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ABSTRACT

This paper introduces a novel hierarchical autoencoder that maps 3D models into
a highly compressed latent space. The hierarchical autoencoder is specifically de-
signed to tackle the challenges arising from large-scale datasets and generative
modeling using diffusion. Different from previous approaches that only work on a
regular image or volume grid, our hierarchical autoencoder operates on unordered
sets of vectors. Each level of the autoencoder controls different geometric levels
of detail. We show that the model can be used to represent a wide range of 3D
models while faithfully representing high-resolution geometry details. The train-
ing of the new architecture takes 0.70x time and 0.58x memory compared to the
baseline. We also explore how the new representation can be used for generative
modeling. Specifically, we propose a cascaded diffusion framework where each
stage is conditioned on the previous stage. Our design extends existing cascaded
designs for image and volume grids to vector sets.

1 INTRODUCTION

Diffusion models are currently the best-performing models for image, video, and 3D object genera-
tion. For 3D object generation, there are two main branches of research. The first branch, pioneered
by Dreamfusion (Poole et al., 2022), aims to lift 2D diffusion models to 3D model generation. The
advantage of this method is that it can benefit from the large-scale 2D datasets used for training
2D diffusion models and it sparked a lot of follow-up work (Poole et al., 2022; Wang et al., 2023;
Lin et al., 2023; Chen et al., 2023; Wang et al., 2024; Qian et al., 2023; Tang et al., 2023; Yi et al.,
2023; Wang & Shi, 2023; Liu et al., 2024; Long et al., 2024; Zheng et al., 2024; Li et al., 2023; Ho
et al., 2022; Xu et al., 2023). The second branch tackles the training on 3D datasets directly. The
advantage of this method is that it is more direct and leads to faster inference times (Mittal et al.,
2022; Yan et al., 2022; Zhang et al., 2022; Zeng et al., 2022; Zheng et al., 2023; Hui et al., 2022;
Zhang et al., 2023; Siddiqui et al., 2024; Chen et al., 2024a;b). Our work sets out to contribute to
this second branch of methods.

Among these 3D native generation methods, 3DShape2VecSet (Zhang et al., 2023) (or VecSet for
short) has been proven to be an effective method to encode 3D geometry. It proposed an autoencoder
to find an efficient representation for 3D models as a set of vectors. Because of the high reconstruc-
tion quality and compactness of the latent space, the method alleviates the difficulty of training 3D
generative models. Some other works (Zhao et al., 2024; Cao et al., 2024; Dong et al., 2024; Petrov
et al., 2024; Zhang et al., 2024b; Zhang & Wonka, 2024) follow the VecSet representation. We
noticed that VecSet’s expressiveness is limited by the number of latent vectors. It is overfitting on
smaller datasets like ShapeNet and is unable to scale to larger datasets. To improve the expressive-
ness, we need to scale up the latent size and the training dataset. The straightforward way is to
employ hundreds of GPUs for training which is expensive (Zhang et al., 2024b). Thus, our goal is to
reduce the training cost in terms of time and memory consumption while achieving similar or even
better autoencoding quality.

In the image domain, NVAE (Vahdat & Kautz, 2020) extended the design of the variational autoen-
coder (VAE) (Kingma, 2013) to a hierarchical VAE based on the design of the U-Net. The latent
space of the NVAE is a multi-scale latent grid and the reconstruction quality of the images from the
NVAE improves a lot over the VAE. An illustration of the architectures can be found in Fig. 1. We
draw inspiration from the design of the NVAE and design a multi-scale latent VecSet representation,
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Figure 1: Autoencoders. We show different autoencoder architectures here, including AE (AutoEn-
coder), U-Net, VAE (Kingma, 2013), NVAE (Vahdat & Kautz, 2020), VecSet (Zhang et al., 2023)
and the proposed LaGeM. VAE and NVAE are for image data, while VecSet and LaGeM are for
geometry (distance function) data. In the top row, VAE and VecSet are using a single scale latent
to represent the data. Both NVAE and LaGeM use multi-scale latents to represent data. All the
previous works VAE, NVAE, and VecSet apply KL divergence in the bottleneck to regularize the
latent space, while in this work, we apply standardization in the bottleneck.

Table 1: Geometric Latent Representation and Generation.
Method Learning Method Latent Rep Hierarchies

ShapeFormer (Yan et al., 2022) AutoEncoder Sparse Volume Single
3DILG (Zhang et al., 2022) AutoEncoder Irregular Grid Single

LION (Zeng et al., 2022) AutoEncoder Latent Points Multi
TriplaneDiffusion (Shue et al., 2023) AutoDeocder Planes Single

SDFusion (Cheng et al., 2023) AutoEncoder Volume Single
3DShape2VecSet (Zhang et al., 2023) AutoEncoder VecSet Single
HyperDiffusion (Erkoç et al., 2023) Per-Object Optimization Network Weight Single

XCube (Ren et al., 2024) AutoEncoder Sparse Volume Multi
Mosaic-SDF (Yariv et al., 2024) Per-Object Optimization Irregular Grid Single
3DTopia-XL(Chen et al., 2024c) Per-Object Optimization Irregular Grid Single
OctFusion (Xiong et al., 2024) AutoEncoder Sparse Volume Multi

LaGeM v (Ours) AutoEncoder VecSet Multi

called LaGeM. We train our architecture on a large-scale geometry dataset Objaverse (Deitke et al.,
2023) and improve training time by 0.7 and memory consumption by 0.58 compared to VecSet.

Latents Controlling

Level 3 Main Structure
Level 2 Major Details
Level 1 Minor Details

Additionally, we also propose a cascaded generative model for the hier-
archical latent space. We generate the latent VecSet from the lower reso-
lution level to the highest resolution level stage-by-stage. In each stage,
we use the previously generated latents as conditioning information. As
a result, this enables control over the level of detail of the generated ge-
ometry.

We summarize our contributions as follows:

• We propose a hierarchical autoencoder architecture with faster training time and low mem-
ory consumption. The latent space is composed of several levels.

• The model is capable of training on large-scale datasets like objaverse.
• We propose a cascaded diffusion model to generate 3D geometry in the hierarchical latent

space. This enables control of the level of detail of the generated model.
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STAGE 1: AUTOENCODER STAGE 2: LATENT DIFFUSION

Encoder Decoder Decoder �Point Cloud Output

Init
Diffusion
Level 2

Diffusion
Level 1

Diffusion
Level 3

C

Figure 2: Pipeline. We proposed a U-Net-style transformer for the autoencoding. In this way, we
obtain a hierarchical latent space, which contains several levels of latents. To train the generative
diffusion models in the latent space, we propose the cascaded latent diffusion models.

2 RELATED WORKS

We show an overview of latent 3D generative models in Table 1, particularly focusing on the type
of latent space used.

2.1 LEARNING METHODS

Usually, a learning method is required to convert 3D geometry to latent space. 1) One way to do this
is to convert 3d geometry to latent space with a per-object optimization method, e.g. (Erkoç et al.,
2023; Yariv et al., 2024). For larger datasets, this approach is very time-consuming. 2) Alternatively,
auto-decoder, e.g., DeepSDF (Park et al., 2019), jointly optimize the latent space for all objects in
the dataset. However, as there is no encoder, new objects cannot be mapped to latent space easily. 3)
Therefore, a commonly used framework is the auto-encoder. The optimization is efficient because
it is performed jointly for all objects in the dataset, and new objects not in the training set can be
quickly encoded using the encoder. Thus, we also build on this approach.

2.2 LATENT REPRESENTATIONS

Early methods used regular grids (Yan et al., 2022; Cheng et al., 2023) as the latent representation
because of their simple structure. We can easily use convolutional layers to process volume data. To
represent high-quality geometric details, we need large-resolution volumes. This makes the training
even more difficult because of the O(n3) complexity. A way to solve this problem is to introduce
sparsity (Ren et al., 2024) to the representation like octrees (Xiong et al., 2024) or sparse irregular
grids (Zhang et al., 2022; Yariv et al., 2024). Both structures have the potential to represent high-
quality 3D models, but generating irregular structures explicitly is difficult for diffusion models.
Different from the above mentioned approaches, 3DShape2VecSet (Zhang et al., 2023) is proposed
to solve the reconstruction problem without using any sparse structures. The representation is easy
to use. In this paper, we investigate how to improve the VecSet representation. Compared to Zhang
et al. (2023), our goal is to obtain an even higher-quality latent space by introducing Level of Latents
(LoL).

2.3 CASCADED GENERATION

In the field of image generation, there are multiple cascaded diffusion models,e.g., (Ho et al., 2022;
Saharia et al., 2022). In the 3D domain, some works (Zeng et al., 2022; Ren et al., 2024) also
modeled geometries with hierarchical latents and proposed 3D generative models using cascaded
diffusion models. Our work encodes 3D geometry into hierarchical VecSets. Thus, it is straightfor-
ward to consider cascaded latent diffusion to train generative models in our latent space.
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Encoder DecoderBottleneck

P0 P Input

CAP X FtoL Z LtoF X ′ SAs F

FPS

Figure 3: Geometry Autoencoder. The design from VecSet (Zhang et al., 2023) can be seen as a
special case of the proposed LaGeM network with only one level.
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Figure 4: LaGeM architecture. We show an illustration with 3 levels of latents.

3 METHODOLOGY

3.1 BACKGROUND OF VECSET REPRESENTATIONS

The VecSet (Zhang et al., 2023) representation converts a dense point cloud to a latent vector set
Z = {z1, z2, . . . , zM} with z ∈ RD so that an occupancy/distance function O(p) can be recovered
from the vector set. The simplified network is illustrated in Fig. 3.

Encoding. The process first downsamples the 3D input point cloud P Input = {pi}i=1,...,N with
furthest point sampling (FPS), P = FPS(P Input, r), where r is the down-sampling ratio, and P is a
low-resolution version of P Input. Then P Input is converted to an unordered set with cross-attention

CA(Q = PE(P),K = PE(P Input), V = PE(P Input)) = X = {x ∈ RC}i=1,2,...,M , (1)

where PE is a positional embedding function (Zhang et al., 2023) and CA(·, ·, ·) is a cross-attention
module. We also write CA(P,P Input) for short. Here, the positional embedding used to project a 3D
coordinate p ∈ R3 to the high dimensional space RC is omitted for simplicity. To obtain a highly
compressed latent space, the vectors in X are further compressed to a lower-dimensional space RD

where D ≤ C (Feature to Latent, or FtoL in short),

FtoL(X ) = Z = {z ∈ RD}i=1,2,...,M . (2)

This compression step is also regularized by KL divergence.

Decoding. Each latent vector in Z is first converted back to feature space RC (Latent to Feature,
or LtoF in short),

LtoF(Z) = X ′ = {x′ ∈ RC}i=1,2,...,M . (3)
The features X ′ are fed into a series self-attention layers to obtain final occupancy/distance function
representations F ,

SAs(X ′) = F = {f ∈ RC}i=1,2,...,M , (4)
where SAs(·) is implemented using several self-attention layers. Now we can decode a continuous
function. For a continuous coordinate in the space R3, we have

O(p) = FC (CA(p,F)) ∈ R. (5)

See Table 2 for more details on FtoL(·) and LtoF(·).

3.2 HIERARCHICAL VECSET

The complexity of the self-attention layers in Eq. (4) is O(M2), i.e., quadratic in the number of
input vectors. This severely affects the training time when M is large. However, to represent high-
quality geometry details, we usually need a large M . This is making training a large VecSet network
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Table 2: Regularization in the Bottleneck. We compare the proposed regularization and VAE. We
do not need an explicit loss to regularize the latent space.

Features to Latents (FtoL) Latent Loss Latents to Features (LtoF)

VAE µ = FCµ(x) z = µ+ σ ⊙ ϵ KL Divergence x′ = FCup(z)σ = FCσ(x)

Ours z̄ = FCdown(x) z =
z̄− E[z̄]√
Var[z̄]

- x′ = FCup(z⊙ γ + β)

more challenging (for example M = 2048 in CLAY (Zhang et al., 2024a)). Motivated by the de-
sign of the U-Net and NVAE (Vahdat & Kautz, 2020), we propose a new network. Specifically,
in the design of the U-Net (see an illustration in Fig. 1), image feature grids are downsampled to
lower resolutions where some convolution blocks are applied, and then upsampled to the original
resolution. In this way, we can avoid performing convolutional layers in high resolution images
(which can be time-consuming). We transferred this idea to the VecSet representations. Two neces-
sary building blocks are operations to down-sample and up-sample a VecSet. Inspired by the design
of 3DShape2VecSet (Zhang et al., 2023) (an illustration can be found in Fig. 3), we interpret the
cross attention in the encoder part as a down-sampling operator. Similarly, we can also use it for
up-sampling. The resulting network is shown in Fig. 4.

We have L levels in the U-Net-style transformer, where we number the levels from one (highest
resolution) to L (lowest resolution). For notational convenience, we denote the input point cloud
as level 0. In the i-th level, we first obtain a lower resolution of the point clouds in the (i − 1)-th
level, FPS(Pi−1, ri−1) = Pi where P0 is the input point cloud. We use cross attention to compress
the feature set CA(Pi,Pi−1) = Xi. Different from previous approaches, we propose a new to way
regularize the latent space,

FtoL(Xi) = ZeroMeanAndUnitVariance(FCdown(Xi)) = Zi, (6)

where we normalize each vector in the set to have zero mean and unit variance (z−E[z])/
√

Var[z]
(It is often called standardization in machine learning which is used to standardize the features
present in the data in a fixed range.). The motivation behind this design is that diffusion starts with
Gaussian noise which also has zero mean and unit variance. In this way, we enforce both our latent
space and the initial Gaussian noise to have similar properties. To map the latents back to features,
we first scale and shift latents back z⊙ γ + β (both γ and β are learnable parameters like in Layer
Normalization (Lei Ba et al., 2016)),

LtoF(Zi) = FCup(ScaleAndShift(Zi)) = X ′
i . (7)

Unlike KL divergence in a VAE, we do not need an explicit loss term for the latent space. See Table 2
for a comparison between the proposed regularization and commonly used KL divergence in VAEs.

p CA

F2

CA

F1

CA

F3

f1

f2

f3

FC O(p)

Figure 5: Multiresolution Fea-
tures

Inspired by the down-sampling usage of cross attention in Zhang
et al. (2023), we generalize it to resampling. Here we use it as
upsampling for unordered set Fi. Before feeding the features to
self attention layers, we first upsample features Fi+1 from lower
resolution levels and apply self attentions,

SAs(CA(X ′
i ,Fi+1)) = Fi. (8)

The query function in Eq. (5) is changed to
O(p) = FC ([CA(p,F1)| · · · |CA(p,FL)]) ∈ R, (9)

where [·| · | · · · |·] is the symbol for concatenation. This means we
are using features from all levels to build the final (occupancy)
function representation (Fig. 5).

3.3 DIFFUSION

Cascaded Diffusion (Ho et al., 2022) proposed a method for generating high-resolution images. The
method is composed of several stages, where each stage is a conditioned diffusion model. Moti-
vated by this, we propose a cascaded latent diffusion model. In Cascaded Diffusion, images gener-
ated from the previous stage are used as a condition in the next stage. We build a cascaded latent
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Figure 6: Cascaded Latent Diffusion.

Table 3: Running Statistics of LaGeM. When using a small number (512) of latent vectors, our
model uses 0.87x time and 0.66x memory during training. For larger models (2k latent vectors), the
advantage is even more significant (0.7x time and 0.58x memory).

VecSet LaGeM VecSet LaGeM VecSet LaGeM

Batch Size 64 8 4
Self Attn Layers 24 8/8/8 24 8/8/8 24 8/8/8
Attn Channels 512 512/512/512 1k 1k/1k/1k 1k 1k/1k/1k

# Parameters (M) 106.13 125.15 424.24 499.85 424.24 499.85

# Latent Vectors 512 32/128/512 2k 128/512/2k 2k 128/512/2k
# Latent Channels 8 32/16/8 64 64/32/16 64 64/32/16

Training Memory (M) 56,125 37,055 (0.66×) OOM 53,791 (-) 54,543 31,662 (0.58×)

Training Iteration (sec) 0.6481 0.5658 (0.87×) - 0.7714 (-) 0.6902 0.4853 (0.70×)

diffusion model based on Cascaded Diffusion. Formally, the optimization goal (for our three-level
implementation) is as follows,

min
D3

∥∥∥D3(Z̃3(t), t, C )−Z3

∥∥∥ ,
min
D2

∥∥∥D2(Z̃2(t), t, C,Z3 )−Z2

∥∥∥ ,
min
D1

∥∥∥D1(Z̃1(t), t, C,Z3,Z2)−Z1

∥∥∥ ,
(10)

where Di is a denoising network, t represents timestep or noise level, Z̃i(t) is the noised version
(at timestep t) of the latent, C is optional condition information (e.g., text, images, or categories).
The network design is based on DiT (Peebles & Xie, 2022). To generate latents Zi, we need latents
from previous stages Z>i. For diffusion-based image super-resolution methods, this is often done
by bilinearly interpolating small images and concatenating them with denoising networks’ inputs.
As shown in the previous section, we use cross attention for resampling (both down-sampling and
upsampling). Here we also utilize cross attention to upsample a latent set. Specifically, assuming
we are training a denoising network for Z2, the input of the network is Z̃2(t),

CA(Z̃2(t),Z3). (11)

Similarly, for Z1,
CA(CA(Z̃1(t),Z3),Z2). (12)

In this way, we are gathering information from previous stages. See Fig. 6 for an illustration about
the pipeline.

4 EXPERIMENTS

4.1 AUTOENCODING MODEL

The main autoencoding experiment is trained on Objaverse (Deitke et al., 2023). Models are zero-
centered and normalized into the unit sphere. Since most 3D models in this dataset are not watertight,

6
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Table 4: Evaluation on ShapeNet. We compare our results to VecSet (Zhang et al., 2023) trained
on ShapeNet. If we train our model on ShapeNet and evaluate on ShapeNet our model is slightly
better than VecSet. When our model is trained on Objaverse and evaluated on ShapeNet, we can see
a very large improvement. Note that it is difficult to scale VecSet to Objaverse training.

Chamfer ↓ (×100) F-Score ↑ (×100)

VS LaGeM(∆) VS LaGeM(∆)
ShapeNet Objaverse ShapeNet Objaverse

table 2.46 2.48 0.02 2.09 -0.37 99.94 99.97 0.02 99.96 0.02
car 5.99 5.89 -0.10 4.36 -1.63 89.85 90.31 0.46 92.15 2.30

chair 2.92 2.89 -0.03 2.01 -0.91 96.40 96.49 0.09 99.91 3.51
airplane 1.78 1.81 0.03 1.58 -0.21 99.50 99.48 -0.02 99.78 0.29

sofa 2.64 2.63 -0.01 2.25 -0.39 98.92 99.04 0.11 99.60 0.67
rifle 1.78 1.77 -0.01 1.44 -0.34 99.88 99.88 -0.01 99.94 0.06

lamp 4.36 4.44 0.08 2.37 -2.00 96.78 97.18 0.39 99.43 2.64

mean (selected) 3.13 3.13 0.00 2.30 -0.83 97.33 97.48 0.15 98.68 1.36
mean (all) 4.68 4.63 -0.04 2.42 -2.26 93.25 93.47 0.23 98.93 5.68

Table 5: Generalization on Various Datasets. Our trained model is capable of doing inference on
several existing datasets. It can be applied on non-watertight datasets like ABO and pix3d even the
model is trained on watertight datasets. Note that models from ShapeNet are not watertight origi-
nally. We use the watertight version processed by (Zhang et al., 2022). The metric for ShapeNet-test
is different from Table 4. It is because here we show metrics averaged over all objects instead of
categories.

Chamfer ↓ (×100) F-Score ↑ (×100)Dataset # Meshes Manifold
VS LaGeM(∆) VS LaGeM(∆)

Thingi10k (Zhou & Jacobson, 2016) 10k Yes 4.52 2.99 -1.53 92.75 97.19 4.44
ABO (Collins et al., 2022) 8k No 4.91 3.66 -1.26 92.52 94.91 2.39

ShapeNet (Chang et al., 2015)-test 2k Yes 3.25 2.33 -0.92 97.41 99.49 2.08
EGAD (Morrison et al., 2020) 2k Yes 3.27 2.82 -0.45 99.02 99.76 0.74

GSO (Downs et al., 2022) 1k Yes 3.78 2.35 -1.43 94.70 99.54 4.84
pix3d (Sun et al., 2018) 700 No 6.53 6.02 -0.50 87.25 87.96 0.71

FAUST (Bogo et al., 2014) 100 Yes 2.10 1.31 -0.79 99.58 99.90 0.32

we use ManifoldPlus (Huang et al., 2020) to make all meshes watertight. Due to failures of modeling
loading and conversion, we obtained around 600k watertight models for training. The three levels of
latents are 128×64, 512×32, and 2048×16 (where 64, 32, and 16 are channels of the latents). Some
other hyperparameters of the network can also be found in Table 3. We name the model as LaGeM-
Objaverse. We also apply the method to ShapeNet, where the train split is taken from (Zhang et al.,
2022). Since ShapeNet is a relatively small and easy dataset compared to Objaverse, we choose
smaller latents which are 32×32, 128×16, and 512×8. The model is named as LaGeM-ShapeNet.
Both models are compared against VecSet (Zhang et al., 2023). We use Chamfer distance and F-
score as the metrics. The results are shown in Table 4. Like (Zhang et al., 2023), we first compare
the results on the largest categories (which have several thousand training samples) in ShapeNet and
then all categories. We can see that, LaGeM-ShapeNet has almost the same number of parameters
as VecSet, but with much shorter training time and less training memory. The quantitative results
(averaged over all ShapeNet categories) are also better than VecSet’s. While for LaGeM-Objaverse,
there is a large improvement in both training cost and quantitative results. The quantitative results
show an improvement of almost 50 percent averaged across the complete dataset in terms of the
metric Chamfer. This demonstrates that LaGeM-Objaverse has good generalization ability. This can
also be seen in Fig. 7. The results of LaGeM-Objaverse are good on small categories of ShapeNet.
In previous works (Zhang et al., 2023), this is nearly impossible because of limited training samples.
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Figure 7: Generalization on ShapeNet. Our results are better than VecSet in all categories. On
small categories, the results of VecSet are not stable because of limited training samples. In contrast,
our trained model also performs well in these categories.
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Figure 8: Qualitative Results on ShapeNet. We show autoencoding results on ShapeNet. We use
VecSet as the baseline. Our model is capable of reconstructing detailed geometry, especially thin
structures.
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Figure 9: Qualitative Results on Thingi10k. Our model can even preserve highly detailed geome-
try in CAD models.
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FAUST GSO

Figure 10: Qualitative Results on FAUST and GSO. Results of VecSet are over-smoothed, while
our method can preserve sharp details.

To further prove the generalization ability of LaGeM-Objaverse, we also test the autoencoding
on various datasets, including Thingi10k (Zhou & Jacobson, 2016), ABO (Collins et al., 2022),
EGAD (Morrison et al., 2020), GSO (Downs et al., 2022), pix3d (Sun et al., 2018) and FAUST (Bogo
et al., 2014). The objects from these datasets vary from daily objects, CAD models, human mod-
els, and synthetic objects. The quantitative results can be found in Table 5. We again use VecSet’s
model as the baseline. From the metrics, we can see that LaGeM-Objaverse is able to represent
different kinds of objects with highly detailed geometry and sharp features. Note that, even for non-
watertight meshes, the model is still able to do reconstruction. Visual results of the method can be
found in Fig. 8, Fig. 9, Fig. 10.

4.2 GENERATIVE MODEL

We conducted two generative experiments, one is on ShapeNet with categories as the condition, and
the other one is unconditional generation on Objaverse-10k. For ShapeNet, the denoising networks
of the 3 levels have 12 self-attention blocks with 768 channels. We trained the model for around
200 hours with 4 A100 GPUs. The results are shown in Fig. 11. For Objaverse-10k, due to limited
training GPU resources, we select a subset of 10k models from Objaverse and train the unconditional
generative model. There are 24 self-attention blocks with 768 channels in all stages of the latents.
The model is trained on 16 A100 GPUs for around 100 hours. See Fig. 12 for some unconditional
generation results.

Controllability of the Latents. We verify that different levels of latents control different levels of
detail of the generated samples. During generation, we first generate higher-level latents Z3, which
determine the main structures of the 3D models. Then we use Z3 as a condition to generate Z2,
which adds major details to the models. In the end, we generate Z1 conditioned on both Z3 and Z2.
This final step adds some minor details to the samples. A visual illustration can be found in Fig. 13.

5 CONCLUSION

We proposed LaGeM (Large Geometry Model), an architecture for encoding 3D geometry. Dif-
ferent from previous approaches, the latent space is modeled as a hierarchical latent VecSets. To
make this work, our model employs a U-Net-style design and a new regularization technique for the
bottleneck. We showed that this model can be trained much faster with much lower GPU memory
costs, especially for larger networks and datasets. This enables scaling of the network for large-scale
datasets. We release our model trained on a 600k geometry dataset. Additionally, we proposed a
cascaded diffusion model to show some preliminary generative results with the hierarchical latent
space.

Limitation. Since the latent space is divided into multiple levels, training a diffusion model on all
levels still takes a lot of time. Our method does not solve the high training cost problem of diffusion
itself.
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Figure 11: Category-Conditioned Generative Results on ShapeNet.

Figure 12: Unconditional Generative Results on Objaverse-10k.

Level 1

L
ev

el
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?

-

Figure 13: Latent Levels. Each small 4 × 4 block shares the same level 3 latents Z3. 3D models
in the same block have similar structures. In each block, every 1 × 4 line shares the same level 2
latents Z2. In each line of a block, 3D models look almost the same except for some minor details.
Thus, we argue that Z3 controls the structure, Z2 affects the major details and Z1 is responsible for
minor details.
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A DATA PREPROCESSING

The data preprocessing is based on (Zhang et al., 2022).

A.1 VOLUME POINTS SAMPLING.

We sample volume points uniformly in the bounding sphere.

1 N_vol = 250000
2 vol_points = np.random.randn(N_vol, 3)
3 vol_points = vol_points / np.linalg.norm(vol_points, axis=1)[:, None] *

np.sqrt(3)
4 vol_points = vol_points * np.power(np.random.rand(N_vol), 1./3)[:, None]

A.2 NEAR POINTS SAMPLING

The near-surface points are obtained by sampling Gaussian-jittered surface points.

1 N_near = 125000
2 # surface_points: N_near x 3
3 near_points = [
4 surface_points + np.random.normal(scale=0.005, size=(N_near, 3)),
5 surface_points + np.random.normal(scale=0.05, size=(N_near, 3)),
6 ]
7 near_points = np.concatenate(near_points)

B DATA AUGMENTATIONS

Random axis scaling. The augmentation is from (Zhang et al., 2022). We randomly sample a
scaling factor for each axis which ranges from [0.75, 1.25].
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Unit sphere normalization. We normalize each mesh to a unit sphere, i.e., the max point norm of
the point clouds is 1.

1 # v: vertices n x 3
2 v = v - (v.max(axis=0) + v.min(axis=0)) / 2
3 distances = np.linalg.norm(v, axis=1)
4 scale = 1 / np.max(distances)
5 v *= scale

Random rotations. We apply random rotations during the training of the autoencoder,

R(α, β, γ) =

[
cosα − sinα 0
sinα cosα 0
0 0 1

][
cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

][
1 0 0
0 cos γ − sin γ
0 sin γ cos γ

]
, (13)

where α, β, and γ are yaw, pitch, and roll, respectively. Our meshes are firstly normalized into a
unit sphere. Thus after the random rotations, the models will still be inside of a unit sphere.

C REGULARIZATION

The proposed regularization (see Table 2) is implemented with layer normalization (PyTorch code).
1 # network definition
2 self.ftl_proj = nn.Linear(x_dim, z_dim)
3 self.ftl_norm = nn.LayerNorm(dims, elementwise_affine=False, eps=1e-6)
4 # network forward
5 z = self.ftl_norm(self.ftl_proj(x))

D TRAINING TIME QUERY POINTS SAMPLING

In the previous work (Zhang et al., 2022), the sampling strategy is uniformly sampling 1024 points
in the bounding volume during training. We found this is not working on Objaverse. Since lots
of meshes have very thin structures, this strategy will cause no inside points to be sampled during
training. This heavily imbalenced data classficiation severely affects the occupancy loss.

We propose the following solution. In each iteration, we make sure half of the points have positive
labels and the other half have negative labels.

E TRAINING LOSS

The loss is binary cross entropy as in previous work (Zhang et al., 2022). Formally, we have

L = Ep∈R3

[
BCE

(
Ô(p),O(p)

)]
. (14)

In practice, we use the empircal loss

Ep∈Qvol

[
BCE

(
Ô(p),O(p)

)]
+ 0.1 · Ep∈Qnear

[
BCE

(
Ô(p),O(p)

)]
. (15)

Here, Qvol is the set of volume query points, and Qnear is the set of near-surface query points.

F DIFFUSION

We use the formulation EDM (Karras et al., 2022) for the diffusion models. The inference/sampling
algorithm is also taken from the paper.

G LATENTS ANALYSIS

We analyze how latents are affecting the final reconstruction. The latents are partially replaced by
standard Gaussian noise (this is because our latents are also zero mean and unit variance). We show
the visual results in Fig. 14.
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Z3,Z2,Z1 Z3,Z2,Z1 Z3,Z2,Z1 Z3,Z2,Z1

Figure 14: Latent with red color Z means it is replaced by Gaussian noise. Latent with blue color
Z means it is generated with the diffusion models.
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Figure 15: Results from 3DQD and LION.
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Figure 16: Our generated results. Comparing to Fig. 15, we are able to generate clean, sharp and
detailed shapes.
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