738 - - -
MultiPath++ (Varadarajan et al., 2022) - - 2.305 0.978 -
Scene Transformer (Ngiam et al., 2022) joint 1.804 0.837 3.113 1.353 -
Scene Transformer (Ngiam et al., 2022) marginal 1.220 0.613 2.070 0.970 -
MTR (Shi et al., 2022) 1.225 0.605 - - -
MTR++ (Shi et al., 2023) 1.199 0.591 - - -
RedMotion (ours) MLP-head 1.271 0.701 1.952 1.110 -
RedMotion (ours) tra-dec 1.169 0.563 2.044 0.924 -

Test

Scene Transformer (Ngiam et al., 2022) joint 1.788 0.832 3.067 1.347 -
Scene Transformer (Ngiam et al., 2022) marginal 1.212 0.612 2.053 0.980 -
MTR (Shi et al., 2022) 1.221 0.605 2.067 0.983 0.422
MTR++ (Shi et al., 2023) 1.194 0.591 2.024 0.961 0.433
HPTR (Zhang et al., 2023) 1.139 0.557 1.954 0.910 0.397
RedMotion (ours) tra-dec 1.199 0.577 2.084 0.948 0.391

Wayformer* (Nayakanti et al., 2023) multi-axis 1.128 0.545 1.942 0.892 0.434
MTR* (Shi et al., 2022) adv-ens 1.134 0.564 1.917 0.915 0.459

Table 2: Comparing motion prediction models. Best scores are bold, second best are underlined.
*Denotes methods that employ ensembling.

5 CONTRIBUTION AND FUTURE WORK

In this work, we introduced a novel transformer model for motion prediction in the field of
autonomous driving. Our proposed model incorporates two types of redundancy reduction, an
architecture-induced reduction and a self-supervision objective for augmented views of road envi-
ronments. Our evaluations indicate that this pre-training method can improve the accuracy of motion
prediction and outperform contrastive learning, self-distillation, and autoencoding approaches. The
corresponding RedMotion model attains results that are competitive with those of state-of-the-art
methods for motion prediction. The method for creating RED tokens provides a universal approach
to perform redundancy reduction, transforming a context of variable length into a fixed-size embed-
ding. In future work, this approach can be applied to other context representations, extending to
further multi-modal inputs beyond agent and environment data.
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A APPENDIX

Road environment Region of interest
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Figure 7: Cyclist predictions. We use the same color-coding as in Figure 6. This plot shows an
error case as the blueish trajectory pointing downwards enters the inbound lane.

Road environment Region of interest
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Figure 8: Pedestrian predictions. We use the same color-coding as in Figure 6.

More qualitative results can be generated using our anonymized Colab notebook.

B LIMITATIONS

We use a world on rails assumption (Chen et al., 2021) for our model and predict trajectories
marginally. Specifically, we predict the trajectory of each agent in a scene individually only con-
sidering the current state but not the predicted trajectories of the surrounding agents. Therefore, we
can not ensure consistency across all predictions in a scene as in joint prediction approaches (Ngiam
et al., 2022; Cui et al., 2023; Zhang et al., 2023).

C INCREASING THE NUMBER OF TRAJECTORY PROPOSALS

In this experiment, we increase the number of predicted trajectory proposals in our RedMotion
model with a basic MLP-based head. Figure 9 shows the results on the validation split of the Waymo
Open Motion dataset. Increasing the number of proposals from 6 to 16 decreases the minFDE score
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from 1.271 to 0.912 meters and the minFDE @8s score from 1.952 to 1.387 meters. This shows that
our models performance scales well with the amount of trajectory proposals.
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Figure 9: Increasing the number of predicted trajectory proposals
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