
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CAN LANGUAGE MODELS COMPOSE SKILLS DEMONSTRATED VIA IN-CONTEXT EXAMPLES?

Anonymous authors

Paper under double-blind review

ABSTRACT

Composing basic skills from simple tasks to accomplish composite tasks is crucial for modern intelligent systems. We investigate the *in-context composition* ability of language models to perform composite tasks that combine basic skills demonstrated only in in-context examples. This is more challenging than the standard setting, where skills and their composition can be learned in training **or from contextual information**. We conduct systematic experiments on various representative open-source language models, utilizing linguistic and logical tasks designed to probe composition abilities. The results reveal that simple task examples can have a surprising *negative impact* on the performance, because the models generally struggle to recognize and assemble the skills correctly, even with Chain-of-Thought examples. Theoretical analysis further shows it is crucial to align examples with the corresponding steps in the composition. This inspires a method for the probing tasks, whose improved performance provides positive support for our insights.

1 INTRODUCTION

Recent advances in machine learning have yielded substantial progress, particularly with the rise of language models (e.g., (OpenAI, 2023; Anthropic, 2024; DeepSeek-AI, 2025)). These models exhibit strong in-context learning (ICL) capacity: they can adapt to novel tasks by leveraging a few examples provided at inference time without requiring parameter updates. Through ICL, language models can generalize across tasks by adapting to the given context. A critical aspect of this task generalization is the ability to integrate basic skills from simple tasks to perform more complex composite ones, which is essential given the exponential number of possible compositions that prevents learning each individually. Ideally, models should be able to compose skills demonstrated in-context to tackle new compositions. This leads to our central question: *Can language models do composition in-context?*

This study proposes to study the *in-context composition* ability of language models. Specifically, it examines whether models can solve queries for **novel** composite tasks combining several **unknown** simple tasks, when provided with some in-context examples from the simple tasks and some examples from the composite task. Unlike traditional scenarios where the skills and potentially some of their compositions are learned during training, the models in this study need to learn novel skills and compositions during inference, thus demanding strong compositional generalization.

We first perform systematic empirical studies on representative language models (Touvron et al., 2023a;b; Karamcheti et al., 2021; Grattafiori et al., 2024; Guo et al., 2025a), using linguistic and logical tasks from Xu et al. (2024b) designed for probing the composition abilities. The experiments show a surprising phenomenon: *simple task examples can hurt the performance on composite queries, rather than improve it*. See an illustration in Fig. 1. This is in sharp contrast to the expectation that these examples can help the model identify skills and compose them to solve the query. Our investigation of this negative impact finds that the models generally do not recognize the composition and do not align the simple task examples with the corresponding steps of the composition. Even when Chain-of-Thought (CoT) examples are used, they may mismatch the skills inferred from examples to the wrong steps in answering the composite query. Inspection into the inner attentions of the language models provides further evidence for our findings.

We further provide a theoretical analysis in a stylized setting that captures the essence of the in-context composition and focuses on understanding the key factor behind the observations. The analysis confirms that ignorance of the compositional structure can harm the performance, while *aligning*

the examples to appropriate steps of the composition can potentially improve it. This inspires a proof-of-concept algorithm for the probing tasks, Expanded Chain-of-Thought (ExpCoT), that views simple task examples as composite task examples with missing steps and expands them into the CoT format with missing steps marked by special symbols. Evaluations show that it can explicitly align the examples with the corresponding steps and thus improve the performance. The improvement verifies our insights and justifies the potential for helping future algorithm designs.

Our contributions are summarized as follows.

- We perform systematic experiments investigating the in-context composition ability of representative open-source language models and find that they typically exhibit limited such ability, due to difficulties in recognizing the composition and identifying proper skills from in-context examples.
- We provide a theoretical analysis, which explains the empirical observations and reveals that explicitly aligning in-context examples with the corresponding steps can help accomplishing the composite tasks.
- We propose a proof-of-concept method that significantly improves the in-context composition performance on the probing tasks, which provides positive support for our insights.

2 RELATED WORK

In-Context Learning and Chain-of-Thought. Several studies investigate the behavior of in-context learning (ICL). Zhao et al. (2021); Lu et al. (2022); Min et al. (2022b); Wei et al. (2023) analyze the sensitivity of LLMs to in-context examples. Rubin et al. (2022); Liu et al. (2022); Hongjin et al. (2023); Wang et al. (2023a) propose methods to effective selection of in-context learning examples. Garg et al. (2022); Von Oswald et al. (2023); Akyürek et al. (2023); Mahankali et al. (2023); Zhang et al. (2023a); Shi et al. (2024) investigate with linear models, showing how transformers can represent gradient descent and conduct linear regression. Guo et al. (2024) provide analysis on how ICL works in non-linear functions. Chain-of-Thought (CoT) prompts LLMs to produce intermediate reasoning steps to solve multi-step reasoning questions Kojima et al. (2022); Wei et al. (2022). Few-Shot-CoT improves LLM’s reasoning ability using demonstrations that are either manually constructed Khot et al. (2022); Zhou et al. (2023); Li et al. (2023); Wang et al. (2023b) or automatically selected Zhang et al. (2023b). Several theoretical work have been proposed to analyze the effectiveness of CoT. Feng et al. (2023); Li et al. (2024) shows CoT allows for performing more serial computations, increasing the effective depth of a transformer. Joshi et al. (2025) presents a frameworks that allows for universal representability and computationally tractable CoT learning and Abedsoltan et al. (2025) analyzes the task generalization enabled by composition. Our theoretical analysis is partially inspired by Joshi et al. (2025); Abedsoltan et al. (2025) but considers a different setting with both simple/composite task examples, and also analyzes when the composition can fail.

Compositional Task Learning. Compositional reasoning of LLM is an active area in AI Huang & Chang (2022); Sinha et al. (2024). Kim & Linzen (2020); Levy et al. (2022) explore the compositional capabilities of LLMs in abstract reasoning tasks under ICL settings. An et al. (2023a;b) show LLMs are capable of learning abstract reasoning (e.g., grammar) to perform new tasks when finetuned or given in-context examples. Ye et al. (2023); Dziri et al. (2023); Thomm et al. (2024); Xu et al. (2024b) show that LLMs can handle simple sub-tasks, but often struggle with tasks composing multiple sub-tasks. Press et al. (2023) show that challenge in composition can be mitigated through CoT prompting. (Zhao et al., 2024) demonstrates that small-scale LLMs can learn and generalize compositional skills through finetuning on tasks involving skill combinations. (Song et al., 2025;

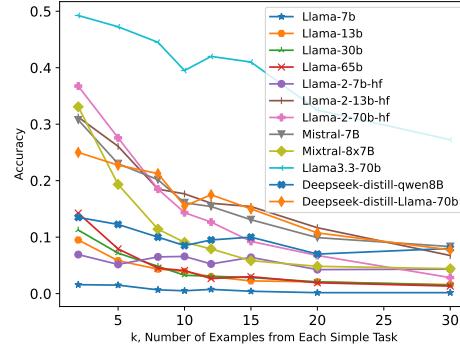


Figure 1: The negative impact of simple task examples on the opposition+swap task (see Table 1). The models need to answer a composite query when given k examples from each simple task and $k_c = 5$ examples from the composite task. They show unexpected *decreasing* performance with more simple task examples (k).

108 Yang et al., 2024b; Brinkmann et al., 2024; Guo et al., 2025b; Hong et al., 2024) provide mechanistic
 109 analyses on how LLMs tackle compositional reasoning. (Chen et al., 2024) also studied composing
 110 skills in-context, with the focus of unlocking the compositionality ability of the model. It provided
 111 carefully designed Skills-in-Context Prompting, which includes explanations of the basic skills
 112 along with examples, and also step-by-step explanations about how to compose them to solve the
 113 compositional query. Such a prompting allows the model to more actively utilize pre-existing internal
 114 skills from pretraining for compositional tasks. (He et al., 2025) studied the setting where the model
 115 can predict the required skills for the query and retrieve in-context examples from a given pool.
 116 It noted that such skill-based prompting can hurt small model performance on easy questions by
 117 introducing unnecessary information and resulting in overthinking, and then provided an adaptive
 118 method to address this issue. Our work conducts systematic experiments for in-context composition
 119 ability (whether the model can infer and compose skills demonstrated only via in-context examples)
 120 on the tasks from Xu et al. (2024b) and provides empirical/theoretical analysis on the reasons for
 121 success and failure. More discussions on related work are in Appendix A.
 122

3 EMPIRICAL STUDY ON THE IN-CONTEXT COMPOSITION ABILITY OF LLMs

123 To examine the in-context compositional capabilities of language models, we conduct systematic
 124 experiments utilizing public large language models on linguistic and logical composite tasks.
 125

126 **Models and Dataset.** We use 12 models: Llama (7B, 13B, 30B, and 65B) (Touvron et al., 2023a),
 127 Llama2 (7B, 13B, and 70B) (Touvron et al., 2023b), Mistral (7B and 8x7B) (Karamcheti et al., 2021),
 128 Llama3.3 (70B) (Grattafiori et al., 2024), Deepseek-distill (-qwen8B and -Llama2-70b) (Guo et al.,
 129 2025a). We adopt the test suite with nine composite tasks from Xu et al. (2024b). The simple tasks
 130 apply functional mappings to words represented by operators like \star , while composite tasks combine
 131 two simple tasks, as illustrated in Table 1. Appendix B.1 includes the dataset details like the list of
 132 tasks, the numbers of queries tested, etc. Our code will be made public.
 133

134 These tasks fit our purpose of investigating in-context composition. (1) They are clean compositions
 135 of linguistic and logical skills that allow in-depth investigation. (2) They are at appropriate levels
 136 of difficulty, while too simple composite tasks will be easily solved and too difficult ones will lead
 137 to consistently low performance, which will obscure interesting observations and prevent detailed
 138 examinations. (3) They construct synthetic test data with customized syntax operators to ensure novel
 139 tasks (see discussion in Xu et al. (2024b)). While the models have corresponding linguistic/logic
 140 abilities (e.g., they can answer queries like “what’s the opposition of the word dry”), the operators
 141 have not been associated with the linguistic and logical tasks in pretraining, so the model needs to
 142 learn the simple tasks and their composition in-context at inference time. **Furthermore, the models**
 143 **can learn the simple tasks via a few examples (see Figure 2 in Xu et al. (2024b)), which thus allows**
 144 **investigation of whether they can learn composition via examples.**

	Simple Task 1 (opposition)	Simple Task 2 (swap)	Composite Task	In-Context Composition
Prompt	input: * Dry Lie	input: Sad Less #	input: * Eager Proud #	input: * Dry Lie output: Wet Stand input: Sad Less # output: Less Sad input: * Eager Proud # output: Humble Listless input: * Rich Humble #
Answer	output: Wet Stand	output: Less Sad	output: Humble Listless	output: Proud Poor

153 Table 1: An example of In-context composition. Here the composition consists of two simple tasks: opposition
 154 (represented by operator \star) and swap (represented by operator $\#$).

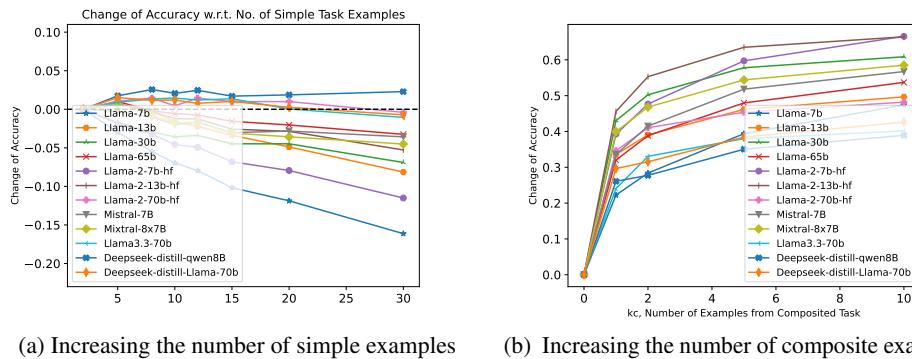
155 **Experimental setup.** Consider a composite task combining two simple tasks (task 1 and task 2). The
 156 test prompt given to models will consist of in-context examples (including k_1 examples from task 1,
 157 k_2 examples from task 2, and k_c examples from the composite task), and a query from the composite
 158 task. The examples drawn from simple tasks demonstrate basic skills, while the composite examples
 159 illustrate how these skills can be integrated. This setup evaluates whether the model can solve new
 160 composite queries by utilizing examples of the individual skills and also their composition. **We also**
 161 **perform additional experiments on the composition of more than 2 tasks in Appendix B.9 and on**
 162 **GPT4.1/Gemini2.5 in Appendix B.10, which provides further support for our analysis.**

162 LLMs are known to be sensitive to the orders of in-context examples (e.g., Lu et al. (2022)). To avoid
163 the influence on our investigation, we randomly shuffle the $k_1 + k_2 + k_c$ examples (see Appendix B.1.1
164 for an ablation study). Each prompt is evaluated with 4 different random shufflings, and we report the
165 average accuracy across both test prompts and random seeds.

166 **Result summary.** We investigate the following questions: **(Q1)** Can in-context examples help
167 composition? **(Q2)** What information from the in-context examples is utilized? **(Q3)** How are the
168 in-context examples utilized? **(Q4)** Where are the models paying attention to? **(Q5)** Can Chain-of-
169 Thought examples help? Our experiments provide the following findings. **(A1)** By increasing the
170 number of simple or composite task examples, we observe that composite ones help while simple task
171 examples unexpectedly hurt the performance. **(A2)** By examining the outputs, we find that the model
172 may ignore the compositional structure: it may match the composite query to examples from any task
173 and perform only the matched task. Then more examples from a simple task lead to higher chance of
174 performing only that simple task on the query and thus worse performance. **(A3)** By an ablation study
175 on different parts of the examples, we find that the models largely match the query to examples based
176 on the operators rather than the semantic content. **(A4)** By visualizing the inner attention map, we
177 illustrate that the models typically do not recognize the composition and pay roughly equal attention
178 to the simple and composite examples. **(A5)** By adding intermediate step outcomes (CoT) in the
179 composite task examples, we find that naïve CoT may not help, because the model may not align
180 the examples to the corresponding steps in the composition. Below we present our empirical studies.
181 Due to space limitations, some details/results are deferred to the appendix.

182 3.1 COMPOSITE TASK EXAMPLES HELP BUT SIMPLE TASK EXAMPLES HURT COMPOSITION

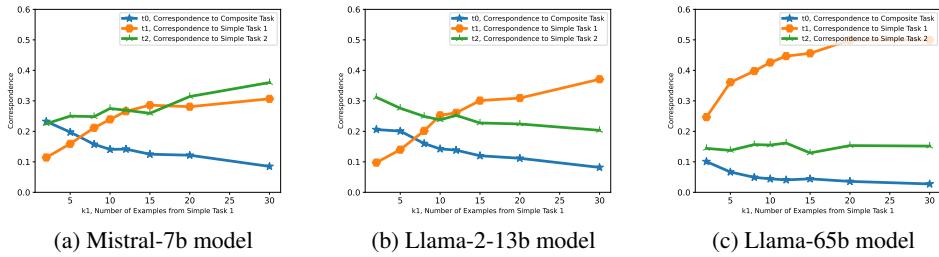
184 Ideally, the model can learn the basic skills demonstrated in the simple task examples, and learn how
185 to compose the skills from the composite task examples. In this case, increasing the number of simple
186 task examples or composite task examples should enhance the performance on composite queries. To
187 evaluate the impact of in-context examples, we vary the number of examples provided to the model.
188 Specifically, we set the number of examples for each simple task to be equal ($k_1 = k_2 := k$), and then
189 evaluate performance across different $k \in \{2, 5, 8, 10, 12, 15, 20, 25, 30\}$ and $k_c \in \{0, 1, 2, 5, 10\}$.



201 (a) Increasing the number of simple examples (b) Increasing the number of composite examples
202
203 Figure 2: The effect of the in-context examples on in-context composition. The average **change** of the accuracy
204 is reported, averaged over the tasks and k_c (or k). More simple task examples surprisingly harm the composition
205 performance, while more composite task examples help as expected.

206 **Results.** Fig. 2 shows the *change* of the accuracy with increasing k or k_c , to highlight the trend
207 (detailed accuracy results themselves are included in the appendix). It reveals an unexpected pattern:
208 while performance on composite queries improves when we increase the number of composite task
209 examples (k_c), it surprisingly declines as we add more simple task examples (k). This implies,
210 more examples of simple tasks can be harmful rather than helpful for the composite task. This
211 counterintuitive result highlights the sophistication of the in-context composition.

212 More precisely, Fig. 2(a) shows that the accuracy of the models (averaged over all tasks and k_c
213 values) typically decreases when the number of simple task examples k increases. For instance, the
214 average accuracy of the model Llama-13B drops by 7.5% when k increases from 2 to 30. This trend
215 is consistent across most settings (different models/tasks/numbers of examples); see additional details
including breakdowns by individual task and k_c in Appendix B.2. Deepseek-distill-qwen8B appears



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
Figure 3: The output distribution on opposition+swap for different numbers of task 1 examples (k_1). The
correspondence to task 1 increases, while those to task 2 and the composite task decrease.

less affected, but a detailed look finds that this is because its accuracy saturates on some easier tasks for larger k_c ; it can be negatively affected on some other tasks. In contrast, Fig. 2(b) shows that more composite examples clearly improve the performance, which is also consistent in most settings.

These results suggest that the model fails to recognize the composition and cannot utilize simple task examples, treating them as interfering noise rather than useful signals. We further test on queries from simple tasks and find that more composite task examples also decrease the accuracy on these queries (see results in Appendix B.2.1), supporting our hypothesis that the models do not recognize the composition. This motivates our subsequent investigations into the mechanisms underlying how models extract and process information from in-context examples.

3.2 THE MODELS MAY IGNORE THE COMPOSITIONAL STRUCTURE

The above observations suggest the model can utilize the composite examples properly but not the simple task examples. We would like to check what information from the examples is utilized and how. A detailed look into the outputs shows that the error is often by performing only one simple task on the composite queries. For example, for an opposition+swap task query, the model only performs the opposition task and generates the output. To quantify this, we measure the outputs’ correspondence to performing different tasks: the correspondence to the composite task (denoted as t_0) is the accuracy w.r.t. the answer by performing the composite task, the correspondence to simple task 1 (denoted as t_1) is the accuracy w.r.t. the answers by performing task 1, and similarly for task 2 (denoted as t_2). We then measure these correspondences for different task 1 example numbers k_1 .

Results. Fig. 3 shows the results for three models on the opposition+swap task; see additional results in Appendix B.3. With more task 1 examples, the correspondence w.r.t. the task 1 increases, while those for task 2 and the composite task decrease. This suggests that the models may match the composite query to in-context examples from any task, and the matching probability is proportional to the number of examples from each task. When the number of task 1 examples k_1 increases, the model becomes more likely to match the query to task 1 examples, explaining the increased task 1 correspondence. For further verification, we conduct experiments with increasing k_c ; see Appendix B.3. With more composite examples, the correspondence to the composite task increases while the others decrease. Furthermore, we repeat the experiments without task 2 examples ($k_2 = 0$) and observe the same trend. These observations provide further support for our above analysis.

3.3 THE MODELS LARGELY UTILIZE THE OPERATORS RATHER THAN THE CONTENT

Here we investigate how the models explore the examples by controlled experiments that alternate different parts of the examples. As shown in Table 1, the examples contain two parts: (1) the operators like `*` and `#` that denote the tasks to be accomplished, and (2) the content, i.e., the input and output text demonstrating the operation performed. We first introduce an irrelevant task, and then replace the content or operator in the composite task examples with that in the irrelevant task examples. This gives two ablation settings (illustrated in Table 2): (1) Irrelevant content that replaces the content; (2) Irrelevant operator that replaces the operators. Evaluations in these two settings can reveal the influence of the content/operator on utilizing the examples.

	Original	Irrelevant Task	Irrelevant Content	Irrelevant Operator
Prompt	input: * Dry Lie output: Wet Stand input: Sad Less # output: Less Sad input: * Eager Proud # output: Humble Listless input: * Rich Humble #	input: (Accept Low) output: ACCEPT LOW input: (Rich Humble)	input: * Dry Lie output: Wet Stand input: Sad Less # output: Less Sad input: * Accept Low # output: ACCEPT LOW input: * Rich Humble #	input: (Eager Proud) output: Humble Listless input: (Rich Humble)
Answer	output: Proud Poor	output: RICH HUMBLE	output: RICH HUMBLE	output: Proud Poor

Table 2: Illustrations of the two ablation settings for opposition+swap. The irrelevant content/operator setting replaces the original content/operator with that from the irrelevant task capitalization.

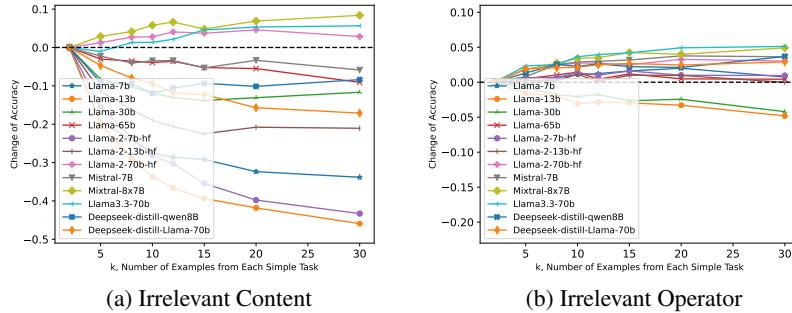


Figure 4: Results for ablating the content/operators in the composite task examples. Increasing k still affects the performance after ablating the content, but has little impact after ablating the operators.

Results. Fig. 4 shows that in the irrelevant operator setting, increasing k has little impact after ablating the operators. This suggests that the model almost ignores the simple examples after using a different operator, i.e., the utilization of the examples is largely based on the operators. While in the irrelevant content setting, increasing k still affects the performance after ablating the content. Note that the performance trends of some models are changed after ablating the content, so the content still plays a role in utilizing the examples, but the role is less clear and significant. More detailed results in Appendix B.4 provide further support.

3.4 INNER ATTENTIONS MAY NOT DISTINGUISH THE SIMPLE AND COMPOSITE TASKS

Similarities between attentions for simple and composite queries. We compare the inner attentions of the model facing simple or composite task queries. Following Hong et al. (2024), we consider opposition+swap and choose 100 test prompts with simple task queries and 100 test prompts with composite task queries. Then we choose a layer, extract the attention output for each query. Finally, we compute the pairwise cosine similarities between the attentions, giving a 200 by 200 similarity matrix. To generate the prompts, we consider a fixed context with simple/composite task examples ($k = 10$ and $k_c = 5$), and then add different queries (100 simple and 100 composite ones).

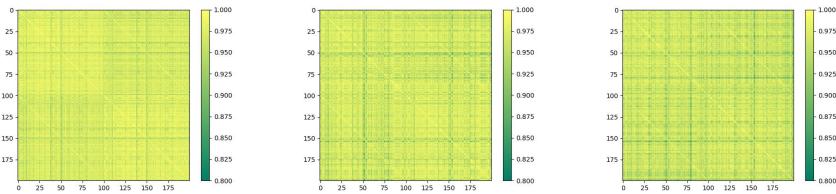


Figure 5: Similarities of the attentions between 100 composite queries (first 100 rows/columns) and 100 simple queries (last 100 rows/columns). Attentions are from Layer 15, 17, and 19 of Mistral-7B.

Fig. 5 shows that the inner attentions have high similarities between the simple task queries and composite task queries. In fact, the similarities between the two groups are at the same level of those within each group. This suggests the model cannot distinguish between simple and composite tasks. More quantitative results in Appendix B.5.1 provides further evidence, e.g., the entropy distributions of the attentions for simple/composite queries do not have a significant difference.

324 3.5 CHAIN-OF-THOUGHT EXAMPLES MAY NOT HELP
 325

326 Chain-of-Thought (CoT) is popular for multi-
 327 hop reasoning and fits our setting, i.e., splitting
 328 the composite task examples into steps, each
 329 performing only one simple task. Consider an
 330 example `* Rich Humble # -> Proud Poor`
 331 where `*` denotes opposition and `#` denotes
 332 swap. Then the corresponding CoT example is
 333 `* Rich Humble # -> Poor Proud # -> Proud`
 334 `Poor`, which now includes the intermediate out-
 335 put `Poor Proud #`. We replace all the composite
 336 examples with their CoT version and redo
 337 the experiment in Section 3.1, to examine if CoT
 338 can help in-context composition.

339 **Results.** Fig. 6 shows larger k 's still lead to worse performance, i.e., CoT does not help mitigate the
 340 negative impact of simple task examples, and thus does not help utilize the examples. Furthermore,
 341 for a fixed k , the performance may not improve over that without CoT (shown in Table 3 below).
 342 We check the details of the output, and find the model typically performs a Chain-of-Thought and
 343 generates two step outputs, but in the intermediate step it may match with wrong examples and
 344 perform wrong operations as before. Consider an opposition+swap query `* Grow Respect #`.
 345 The expected output is `* Grow Respect # -> Shrink Disrespect # -> Disrespect Shrink`.
 346 However, the model outputs `* Grow Respect # -> Shrink Disrespect # -> Respect Grow`. In
 347 particular, in the second step, the model incorrectly performs both tasks opposition+swap, while it
 348 should perform only swap. So applying CoT naïvely may not help recognize the composition and
 349 align basic skills properly.

350 351 4 THEORETICAL ANALYSIS
 352

353 The empirical study reveals the crucial role of recognizing the composition and matching the basic
 354 skills with corresponding steps in the composition. This section further provides some theoretical
 355 analysis on whether it is feasible for the model to accomplish the composite task given the in-
 356 context examples. Since large language models have universal expressive power to represent various
 357 algorithms (e.g., Giannou et al. (2023); Malach (2024)), we reduce the research question to the
 358 existence of learning rules that can achieve small errors on the composite task queries given simple
 359 and composite task examples.

360 **Theoretical setup.** A sequence-to-sequence task on a finite vocabulary of tokens Σ is associated with
 361 an input distribution \mathcal{D} over the input $\mathcal{X} \subseteq \Sigma^*$, and a target function $f : \Sigma^* \rightarrow \Sigma^*$ where $f \in \mathcal{H}$
 362 for some model class \mathcal{H} . A composite task with the target function $f \in \mathcal{H}^T$ can consist of T steps
 363 $f_1, f_2, \dots, f_T \in \mathcal{H}$, such that $f(x) = f_T \circ \dots \circ f_2 \circ f_1(x)$. For simplicity, assume \mathcal{H} is finite, and it
 364 includes the identity mapping so that $\mathcal{H} \subseteq \mathcal{H}^T$.

365 **Learning on composite task examples.** We first consider the case when k_c composite task examples
 366 $\mathcal{S}_0 = \{(x_i, y_i) : i \in [k_c]\}$ are given, where x_i are i.i.d. from \mathcal{D} and $y_i = f(x_i)$ for some $f \in \mathcal{H}^T$.
 367 Since \mathcal{H}^T is finite, applying a standard generalization argument on \mathcal{H}^T can show that a large enough
 368 k_c allows accomplishing the task (proof in Appendix C).

369 **Proposition 1.** *There exists a learning rule $\mathcal{M} : (\mathcal{X} \times \Sigma^*)^* \rightarrow \Sigma^{\mathcal{X}}$ such that for any distribution
 370 \mathcal{D} over \mathcal{X} and any $f \in \mathcal{H}^T$, for every $0 < \delta < 1$, we have with probability at least $1 - \delta$ over \mathcal{S}_0 ,*

$$\Pr_{x \sim \mathcal{D}}[\mathcal{M}(\mathcal{S}_0)(x) \neq f(x)] \leq \frac{1}{k_c} (T \ln |\mathcal{H}| + \ln(\frac{1}{\delta}))$$

373 This ignores the compositional structure of the task, so the error increases fast with the number T
 374 of steps in the composition: it increases linearly with T . Furthermore, to build general intelligent
 375 systems for various composite tasks (in exponential number $|\mathcal{H}|^T$), it is infeasible to learn from
 376 scratch on each individually. We thus aim at the compositional ability: break all composite tasks into
 377 simple tasks (i.e., small $|\mathcal{H}|$), learn basic skills on simple task examples, and learn how to compose
 for a target composite task with a few composite task examples. We next turn to such scenarios.

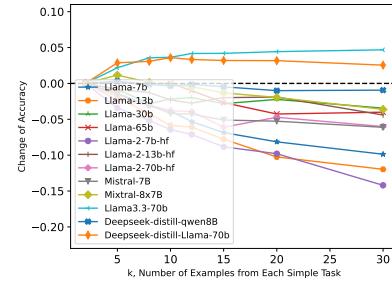


Figure 6: CoT cannot help mitigate the negative impact from adding more simple task examples.

378 **Learning on examples from simple and composite tasks.** Suppose \mathcal{S}_t is a set of examples from
 379 the t -th task (\mathcal{D}_t, f_t) ($0 \leq t \leq T$). Suppose a method $\mathcal{M}(\mathcal{S}_0; \mathcal{S}_1, \dots, \mathcal{S}_T)$ can focus on the 0-th task
 380 with the help of examples from the other tasks. Formally, we say \mathcal{M} is *focusing* if its expected error
 381 on the 0-th task is no worse than that on any other task, i.e., for any $j \in [T]$,

$$\mathcal{L}_0(\mathcal{M}; (\mathcal{D}_t, f_t)_{t=0}^T) \leq \mathcal{L}_j(\mathcal{M}; (\mathcal{D}_t, f_t)_{t=0}^T) \quad (1)$$

384 where $\mathcal{L}_j(\mathcal{M}; (\mathcal{D}_t, f_t)_{t=0}^T) := \mathbb{E}_{\mathcal{S}_t \sim (\mathcal{D}_t, f_t), 0 \leq t \leq T} \Pr_{x \sim \mathcal{D}_j} [\mathcal{M}(\mathcal{S}_0; \mathcal{S}_1, \dots, \mathcal{S}_T)(x) \neq f_j(x)]$ is the
 385 expected error of \mathcal{M} on the j -th task. When f_0 is a composite task composing f_1, \dots, f_T , ideally, the
 386 method should use simple task examples to help learn each step in the composition. However, empirical
 387 studies show that the method may not distinguish between the two types of examples. Formally,
 388 we say that \mathcal{M} does *not distinguish examples from different tasks*, if it is symmetric w.r.t. the data sets
 389 \mathcal{S}_t 's, i.e., for any permutation σ on $\{0, 1, \dots, T\}$, the distribution of $\mathcal{M}(\mathcal{S}_{\sigma(0)}; \mathcal{S}_{\sigma(1)}, \dots, \mathcal{S}_{\sigma(T)})$ is
 390 the same as that of $\mathcal{M}(\mathcal{S}_0; \mathcal{S}_1, \dots, \mathcal{S}_T)$. We derive a lower bound for its error:

391 **Proposition 2.** Suppose there exist $g_1, \dots, g_T \in \mathcal{H}$ with pairwise difference at least Δ for some
 392 \mathcal{D} , i.e., $\min_{i \neq j} \Pr_{x \sim \mathcal{D}} [g_i(x) \neq g_j(x)] \geq \Delta$. For any \mathcal{M} that is focusing but does not distinguish
 393 between examples from different tasks, there exist $f_1, \dots, f_T \in \mathcal{H}$, $f_0 = f_T \circ \dots \circ f_2 \circ f_1$, and
 394 \mathcal{D}_t 's ($0 \leq t \leq T$)'s, such that $\mathbb{E}_{\{\mathcal{S}_t\}} \Pr_{x \sim \mathcal{D}_0} [\mathcal{M}(\mathcal{S}_0; \mathcal{S}_1, \dots, \mathcal{S}_T)(x) \neq f_0(x)] = \Omega(\Delta)$.

395 The result shows that when the model class is reasonably rich, there are always cases where the
 396 method fails (the error can be as large as the diameter of the model class). Intuitively, such a method
 397 may mistakenly confuse simple task examples as data for the whole composition, in which case the
 398 examples act as harmful noise as seen in our experiments. Similar observations for naïve CoT, i.e.,
 399 composite task examples consisting of the intermediate outputs in the composition. So it is crucial to
 400 present the examples in a way that can let the method distinguish between simple and composite task
 401 examples and align the simple task examples with the proper step in the composition.

402 Now suppose the method knows that \mathcal{S}_t ($t \in [T]$) are examples for the t -th step of the composition.
 403 Furthermore, suppose \mathcal{S}_0 are CoT examples from the composite task, i.e., each example is in the
 404 form $(z^1, z^2, \dots, z^{T+1})$ where z^1 is the input x and $z^{t+1} = f_t(z^t)$ are the intermediate output for
 405 $t \in [T]$. We show that such examples have the potential to help the composition.

406 **Theorem 1.** Suppose we are given k_t examples \mathcal{S}_t from (\mathcal{D}_t, f_t) for $f_t \in \mathcal{H}$ ($t \in [T]$) and k_c examples
 407 \mathcal{S}_0 from (\mathcal{D}_0, f_0) with $f_0 = f_T \circ \dots \circ f_2 \circ f_1$. Suppose \mathcal{H} is distinguishable: for some $\epsilon_0 > 0$, for
 408 any $f \neq g \in \mathcal{H}$ and \mathcal{D}_t ($0 \leq t \leq T$), $\Pr_{x \sim \mathcal{D}_t} [f(x) \neq g(x)] > \epsilon_0$. There exists a learning rule $\mathcal{M} : ((\mathcal{X} \times \Sigma^*)^*)^{T+1} \rightarrow \Sigma^{\mathcal{X}}$ such that for every $0 < \delta < 1$, if $\max(k_c, k_t) \geq \frac{1}{\epsilon_0} (\ln |\mathcal{H}| + \ln \frac{T}{\delta})$, $\forall t \in [T]$, then with probability at least $1 - \delta$ over $\{\mathcal{S}_t\}_{t=0}^T$, we have $\mathcal{M}(\mathcal{S}_0; \mathcal{S}_1, \dots, \mathcal{S}_T) = f_0$.

411 The theorem shows that by exploiting the compositional structure, the sample size needed is logarithmic
 412 in T (compared to linear in Proposition 1). Furthermore, the k_t examples from simple task t is
 413 now useful for the identification of the t -th step. This inspires a new method below.

415 4.1 VERIFICATION OF THE INSIGHTS: THE EXPANDED CHAIN-OF-THOUGHT METHOD

417 Inspired by insights from our analysis, this section introduces a novel variant of CoT for improving
 418 the in-context composition. The main idea is to view the simple task examples as composite task
 419 examples with missing steps and expand them into the CoT format with missing steps marked by
 420 special symbols. This will explicitly align the examples for better utilization.

421 For description, recall the composite task consists of T steps f_1, f_2, \dots, f_T . A CoT example on input
 422 x is $(z^1, z^2, \dots, z^{T+1})$ where $z^1 = x$ and $z^{t+1} = f_t(z^t)$ for $t \in [T]$. We also have examples (x^t, y^t)
 423 from the simple task t where $y^t = f_t(x^t)$. Our method views (x^t, y^t) as a composite task example
 424 $(z^1 = ???, \dots, z^{t-1} = ???, z^t = x^t, z^{t+1} = y^t, z^{t+2} = ???, \dots, z_{T+1} = ???)$ where $???$ denotes
 425 missing entries. Algorithm 1 formally describes the method. It goes over all examples and adds
 426 the strings of steps to each example. For illustration, consider the composite task opposition+swap.
 427 A CoT example `* Rich Humble # -> Poor Proud # -> Proud Poor` can be viewed as `(* Rich`
 428 `Humble #, Poor Proud #, Proud Poor`), which is converted by our method to `(Step1: * Rich`
 429 `Humble #, Step2: Poor Proud #, Step3: Proud Poor`). Similarly, an example from
 430 the opposition task `* Dry Lie -> Wet Stand` is converted to `(Step1: * Dry Lie, Step2: Wet`
 431 `Stand, Step3: ???)`. An example from the swap task `Sad Less # -> Less Sad` is converted to
 432 `(Step1: ???, Step2: Sad Less #, Step3: Less Sad)`.

Algorithm 1 Expanded Chain-of-Thought (EXPCoT)

INPUT: Chain-of-Thought examples $\mathcal{S}_0 = \{(z_i^1, z_i^2, \dots, z_i^{T+1}) : i \in [k_c]\}$ from the composite task of T steps, and examples $\mathcal{S}_t = \{(x_i^t, y_i^t) : j \in [k_t]\}$ from simple task $t \in [T]$

```

1: for  $i \in [k_c], t \in [T+1]$  do
2:    $z_i^t \leftarrow \text{Step +STR}(t) + : + z_i^t$  ▷ STR converts an integer into a string
3: for  $t \in [T], i \in [k_t]$  do
4:   Replace  $(x_i^t, y_i^t)$  with  $(v_i^{t,1}, \dots, v_i^{t,T+1})$ , where  $v_i^{t,j} \leftarrow \text{Step +STR}(j) + : ???$  for  $j \notin \{t, t+1\}$ ,  $v_i^{t,t} \leftarrow \text{Step +STR}(t) + : + x_i^t$ , and  $v_i^{t,t+1} \leftarrow \text{Step +STR}(t+1) + : + y_i^t$ 
OUTPUT: The updated data  $S = S_t$  for  $t \in [T]$ 

```

OUTPUT: The updated data $\mathcal{S}_c, \mathcal{S}_t$ for $t \in [T]$

	L-7B	L-13B	L-30B	L-65B	L2-7B	L22-13B	L2-70B	M-7B	M-8x7B	L3-70b	D-8B	D-70B
Vanilla	32.6	56.2	67.6	63.4	49.6	68.7	80.8	66.1	71.2	77.2	58.2	71.3
CoT	42.2	51.2	72.7	64.0	45.9	65.7	77.6	64.9	77.6	92.2	60.7	85.9
ExpCoT	47.5	58.1	77.4	75.7	47.9	70.4	87.2	74.3	87.5	91.3	75.1	88.7

Table 3: The accuracy (%) averaged over tasks ($k = 30, k_c = 2$). L: Llama, L2/3: Llama2/3.3, M: Mistral, D: Deepseek. Best results are **boldfaced**.

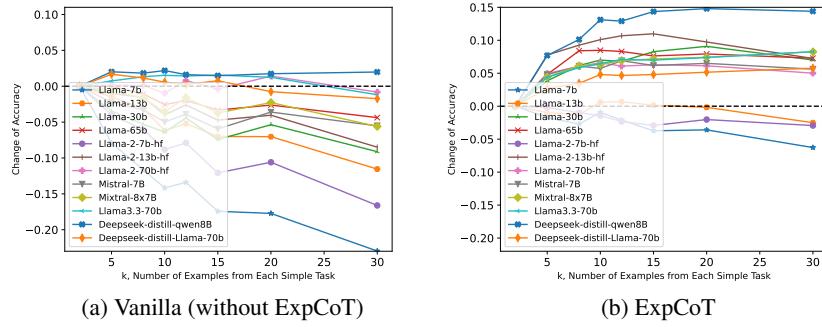


Figure 7: The impact of more simple task examples for without or with ExpCoT ($k_c = 2$).

Evaluation. We first use Algorithm 1 on the examples and then redo the experiment in Section 3.1. Table 3 compares the average accuracy of without CoT, naïve CoT, and our ExpCoT, and shows that ExpCoT leads to significant improvement. We also compare the impact of simple task examples in the two cases of without and with ExpCoT in Fig. 7. With ExpCoT, the models can now utilize simple task examples better, except some small models likely because they still cannot identify the skills from the simple task examples due to the limited capacity. [Failure analysis in Appendix B.8.1 shows that simple task confusion becomes rare since ExpCoT helps recognize the composition.](#) These results demonstrate ExpCoT can improve the in-context composition.

5 CONCLUSIONS AND LIMITATIONS

This work studied the in-context composition ability of language models. Empirical studies of representative models on linguistic and logic tasks showed they in general have limited such ability due to the failure to recognize the composition and identify skills for the steps of the composition. Theoretical analysis showed that it is crucial to align skills from examples with the steps.

Note that typical text data may already have annotations for the basic skills, e.g., “by the Pythagorean Theorem”, which can act as the annotation “Step1” in our ExpCoT method. Our studies suggest that such annotations can be crucial for the success of composition, and adding more such annotations can improve the performance. While annotation can be expensive for web-scale datasets if done via human supervision, one alternative way is to use LLMs to do the annotations and use the annotated data for self-boosting. Furthermore, it suggests synthesizing data with annotations to help the model learn to compose. These are an interesting research directions, which we will leave for future work. Also note that due to resource limitations, our empirical studies do not include the most powerful models like GPT-5, nor consider complex tasks like those targeted by AI assistants. The results from this work hopefully pave the road for investigations in more sophisticated models and tasks.

486 **ETHICS STATEMENT**
487

488 Our work aims to improve the theoretical understanding of compositional tasks in in-context learning.
489 Our paper is mostly academic in nature and we foresee no immediate negative ethical impact. We
490 discover an unexpected phenomenon of LLM's compositional ability and provide detailed analyses of
491 it, which may have a positive impact on the AI community. We hope our work will inspire effective
492 algorithm design and promote a better understanding of the compositional ability of LLMs.
493

494 **REPRODUCIBILITY STATEMENT**
495

496 For theoretical results in the Section 4, a complete proof is provided in the Appendix C. For
497 experiments in the Section 3, complete details and experimental results are provided in the Appendix B.
498 The source code with explanations and comments is provided in supplementary materials.
499

500 **REFERENCES**
501

502 Amirhesam Abedsoltan, Huaqing Zhang, Kaiyue Wen, Hongzhou Lin, Jingzhao Zhang, and Mikhail
503 Belkin. Task generalization with autoregressive compositional structure: Can learning from d tasks
504 generalize to d^T tasks? *arXiv preprint arXiv:2502.08991*, 2025.

505 Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
506 algorithm is in-context learning? investigations with linear models. In *The Eleventh International
507 Conference on Learning Representations*, 2023.

508 Shengnan An, Zeqi Lin, Bei Chen, Qiang Fu, Nanning Zheng, and Jian-Guang Lou. Does deep
509 learning learn to abstract? a systematic probing framework. In *The Eleventh International
510 Conference on Learning Representations*, 2023a.

512 Shengnan An, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Jian-Guang Lou, and Dongmei Zhang.
513 How do in-context examples affect compositional generalization? *arXiv preprint arXiv:2305.04835*,
514 2023b.

515 Anthropic. The claude 3 model family: Opus, sonnet, haiku. https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf, 2024.

518 Lukas Berglund, Meg Tong, Maximilian Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz
519 Korbak, and Owain Evans. The reversal curse: LLMs trained on “a is b” fail to learn “b is
520 a”. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=GPKTIktA0k>.

523 Jannik Brinkmann, Abhay Sheshadri, Victor Levoso, Paul Swoboda, and Christian Bartelt. A
524 mechanistic analysis of a transformer trained on a symbolic multi-step reasoning task. In Lun-
525 Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Compu-
526 tational Linguistics: ACL 2024*, pp. 4082–4102, Bangkok, Thailand, August 2024. Associa-
527 tion for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.242. URL <https://aclanthology.org/2024.findings-acl.242/>.

528 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
529 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
530 few-shot learners. *Advances in neural information processing systems*, 2020.

532 Jiaao Chen, Xiaoman Pan, Dian Yu, Kaiqiang Song, Xiaoyang Wang, Dong Yu, and Jianshu Chen.
533 Skills-in-context prompting: Unlocking compositionality in large language models. *Findings of the
534 Association for Computational Linguistics: Empirical Methods in Natural Language Processing*,
535 2024.

536 Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, and He He. Meta-learning via language
537 model in-context tuning. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.),
538 *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Vol-
539 ume 1: Long Papers)*, pp. 719–730, Dublin, Ireland, May 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.acl-long.53.

540 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
541 Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.
542 *arXiv preprint arXiv:2210.11416*, 2022.

543

544 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
545 *International Conference on Learning Representations (ICLR)*, 2024.

546

547 Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
548 memory-efficient exact attention with IO-awareness. In *Advances in Neural Information Processing
549 Systems (NeurIPS)*, 2022.

550

551 DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model,
552 2024.

553

554 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
555 *arXiv preprint arXiv:2501.12948*, 2025.

556

557 Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
558 Zhifang Sui. A survey for in-context learning. *arXiv preprint arXiv:2301.00234*, 2022.

559

560 Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
561 Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Xiang
562 Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on
563 compositionality. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.

564

565 Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
566 the mystery behind chain of thought: A theoretical perspective. In *Thirty-seventh Conference on
567 Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=qHrADgAdYu>.

568

569 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
570 in-context? a case study of simple function classes. *Advances in Neural Information Processing
571 Systems*, 35:30583–30598, 2022.

572

573 Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
574 Papailiopoulos. Looped transformers as programmable computers. In *International Conference on
575 Machine Learning*, pp. 11398–11442. PMLR, 2023.

576

577 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
578 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
579 models. *arXiv preprint arXiv:2407.21783*, 2024.

580

581 Jiuxiang Gu, Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training:
582 Provably efficient learning of higher-order transformers. *arXiv preprint arXiv:2405.16411*, 2024.

583

584 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
585 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.

586

587 Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How
588 do transformers learn in-context beyond simple functions? a case study on learning with repre-
589 sentations. In *The Twelfth International Conference on Learning Representations*, 2024. URL
590 <https://openreview.net/forum?id=ikwEDvalJZ>.

591

592 Tianyu Guo, Hanlin Zhu, Ruiqi Zhang, Jiantao Jiao, Song Mei, Michael I Jordan, and Stuart Russell.
593 How do llms perform two-hop reasoning in context? *arXiv preprint arXiv:2502.13913*, 2025b.

594

595 Yinghui He, Abhishek Panigrahi, Yong Lin, and Sanjeev Arora. AdaptMI: Adaptive skill-based
596 in-context math instructions for small language models. In *Second Conference on Language
597 Modeling*, 2025. URL <https://openreview.net/forum?id=k72RxnoS5g>.

598

599 Guan Zhe Hong, Nishanth Dikkala, Enming Luo, Cyrus Rashtchian, Xin Wang, and Rina Panigrahy.
600 How transformers solve propositional logic problems: A mechanistic analysis. *arXiv preprint
601 arXiv:2411.04105*, 2024.

594 SU Hongjin, Jungo Kasai, Chen Henry Wu, Weijia Shi, Tianlu Wang, Jiayi Xin, Rui Zhang, Mari
595 Ostendorf, Luke Zettlemoyer, Noah A Smith, et al. Selective annotation makes language models
596 better few-shot learners. In *The Eleventh International Conference on Learning Representations*,
597 2023.

598 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
599 *arXiv preprint arXiv:2212.10403*, 2022.
600

601 Nirmit Joshi, Gal Vardi, Adam Block, Surbhi Goel, Zhiyuan Li, Theodor Misiakiewicz, and Nathan
602 Srebro. A theory of learning with autoregressive chain of thought. *arXiv preprint arXiv:2503.07932*,
603 2025.

604 Siddharth Karamcheti, Laurel Orr, Jason Bolton, Tianyi Zhang, Karan Goel, Avanika Narayan, Rishi
605 Bommasani, Deepak Narayanan, Tatsunori Hashimoto, Dan Jurafsky, et al. Mistral—a journey
606 towards reproducible language model training, 2021.

607 Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
608 Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. *arXiv
609 preprint arXiv:2210.02406*, 2022.
610

611 Najoung Kim and Tal Linzen. COGS: A compositional generalization challenge based on semantic
612 interpretation. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of
613 the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 9087–
614 9105, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
615 emnlp-main.731. URL [https://aclanthology.org/2020.emnlp-main.731/](https://aclanthology.org/2020.emnlp-main.731).

616 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
617 language models are zero-shot reasoners. *Advances in neural information processing systems*, 35:
618 22199–22213, 2022.

619 Itay Levy, Ben Bogin, and Jonathan Berant. Diverse demonstrations improve in-context compositional
620 generalization. *arXiv preprint arXiv:2212.06800*, 2022.
621

622 Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen.
623 Making language models better reasoners with step-aware verifier. In Anna Rogers, Jordan Boyd-
624 Gruber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association
625 for Computational Linguistics (Volume 1: Long Papers)*, pp. 5315–5333, Toronto, Canada, July
626 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.291. URL
627 <https://aclanthology.org/2023.acl-long.291/>.

628 Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transform-
629 ers to solve inherently serial problems. In *The Twelfth International Conference on Learning
630 Representations*, 2024. URL <https://openreview.net/forum?id=3EWTEy9MTM>.

631 Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, Zhuoyan Xu, and Junze Yin. Conv-basis: A
632 new paradigm for efficient attention inference and gradient computation in transformers. *arXiv
633 preprint arXiv:2405.05219*, 2024.

634 Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
635 learn shortcuts to automata. In *The Eleventh International Conference on Learning Representations*,
636 2023. URL <https://openreview.net/forum?id=De4FYqjFueZ>.
637

638 Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
639 makes good in-context examples for GPT-3? In Eneko Agirre, Marianna Apidianaki, and Ivan Vulić
640 (eds.), *Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge
641 Extraction and Integration for Deep Learning Architectures*, pp. 100–114, Dublin, Ireland and
642 Online, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.deelio-1.10.

643 Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically
644 ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity. In
645 Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th
646 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
647 pp. 8086–8098, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.acl-long.556.

648 Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
649 provably the optimal in-context learner with one layer of linear self-attention. *arXiv preprint*
650 *arXiv:2307.03576*, 2023.

651

652 Eran Malach. Auto-regressive next-token predictors are universal learners. In *International Conference on Machine Learning*, pp. 34417–34431. PMLR, 2024.

653

654 Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning to learn
655 in context. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz
656 (eds.), *Proceedings of the 2022 Conference of the North American Chapter of the Association for*
657 *Computational Linguistics: Human Language Technologies*, pp. 2791–2809, Seattle, United States,
658 July 2022a. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.201.

659

660 Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
661 Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
662 *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*.
663 Association for Computational Linguistics, 2022b.

664

665 Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
666 via natural language crowdsourcing instructions. In *Proceedings of the 60th Annual Meeting of the*
667 *Association for Computational Linguistics*, 2022.

668

669 OpenAI. GPT-4 technical report. *arXiv preprint arxiv:2303.08774*, 2023.

670

671 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
672 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. *Advances in Neural Information Processing Systems*, 2022.

673

674 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah Smith, and Mike Lewis. Measuring
675 and narrowing the compositionality gap in language models. In Houda Bouamor, Juan Pino,
676 and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP*
677 2023, pp. 5687–5711, Singapore, December 2023. Association for Computational Linguistics.
678 doi: 10.18653/v1/2023.findings-emnlp.378. URL <https://aclanthology.org/2023.findings-emnlp.378>.

679

680 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
681 understanding by generative pre-training. *OpenAI blog*, 2018.

682

683 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
684 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

685

686 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
687 Finn. Direct preference optimization: Your language model is secretly a reward model. In
688 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=HPuSIXJaa9>.

689

690 Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
691 learning. In *Proceedings of the 2022 Conference of the North American Chapter of the Association*
692 *for Computational Linguistics: Human Language Technologies*, pp. 2655–2671, 2022.

693

694 Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
695 Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training enables
zero-shot task generalization. In *International Conference on Learning Representations*, 2022.

696

697 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
698 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
699 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

700

701 Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context
learning differently? In *Forty-first International Conference on Machine Learning*, 2024. URL
<https://openreview.net/forum?id=WOa96EG26M>.

702 Sania Sinha, Tanawan Prem Sri, and Parisa Kordjamshidi. A survey on compositional learning of AI
703 models: Theoretical and experimental practices. *Transactions on Machine Learning Research*,
704 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=BXDxwItNqQ>.
705 Survey Certification.

706 Jiajun Song, Zhuoyan Xu, and Yiqiao Zhong. Out-of-distribution generalization via composition: a
707 lens through induction heads in transformers. *Proceedings of the National Academy of Sciences*,
708 122(6):e2417182122, 2025.

709 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
710 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
711 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

712 Jonathan Thomm, Giacomo Camposampiero, Aleksandar Terzic, Michael Hersche, Bernhard
713 Schölkopf, and Abbas Rahimi. Limits of transformer language models on learning to com-
714 pose algorithms. In *The Thirty-eighth Annual Conference on Neural Information Processing
715 Systems*, 2024. URL <https://openreview.net/forum?id=x7AD0343Jz>.

716 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
717 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
718 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

719 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
720 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
721 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

722 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
723 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
724 systems*, 30, 2017.

725 Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordvintsev,
726 Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent.
727 In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
728 Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*,
729 volume 202 of *Proceedings of Machine Learning Research*, pp. 35151–35174. PMLR, 23–29 Jul
730 2023.

731 Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language
732 models are latent variable models: Explaining and finding good demonstrations for in-context
733 learning. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023a.

734 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
735 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
736 models. In *The Eleventh International Conference on Learning Representations*, 2023b. URL
737 <https://openreview.net/forum?id=1PL1NIMMrw>.

738 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
739 Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions,
740 2022.

741 Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon Kim. Multi-
742 task prompt tuning enables parameter-efficient transfer learning. In *The Eleventh International
743 Conference on Learning Representations*, 2023c.

744 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
745 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
746 neural information processing systems*, 35:24824–24837, 2022.

747 Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
748 Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently. *arXiv
749 preprint arXiv:2303.03846*, 2023.

756 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
757 language models with attention sinks. In *The Twelfth International Conference on Learning*
758 *Representations*, 2024. URL <https://openreview.net/forum?id=NG7ssS51zVF>.

759 Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
760 learning as implicit bayesian inference. In *International Conference on Learning Representations*,
761 2022.

762 Zhuoyan Xu, Khoi Duc Nguyen, Preeti Mukherjee, Somali Chaterji, Yingyu Liang, and Yin Li.
763 Adainf: Adaptive inference for resource-constrained foundation models. In *Workshop on Efficient*
764 *Systems for Foundation Models II @ ICML2024*, 2024a. URL <https://openreview.net/forum?id=A942VRmfhQ>.

765 Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional ability?
766 an investigation into limitations and scalability. In *First Conference on Language Modeling*, 2024b.
767 URL <https://openreview.net/forum?id=iI1CzEhEMU>.

768 Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, and Yingyu Liang. Towards few-shot
769 adaptation of foundation models via multitask finetuning. In *The Twelfth International Conference*
770 *on Learning Representations*, 2024c.

771 Zhuoyan Xu, Khoi Duc Nguyen, Preeti Mukherjee, Saurabh Bagchi, Somali Chaterji, Yingyu Liang,
772 and Yin Li. Learning to inference adaptively for multimodal large language models. *arXiv preprint*
773 *arXiv:2503.10905*, 2025.

774 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
775 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
776 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
777 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
778 Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
779 Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*,
780 2024a.

781 Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large language
782 models latently perform multi-hop reasoning? In Lun-Wei Ku, Andre Martins, and Vivek
783 Srikanth (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational*
784 *Linguistics (Volume 1: Long Papers)*, pp. 10210–10229, Bangkok, Thailand, August 2024b.
785 Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.550. URL <https://aclanthology.org/2024.acl-long.550/>.

786 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
787 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
788 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.

789 Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. Compositional exemplars for
790 in-context learning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
791 Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on*
792 *Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 39818–39833.
793 PMLR, 23–29 Jul 2023.

794 Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
795 *arXiv preprint arXiv:2306.09927*, 2023a.

796 Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
797 large language models. In *The Eleventh International Conference on Learning Representations*,
798 2023b. URL <https://openreview.net/forum?id=5NTt8GFjUHkr>.

799 Haoyu Zhao, Simran Kaur, Dingli Yu, Anirudh Goyal, and Sanjeev Arora. Can models learn skill
800 composition from examples? In *The Thirty-eighth Annual Conference on Neural Information*
801 *Processing Systems*, 2024. URL <https://openreview.net/forum?id=1sLdprsbmk>.

802 Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
803 few-shot performance of language models. In *International Conference on Machine Learning*, pp.
804 12697–12706. PMLR, 2021.

810 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
811 Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting enables complex
812 reasoning in large language models. In *The Eleventh International Conference on Learning
813 Representations*, 2023. URL <https://openreview.net/forum?id=WZH7099tgfM>.
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864	CONTENTS	
865		
866		
867	1 Introduction	1
868		
869	2 Related Work	2
870		
871		
872	3 Empirical Study on the In-Context Composition Ability of LLMs	3
873	3.1 Composite task examples help but simple task examples hurt composition	4
874	3.2 The models may ignore the compositional structure	5
875	3.3 The models largely utilize the operators rather than the content	5
876	3.4 Inner attentions may not distinguish the simple and composite tasks	6
877	3.5 Chain-of-Thought examples may not help	7
878		
879		
880		
881	4 Theoretical Analysis	7
882		
883	4.1 Verification of the insights: the expanded Chain-of-Thought method	8
884		
885	5 Conclusions and Limitations	9
886		
887		
888	A More Discussion on Related Work	19
889	A.1 Large language models	19
890	A.2 In-context learning and Chain-of-Thought	19
891	A.3 Compositional task learning	20
892		
893		
894	B Experimental Details and More Results	20
895		
896	B.1 Details of the dataset and setup	20
897	B.1.1 Shuffling v.s. no shuffling: the effect of the order of in-context examples .	20
898		
899	B.2 Detailed results for the effect of in-context examples	21
900	B.2.1 Composite task examples are harmful for simple task queries	24
901		
902	B.3 More results for the output distribution	25
903	B.4 Detailed results for irrelevant content/operator	25
904		
905	B.5 Detailed results for inner attention	28
906	B.5.1 More results for similarities of attentions on unsuccessful queries	28
907	B.5.2 dissimilarities of attentions on successful queries	28
908	B.5.3 Results for average attention from the query	29
909		
910	B.6 Detailed results about CoT	29
911	B.7 The experiment before ExpCoT: adding tags to samples	29
912		
913	B.8 Detailed results about ExpCoT	32
914	B.8.1 Failure Case Analysis	32
915		
916	B.9 Experiments on Compositions of More Simple Tasks	35
917	B.10 Experiments on More Models	35

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

C Details of Theoretical Analysis

37

Appendix

A MORE DISCUSSION ON RELATED WORK

A.1 LARGE LANGUAGE MODELS

LLMs are often Transformer-based (Vaswani et al., 2017) equipped with massive parameter sizes and extensive pretraining data OpenAI (2023); Anthropic (2024); DeepSeek-AI (2025); Yang et al. (2024a); Grattafiori et al. (2024). The training pipeline of LLM often involve pretraining and post-training. LLMs commonly adopt auto-regressive pretraining strategies (Radford et al., 2018; 2019; Brown et al., 2020). Significant research has focused on post-training methods to adapt LLMs for various tasks, such as multitask finetuning (Sanh et al., 2022; Wang et al., 2023c; Xu et al., 2024c), instruction tuning Chung et al. (2022); Mishra et al. (2022); Wang et al. (2022), in-context learning (Min et al., 2022b; Dong et al., 2022; Yao et al., 2023), and reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022; Rafailov et al., 2023; Shao et al., 2024). As LLMs continue to scale in size, numerous studies have focused on improving their deployment efficiency, including memory management Xiao et al. (2024); DeepSeek-AI (2024); Dao et al. (2022); Dao (2024) and inference acceleration (Liang et al., 2024; Gu et al., 2024; Xu et al., 2024a; 2025).

A.2 IN-CONTEXT LEARNING AND CHAIN-OF-THOUGHT

In-context learning. LLM exhibits a remarkable ability for in-context learning (ICL) (Brown et al., 2020; OpenAI, 2023; Team et al., 2023; Anthropic, 2024), which allows pretrained LLMs to solve specific tasks by conditioning on a few prepended in-context examples, without requiring any updates to the model parameters. Several empirical studies investigate the behavior of ICLs. Zhao et al. (2021); Lu et al. (2022) formulate the problems and analyze the sensitivity of LLMs to in-context examples sequences. Min et al. (2022b); Wei et al. (2023) investigate on how LLMs performance change react to the ground-truth label and text demonstrations within in-context examples. Rubin et al. (2022); Liu et al. (2022); Hongjin et al. (2023); Wang et al. (2023a) propose methods to effective selection of in-context learning examples. Chen et al. (2022); Min et al. (2022a) use meta training with an explicit in-context learning object to enhance performance. Theoretically, Xie et al. (2022) provide a bayesian framework to explain the working mechanism of in-context learning. Garg et al. (2022); Von Oswald et al. (2023); Akyürek et al. (2023); Mahankali et al. (2023); Zhang et al. (2023a); Shi et al. (2024) investigate with linear models, showing how transformers can represent gradient descent and conduct linear regression. Guo et al. (2024) provide analysis on how ICL works in non-linear functions. Based on these works, we present an analysis demonstrating how LLMs can exhibit compositional capabilities in ICL tasks.

Chain-of-Thought reasoning. Chain of thought (CoT) is widely used to solve multi-step reasoning questions Kojima et al. (2022); Wei et al. (2022). CoT generates an intermediate reasoning process in language before outputting the final answer. Typical CoT methods prompt LLMs to produce these intermediate steps either in zero-shot or few-shot settings. Zero-shot-CoT adds instructions such as "Let's think step by step" in prompts Kojima et al. (2022) while few-shot-CoT provides several examples with step-by-step reasoning as in in-context demonstrations Brown et al. (2020); Wei et al. (2022). Typical few-shot-CoT improves LLM's reasoning ability with manually designed demonstrations Khot et al. (2022); Zhou et al. (2023); Li et al. (2023); Wang et al. (2023b). Another line of research focuses on automatically selecting demonstrations, eliminating the need for manual construction Zhang et al. (2023b). Several theoretical work have been proposed to analyze the effectiveness of CoT. Liu et al. (2023) studies the expressiveness of shallow transformers, Feng et al. (2023); Li et al. (2024) further shows CoT allows for performing more serial computations than a vanilla transformer without CoT, increasing the effective depth of a transformer. Joshi et al. (2025) present a uniform framework that allows for universal representability and computationally tractable chain-of-thought learning. Abedsoltan et al. (2025) analyzes the task generalization enabled by composition. Our theoretical analysis is partially inspired by Joshi et al. (2025); Abedsoltan et al. (2025) but considers a different setting with both simple/composite task examples, and also analyzes when the composition can fail.

1026 A.3 COMPOSITIONAL TASK LEARNING
1027

1028 Solving complex tasks and reasoning of LLM is an active area of LLM research field Huang & Chang
1029 (2022); Sinha et al. (2024). There is a line of empirical works explored the compositional capabilities
1030 of LLMs in abstract reasoning tasks under ICL settings (Kim & Linzen, 2020; Levy et al., 2022). An
1031 et al. (2023a;b) show LLMs are capable of learning abstract reasoning (e.g., grammar) to perform new
1032 tasks when finetuned or appropriate in-context examples. Ye et al. (2023); Dziri et al. (2023); Thomm
1033 et al. (2024); Xu et al. (2024b) show that LLMs can handle simple sub-tasks, but often struggle with
1034 tasks that require composing multiple sub-tasks. Press et al. (2023) shows that such challenges can be
1035 mitigated through the use of chain-of-thought prompting. Berglund et al. (2024) reveals LLMs trained
1036 on relations like “A is B” fail to learn inverse relations “B is A”. (Zhao et al., 2024) demonstrates
1037 that small-scale LLMs can learn and generalize compositional skills through fine-tuning on tasks
1038 involving skill combinations. (Song et al., 2025; Yang et al., 2024b; Brinkmann et al., 2024; Guo
1039 et al., 2025b; Hong et al., 2024) provide mechanistic analyses on how LLMs tackle compositional
1040 reasoning tasks. (Chen et al., 2024) also studied composing skills in-context, with the focus of
1041 unlocking the compositionality ability of the model. It provided carefully designed Skills-in-Context
1042 Prompting, which includes explanations of the basic skills along with examples, and also step-by-step
1043 explanations about how to compose them to solve the compositional query. Such a prompting allows
1044 the model to more actively utilize pre-existing internal skills from pretraining for compositional tasks.
1045 Our work focuses on investigating the models’ ability in a prior unknown composition with a prior
1046 unknown skills, and thus considers the setting where skills are only demonstrated via in-context
1047 examples (without in-context explanations of the skills). (He et al., 2025) studied the setting where
1048 the model can predict the required skills for the query and retrieve in-context examples from a given
1049 pool. It noted that such skill-based prompting can hurt small model performance on easy questions
1050 by introducing unnecessary information and resulting in overthinking, and then provided an adaptive
1051 method to address this issue. Our work has a different focus on the in-context composition ability, i.e.,
1052 whether the model can learn and compose the skills from the given in-context examples, so conducts
1053 experiments on the tasks from Xu et al. (2024b) and finds that LLMs fail on composite tasks when
1054 logical steps are intermixed. Our work further provides empirical and theoretical analysis on why the
1055 composition can succeed or fail and introduces an improved method.

1056 B EXPERIMENTAL DETAILS AND MORE RESULTS
1057

1058 B.1 DETAILS OF THE DATASET AND SETUP
1059

1060 We use the dataset from Xu et al. (2024b), and construct 9 composite tasks for our experiments. The
1061 details can be found in Xu et al. (2024b), while here we provide some illustrations for convenience.

1062 The composite tasks are compositions using eight simple tasks listed in Table 4. We use these
1063 simple tasks to construct the following composite tasks: opposition+swap (named ‘oppopair
1064 swap’ in the code), opposition+pastTense (‘oppoverb’), pastTense+swap (‘verbpair swap’), cap-
1065 italization+swap (‘upperswap’), swap+capitalization (‘swapupper’), capitalization+twoSum (‘upper
1066 twoSum’), pastTense+plusOne (‘verbsingle plusone’), pastTense+capitalization (‘verbsingle upper’),
1067 plusOne+capitalization (‘plusone upper’).

1068 **Experimental Setup.** For each composite task, the test prompts are generated using the code from
1069 the dataset. Four random seeds are used; for each random seed, n test prompts are generated and the
1070 in-context examples in each test prompt are randomly shuffled. The number of test prompts n is set
1071 to 100 for most composite tasks, except for two composite tasks with a small amount of data: n is
1072 set to the maximum number 78 for opposition+pastTense, and n is set to the maximum number 84
1073 for pastTense+plusOne and pastTense+capitalization. Four NVIDIA H800 GPUs are used for the
1074 experiments.

1075 B.1.1 SHUFFLING V.S. NO SHUFFLING: THE EFFECT OF THE ORDER OF IN-CONTEXT
1076 EXAMPLES
1077

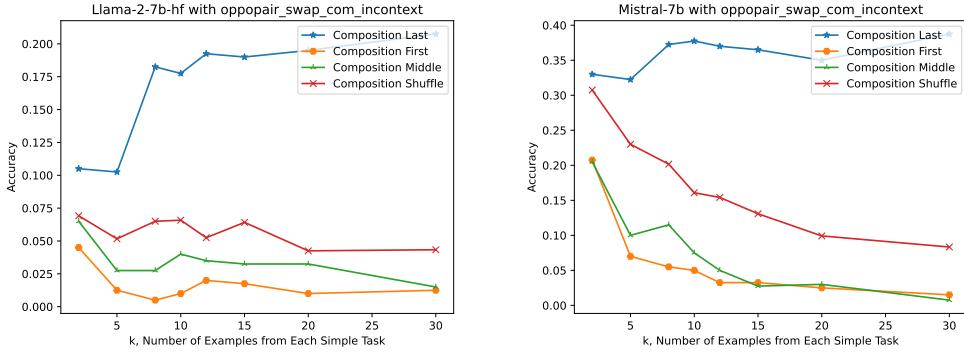
1078 The order of in-context examples is known to affect the performance of in-context learning. Here
1079 we perform an experiment comparing the results in four settings. (1) Shuffling: all the examples
(simple and composite task examples) are randomly shuffled, and average accuracy over 4 random

1080	Tasks	Task	Input	Output
1081	Words	(A) Capitalization	apple	APPLE
1082		(B) Swap	bell ford	ford bell
1083		(C) Two Sum	twenty @ eleven	thirty-one
1084		(D) Past Tense	pay	paid
1085		(E) Opposite	Above	Below
1086		(F) Plus One	435	436
1087		(G) Modular	15 @ 6	3
1088		(H) Two Sum Plus One	12 # 5	18
1089				
1090				

1092 Table 4: The collection of simple logical tasks. This table is adopted from Xu et al. (2024b).
1093

1094
1095 seeds is reported. (2) Composition Last: the context consists of simple task 1 examples, followed by
1096 simple task 2 examples, and lastly the composite task examples. (3) Composition Middle: the context
1097 consists of simple task 1 examples, followed by the composite task examples, and lastly simple task
1098 2 examples. (4) Composition First: the context consists of the composite task examples, followed by
1099 simple task 1 examples, and lastly simple task 2 examples.

1100 Fig. 8 shows the results of two models Llama-2-7B and Mistral-7B on the opposition+swap task.
1101 The accuracies for the 4 settings are drastically different. This shows that the order of the examples
1102 indeed has a strong influence on the result. Such an influence can blur our investigation. Therefore,
1103 we randomly shuffle the examples to remove such an influence.
1104



1117 Figure 8: The effects of shuffling v.s. no shuffling.
1118

1119 B.2 DETAILED RESULTS FOR THE EFFECT OF IN-CONTEXT EXAMPLES

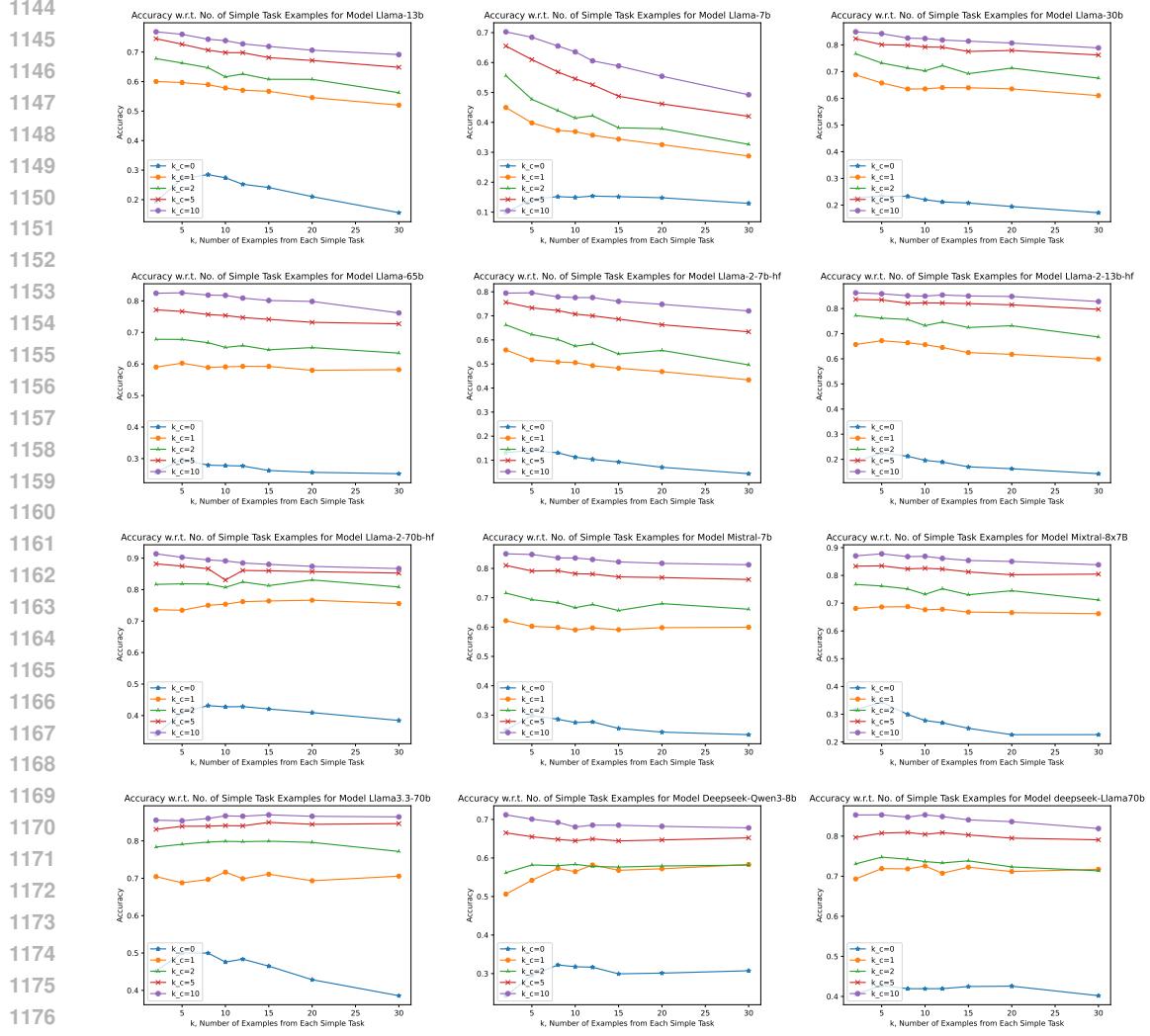
1120 In this section, we present detailed results from our experiments on the effect of in-context examples.
1121

1122 **In-context simple task examples.** Fig. 9 shows the effect of in-context simple task examples for each
1123 k_c and model (the reported accuracy is averaged over tasks). More precisely, we draw a subfigure for
1124 each model and draw a curve for each k_c ; the x -axis is the number k of examples from each simple
1125 task, and y -axis is the accuracy averaged over all the composite tasks.
1126

1127 Fig. 10 shows the effect of in-context simple task examples for each task and model (the reported
1128 accuracy is averaged over k_c). More precisely, we draw a subfigure for each model and draw a
1129 curve for each task; the x -axis is the number k of examples from each simple task, and y -axis is the
1130 accuracy averaged over all the k_c values.

1131 From the detailed results, we can see that, the larger models like Llama-2-70B and Mixtral-8x7B
1132 achieve quite high accuracies on many tasks when k_c is large. The high accuracy do not change much
1133 for different k and thus the negative impact of more examples from simple tasks is not significant.
1134 However, on harder tasks like opposition+swap, the negative impact is again substantial.

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198

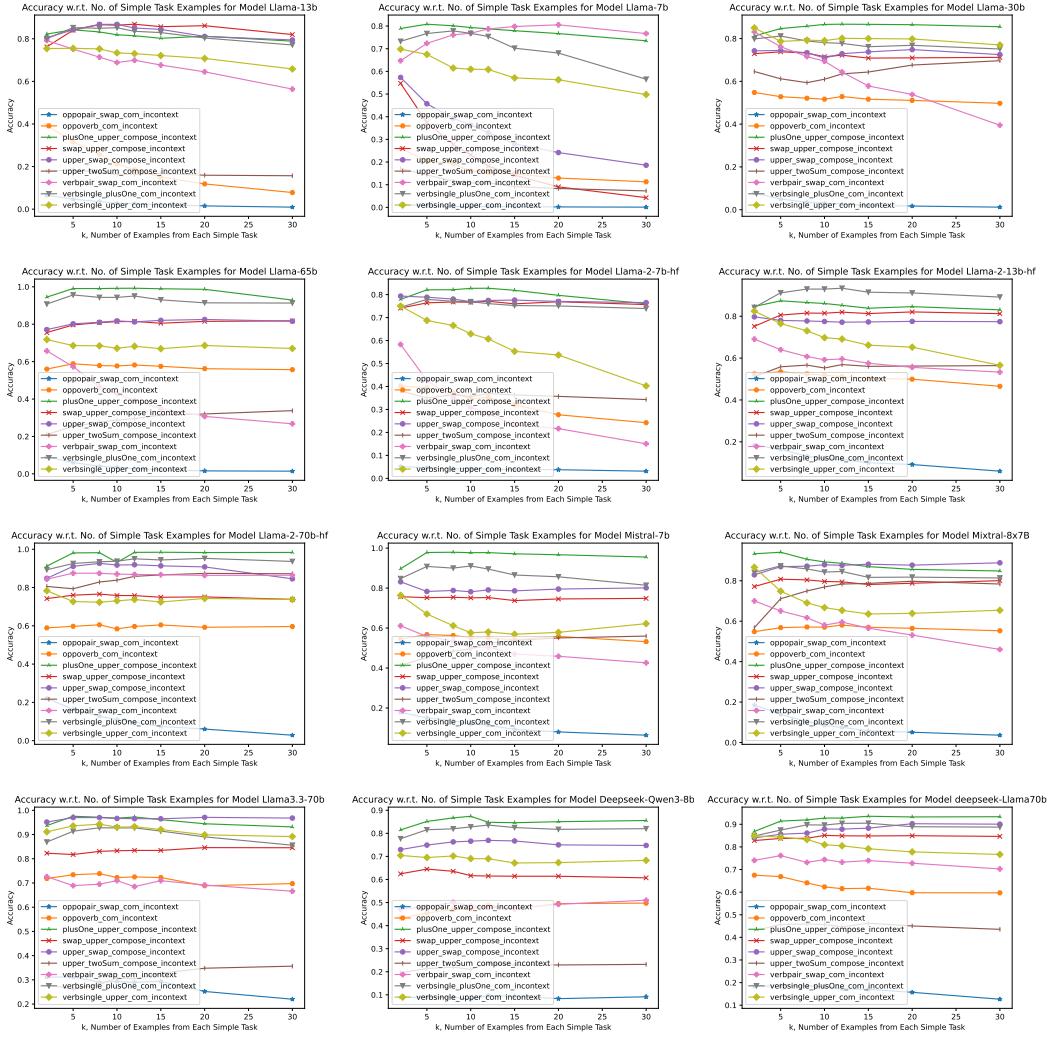


Figure 10: The effect of in-context simple task examples for each model and task, averaged over k_c .

1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

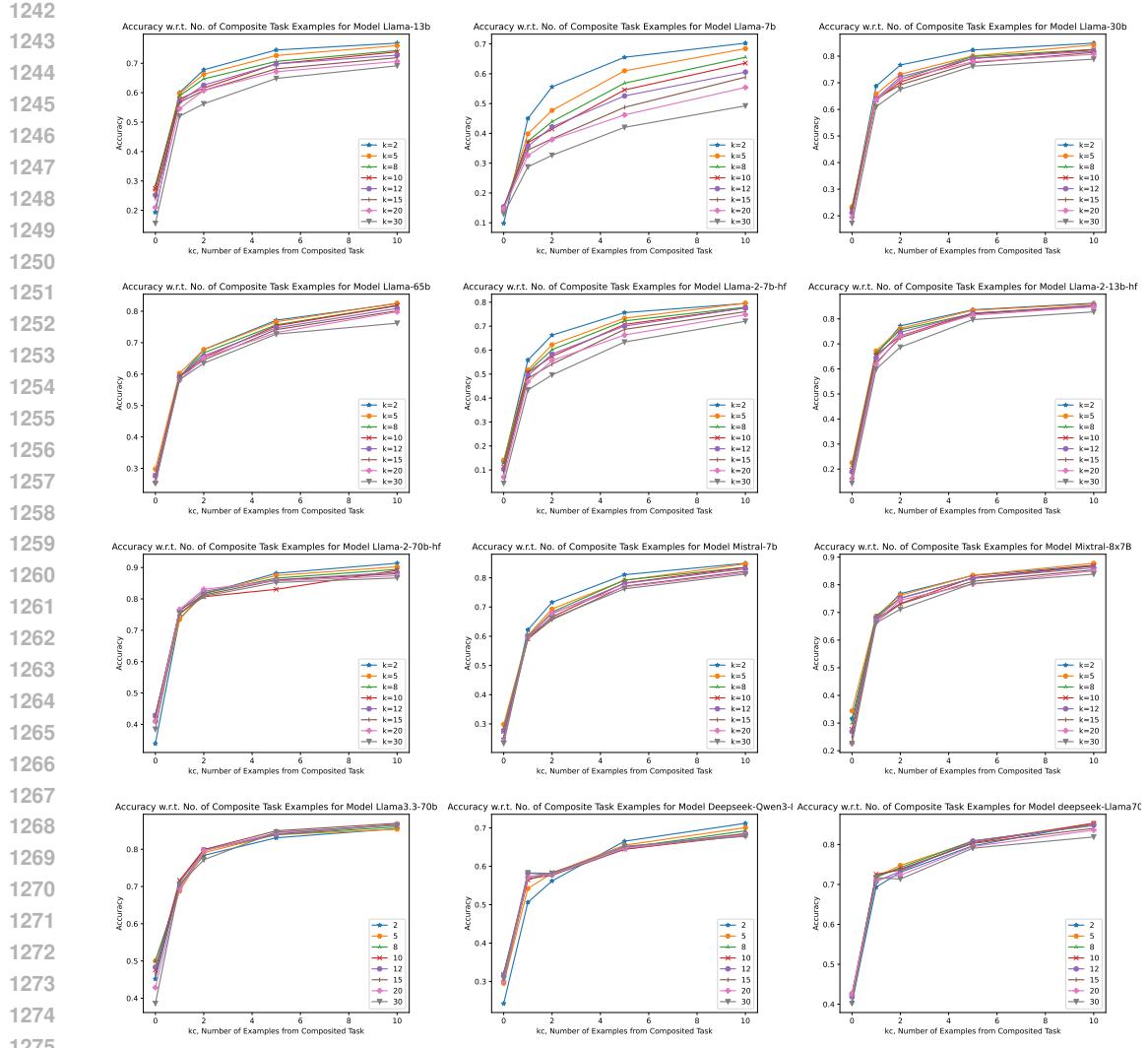


Figure 11: The effect of in-context composite task examples for each model and k_c , averaged over tasks.

In-context composite task examples. Fig. 11 shows the effect of in-context composite task examples for each k and model (the reported accuracy is averaged over tasks). More precisely, we draw a subfigure for each model and draw a curve for each k ; the x -axis is the number k_c of examples from the composite task, and y -axis is the accuracy averaged over all the composite tasks.

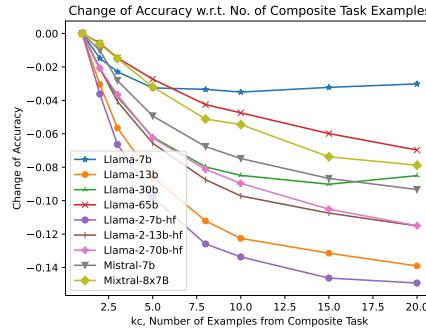
The trend is consistent across different models and k 's: more composite task examples indeed help the performance on the composite queries as expected.

B.2.1 COMPOSITE TASK EXAMPLES ARE HARMFUL FOR SIMPLE TASK QUERIES

Section 3.1 presents the result that simple task examples have an negative impact on the performance of the model on composite task queries. Here we also investigate the impact of composite task examples on the performance of the model on simple task queries.

Fig. 12 shows the change of accuracy on simple task queries when the number k_c of composite task examples increases. This again confirms that the models does not correctly distinguish between composite and simple task examples for addressing the query.

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307

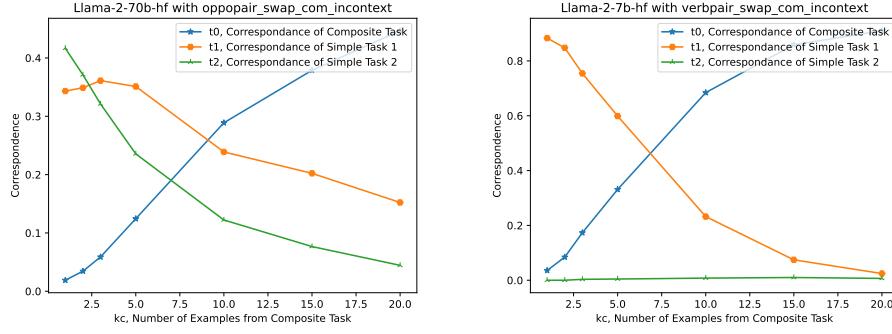


1308 Figure 12: The effect of composite task examples on the performance on simple task queries, averaged
1309 over k and tasks.

B.3 MORE RESULTS FOR THE OUTPUT DISTRIBUTION

In the main body we examine how increasing the number k_1 of simple task 1 examples affects the output distribution on the opposition+swap task, with $k_2 = 10$ and $k_c = 5$. Here we examine how increasing the number k_c of composite task examples affects the output. More precisely, we use the Llama-2-70B model on the opposition+swap task and use the Llama-2-7B model on the pastTense+swap task, and vary the number of composite task examples k_c and fix $k_1 = k_2 = 10$.

Fig. 13 shows the results. As expected, when k_c increases, the correspondence to the composite task increases while those to the simple tasks decreases. This again supports that the model does not distinguish between composite and simple task examples when utilizing them to address the query.



1336 Figure 13: The output distribution for different numbers of composite task examples (k_c).
1337

B.4 DETAILED RESULTS FOR IRRELEVANT CONTENT/OPERATOR

1343 Here we present detailed results for ablating the content or the operator in the composite task
1344 examples. We choose representative settings: $k_c = 2, 5$ for the tasks including opposition+pastTense,
1345 opposition+swap, pastTense+swap, pastTense+plusOne, and pastTense+capitalization. We report the
1346 accuracy average over the tasks (and random shuffling).

1347 Fig. 14 shows that after ablating the content, the trend of performance decreasing with larger k is
1348 roughly the same as before. This suggests that the content may not be the main factor here. Fig. 15
1349 shows that after ablating the operator, the negative impact of larger k is not as significant. This
suggests that the operator may play an important role in how the model utilizes the examples.

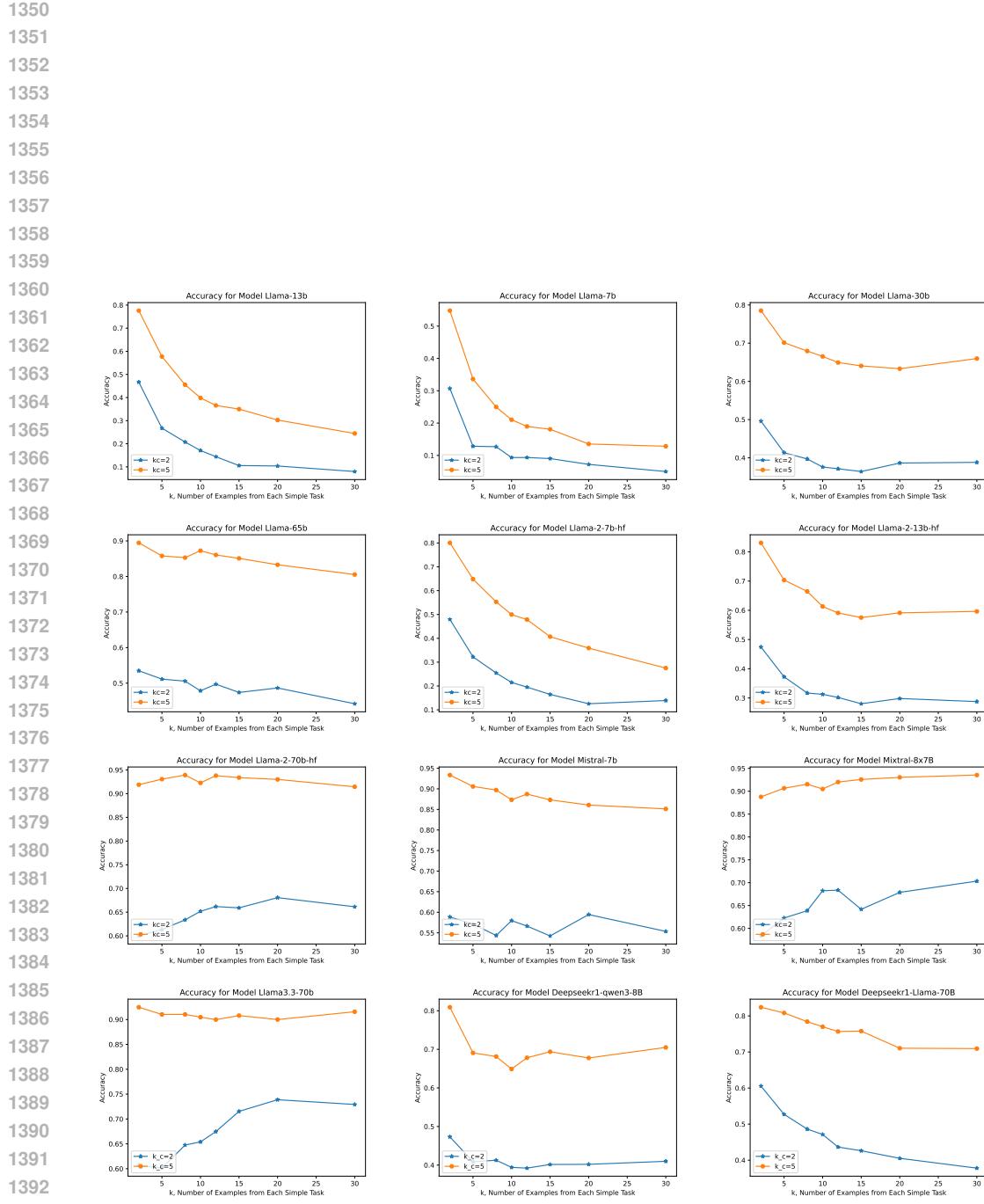


Figure 14: Results after ablating the content in the composite task examples.

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1448
Figure 15: Results after ablating the operators in the composite task examples.
1449

1450

1451

1452

1453

1454

1455

1456

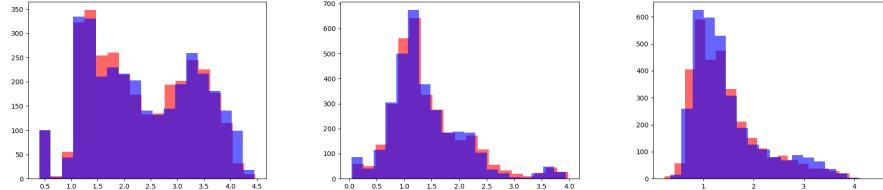
1457

1458 **B.5 DETAILED RESULTS FOR INNER ATTENTION**
1459
1460 **B.5.1 MORE RESULTS FOR SIMILARITIES OF ATTENTIONS ON UNSUCCESSFUL QUERIES**
1461
1462 In the main body, we present the similarities of attention for the opposition+swap task. In particular,
1463 we choose the opposition+swap task, fix a context, and randomly generate the queries (100 simple
1464 task queries and 100 composite task queries). The results there show that the similarities among
1465 simple and composite queries are high, suggesting the model does not distinguish the two kinds of
1466 tasks.
1467 Here, we include some statistics about the results to further confirm the similarity.
1468 **Average similarities and standard deviations.** We compute these average statistics to provide
1469 quantification of the similarities. There are three types of pairs of queries: simple-simple, simple-
1470 composite, composite-composite. For each type, we compute the average/standard deviation of the
1471 similarities between the attentions, and present them in Table 5. The results demonstrate that the
1472 attentions for simple or composite tasks are quite similar.
1473

Layer	1	10	15	17
Composite-Simple	0.9997 ± 0.0002	0.9984 ± 0.0023	0.9935 ± 0.0104	0.9904 ± 0.0142
Composite-Composite	0.9998 ± 0.0002	0.9988 ± 0.0019	0.9950 ± 0.0084	0.9922 ± 0.0125
Simple-Simple	0.9998 ± 0.0002	0.9986 ± 0.0021	0.9948 ± 0.0089	0.9920 ± 0.0125
Layer	19	25	30	32
Composite-Simple	0.9876 ± 0.0169	0.9841 ± 0.0185	0.9836 ± 0.0173	0.9826 ± 0.0178
Composite-Composite	0.9897 ± 0.0148	0.9865 ± 0.0160	0.9860 ± 0.0150	0.9853 ± 0.0153
Simple-Simple	0.9895 ± 0.0169	0.9861 ± 0.0169	0.9853 ± 0.0161	0.9843 ± 0.0169

1481 Table 5: The average and standard deviations of the attention similarities between different groups of
1482 queries for the opposition+swap task, which has low accuracy.

1483
1484
1485 **Distributions of Entropy Values of the Attentions.** We further compute the entropy distribution of
1486 the attentions: for a query and a fixed layer, we extract the attentions of each head from the query
1487 to the tokens in the context, compute the entropy for each head, and then plot the histogram of the
1488 entropy for different heads and queries. The results are shown in Figure 16. The results show that the
1489 entropy distributions of the attentions for composite queries are similar to those for simple queries.



1498 Figure 16: Entropy distributions of the attentions on 100 composite queries (red) and 100 simple
1499 queries (blue) for the opposition+swap task. Attentions are from Layer 15, 17, and 19 of Mistral-7B.

1500
1501
1502 **B.5.2 DISSIMILARITIES OF ATTENTIONS ON SUCCESSFUL QUERIES**

1503
1504
1505 In this section, we present some additional results for the case where the model succeeds in solving
1506 the query, i.e., similarities of the attention on queries that have high accuracy. We choose the task
1507 opposition+pastTense (which has high accuracy), fixed a context, and randomly generate 100 simple
1508 task queries and 100 composite task queries.

1509 Fig. 17 shows that for such a case, the model indeed has different patterns of attention for the two
1510 kinds of queries: simple task and composite task queries. This means that in order to achieve high
1511 accuracy, it is important for the model to distinguish the two kinds of queries. Table 6 shows the
1512 average similarities and Fig. 18 shows the distributions of the entropy values.

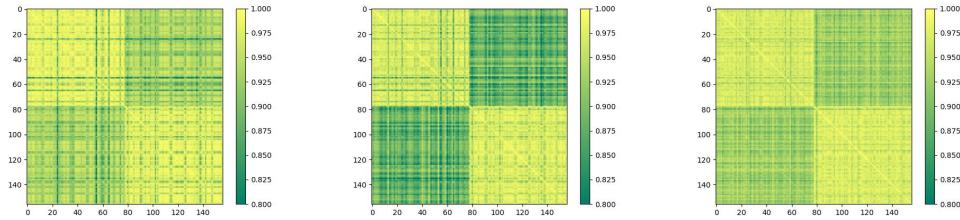


Figure 17: Similarities of the attentions between 100 simple queries (first 100 rows/columns) and 100 composite queries (last 100 rows/columns). Attentions are from Layer 15, 17, 19 of MistralAI-7b. The composite queries are selected among high accuracy ones (more precisely, from the opposition+pastTense task).

Layer	1	10	15	17
Composite-Simple	0.9991 ± 0.0004	0.9979 ± 0.0035	0.9889 ± 0.0226	0.9754 ± 0.0442
Composite-Composite	0.9999 ± 0.0001	0.9986 ± 0.0034	0.9938 ± 0.0164	0.9900 ± 0.0209
Simple-Simple	0.9998 ± 0.0002	0.9986 ± 0.0029	0.9936 ± 0.0140	0.9910 ± 0.0165
Layer	19	25	30	32
Composite-Simple	0.9715 ± 0.0440	0.9700 ± 0.0400	0.9711 ± 0.0368	0.9707 ± 0.0360
Composite-Composite	0.9881 ± 0.0212	0.9854 ± 0.0204	0.9850 ± 0.0189	0.9843 ± 0.0188
Simple-Simple	0.9893 ± 0.0171	0.9869 ± 0.0171	0.9863 ± 0.0161	0.9858 ± 0.0160

Table 6: The average and standard deviations of the attention similarities between different groups of queries for the opposition+pastTense task, which has high accuracy.

B.5.3 RESULTS FOR AVERAGE ATTENTION FROM THE QUERY

Here we investigate the average attention from the tokens in the query to the tokens in different groups of the in-context examples. The prompt tokens are in four groups: the composite task, task 1, task 2, and the query. We compute the average attention from a token in the query to a token in some other group, to inspect where the model pays more attention when solving the query.

Fig. 19 shows that on these tasks, the same phenomenon is observed: roughly the same order of attention is paid from the query to the three different groups of examples. While this observation alone does not rule out the possibility that the model makes clever use of different groups of examples but in different ways, the observations in the other experiments above suggest that is unlikely. So combined with the observations in the other experiments, the results here suggest the model may not be able to allocate proper attention to the three groups of examples.

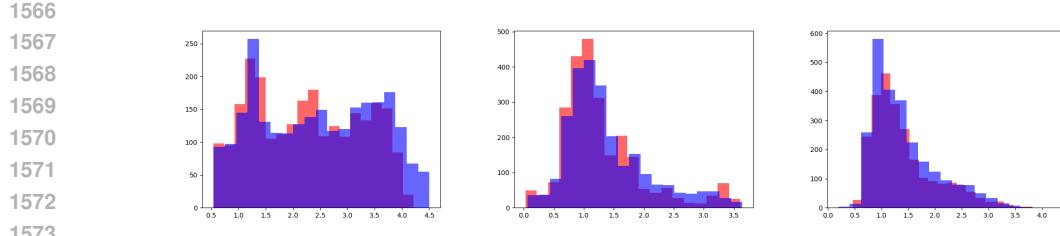
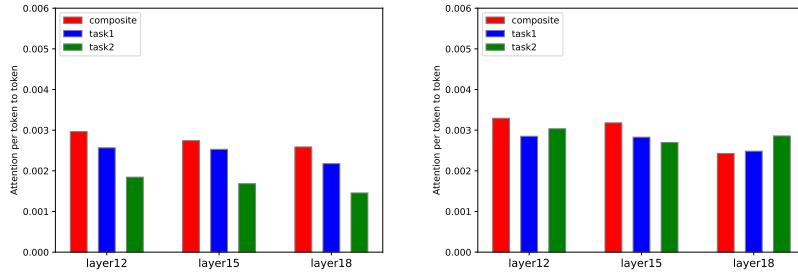
B.6 DETAILED RESULTS ABOUT CoT

In this section, we present detailed results for naïve applying Chain-of-Thought on the composite task examples.

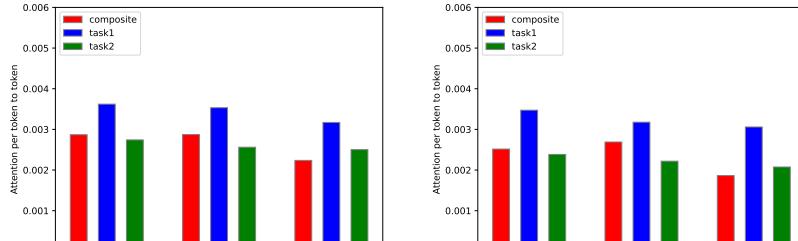
Fig. 20 shows the effect of in-context simple task examples for each k_c and model (the reported accuracy is averaged over tasks). More precisely, we draw a subfigure for each model and draw a curve for each k_c ; the x -axis is the number k of examples from each simple task, and y -axis is the accuracy averaged over all the composite tasks. Note that when $k_c = 0$ there are no composite task examples and thus it is meaningless to apply CoT, so we ignore this case. From the detailed results, we can see that applying CoT naïvely does not improve the accuracy much. It does not reduce the negative impact of more simple task examples either, which suggests that even with CoT composite task examples the model still cannot utilize the examples from simple tasks properly.

B.7 THE EXPERIMENT BEFORE ExpCoT: ADDING TAGS TO SAMPLES

A natural idea to improve the composition performance is to let the model know explicitly which task each in-context example is from. This can potentially help the model distinguish between



(b) The opposition+pastTense task



(d) The pastTense+plusOne task

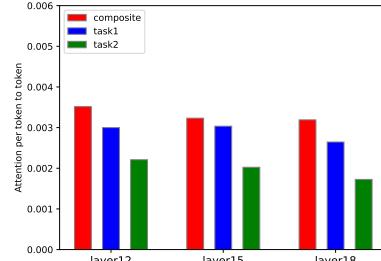


Figure 19: Average attention from the composite task query to different groups of in-context examples.

simple/composition task examples and make better use of them. We add tags “simple1” “simple2” or “composite” to each in-context example (and the query), and rerun the experiments with $k_c = 5$.

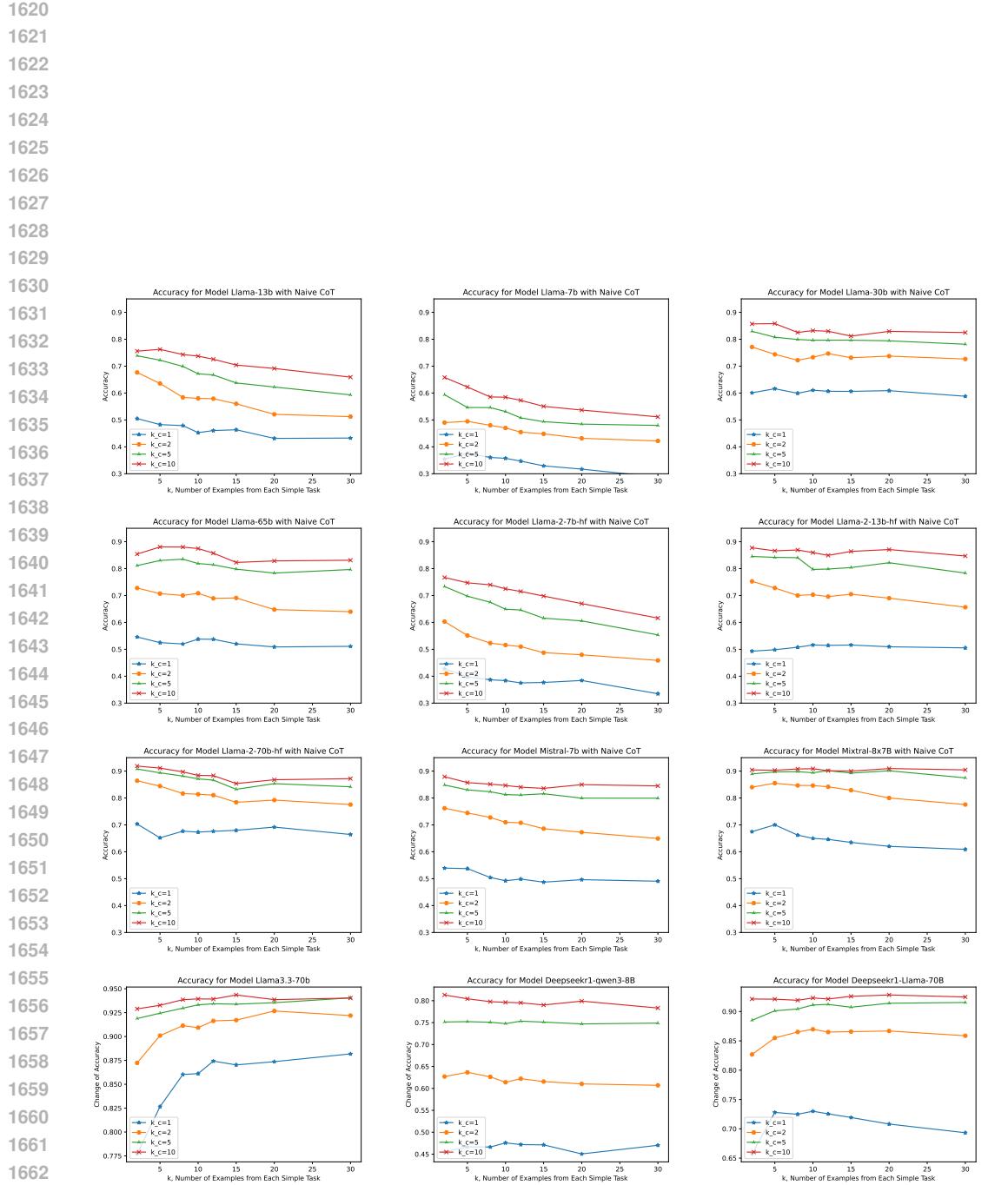


Figure 20: The effect of the in-context examples from composite tasks with naïve Chain-of-Thoughts.

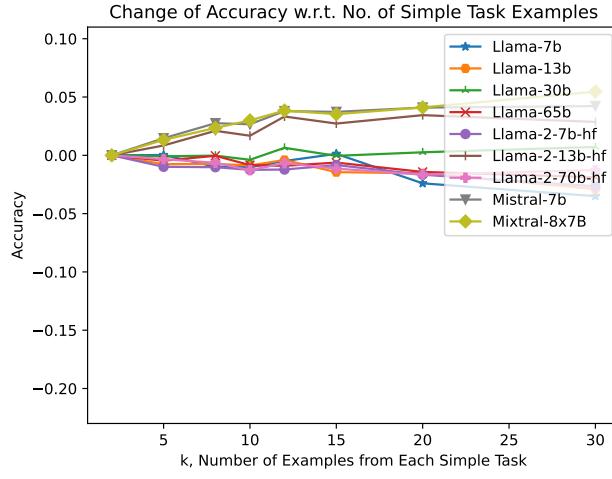


Figure 21: The change of accuracy with the number of examples from each simple task, where tags were added to each sample.

Result. The results show that adding tags indeed helps improve accuracy, but it does not help eliminate the negative impact of simpler task examples.

Table 7 presents the accuracy averaged over all tasks and all k values, comparing the case without tags and the case with tags. It shows that adding tags indeed increases the accuracy by 1-5 percent. The result is consistent with our theoretical insight. Adding tags can help the model distinguish between simple task examples from composite ones, thus avoiding the confusion we observed in our experiments and improving the accuracy.

However, this does not help the model align the simple task examples with proper steps in the CoT. As a result, the model still cannot exploit the simple task examples effectively, and the negative impact of more simple task examples still exists as shown in Figure 21.

	Llama-7B	Llama-13B	Llama-30B	Llama-65B	Llama2-7B	Llama2-13B	Llama2-70B	Mistral-7B	Mistral-8x7B
No Tags	53.4	69.7	79.0	74.9	70.0	82.1	86.0	78.2	82.0
Have Tags	64.8	72.1	81.4	75.7	76.4	82.2	87.0	82.3	84.0

Table 7: The accuracy (%) averaged over tasks and k ($k_c = 5$), for without tags and with tags.

B.8 DETAILED RESULTS ABOUT EXPCoT

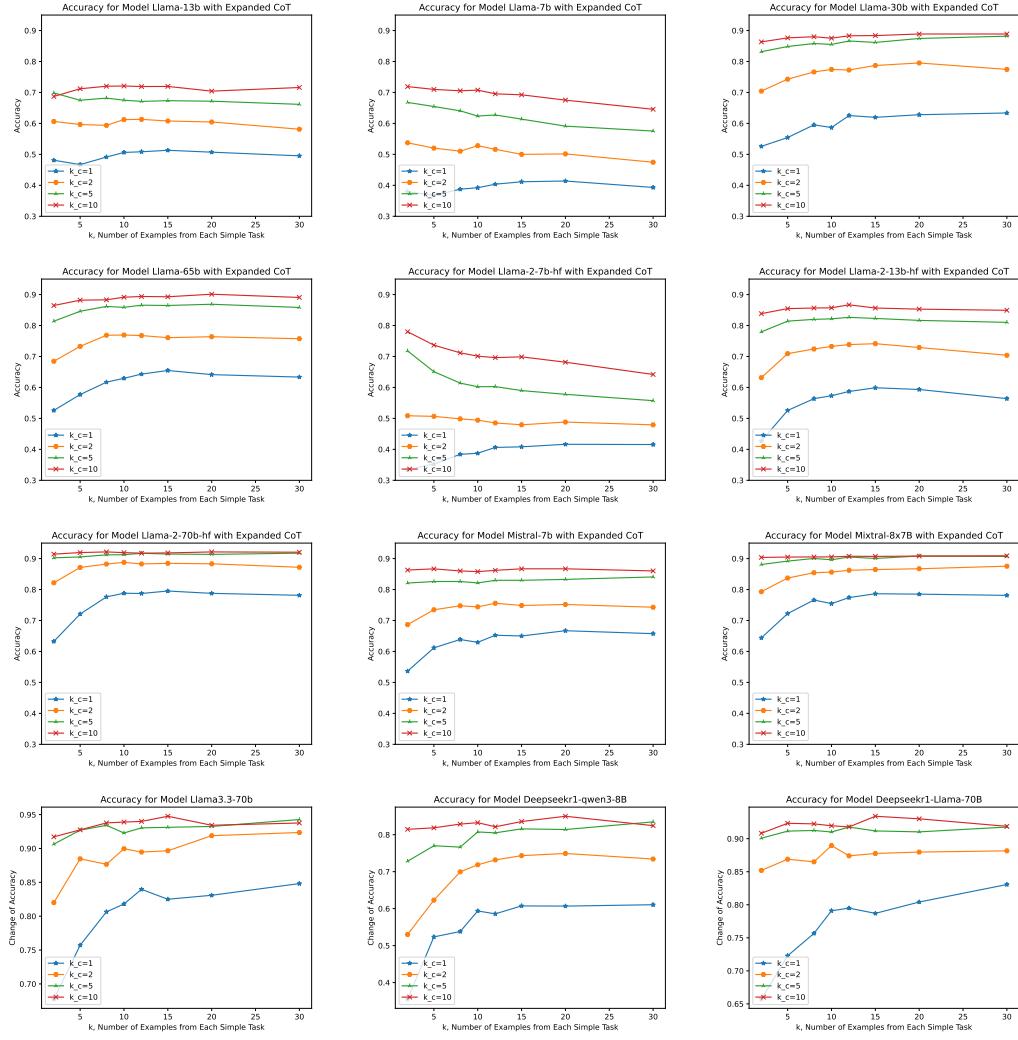
In this section, we present detailed results for our ExpCoT method.

Fig. 22 shows the effect of in-context simple task examples for each k_c and model (the reported accuracy is averaged over tasks). More precisely, we draw a subfigure for each model and draw a curve for each k_c ; the x -axis is the number k of examples from each simple task, and y -axis is the accuracy averaged over all the composite tasks. We ignore $k_c = 0$ where there is no composite task examples and thus it is meaningless to apply our method. From the detailed results, we observe that our method yields significant accuracy improvements across models and mitigates the negative impact of simple task examples. While vanilla settings show performance degradation with additional simple examples, our approach enables most models to benefit from these examples, with only minor negative effects remaining in smaller models. These findings demonstrate that our method enhances the models' ability to effectively utilize examples for in-context composition.

B.8.1 FAILURE CASE ANALYSIS

We conducted a detailed error analysis to characterize the failure modes of ExpCoT.

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738



1771
1772 Figure 22: The effect of the in-context examples from composite tasks with ExpCoT.
1773
1774
1775
1776
1777
1778
1779
1780
1781

1782 We first classify the outputs into the following types:
1783

- **Correct:** The output is correct. For example, the output is `step1: * Morning Live # -> step2: Evening Die # -> step3: Die Evening`. Here `*` denotes opposition and `#` denotes swap.
- **Answer_simple1:** The output only performs simple task 1. For example, `step1: * Hire Lend # -> step2: Borrow Fire # -> step3: Borrow Fire`. Here `*` denotes opposition and `#` denotes swap.
- **Answer_simple2:** The output only performs simple task 2, e.g., `step1: * occur # -> step2: occur # -> step3: OCCUR`. Here `*` denotes past tense and `#` denotes capitalization.
- **Special_token:** Outputs “???” at Step 3, e.g., `step1: * Grow Present # -> step2: Shrink Past # -> step3: ???`. Here `*` denotes opposition and `#` denotes swap.
- **No_Step3:** Fails to generate Step 3 entirely.
- **Step3_noexecute:** Step 3 copies Step 2, e.g., `step1: 79 bake -> step2: 79 baked -> step3: 79 baked`. Here simple task 1 is plus one to the number and task 2 is past tense to verb.
- **Other Faults:** Miscellaneous errors.

1802 Table 8 shows the distributions of the outputs for different number k . The results are averaged over
1803 all tasks and all models tested with $k_c = 2$.

1804 The key findings are: (1) The most common failure is outputting special tokens (11-13%), suggesting
1805 models recognize the need for Step 3 but cannot determine the operation. (2) Simple task confusion
1806 is rare (<2%), showing ExpCoT helps recognize compositional nature. The primary remaining
1807 challenge is helping models correctly execute aligned steps.
1808

Output Types (%)	$k = 2$	$k = 5$	$k = 8$	$k = 10$	$k = 12$	$k = 15$	$k = 20$	$k = 30$
Correct	71.12	72.81	73.74	73.42	73.31	73.76	74.40	72.21
Answer_simple1	0.12	0.07	0.05	0.05	0.10	0.16	0.14	0.20
Answer_simple2	1.20	1.32	1.12	1.49	1.32	1.71	1.43	1.90
Special_token	13.02	12.52	11.87	12.10	11.60	11.31	11.56	11.61
No_Step3	0.04	0.02	0.02	0.03	0.00	0.00	0.01	0.06
Step3_noexecute	0.15	0.07	0.08	0.07	0.03	0.07	0.09	0.11
Other Faults	14.34	13.18	13.11	12.85	13.65	13.00	12.37	13.91

1818 Table 8: The distribution of different error types under different k . The results are averaged over all
1819 models and tasks for $k_c = 2$.
1820

1821 The results are similar across different models. To show this, the following table presents the
1822 distributions for a specific model Llama2-13b-hf. (Results for other models are also similar and we
1823 include only one for brevity.)
1824

Output Types (%)	$k = 2$	$k = 5$	$k = 8$	$k = 10$	$k = 12$	$k = 15$	$k = 20$	$k = 30$
Correct	71.64	79.92	81.05	80.97	81.53	81.48	79.76	77.45
Answer_simple1	0.00	0.00	0.00	0.00	0.11	0.22	0.11	0.00
Answer_simple2	1.44	1.07	1.54	1.41	1.32	2.23	1.85	3.31
Special_token	14.83	6.01	4.58	4.67	3.53	3.77	3.35	3.47
No_Step3	0.00	0.00	0.00	0.00	0.00	0.00	0.11	0.11
Step3_noexec	0.14	0.00	0.00	0.00	0.13	0.00	0.51	0.24
Other Faults	11.95	13.01	12.83	12.95	13.37	12.30	14.30	15.42

1834 Table 9: The distribution of different error types under different k . The results are averaged over all
1835 tasks on Llama2-13b-hf for $k_c = 2$.
1836

1836 B.9 EXPERIMENTS ON COMPOSITIONS OF MORE SIMPLE TASKS
1837

1838 We added experiments on some compositions of T simple tasks with $T > 2$. We tested 4 triple com-
1839 positions (i.e., $T = 3$): opposition + swap + capitalization, opposition + pastTense + capitalization,
1840 pastTense + swap + adding bracelet, pastTense + capitalization + reverse.

1841 The results are in general consistent with those for $T = 2$: (1) more examples from simple tasks may
1842 not lead to better performance on composite queries; (2) This is due to misalignment, which can be
1843 mitigated by ExpCoT, leading to improved performance. Details are as follows.

1844 **More examples from simple tasks may not help.** Table 10 shows the changes in the accuracy when
1845 increasing k , the number of examples from each simple task. We still observe that increasing the
1846 number of simple task examples may lead to worse performance. Some models are less affected, but
1847 in cases, their performance still drops, e.g., for Llama2-70B, from $k = 12$ to $k = 15$, the accuracy
1848 drops from 44.05% to 42.67%.

1849
1850

Model	$k = 2$	$k = 5$	$k = 8$	$k = 10$	$k = 12$	$k = 15$	$k = 20$
Llama-7B	23.54	22.67	22.95	19.95	18.95	19.02	13.97
Llama-13B	32.03	32.87	32.13	31.29	30.22	29.80	25.01
Llama-30B	35.52	35.23	31.03	29.69	28.90	26.48	25.64
Llama-65B	40.81	42.34	39.39	39.99	39.77	39.67	39.81
Llama2-7B	29.25	30.14	30.31	31.93	32.22	33.01	28.84
Llama2-13b	39.02	42.50	42.34	41.76	40.37	42.64	41.31
Llama2-70B	42.67	42.93	43.09	43.16	44.05	42.67	45.07
Mistral-7B	42.31	44.23	44.42	44.95	43.78	45.57	45.03
Mistral-8x7B	43.45	43.31	43.00	42.91	43.65	42.88	44.67

1860 Table 10: Average accuracy (in %) on the 4 triple composition tasks for different k .

1861
1862 **ExpCoT improves the performance.** We also apply ExpCoT for these compositions. Table 11 shows
1863 the performance without ExpCoT v.s. with ExpCoT (using $k_c = 5$ examples from the composition
1864 task and $k = 15$ examples from each simple task). Similar to the $T = 2$ cases, ExpCoT consistently
1865 improves the accuracy by a large margin, e.g., 25% for Mistral-8x7B. This shows that in the vanilla
1866 setting the model indeed suffers from misalignment, while ExpCoT provides hints for the model to
1867 better align skills with steps in the composition, and thus improves the performance.

1868
1869

	L-7B	L-13B	L-30B	L-65B	L2-7B	L22-13B	L2-70B	M-7B	M-8x7B
Vanilla	19.0	29.8	26.5	39.7	33.0	42.6	42.7	45.6	42.9
ExpCoT	44.2	38.8	54.8	61.7	50.9	55.9	64.8	57.7	67.9

1870 Table 11: The average accuracy (in %) on the 4 triple compositions, with $k = 15$ and $k_c = 5$. L: Llama, L2/3: Llama2/3.3, M: Mistral.

1871 B.10 EXPERIMENTS ON MORE MODELS

1872
1873

	$k = 2$	$k = 5$	$k = 8$	$k = 10$	$k = 12$	$k = 15$	$k = 20$	$k = 30$
GPT4.1 (Vanilla)	20	28	34	33	25	25	27	22
GPT4.1 (ExpCoT)	65	64	73	69	59	66	69	66
Gemini2.5 (Vanilla)	42	40	53	56	53	56	48	57
Gemini2.5 (ExpCoT)	69	70	72	75	70	75	74	69

1885 Table 12: Accuracy (in %) of GPT4.1 and Gemini2.5 on the opposition+swap task for different k .

1886 We additionally test some closed models like GPT4.1 and Gemini2.5. We would like to note that our
1887 work focuses on open-source models for which we can systematically control model sizes, families,
1888 and prompting variants, and even inspect the internal attentions. The purpose is to identify the key

1890 factors in a transparent setting. On the other hand, results from some closed models provide further
1891 support of our analysis.
1892

1893 Table 12 shows the results of GPT4.1 and Gemini2.5 on the composition task opposition+swap, with
1894 k examples from each simple task and $k_c = 5$ examples from the composite task (the same setting as
1895 in Figure 1).

1896 • We observe that for GPT4.1 without ExpCoT (vanilla setting), initially (from $k=2$ to 8),
1897 increasing k leads to better performance, while later increasing k leads to worse performance.
1898 Gemini2.5 also shows a similar pattern. This shows that the model still cannot fully recognize
1899 the composition structure and align examples with the correct steps in the composition,
1900 but it may partially exploit the examples: at first, the benefit of exploiting the examples to
1901 infer the skills outweighs the negative impact of misalignment, but later the negative impact
1902 dominates.
1903 • ExpCoT improves the performance significantly. This shows that the hints on aligning
1904 the skills and composition steps can mitigate the misalignment issue and thus improve the
1905 accuracy.

1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

1944 C DETAILS OF THEORETICAL ANALYSIS

1945
 1946 First recall the theoretical setup. A sequence-to-sequence task on a finite vocabulary of tokens Σ is
 1947 associated with an input distribution \mathcal{D} over the input $\mathcal{X} \subseteq \Sigma^*$, and a target function $f : \Sigma^* \rightarrow \Sigma^*$
 1948 where $f \in \mathcal{H}$ for some model class \mathcal{H} . A composite task with the target function $f \in \mathcal{H}^T$ can consist
 1949 of T steps $f_1, f_2, \dots, f_T \in \mathcal{H}$, such that $f(x) = f_T \circ \dots \circ f_2 \circ f_1(x)$. For simplicity, assume \mathcal{H} is
 1950 finite, and it includes the identity mapping so that $\mathcal{H} \subseteq \mathcal{H}^T$.

1951 Now we present the detailed proofs for our theoretical results.

1952 Consider the case when k_c composite task examples $\mathcal{S}_0 = \{(x_i, y_i) : i \in [k_c]\}$ are given, where x_i
 1953 are i.i.d. from \mathcal{D} and $y_i = f(x_i)$ for some $f \in \mathcal{H}^T$.

1954 **Proposition 3** (Restatement of Proposition 1). *There exists a learning rule $\mathcal{M} : (\mathcal{X} \times \Sigma^*)^* \rightarrow \Sigma^{\mathcal{X}}$
 1955 such that for any distribution \mathcal{D} over \mathcal{X} and any $f \in \mathcal{H}^T$, for every $0 < \delta < 1$, we have with
 1956 probability at least $1 - \delta$ over \mathcal{S}_0 ,*

$$1958 \quad \Pr_{x \sim \mathcal{D}} [\mathcal{M}(\mathcal{S}_0)(x) \neq f(x)] \leq \frac{1}{k_c} \left(T \ln |\mathcal{H}| + \ln \left(\frac{1}{\delta} \right) \right).$$

1961 *Proof.* The result follows a standard argument of consistent models from a finite hypothesis class.
 1962 Let $\mathcal{M}(\mathcal{S}_c)$ output a consistent model:

$$1963 \quad \mathcal{M}(\mathcal{S}_c) \in \{g \in \mathcal{H}^T : g(x) = y, \forall (x, y) \in \mathcal{S}_c\}. \quad (2)$$

1964 Let $d(f, g) = \Pr_{x \sim \mathcal{D}}[g(x) \neq f(x)]$ denote the difference between f and g . For a fixed g with
 1965 $d(f, g) > \epsilon$, we have

$$1967 \quad \Pr[g(x) = y, \forall (x, y) \in \mathcal{S}_c] \leq (1 - \epsilon)^{k_c}. \quad (3)$$

1968 So

$$1969 \quad \Pr[\exists g \in \mathcal{H}^T, g(x) = y, \forall (x, y) \in \mathcal{S}_c] \leq |\mathcal{H}^T| (1 - \epsilon)^{k_c}. \quad (4)$$

1970 Letting the right-hand side bounded by δ leads to the result. \square

1973 Next we consider examples from multiple tasks. Recall that \mathcal{S}_t is a set of k_t examples from the t -th
 1974 task (\mathcal{D}_t, f_t) ($0 \leq t \leq T$). We say \mathcal{M} is *focusing* if its expected error on the 0-th task is no worse
 1975 than that on any other task, i.e., for any $j \in [T]$,

$$1976 \quad \mathcal{L}_0(\mathcal{M}; (\mathcal{D}_t, f_t)_{t=0}^T) \leq \mathcal{L}_j(\mathcal{M}; (\mathcal{D}_t, f_t)_{t=0}^T) \quad (5)$$

1977 where $\mathcal{L}_j(\mathcal{M}; (\mathcal{D}_t, f_t)_{t=0}^T) := \mathbb{E}_{\mathcal{S}_t \sim (\mathcal{D}_t, f_t), 0 \leq t \leq T} \Pr_{x \sim \mathcal{D}_j} [\mathcal{M}(\mathcal{S}_0; \mathcal{S}_1, \dots, \mathcal{S}_T)(x) \neq f_j(x)]$ is the
 1978 expected error of \mathcal{M} on the j -th task. And we say that \mathcal{M} does *not distinguish examples from
 1979 different tasks*, if it is symmetric w.r.t. the data sets \mathcal{S}_t 's, i.e., for any permutation σ on $\{0, 1, \dots, T\}$,
 1980 the distribution of $\mathcal{M}(\mathcal{S}_{\sigma(0)}; \mathcal{S}_{\sigma(1)}, \dots, \mathcal{S}_{\sigma(T)})$ is the same as that of $\mathcal{M}(\mathcal{S}_0; \mathcal{S}_1, \dots, \mathcal{S}_T)$. Then we
 1981 have:

1982 **Proposition 4** (Restatement of Proposition 2). *Suppose there exist $g_1, \dots, g_T \in \mathcal{H}$ with pairwise
 1983 difference at least Δ for some \mathcal{D} , i.e., $\min_{i \neq j} \Pr_{x \sim \mathcal{D}}[g_i(x) \neq g_j(x)] \geq \Delta$. For any \mathcal{M} that is
 1984 focusing but does not distinguish between examples from different tasks, there exist $f_1, \dots, f_T \in \mathcal{H}$,
 1985 $f_0 = f_T \circ \dots \circ f_2 \circ f_1$, and \mathcal{D}_t ($0 \leq t \leq T$)'s, such that $\mathbb{E}_{\{\mathcal{S}_t\}} \Pr_{x \sim \mathcal{D}_0} [\mathcal{M}(\mathcal{S}_0; \mathcal{S}_1, \dots, \mathcal{S}_T)(x) \neq
 1986 f_0(x)] = \Omega(\Delta)$.*

1987 *Proof.* Let $f_t = g_t$ and $\mathcal{D}_t = \mathcal{D}$ for $t \in [T]$. For datasets $\mathcal{V}_0, \mathcal{V}_1, \dots, \mathcal{V}_T$ and a task (\mathcal{D}_j, f_j) , define

$$1988 \quad \mathcal{L}(\mathcal{M}; \mathcal{V}_0, \mathcal{V}_1, \dots, \mathcal{V}_T; \mathcal{D}_j, f_j) := \Pr_{x \sim \mathcal{D}_j} [\mathcal{M}(\mathcal{V}_0; \mathcal{V}_1, \dots, \mathcal{V}_T)(x) \neq f_j(x)]. \quad (6)$$

1991 Consider a uniform distribution \mathcal{U} over permutations on $\{0, 1, \dots, T\}$. We have

$$1993 \quad \mathbb{E}_{\sigma \sim \mathcal{U}} \mathbb{E}_{\{\mathcal{S}_t\}} \mathcal{L}(\mathcal{M}; \mathcal{S}_{\sigma(0)}, \mathcal{S}_{\sigma(1)}, \dots, \mathcal{S}_{\sigma(T)}; \mathcal{D}_{\sigma(0)}, f_{\sigma(0)}) \quad (7)$$

$$1994 \quad = \mathbb{E}_{\sigma \sim \mathcal{U}} \mathbb{E}_{\{\mathcal{S}_t\}} \mathcal{L}(\mathcal{M}; \mathcal{S}_0, \mathcal{S}_1, \dots, \mathcal{S}_T; \mathcal{D}_{\sigma(0)}, f_{\sigma(0)}) \quad (8)$$

$$1995 \quad = \frac{1}{T+1} \sum_{t=0}^T \mathbb{E}_{\{\mathcal{S}_t\}} \mathcal{L}(\mathcal{M}; \mathcal{S}_0, \mathcal{S}_1, \dots, \mathcal{S}_T; \mathcal{D}, f_t) \quad (9)$$

1998 where the first equation comes from the assumption that \mathcal{M} does not distinguish between examples
1999 from different tasks, and the second equation is because σ is uniformly at random. We have the
2000 following triangle inequality about the error by definition:

2001 **Claim 1.** For any $i, j \in [T]$,

$$2003 \quad \mathcal{L}(\mathcal{M}; \mathcal{S}_0, \mathcal{S}_1, \dots, \mathcal{S}_T; \mathcal{D}, f_i) + \mathcal{L}(\mathcal{M}; \mathcal{S}_0, \mathcal{S}_1, \dots, \mathcal{S}_T; \mathcal{D}, f_j) \geq \Pr_{x \sim \mathcal{D}}[f_i(x) \neq f_j(x)] \quad (10)$$

2005 Then

$$2007 \quad \mathbb{E}_{\sigma \sim \mathcal{U}} \mathbb{E}_{\{\mathcal{S}_t\}} \mathcal{L}(\mathcal{M}; \mathcal{S}_{\sigma(0)}, \mathcal{S}_{\sigma(1)}, \dots, \mathcal{S}_{\sigma(T)}; \mathcal{D}_{\sigma(0)}, f_{\sigma(0)}) \quad (11)$$

$$2009 \quad = \frac{1}{T+1} \sum_{t=0}^T \mathbb{E}_{\{\mathcal{S}_t\}} \mathcal{L}(\mathcal{M}; \mathcal{S}_0, \mathcal{S}_1, \dots, \mathcal{S}_T; \mathcal{D}, f_t) \quad (12)$$

$$2012 \quad \geq \frac{1}{T(T+1)} \sum_{t=1}^T T \mathbb{E}_{\{\mathcal{S}_t\}} \mathcal{L}(\mathcal{M}; \mathcal{S}_0, \mathcal{S}_1, \dots, \mathcal{S}_T; \mathcal{D}, f_t) \quad (13)$$

$$2014 \quad = \frac{1}{T(T+1)} \sum_{i=1}^T \sum_{j=1}^T \mathbb{E}_{\{\mathcal{S}_t\}} \mathcal{L}(\mathcal{M}; \mathcal{S}_0, \mathcal{S}_1, \dots, \mathcal{S}_T; \mathcal{D}, f_i) + \mathbb{E}_{\{\mathcal{S}_t\}} \mathcal{L}(\mathcal{M}; \mathcal{S}_0, \mathcal{S}_1, \dots, \mathcal{S}_T; \mathcal{D}, f_j) \quad (14)$$

$$2019 \quad \geq \frac{1}{T(T+1)} \sum_{i=1}^T \sum_{j=1}^T \Pr_{x \sim \mathcal{D}}[f_i(x) \neq f_j(x)] \quad (15)$$

$$2022 \quad \geq \frac{T-1}{T+1} \Delta. \quad (16)$$

2024 On the other hand, since \mathcal{M} is focusing,

$$2025 \quad \mathbb{E}_{\{\mathcal{S}_t\}} \mathcal{L}(\mathcal{M}; \mathcal{S}_{\sigma(0)}, \mathcal{S}_{\sigma(1)}, \dots, \mathcal{S}_{\sigma(T)}; \mathcal{D}_{\sigma(0)}, f_{\sigma(0)}) \quad (17)$$

$$2027 \quad = \mathcal{L}_0(\mathcal{M}; (\mathcal{D}_{\sigma(t)}, f_{\sigma(t)})_{t=0}^T) \quad (18)$$

$$2028 \quad \leq \mathcal{L}_{\sigma^{-1}(0)}(\mathcal{M}; (\mathcal{D}_{\sigma(t)}, f_{\sigma(t)})_{t=0}^T) \quad (19)$$

$$2029 \quad = \mathbb{E}_{\{\mathcal{S}_t\}} \mathcal{L}(\mathcal{M}; \mathcal{S}_0, \mathcal{S}_{\sigma(1)}, \dots, \mathcal{S}_{\sigma(T)}; \mathcal{D}_{\sigma(\sigma^{-1}(0))}, f_{\sigma(\sigma^{-1}(0))}) \quad (20)$$

$$2031 \quad = \mathbb{E}_{\{\mathcal{S}_t\}} \mathcal{L}(\mathcal{M}; \mathcal{S}_0, \mathcal{S}_1, \dots, \mathcal{S}_T; \mathcal{D}_0, f_0) \quad (21)$$

$$2032 \quad = \mathbb{E}_{\{\mathcal{S}_t\}} \Pr_{x \sim \mathcal{D}_0} [\mathcal{M}(\mathcal{S}_0; \mathcal{S}_1, \dots, \mathcal{S}_T)(x) \neq f_0(x)]. \quad (22)$$

2034 Combining the above two inequalities, we have

$$2036 \quad \mathbb{E}_{\{\mathcal{S}_t\}} \Pr_{x \sim \mathcal{D}_0} [\mathcal{M}(\mathcal{S}_0; \mathcal{S}_1, \dots, \mathcal{S}_T)(x) \neq f_0(x)] \geq \frac{T-1}{T+1} \Delta. \quad (23)$$

2038 This finishes the proof. \square

2039 **Theorem 2** (Restatement of Theorem 1). Suppose we are given k_t examples \mathcal{S}_t from (\mathcal{D}_t, f_t) for
2040 $t \in [T]$ and k_c examples \mathcal{S}_0 from (\mathcal{D}_0, f_0) with $f_0 = f_T \circ \dots \circ f_2 \circ f_1$. Suppose \mathcal{H} is distinguishable:
2041 for some $\epsilon_0 > 0$, for any $f \neq g \in \mathcal{H}$ and $\mathcal{D}_t (0 \leq t \leq T)$, $\Pr_{x \sim \mathcal{D}_t}[f(x) \neq g(x)] > \epsilon_0$. There exists
2042 a learning rule $\mathcal{M} : ((\mathcal{X} \times \Sigma^*)^{T+1} \rightarrow \Sigma^{\mathcal{X}})$ such that for every $0 < \delta < 1$, if
2043

$$2044 \quad \max(k_c, k_t) \geq \frac{2}{\epsilon_0} \left(\ln |\mathcal{H}| + \ln \frac{T}{\delta} \right), \quad \forall t \in [T],$$

2047 then with probability at least $1 - \delta$ over $\{\mathcal{S}_t\}_{t=0}^T$, we have $\mathcal{M}(\mathcal{S}_0; \mathcal{S}_1, \dots, \mathcal{S}_T) = f_0$.

2049 *Proof.* Consider each step t in the composition, which can be learned by the examples from this
2050 simple task and the corresponding intermediate outputs from the composite task examples. This
2051 high-level idea is similar to that in Abedsoltan et al. (2025); Joshi et al. (2025), but our setting is quite
2052 different, e.g., we have examples for each single step of the composition.

2052 More precisely, for learning f_t , we have $\mathcal{S}_t = \{(x_i, y_i) : i \in [k_t]\}$ from the simple task, and
 2053 $\mathcal{S}_{0,t} = \{(z_i^t, z_i^{t+1}) : i \in [k_c]\}$ from the composite task CoT examples. Output a model consistent
 2054 with all these data:

2055
$$\hat{f}_t \in \{g \in \mathcal{H} : g(x) = y, \forall (x, y) \in \mathcal{S}_t \cup \mathcal{S}_{0,t}\}. \quad (24)$$

2056 For a fixed g with $\Pr_{x \sim \mathcal{D}_t}[g(x) \neq f_t(x)] > \epsilon_0$, we have

2057
$$\Pr[g(x) = y, \forall (x, y) \in \mathcal{S}_t] \leq (1 - \epsilon_0)^{k_t}. \quad (25)$$

2058 So

2059
$$\Pr[\exists g \in \mathcal{H}^T, g(x) = y, \forall (x, y) \in \mathcal{S}_c] \leq |\mathcal{H}|(1 - \epsilon_0)^{k_t}. \quad (26)$$

2060 Letting the right-hand side bounded by δ/T , we know that if

2061
$$k_t \geq \frac{1}{\epsilon_0} \left(\ln |\mathcal{H}| + \ln \frac{T}{\delta} \right), \quad (27)$$

2062 then with probability at least $1 - \delta/T$, $\hat{f}_t = f_t$. A similar argument holds for the k_c examples from
 2063 the composite task. Taking a union bound over the T steps leads to the statement. \square

2064 Note that if the t -th simple task example input data distribution \mathcal{D}_t is the same as the distribution of
 2065 $f_t \circ \dots \circ f_1(x)$ where $x \sim \mathcal{D}_0$, then the sample complexity is improved to:

2066
$$k_c + k_t \geq \frac{1}{\epsilon_0} \left(\ln |\mathcal{H}| + \ln \frac{T}{\delta} \right). \quad (28)$$

2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105