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Abstract

Recent progress of abstractive text summa-001
rization largely relies on large pre-trained002
sequence-to-sequence Transformer models,003
which are computationally expensive. This004
paper aims to distill these large models into005
smaller ones for faster inference and with min-006
imal performance loss. Pseudo-labeling based007
methods are popular in sequence-to-sequence008
model distillation. In this paper, we find009
simply manipulating attention temperatures in010
Transformers can make pseudo labels easier011
to learn for student models. Our experiments012
on three summarization datasets show our pro-013
posed method consistently improves vanilla014
pseudo-labeling based methods. Further em-015
pirical analysis shows that both pseudo labels016
and summaries produced by our students are017
shorter and more abstractive.018

1 Introduction019

Automatic document summarization is the task of020

rewriting a long document into its shorter form021

while still retaining its most important content. In022

the literature, there are mainly two kinds of meth-023

ods for summarization: extractive summarization024

and abstractive summarization (Nenkova and McK-025

eown, 2011). In this work, we focus on abstractive026

summarization, which is viewed as a sequence-to-027

sequence (Seq2Seq) learning problem, since re-028

cent abstractive models outperform their extrac-029

tive counterparts and can produce more concise030

summaries (Raffel et al., 2020; Lewis et al., 2020;031

Zhang et al., 2020; Liu and Lapata, 2019). Recent032

progress of abstractive summarization largely relies033

on large pre-trained Transformer models (Raffel034

et al., 2020; Lewis et al., 2020; Zhang et al., 2020;035

Liu and Lapata, 2019; Bao et al., 2020). With these036

extremely large models, we can obtain state-of-the-037

art summarization results, but they are slow for038

online inference, which makes them difficult to039

be used in the production environment even with040

cutting-edge hardware. This paper aims to distill 041

these large Transformer summarization models into 042

smaller ones with minimal loss in performance. 043

Knowledge distillation is a class of methods that 044

leverage the output of a (large) teacher model to 045

guide the training of a (small) student model. In 046

classification tasks, it is typically done by minimiz- 047

ing the distance between the teacher and student 048

predictions (Hinton et al., 2015). As to Seq2Seq 049

models, an effective distillation method is called 050

pseudo-labeling (Kim and Rush, 2016), where the 051

teacher model generates pseudo summaries for all 052

documents in the training set and the resulting 053

document–pseudo-summary pairs are used to train 054

the student model. 055

In this paper, we argue that attention distribu- 056

tions of a Seq2Seq teacher model might be too 057

sharp. As a result, pseudo labels generated from 058

it are sub-optimal for student models. In the sum- 059

marization task, we observe that 1) pseudo sum- 060

maries generated from our teacher model copy 061

more continuous text spans from original docu- 062

ments than reference summaries (56% 4-grams in 063

pseudo summaries and 15% 4-grams in reference 064

summaries are copied from their original docu- 065

ments on CNN/DailyMail dataset); 2) pseudo sum- 066

maries tend to summarize the leading part of a 067

document (measured on CNN/DailyMail, 74% of 068

sentences in pseudo summaries and 64% of sen- 069

tences in reference summaries are from the leading 070

40% sentences in original documents). We obtain 071

the two numbers above by matching each sentence 072

in a summary with the sentence in its original doc- 073

ument that can produce maximum ROUGE (Lin, 074

2004) score between them. We call the two bi- 075

ases above the copy bias and the leading bias. In 076

order to have an intuitive feeling, we select a rep- 077

resentative example 1 and visualize its cross atten- 078

tion weights 2 (see the left graph in Figure 1). We 079

1See the detailed example in Appendix D.
2We use cross attention because we can see how words in
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observe that attention weights form three “lines”,080

which indicates very time the decoder predicts the081

next word, its attention points to the next word in082

the input document. That may be the reason why083

multiple continuous spans of text are copied. An-084

other phenomenon we observe is that all high-value085

attention weights (in deeper color) concentrate on086

the first 200 words in the input document, which087

reflects the leading bias. In either case, the atten-088

tion distribution is too sharp (i.e., attention weights089

of the next word position or the leading part is090

much larger than other positions), which means our091

teacher model is over-confident.092

Based on the observations above, we pro-093

pose a simple method called PLATE (as short-094

hand for Pseudo-labeling with Larger Attention095

TEmperature) to smooth attention distributions of096

teacher models. Specifically, we re-scale attention097

weights in all attention modules with a higher tem-098

perature, which leads to softer attention distribu-099

tions. Figure 1 intuitively shows the effect of using100

higher attention temperatures. Compared with the101

left graph, the right graph with higher attention tem-102

perature has shorter lines (less copy bias) with high103

attention weights, and positions of high attention104

weights extend to the first 450 words (less leading105

bias). Less copy bias in pseudo summaries encour-106

ages student models to be more abstractive, while107

less leading bias in pseudo summaries encourages108

student models to take advantage of longer context109

in documents.110

Experiments on CNN/DailyMail, XSum, and111

New York Times datasets with student models of112

different sizes show PLATE consistently outper-113

forms vanilla pseudo-labeling methods. Further114

empirical analysis shows that, with PLATE, both115

pseudo summaries generated by teacher models116

and summaries generated by student models are117

shorter and more abstractive, which matches the118

goal of abstractive summarization. We plan to119

make our code and pre-trained models publicly120

available upon publication.121

2 Related Work122

Large pre-trained Seq2Seq Transformer models123

largely improve results of generation tasks includ-124

ing text summarization (Song et al., 2019; Lewis125

et al., 2020; Bao et al., 2020; Raffel et al., 2020;126

Zhang et al., 2020). These models are pre-trained127

using unsupervised text-to-text objectives. For ex-128

documents are selected during generation.
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Figure 1: Visualization of teacher cross attention
weights when generating pseudo labels with normal
(left) and smoothed (right) attention weights.

ample, T5 (Raffel et al., 2020) is pre-trained by 129

predicting corrupted text spans. BART (Lewis 130

et al., 2020) employs denoising auto-encoding ob- 131

jectives such as text infilling and sentence permuta- 132

tion during its pre-training. The pre-training objec- 133

tive of PEGASUS (Zhang et al., 2020) is tailored 134

for the summarization task, which predicts the most 135

“summary worthy” sentences in a document. Our 136

method aims to make these large models faster. 137

In knowledge distillation, besides learning from 138

gold labels in the training set, student models 139

can learn from soft targets (Ba and Caruana, 140

2014; Hinton et al., 2015), intermediate hidden 141

states (Romero et al., 2014), attentions (Zagoruyko 142

and Komodakis, 2017; Wang et al., 2020), and tar- 143

get output derivatives (Czarnecki et al., 2017) of 144

teacher models. Recent work for distillation of 145

pre-trained Transformers (e.g., DistilBERT (Sanh 146

et al., 2019), TinyBERT (Jiao et al., 2020), Mobile- 147

BERT (Sun et al., 2020), BERT-of-Theseus (Xu 148

et al., 2020), MINILM (Wang et al., 2020)) focuses 149

on natural language understanding tasks such as 150

GLUE (Wang et al., 2018) or SQuAD (Rajpurkar 151

et al., 2016) benchmarks. Most methods above are 152

designed for classification models. 153

In Seq2Seq learning tasks such as summariza- 154

tion, we can apply distillation methods above to 155

each step of sequence model predictions. How- 156

ever, the sequence-level knowledge of teacher mod- 157

els is not well utilized. Therefore, Kim and Rush 158

(2016) introduce a sequence-level knowledge distil- 159

lation method (i.e., pseudo-labeling), where a stu- 160

dent model is trained with pseudo labels generated 161
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by the teacher model using beam search decoding.162

Kim and Rush (2016) and later work (Kasai et al.,163

2020; Gu et al., 2017; Denkowski and Neubig,164

2017) show pseudo-labeling achieves competitive165

performance for Seq2Seq tasks such as machine166

translation. Shleifer and Rush (2020) propose the167

shrink and fine-tune (SFT) approach for pre-trained168

summarization distillation, which re-finetunes a169

teacher model with some layers removed, and they170

show SFT outperforms pseudo-labeling and a mod-171

ification of direct knowledge distillation (Jiao et al.,172

2020) on one of their datasets, but not others. Our173

method, which builds on top of pseudo-labeling, is174

conceptually simple and improves pseudo-labeling175

across different summarization datasets.176

There is an interesting line of work called self-177

distillation or self-training (Furlanello et al., 2018;178

Xie et al., 2020; Deng et al., 2009; Liu et al.,179

2020; He et al., 2019), where the size of the stu-180

dent model is identical to the size of the teacher181

model. Our method can also be applied in self-182

distillation and can potentially be combined with183

the self-distillation methods above.184

3 Summarization Distillation185

3.1 Transformer based abstractive186

summarization187

Abstractive summarization aims to rewrite a docu-188

ment into its shorter form (i.e., summary), which is189

a typical Seq2Seq learning problem. We adopt the190

Seq2Seq Transformer (Vaswani et al., 2017) model.191

Given a document X = (x1, x2, . . . , x|X|) and its192

gold summary Y = (y1, y2, . . . , y|Y |), we estimate193

the following conditional probability:194

p(Y |X; θ) =

|Y |∏
t=1

p(yt|y<t, X; θ) (1)195

where θ is the model parameter and y<t196

stands for all tokens before position t (i.e.,197

(y1, y2, . . . , yt−1)).198

The Seq2Seq Transformer model can be trained199

by minimizing the negative log-likelihood of gold200

document-summary pairs:201

LG(θ) = −
1

|Y |
log p(Y |X; θ) (2)202

where |Y | is the number of tokens in summary Y .203

3.2 Distillation with pseudo labels204

Knowledge distillation refers to the task of trans-205

ferring knowledge of a large teacher model (or a206

group of large teacher models) into a small stu- 207

dent model. As to Seq2Seq learning tasks such as 208

machine translation and summarization, pseudo- 209

labeling based methods are usually used to imitate 210

teacher predictions at the sequence level. Specif- 211

ically, suppose we have a document X , and Ŷ = 212

(ŷ1, ŷ2, . . . , ŷ|Ŷ |) is a pseudo summary generated 213

by a teacher model using beam search. The stu- 214

dent can be trained by minimizing the negative log- 215

likelihood of document-to-pseudo-summary pairs. 216

217

LPL(θ) = −
1

|Ŷ |

|Ŷ |∑
t=1

log p(ŷt|ŷ<t, X; θ) (3) 218

Strictly, all possible pseudo summaries from X 219

should be taken into account. Unfortunately, the 220

computational cost is prohibitive. We therefore use 221

a single sample Ŷ (which takes a large portion of 222

probability mass from the teacher) instead as in 223

Kim and Rush (2016). 224

3.3 Re-scaling attention temperatures 225

Both our teacher and student models are Seq2Seq 226

Transformer models. The core part of a Trans- 227

former model is the attention module: 228

Attention(Q,K, V ) = softmax(
QKT

τ
)V (4) 229

where Q, K, V are linear projections of hidden 230

states of a layer and τ is the temperature of the 231

attention module which is usually
√
d (d is the 232

hidden dimension size of that attention head). 233

Our distillation method PLATE works as fol- 234

lows. Assume we have a teacher model trained 235

with τ =
√
d. When the teacher generates pseudo 236

labels with beam search, we use a higher attention 237

temperature and set τ =
√
λ d where λ > 1 (λ 238

is the attention temperature coefficient). Note that 239

we only change the teacher’s attention temperature 240

during inference time. When we train our student 241

model with pseudo labels, we still use a normal 242

temperature (i.e., τ =
√
d). We find that adjusting 243

the student’s attention temperature does not work. 244

Probably because the student can easily adapt to 245

the scaled attention temperature during training. 246

We find that λ = 1.5 or λ = 2.0 usually works 247

well in practice. To encourage teacher models to 248

generate pseudo labels with more diversity, we fur- 249

ther propose to use a random λ for each input doc- 250

ument (λ ∼ U [a, b]). Note that U [a, b] is a uni- 251

form distribution and we typically set a = 1.0 and 252

b = 2.0. 253
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4 Experiments254

4.1 Datasets255

We conduct our experiments on three popu-256

lar document summarization datasets, which257

are CNN/DailyMail (Hermann et al., 2015),258

XSum (Narayan et al., 2018), and New York259

Times (Sandhaus, 2008). CNNDM: The260

CNN/DailyMail dataset (CNNDM; Hermann et al.,261

2015) contains online news articles from the CNN262

and DailyMail websites paired with their associ-263

ated highlights as reference summaries. We follow264

the standard pre-processing steps described in See265

et al. (2017); Liu and Lapata (2019) 3. The result-266

ing numbers of document-summary pairs for train-267

ing, validation, and test are 287,227, 13,368 and268

11,490, respectively. XSum: The XSum dataset269

is collected by harvesting online articles from the270

BBC with single sentence summaries, which is pro-271

fessionally written. The summaries are extremely272

abstractive. We use the official splits of Narayan273

et al. (2018). There are 204,045 articles for train-274

ing, 11,332 articles for validation and 11,334 arti-275

cles for test. NYT: The New York Times dataset276

(NYT; Sandhaus, 2008) is composed of articles277

published by New York Times and the summaries278

are written by library scientists. After applying279

the pre-processing procedures described in Dur-280

rett et al. (2016); Liu and Lapata (2019), we first281

obtain 110,540 articles with abstractive summaries.282

The test set is constructed by including the 9,076283

articles published after January 1, 2007. The re-284

main 100,834 articles are further split into training285

and validation sets. After removing articles with286

summaries less than 50 words, we obtain the final287

dataset with 38,264 articles for training, 4,002 arti-288

cles for validation, and 3,421 articles for test. All289

datasets are tokenized with the GPT-2 tokenizer290

(Radford et al., 2019), which is based on UTF-8291

BPE (Sennrich et al., 2016).292

4.2 Implementation details293

Teacher/Student model settings We use BART294

Large (Lewis et al., 2020) as our teacher model,295

which has 12 layers in the encoder and decoder.296

The hidden size of each layer is 1024, and each297

layer contains 16 attention heads with a hidden size298

of 64. We have four kinds of student models. The299

first three student models are initialized from BART300

weights (therefore, their hidden sizes are the same301

3Scripts are available at https://github.com/
abisee/cnn-dailymail.

Model # Param.
Latency (Millisecond)

CNNDM XSum NYT

BART 406M 1975 903 3272
BART 12-6 306M 1279 438 1692
BART 12-3 255M 924 289 1488
Transformer 70M 1028 406 1462

Table 1: Latency (in Milliseconds) on a V100 GPU and
number of parameters (million) of our models.

as that of BART). All the three students have the 12 302

layers of BART encoder and differ in the number of 303

decoder layers. They are denoted by BART 12-6, 304

BART 12-3, and BART 12-12 with 6, 3, and 305

12 decoder layers, respectively. For BART 12-6 306

(or BART 12-3), the decoder is initialized from 307

the first 6 (or 3) layers or the maximally spaced 308

6 (or 3) layers of BART decoder. The fourth stu- 309

dent is the Transformer base model (Vaswani et al., 310

2017), which has 6 layers in each of the encoder 311

and decoder. Each layer has a hidden size of 512 312

and 8 attention heads. This student is randomly 313

initialized and denoted by Transformer. The 314

latency statistics (Milliseconds) and numbers of 315

parameters of above four models are in Table 1. 316

Training and inference Hyper-parameters for 317

BART, BART 12-6, BART 12-3, and BART 318

12-12 are similar. Specifically, all models are 319

optimized using Adam (Kingma and Ba, 2014) 320

with β1 = 0.9, β2 = 0.999. Learning rates are 321

tuned on validation sets (choose from 1e-5, 3e- 322

5, 5e-5, 7e-5). We truncate all documents and 323

summaries to 1024 sub-word tokens. We use a 324

batch size of around 80 documents (we limit the 325

max number of tokens on each GPU to 2048) and 326

train our models for 20,000/15,000/6,000 steps 327

with 500 warmup steps for CNNDM, XSum, and 328

NYT, respectively. We also employ a weight 329

decay of 0.01. For Transformer, the hyper- 330

parameters of the Adam optimizer is a bit differ- 331

ent, and we use β1 = 0.9, β2 = 0.98. Learning 332

rates are picked from 1e-4, 3e-4, 5e-4, 7e-4 accord- 333

ing to validation sets. The weight decay is set to 334

0.0001. The warmup step we use is 4000. We train 335

Transformer for 100 epochs and select the best 336

model w.r.t. their ROUGE scores on validation sets. 337

For all models above we apply a label smoothing 338

of 0.1 to prevent overfitting (Pereyra et al., 2017). 339

During inference, as common wisdom, we apply 340

beam search. The beam size, length penalty, and 341

minimal length are 4, 2.0, and 55 on CNNDM, 6, 342
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0.1, and 1 on XSum and 4, 0.7, and 80 on NYT, re-343

spectively. All our models are trained on 8 NVIDIA344

V100 GPUs. The training is fairly fast. Training345

on CNNDM with the teacher model (i.e., BART) is346

most time-consuming. It takes about 45 minutes347

for one epoch, and we need 6 epochs in total.348

4.3 Evaluations349

We evaluate the quality of different summariza-350

tion systems using ROUGE. On CNNDM and351

XSum datasets, we report full-length F1 based352

ROUGE-1 (R1), ROUGE-2 (R2), and ROUGE-353

L (RL) scores. Following Durrett et al. (2016);354

Liu and Lapata (2019), we report limited-length355

recall based ROUGE-1, ROUGE-2, and ROUGE-356

L, where generated summaries are truncated to the357

lengths of gold summaries. All ROUGE scores are358

computed using the ROUGE-1.5.5.pl script 4.359

Summaries generated by abstractive models may360

be ungrammatical or unfaithful to the original doc-361

ument. Additionally, we also measure the quality362

of generated summaries by eliciting human judge-363

ments. We randomly sample 50 documents from364

the test set of CNNDM. 12 annotators are invited365

(they are either native English speakers or gradu-366

ate students with IELTS test score over 6.5). In367

the evaluation, participants are presented with a368

document and a list of outputs by different models.369

First, they are asked to evaluate the summaries on370

three dimensions: fluency (is the summary gram-371

matically correct?), faithfulness (is the summary372

faithful to the original document?), coverage (does373

the summary coverage important information of the374

document?). Then, they are asked to rank the sum-375

maries from best to worst as a way of determining376

the overall quality of summaries. Each document377

is ensured to be annotated by 3 different subjects.378

4.4 Results379

Our main results are shown in Table 2. The first380

block includes several recent abstractive summa-381

rization models based on large pre-trained Trans-382

formers. BERTSUM (Liu and Lapata, 2019) em-383

ploys BERT (Devlin et al., 2019) as its encoder384

and uses randomly initialized decoder. T5 (Raffel385

et al., 2020), PEGASUS (Zhang et al., 2020) and386

BART (Lewis et al., 2020) are three popular large387

Seq2Seq Transformer models with different pre-388

training objectives. Our own fine-tuning version389

of BART (BART (ours)) is comparable or slightly390

4with -c 95 -r 1000 -n 2 -a -m arguments

better than the original reported BART results, and 391

we use it as the teacher model on the three datasets. 392

The second block presents results of student 393

models. Shleifer and Rush (2020) compare pseudo- 394

labeling (BART-PL), knowledge distillation using 395

both output and intermediate layers (BART-KD) as 396

well as shrink and fine-tuning (BART-SFT) meth- 397

ods. They also use BART as teacher models. Note 398

their settings of student models are BART 12-6 399

on CNNDM and BART 12-3 on XSum. 400

Results of our BART 12-3 and BART 12-6 401

student models are in the third and fourth block. 402

We present results of students trained with gold la- 403

bels (Gold) and regular pseudo labels (Regular) as 404

well as pseudo labels with higher and random atten- 405

tion temperatures (PLATEB12-3
λ=1.5, PLATEB12-3

λ=2.0 and 406

PLATEB12-3
rnd ). PLATEB12-3

λ=1.5 means that the student 407

uses attention temperature coefficient λ = 1.5 with 408

architecture setting BART 12-3. PLATEB12-3
rnd 409

means that we use random attention tempera- 410

ture of λ ∼ U [1.0, 2.0]. We observe that using 411

pseudo-labeling methods with higher attention tem- 412

peratures consistently improves over its counter- 413

part with normal attention temperatures (Regular) 414

across all three datasets, and the differences be- 415

tween them are almost always significant measured 416

with the ROUGE script (see details in Table 2). 417

Interestingly, our student models PLATEB12-3
λ=2.0 and 418

PLATEB12-6
λ=2.0 outperform all models in comparison 419

(including student models and even the teacher 420

model) on CNNDM. Our best performing student 421

model PLATEB12-3
λ=1.5 outperforms BART-PL, BART- 422

SFT and BART-KD on XSum. Meanwhile, our 423

method is conceptually simpler and can further be 424

combined with their methods with additional train- 425

ing objectives. In Section 3.3, we also propose a 426

variant of our method, which employs random at- 427

tention temperatures (PLATErnd in Table 2). We can 428

see that though random temperature based method 429

is not as good as our best fixed-temperature method, 430

it in general produces decent results. Therefore, we 431

recommend using this method when the computing 432

budget is limited. Note that we also tried more 433

extreme λ values as shown in Appendix B, and we 434

find the value of 1.5 or 2.0 works better than others. 435

In the fifth block, we additionally conduct self- 436

distillation experiments, which is not the focus of 437

this work. Our method improves the teacher model 438

on CNNDM. ROUGE-2/L scores are improved on 439

XSum, while on NYT, there are improvements on 440

ROUGE-1/L. 441
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Model/Dataset
CNNDM XSum NYT

R1 R2 RL R1 R2 RL R1 R2 RL
Teacher

BERTSUM (Liu and Lapata, 2019) 42.13 19.60 39.18 38.81 16.50 31.27 49.02 31.02 45.55
T5-11B (Raffel et al., 2020) 43.52 21.55 40.69 – – – – – –
PEGASUS (Zhang et al., 2020) 44.17 21.47 41.11 47.21 24.56 39.25 – – –
BART (Lewis et al., 2020) 44.16 21.28 40.90 45.14 22.27 37.25 – – –
BART (ours) 44.71 21.52 41.44 45.50 22.26 36.98 55.41 36.59 51.11

Student
BART-PL (Shleifer and Rush, 2020) – 19.93 – – 21.38 – – – –
BART-KD (Shleifer and Rush, 2020) – 20.95 – – 21.63 – – – –
BART-SFT (Shleifer and Rush, 2020) – 21.21 – – 21.08 – – – –

BART 12-3

Gold 44.28 21.31 41.18 44.33 21.60 36.73 54.75 35.52 50.56
Regular 43.65 21.10 40.40 44.40 21.63 36.44 53.82 35.12 49.45

PLATEλ=1.5 44.54∗ 21.70∗ 41.41∗ 44.40 21.92 36.92∗ 54.47∗ 35.65 50.39∗

PLATEλ=2.0 44.65∗ 21.78∗ 41.71∗ 43.50 21.45 36.47 54.96∗ 35.72 51.05∗
PLATErnd 44.27∗ 21.50∗ 41.15∗ 44.21 21.70 36.81∗ 54.60∗ 35.70 50.53∗

BART 12-6

Gold 44.00 21.08 40.76 44.88 21.75 36.72 55.07 35.91 50.69
Regular 44.00 21.08 40.29 44.87 21.65 36.47 53.85 35.08 49.36

PLATEλ=1.5 44.29∗ 21.57∗ 41.13∗ 45.13 22.07∗ 37.13∗ 54.41∗ 35.61∗ 50.29∗

PLATEλ=2.0 44.84∗ 21.95∗ 41.77∗ 44.51 21.79 36.92∗ 55.07∗ 35.92∗ 51.05∗
PLATErnd 44.38∗ 21.65∗ 41.27∗ 45.00 22.09∗ 37.09∗ 54.74∗ 35.88∗ 50.66∗

BART 12-12

Regular 43.58 21.14 40.33 44.55 21.42 36.01 54.36 35.74 49.97
PLATEλ=1.5 44.72∗ 21.88∗ 41.55∗ 45.22∗ 22.30∗ 37.22∗ 54.90 36.17 50.84∗

PLATEλ=2.0 45.08∗ 21.98∗ 42.07∗ 44.76 22.06∗ 37.09∗ 55.70∗ 36.28 51.70∗
PLATErnd 44.65∗ 21.80∗ 41.53∗ 44.60 21.86∗ 36.69∗ 55.15∗ 36.28 51.11∗

Transformer

Gold 40.29 17.49 36.71 29.04 9.21 22.18 49.44 29.04 45.07
Regular 41.00 18.35 37.65 30.19 9.79 22.88 49.97 31.00 45.88

PLATEλ=1.5 41.19 18.33 38.01∗ 29.40 10.11∗ 22.95∗ 50.21 31.14 46.25
PLATEλ=2.0 41.15 18.41 38.00∗ 28.56 10.02∗ 22.83∗ 50.35 30.75 46.39

Table 2: Results of various models on CNNDM, XSum and NYT datasets. ROUGE scores on CNNDM and XSum
are F1 based and ROUGE scores on NYT are limited-length recall based. BART (ours) is our own implementation
of BART fine-tuning. * indicates the model significantly outperforms the regular pseudo-labeling model (Regular).

Ref Regular PLATEB12-6
λ=1.5 PLATEB12-6

λ=2.0

rank 2.4 2.1 2.4 2.7∗

Table 3: Human Evaluation on CNNDM dataset. *
means significantly better than Regular.

Results with the Transformer student (the442

sixth block) follow a similar trend, although the im-443

provements are smaller. It may because the model-444

ing power of Transformer without pre-training445

is not large enough to effectively model the dif-446

ferences in pseudo labels. It is also interesting447

to see that students distilled with pseudo-labeling448

do improve gold label based students using ran-449

domly initialized Transformer, but not with450

pre-trained models (i.e., BART 12-6 and BART451

12-3), which may also be due to the strong mod-452

eling power of large pre-trained Transformers.453

Human evaluation We randomly sample 50 454

documents from the test set of CNNDM. We com- 455

pare our best student model PLATEB12-6
λ=2.0 against the 456

regular pseudo-labeling model (Regular), another 457

model PLATEB12-6
λ=1.5 and human reference (Ref). We 458

ask human judges to rank the outputs of these mod- 459

els from best to worst. We convert the ranks to 460

rank ratings (rank i to 5 − i) and further conduct 461

student t-test on these ratings. As shown in Table 462

3, PLATEB12-6
λ=2.0 obtains the best ranking score and 463

the difference between PLATEB12-6
λ=2.0 and the regular 464

pseudo-labeling based method Regular is signif- 465

icant (p < 0.05), which indicates our proposed 466

method PLATE indeed produces better summaries. 467

Ablation study In a Transformer, there are 468

three types of attention modules (i.e., encoder self- 469

attention, decoder self-attention and decoder cross- 470

attention), and we can scale attention temperatures 471

for all of them or some of them. Let λenc, λcross, 472

and λdec denote the attention temperature coef- 473
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Attention Setting R1 R2 RL

λenc = λcross = λdec = 2.0 45.65 22.59 42.60
– with λenc = 1.0 45.65 22.57 42.55
– with λcross = 1.0 44.45 21.52 41.22
– with λdec = 1.0 45.08 22.25 42.02

Table 4: Effects of re-scaling attention temperatures for
encoder self-attention, decoder self-attention and de-
coder cross-attention on the validation set of CNNDM.

Method R1 R2 RL

Sampling (Edunov et al., 2018) 43.70 20.83 40.56
Nucleus Sampling 43.86 20.95 40.68
Output Layer T = 0.5 43.80 21.20 40.59
Regular 44.00 21.08 40.29
PLATEλ=2.0 (Ours) 44.84 21.95 41.77

Table 5: Comparison with Sampling and output layer
temperature based distillation methods.

ficient of the encoder self-attention module, the474

decoder cross-attention module, and the decoder475

self-attention module, respectively. As shown in476

Table 4, using large attention temperature coeffi-477

cients (2.0) for all three types of attention modules478

leads to the best result. When setting the coefficient479

of the cross attention module to λcross = 1.0, the480

ROUGE scores drop most. Perhaps this is not sur-481

prising, since cross attentions are directly related482

to the selection of document contents for summa-483

rization. Besides, the attention temperature of the484

decoder self-attention is also crucial but not as im-485

portant as the cross-attention (see the fourth row).486

Comparison with Sampling and Tuning Out-487

put Layer Temperature Sampling based meth-488

ods can produce more diverse and richer outputs489

than its beam search based counterpart and has490

been proven useful in back translation (Edunov491

et al., 2018). We implement the sampling492

method in Edunov et al. (2018) and Nucleus Sam-493

pling (Holtzman et al., 2019), a more advanced494

sampling method, to generate pseudo labels for dis-495

tillation. We use the BART 12-6 as the student496

model, and the distillation results on CNNDM are497

in Table 5. As can be seen, both of the sampling498

based methods above perform worse than the reg-499

ular beam search based pseudo-labeling method500

(Regular), let alone ours. Besides the attention tem-501

peratures, we can also tune the temperature T in502

the decoder output softmax layer. With a proper503

T (i.e., T = 0.5) during pseudo label generation, 504

the resulting student model slightly outperforms 505

the baseline student model with regular pseudo la- 506

beling method on ROUGE-2/L (see Table 5), but 507

worse than PLATEλ=2.0. More results with differ- 508

ent T s are in Appendix C. 509

4.5 Analysis 510

Why does our distillation method work? To an- 511

swer this question, we try to analyze the reasons 512

from both the external characteristics of the sum- 513

maries generated by the teacher model and the 514

internal characteristics of the teacher’s attention 515

mechanism. 516

Length and novel n-grams We first analyze the 517

pseudo summaries generated by the teacher models. 518

We calculate novel n-grams and lengths of gener- 519

ated summaries. Note that if an n-gram appears 520

in the summary, but not in the original document, 521

we call it a novel n-gram. Proportions of novel 522

n-grams are used to measure the abstractiveness of 523

summaries (See et al., 2017; Liu and Lapata, 2019). 524

As shown in Table 6, when using a larger λ, pseudo 525

summaries are shorter and contain a larger portion 526

of novel n-grams. It indicates that the teachers can 527

produce more concise and abstractive summaries, 528

which matches the goal of abstractive summariza- 529

tion. Are these pseudo summaries of good quality? 530

The performance of the teacher with different at- 531

tention temperatures on CNNDM test set is shown 532

in Table 7. Their results are all decent and close 533

to each other (at least for ROUGE-1 and ROUGE- 534

L). Interestingly, compared with λ = 1.0, the per- 535

formance of the teacher with λ = 2.0 is worse, 536

but the resulting student is much better (see Ta- 537

ble 2). Perhaps not surprisingly, the styles of sum- 538

maries from students are similar with these from 539

their teachers. Concise and abstractive teachers 540

lead to concise and abstractive students (see Ta- 541

ble 6). Conciseness and abstractiveness are good 542

properties for summarization, which however may 543

not be the case for other generation tasks such 544

as machine translation. We apply PLATE to the 545

WMT16 (Bojar et al., 2016) English-German trans- 546

lation task and use Transformer-big as the teacher 547

and Transformer-base as the student. With λ = 1.5, 548

we obtain a BLEU of 27.90, while the result of the 549

regular pseudo-labeling is 27.79 (more details are 550

in Appendix A). 551

Attention We have shown earlier in Figure 1 that 552

with higher attention temperature, cross-attention 553
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CNNDM XSum NYT
λ Setting gold 1.0 1.5 2.0 gold 1.0 1.5 2.0 gold 1.0 1.5 2.0

Average Length

Teacher Avg. Len. 48.03 64.78 56.81 52.16 21.10 20.33 17.28 15.66 78.61 105.83 88.58 79.05
Student Avg. Len. 67.51 82.31 73.10 65.92 21.01 22.46 18.69 16.84 92.61 109.78 98.16 88.52

Novel n-grams Ratio(%)

Teacher

1-gram 25.24 7.89 9.15 12.56 46.78 38.68 39.05 39.33 12.96 4.04 4.34 6.25
2-grams 61.08 23.60 27.38 36.81 87.83 80.50 81.91 82.70 45.90 22.54 23.14 28.95
3-grams 77.49 35.43 40.54 52.77 97.17 93.09 94.27 94.91 65.12 39.20 39.88 46.93
4-grams 85.13 44.10 49.66 62.56 99.08 96.78 97.64 98.07 75.21 51.09 51.63 58.36

Student

1-gram 23.55 4.58 5.07 6.56 46.80 37.33 38.01 38.07 10.36 3.46 3.37 3.64
2-grams 58.52 15.16 16.64 21.40 87.89 78.74 80.56 81.28 41.16 21.21 20.50 21.93
3-grams 75.50 24.36 26.58 33.67 97.21 91.99 93.55 94.18 60.65 37.60 36.67 38.71
4-grams 83.49 31.70 34.36 42.74 99.12 96.10 97.25 97.70 71.48 49.56 48.47 50.56

Table 6: Statistics on outputs of teachers and students with different attention temperature coefficient λ. The
student models are all with the BART 12-6 setting.

λ R1 R2 RL

1.0 44.71 21.52 41.44
1.5 44.92 21.72 41.84
2.0 44.38 21.02 41.50

Table 7: ROUGE of teacher models with different atten-
tion temperature coefficient λ on test set of CNNDM.

modules of a teacher can attend to later parts in554

documents. We observe that students behave simi-555

larly, and we put more cross attention visualization556

of students in Appendix E. To obtain corpus-level557

statistics, we further calculate the evident cross-558

attention weight distributions of the teacher when559

generating pseudo labels on the training set of CN-560

NDM. Note that an attention weight is evident if561

it is greater than 0.15, and these evident attention562

weights account for around 15% of all attention563

weights. Specifically, we normalize the token po-564

sitions of each document to (0.0, 1.0] and divide565

the normalized positions into five bins. The mean566

proportions of evident attentions for all bins are567

shown in Figure 2. Compared to the teacher with568

normal attention temperature (pink bar), teachers569

with higher attention temperatures (blue and green570

bars) attend less on the heading parts of documents571

while more on the tail parts of documents.572

To sum up, teachers with higher attention temper-573

atures can generate more concise and abstractive574

pseudo summaries, which makes the teacher pro-575

vide more summary-like pseudo labels to students.576

High-temperature teachers can alleviate the lead-577

ing bias problems by providing pseudo labels with578
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Figure 2: Distributions of evident cross attention
weights (≥ 0.15) when teachers generate pseudo labels
with different attn. temperatures w.r.t. token positions.

better coverage of source documents to students. 579

5 Conclusions 580

In this work, we propose a simple but effective 581

extension of pseudo-labeling method PLATE for 582

summarization distillation. Experiments on three 583

datasets demonstrate that our method can con- 584

sistently outperform the vanilla pseudo-labeling 585

method. Further empirical analysis shows that by 586

using our method, teacher models can generate 587

more concise and abstractive summaries. As a re- 588

sult, summaries produced by student models also 589

become more concise and abstractive. In the fu- 590

ture, we would like to explore our method to other 591

generation tasks as well as self-training with unla- 592

beled data. We are also interested in extending our 593

method for better teacher model training. 594
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Model λ BLEU

Transformer-Big (teacher) – 28.51

Student

Transformer-Base 1.0 27.79
Transformer-Base 1.5 27.90
Transformer-Base 2.0 27.85

Table 8: Results of WMT En-De machine translation
task on newstest2014. Student models are distilled
from pseudo labels generated by the teacher with dif-
ferent attention temperatures (λ).

A Experiments of Applying PLATE to the837

Machine Translation Task838

We apply our method on the WMT16 En-De trans-839

lation task. We use Transformer-Big model840

as the teacher and Transformer-Base as the841

student. Our results on newstest2014 are shown842

in Table 8. The student models with our method843

(λ = 1.5 and λ = 2.0) slightly outperform844

the student with regular pseudo-labeling method845

(λ = 1.0). Note that the improvement is not as846

significant as in summarization tasks.847

We speculate the reason may be that, unlike sum-848

marization, outputs of the machine translation task849

are relatively fixed. The strength of our method–850

conciseness and abstractiveness are good properties851

for summarization but seem not very beneficial to852

the translation task.853

B Experiments of More λ Values854

Besides the λ values of 1.5 and 2.0, we also try855

more values in a broader range. Table 9 shows the856

distillation performance of BART 12-6 student857

models with more values of λ we try on CNNDM858

dataset (we also include the values of 1.0, 1.5, and859

2.0 in table for convenient comparison). As can860

be seen, both lower and larger λ values are not861

helpful to the distillation. Though the suitable λ862

values may vary across datasets, we recommend863

considering the λ value 1.5 or 2.0 firstly in most864

cases.865

C Experiments of Changing the Softmax866

Temperature in the Final Decoder867

Layer868

It’s a more direct idea to change the softmax tem-869

perature in the final decoder layer rather than at-870

tention temperatures, namely changing the T in871

λ R1 R2 RL

0.75 43.13 20.60 39.62
1.0 44.00 21.08 40.29
1.5 44.29 21.57 41.13
2.0 44.84 21.95 41.77
2.5 43.99 21.19 41.21
3.0 42.32 19.28 39.67

Table 9: ROUGE scores of BART 12-6 student mod-
els with more values of λ on CNNDM dataset.

T R1 R2 RL

0.5 43.80 21.20 40.59
1.0 44.00 21.08 40.29
1.5 42.81 20.43 39.56
2.0 42.76 20.34 39.53

Regular 44.00 21.08 40.29
PLATEλ=2.0 (Ours) 44.84 21.95 41.77

Table 10: Distillation experiment results of changing
the softmax temperature in the final decoder layer.

equation 5 to some other values rather than the 872

default value 1.0. 873

qi =
exp(zi/T )∑
j exp(zj/T )

(5) 874

However, our experiments demonstrate that this 875

method does not help summarization distillation 876

much. We use BART teacher models with different 877

softmax temperatures in the final decoder layers 878

to generate pseudo summaries and use the BART 879

12-6 as student models. The experiment results 880

are shown in table 10. 881

D The Example in Section 1 882

We present the detailed content of the example in 883

Section 1 in table 11. 884

E Attention Visualization 885

We present more examples of student models’ out- 886

puts and cross attention visualization here. The 887

student models are with the BART 12-6 setting 888

and are trained on CNNDM and the following ex- 889

amples are from the validation set of CNNDM. 890

Example 1 Table 12 shows system outputs from 891

different student models and Figure 3 illustrates 892

the corresponding cross attention weights of these 893
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[Reference]: Mentally ill inmates in Mi-
ami are housed on the “forgotten floor” </s>
Judge Steven Leifman says most are there as a
result of “avoidable felonies” </s> While CNN
tours facility, patient shouts: “I am the son of
the president” </s> Leifman says the system is
unjust and he’s fighting for change.
[PseudoLBL]: Mentally ill inmates in Mi-
ami are housed on the "forgotten floor" of a
pretrial detention facility. </s> Judge Steven
Leifman says about one-third of all peo-
ple in Miami-Dade county jails are mentally
ill. </s> He says they face drug charges or
charges of assaulting an officer, which are
“avoidable felonies” </s> He says the arrests
often result from confrontations with police,
which exacerbate their illness.
[Smoothed ]: Mentally ill inmates in Mi-
ami are housed on the “forgotten floor” </s>
Judge Steven Leifman says they are there be-
cause of “avoidable felonies” </s> He says
many of them are in jail for drug or assault
charges. </s> He says the system is unjust and
he’s trying to change it.

Table 11: Examples of reference summary
([Reference]), pseudo summary from the teacher
model ([PseudoLBL]) and pseudo summary from
the teacher with smoothed attention ([Smoothed ]).
Text spans in bold are copied spans (with more than
four words) from the original document.

student models. Compared with the regular pseudo-894

labeling method ([Regular]), the summary gen-895

erated by our method PLATEB12-6
λ=1.5 omits the mod-896

ifier "Nirvana frontman" and "Nirvana bassist" of897

the person "Kurt Cobain" and "Krist Novoselic",898

respectively and the resulting summary is shorter899

and more abstractive. The summary generated by900

our method PLATEB12-6
λ=2.0 contains the text "will pre-901

miere on HBO on May 4", which is at the end902

of the source document and included in the ref-903

erence (i.e., summary worthy), but is ignored by904

[Regular]. It indicates that our method can al-905

leviate the leading bias problem. Figure 3 also906

shows that PLATEB12-6
λ=2.0 can access the tail part of907

the document.908

Example 2 The second example is shown in Ta-909

ble 13 (outputs) and Figure 4 (attention visualiza-910

tion). In this example, the source document is911

relatively long (over 700 words). As shown in912

[Reference]: The trailer surfaced on
Wednesday. The documentary is winning raves.
It premieres on HBO on May 4.
[Regular ]: "Montage of Heck" is directed
by Brett Morgen and offers an intimate portrayal
of Nirvana frontman Kurt Cobain. The trailer
features interviews with those closest to the per-
former, including family members, Courtney
Love and Nirvana bassist Krist Novoselic. A
companion book containing art and archival doc-
uments from Cobain is being produced to accom-
pany the film.
[PLATEB12-6λ=1.5 ]: "Montage of Heck" is directed
by Brett Morgen and offers an intimate portrayal
of Kurt Cobain. The trailer features bits of
interviews with those closest to the performer,
including family members, Courtney Love and
Krist Novoselic. A companion book containing
art and archival documents from Cobain is being
produced to accompany the film.
[PLATEB12-6λ=2.0 ]: "Montage of Heck" is directed
by Brett Morgen and will premiere on HBO
on May 4. A companion book containing art
and archival documents from Cobain is being
produced to accompany the documentary. The
soundtrack will include "a mind-blowing 12-
minute acoustic Cobain unheard track," Morgen
says.

Table 12: Example 1 of reference summary
([Reference]), summary generated from stu-
dent with the regular pseudo-labeling method
([Regular]), and summaries generated from stu-
dents with PLATE ([PLATEB12-6λ=1.5] and [PLATEB12-6λ=2.0].

Figure 4, the summary generated with the regular 913

pseudo-labeling method Regular mainly focuses 914

on the heading part of the source document (around 915

the first 150 words), but our method PLATEB12-6
λ=2.0 916

takes into account the tokens in the front, middle 917

and tail of the source document. In Table 13, the 918

summary from PLATEB12-6
λ=2.0 contains the key sen- 919

tence "Peter Bergen: Pilots are not different from 920

other people, but they can be careless, lazy, inat- 921

tentive and reckless", which is similar to the refer- 922

ence sentence "Peter Garrison: Pilots don’t exist 923

on different moral plane than the rest of us". The 924

sentence "the human mind is the blackest of boxes" 925

in the reference, which appears at the tail of the 926

source document, is also included in summaries of 927

PLATEB12-6
λ=2.0. This example again demonstrates that 928

our method can alleviate the leading bias problem 929
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Figure 3: Example 1 of visualization of cross attention weight when the student generate summary with different
attention temperatures.

and can make the generated summary have better930

coverage of source documents.931
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Figure 4: Example 2 of visualization of cross attention weight when the student generate summaries with different
attention temperatures.
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[Reference]: Experts suspect first officer
Andreas Lubitz locked pilot out of the cockpit
of plane. Peter Garrison: Pilots don’t exist on
different moral plane than the rest of us, and
the human mind is the blackest of boxes.
[Regular ]: Germanwings first officer An-
dreas Lubitz is one of a handful of airline pilots
who have used their airplanes to combine sui-
cide with mass murder. Frida Ghitis: Why is this
thought at once so fascinating and so horrifying?
It is because of the incompatibility between what
we want to believe about flying and what we now
see.
[PLATEB12-6λ=1.5 ]: Andre Lubitz joins the short
and infamous list of airline pilots who have used
their airplanes to combine suicide with mass mur-
der. Frida Ghitis: Why is this thought at once so
fascinating and so horrifying? It is because of
the incomp compatibility between what we want
to believe about flying and what we now see.
[PLATEB12-6λ=2.0 ]: Germanwings first officer An-
dreas Lubitz is one of a handful of pilots who
have used their airplanes to combine suicide
with mass murder. Peter Bergen: Pilots are
not different from other people, but they can
be careless, lazy, inattentive and reckless. He
says the human mind is the blackest of boxes;
no one can peer inside it.

Table 13: Example 2 of reference summary
([Reference]), summary generated from stu-
dent with the regular pseudo-labeling method
([Regular]), and summaries generated from stu-
dents with PLATE ([PLATEB12-6λ=1.5] and [PLATEB12-6λ=2.0].
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