

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EMOTIONS WHERE ART THOU: UNDERSTANDING AND CHARACTERIZING THE EMO- TIONAL LATENT SPACE OF LARGE LANGUAGE MODELS

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

This work investigates how large language models (LLMs) internally represent emotion by analyzing the geometry of their hidden-state space. The paper identifies a low-dimensional emotional manifold and shows that emotional representations are directionally encoded, distributed across layers, and aligned with interpretable dimensions. These structures are stable across depth and generalize to eight real-world emotion datasets spanning five languages. Cross-domain alignment yields low error and strong linear probe performance, indicating a universal emotional subspace. Within this space, internal emotion perception can be steered while preserving semantics using a learned intervention module, with especially strong control for basic emotions across languages. These findings reveal a consistent and manipulable affective geometry in LLMs and offer insight into how they internalize and process emotion.

1 INTRODUCTION

Large Language Models (LLMs) have become central tools for interacting with, analyzing, and generating human language. Their widespread deployment across domains has led to increasing interest in how they handle not just syntactic or semantic meaning, but also affective tone. Emotion is a fundamental part of language, shaping persuasion, social signaling, and narrative context. As such, understanding how LLMs process emotional content is essential for both interpretability and safe deployment.

The literature on affect in NLP has focused on sentiment analysis, a task where models classify inputs into discrete emotional or affective categories (Prabowo & Thelwall, 2009; Medhat et al., 2014; Wadawadagi & Pagi, 2020; Wankhade et al., 2022). While this demonstrates that LLMs can identify emotions, it offers little insight into how emotional meaning is represented internally. Classification accuracy is not equivalent to interpretability.

Other works have taken a behavioral view, exploring the emotional “intelligence” of LLMs. These include prompting models with hypothetical emotional scenarios and evaluating their responses (Wang et al., 2023), or probing how well they align with human judgments in affective tone (Huang et al., 2024; Zhao et al., 2023). Though these studies suggest some degree of affective sensitivity, they focus on testing outputs rather than investigating internal mechanisms of the LLM.

Recent work has also examined emotion manipulation and decoding. For instance, models have been used to map text to dimensional emotion ratings like valence-arousal-dominance (VAD) (Shah et al., 2023; Broekens et al., 2023), or to generate emotionally inflected language on demand (Reichman et al., 2025). LLMs have also been shown to be more likely to comply with emotionally framed requests (Vinay et al., 2024). These studies also treat emotion primarily as a label or generation condition—not a latent internal representation.

While there has been some work examining how LLMs respond to or generate emotional language, the structure of emotional representations within their hidden states remains relatively underexplored. Most prior approaches focus on output behavior or classification accuracy, with comparatively few efforts aimed at interpreting the internal geometry of emotion encoding. To advance the understanding of how emotions are represented in LLMs and how they influence LLM responses, this paper

054 investigates the internal mechanisms of the LLM. Emotions are analyzed within LLM hidden states
 055 across layers, datasets, and languages.
 056

057 Our contributions are as follows: (1) We extract a low-dimensional emotional subspace of the LLM
 058 and show that it captures interpretable, directionally encoded affective structure across LLM layers.
 059 (2) We demonstrate that this space generalizes across eight emotion datasets spanning five languages,
 060 with low alignment distortion and high cross-domain probe accuracy. (3) We introduce a learned
 061 steering module that manipulates internal emotional perception while preserving semantic content,
 062 with especially strong control over basic emotions. We find that emotional encoding is directional,
 063 distributed, and remarkably consistent across varied textual modalities. We also investigate the
 064 model’s internal “psychology”: how emotions are separated, aligned, and—critically—how they can
 065 be steered via targeted interventions.
 066

067 2 RELATED WORKS

068 **Models of Emotions.** Psychological models of emotion are commonly categorized as either discrete
 069 or continuous. Discrete theories posit that emotions are fundamentally distinct categories—such as
 070 the six “basic” emotions proposed by (Ekman et al., 1999): anger, surprise, disgust, enjoyment, fear,
 071 and sadness. Other taxonomies expand this set, including more nuanced affective states (Plutchik,
 072 1991).

073 In contrast, continuous models view emotions as points in a low-dimensional latent space. A widely
 074 used formulation is the valence-arousal-dominance (VAD) model (Mehrabian, 1996), where valence
 075 encodes hedonic tone, arousal measures intensity, and dominance reflects control or agency. Variants
 076 of this framework reduce or alter the axes (e.g., Russell’s 2D circumplex (Russell, 1980)).
 077

078 These representations offer an interpretive lens for analyzing learned emotion structure in LLMs: If
 079 models implicitly encode emotions in a geometric space, we may expect that certain latent directions
 080 align with these classic dimensions. Our work explores whether such a structure emerges naturally in
 081 the hidden-state geometry of LLMs trained without explicit emotional supervision.

082 Neuroscientific models of emotion offer a parallel debate. Localist theories posit that discrete
 083 emotions correspond to specific, anatomically distinct brain regions, while constructionist theories
 084 argue that emotions emerge from distributed, domain-general processes (Lindquist et al., 2012; Vytal
 085 & Hamann, 2010; Celeghin et al., 2017). Our results, particularly from ML-AURA (Section 4.3),
 086 support a constructionist-style interpretation in LLMs: emotional content is not localized to a small
 087 subset of units but is instead widely distributed across neurons and layers, with high separability
 088 emerging from overlapping, multi-purpose components.

089 **Emotions in Latent Space.** Recent work has investigated how LLMs interact with emotional text,
 090 often focusing on behavior or output-level mappings. For example, ChatGPT has shown the ability to
 091 map emotions to Valence-Arousal-Dominance (VAD) values (Broekens et al., 2023; Yongsatianchot
 092 et al., 2023), suggesting that emotion-relevant dimensions are accessible to the model. However, such
 093 studies do not analyze the internal structure or geometry of these latent representations.

094 Some prior work explicitly trains models to embed emotions into structured spaces, using classifica-
 095 tion objectives or external supervision. For instance, (Dathathri et al., 2019) and (Buechel et al., 2020)
 096 train models to map between emotion spaces. Similarly, (Wang & Zong, 2021) learns an emotion
 097 space from labeled data, shows clustering by valence, and demonstrates transferability across datasets.
 098 However, in all of these works, the emotion space is imposed or supervised, not emergent.

099 A growing line of work probes how pretrained models encode emotion. (Hollinsworth et al., 2024)
 100 show that valence is linearly embedded in contextual states, while (Zhang et al., 2023) find arousal
 101 and dominance less separable, though their analysis depends on encoder-only models and fixed
 102 affective lexicons. In contrast, we study decoder-only LLMs, seeking to recover emergent emotional
 103 structure directly from hidden-state geometry rather than imposing a psychological model.

104 Other studies have shown that LLMs exhibit strong zero-shot emotion classification performance
 105 across languages (Bianchi et al., 2022), though subsequent work notes that language-specific tuning is
 106 sometimes necessary for culturally grounded affect (De Bruyne et al., 2022). These findings suggest
 107 that emotion representations are at least partially transferable across linguistic domains—a hypothesis
 108 we test more directly through geometric alignment and projection-based analysis in Section 4.

108
109

3 METHODS

110
111 To understand how emotions are represented in LLMs, a variety of tools were used. This section
112 outlines those methods and their theoretical grounding. Empirical findings from these analyses are
113 presented in Sections 4 and 4.3.114 **Centered-SVD.** We build on prior work showing that LLM hidden states lie on low-dimensional
115 manifolds where semantic and syntactic properties are linearly recoverable (Aghajanyan et al., 2020;
116 Hu et al., 2022; Lizzo & Heck, 2025). To isolate emotion-relevant subspaces, we apply singular value
117 decomposition (SVD) to hidden state activations.118 Emotion-relevant subspaces are extracted using centered singular value decomposition (SVD) on
119 sentence-level hidden states. For each input, token activations are mean-pooled to obtain a single
120 sentence representation; these vectors are stacked, centered, and decomposed via SVD to obtain
121 orthogonal directions of variation. When emotional content is the dominant structured difference
122 across the inputs, the leading components should capture the primary affective axes in the model’s
123 representation space and form the basis for the alignment, probing, and causal manipulation analyses
124 described in later sections.125 To interpret the semantic content of the principal components derived from the centered SVD, the
126 relative ordering of emotion centroids are examined along each component. Component polarity is
127 standardized by flipping signs when necessary to ensure consistent orientation across layers. This
128 procedure yields a stable ranking of emotions along each axis, enabling cross-layer comparison and
129 semantic interpretation of the leading components.130 For qualitative visualization, we embed the mean-pooled hidden-state centroids into two dimensions
131 using t-SNE, applied to the same activation representations used for SVD. This embedding provides
132 a coarse, nonlinear view of cluster structure and complements the linear analyses conducted in the
133 emotional subspace.134 **Space Alignment.** We first assess cross-dataset similarity through centroid cosine similarity, measur-
135 ing how consistently each emotion’s direction aligns with its counterpart in the synthetic manifold;
136 for each emotion, we compute the cosine between its dataset-specific centroid vector and the corre-
137 sponding centroid in the synthetic space. Prior work has shown that latent spaces arising from related
138 tasks often exhibit similar internal geometry, with relationships between them approximately rigid or
139 linear up to rescaling and rotation (Moschella et al., 2023). While some approaches lift these spaces
140 into anchor-relative representations to handle isometric variance, recent work demonstrates that direct
141 alignment via linear or rigid transformations is often sufficient and easier to apply in practice (Lähner
142 & Moeller, 2024). Following this approach, we use linear regression to align the emotional subspace
143 derived from synthetic data with that derived from human-authored emotion datasets, allowing us to
144 test whether the synthetic manifold reflects transferable emotional encodings or merely generation
145 artifacts. W^* is obtained by a least-squares fit over paired real–synthetic sentence-level activations.

146
147
$$W^* = \arg \min_W \| YW - X \|_F^2,$$

148
149

150 The resulting MSE between X and YW^* summarizes how well the synthetic manifold can be
151 recovered from the real space. To characterize the learned transformation, we report its Frobenius
152 norm (overall magnitude) and spectral flatness (isotropic versus anisotropic scaling), which help
153 distinguish genuine geometric compatibility from alignment achieved through highly directional
154 distortion.155 To evaluate how consistently emotional structure is preserved across datasets, we complement the
156 cosine-similarity and regression-based alignment metrics with a set of high-dimensional geometry
157 measures that quantify relational distortion between emotional spaces. Whereas cosine similarity
158 evaluates directional agreement and regression error captures how well one space can be linearly
159 mapped onto another, these distortion and stress metrics assess the internal geometry itself, that is,
160 how faithfully pairwise relationships among emotions are preserved after alignment. They reveal
161 whether two spaces share not only similar directions but also comparable distance structure, providing
a stricter and more global test of representational equivalence.

162 **Geometry Preservation Metrics.** To evaluate how emotional structure is preserved across datasets,
 163 geometric deformation is quantified between emotional spaces using both classical stress measures
 164 and distortion metrics. All geometry-preservation metrics are computed over pairs of activation
 165 vectors from different datasets corresponding to the same emotion, comparing their pairwise distances
 166 in each dataset’s latent space to the distances in the synthetic latent space. Stress scores quantify
 167 aggregate embedding discrepancy, while distortion metrics assess whether those discrepancies arise
 168 from uniform rescaling or more uneven, directionally biased deformation.

169 Stress-1, Stress-2, and Sammon stress measure how well one distance matrix can be embedded into
 170 another. Stress-1 computes the mean-squared discrepancy between distances, Stress-2 captures the
 171 same discrepancy without square-root normalization, and Sammon stress reweights errors by the
 172 inverse of the original distance, emphasizing preservation of local structure. Pairwise distances are
 173 defined by $D_{ij}^{(X)} = \|x_i - x_j\|_2$ and $D_{ij}^{(Y)} = \|y_i - y_j\|_2$. Stress-2 is then computed as
 174

$$\frac{\sum_{i < j} (D_{ij}^{(H)} - D_{ij}^{(L)})^2}{\sum_{i < j} (D_{ij}^{(H)})^2} \quad (1)$$

175 Classical thresholds for low stress (e.g., Stress-1 < 0.1) were developed for low-dimensional maps
 176 (Kruskal, 1964) and do not directly apply to high-dimensional hidden-state spaces, so we interpret
 177 these values across models. Stress-1 and Sammon stress appear in the appendix.

178 Complementing these metrics, average distortion, ℓ_2 -distortion, and σ -distortion Chennuru Vankadara
 179 & von Luxburg (2018) quantify how distances change under the mapping itself. Average distortion
 180 measures the mean stretch factor across all cross-dataset emotion pairs (ideal≈1). Using the same
 181 pairwise distances as computed for stress, the stretch ratio is defined as
 182

$$\rho_{ij} = \frac{D_{ij}^{(Y)}}{D_{ij}^{(X)} + \varepsilon} \quad (2)$$

183 ℓ_2 -distortion captures the squared deviation of stretch ratios from a single global scale, reflecting
 184 uneven expansion or contraction (ideal=0). σ -distortion measures the variance of normalized stretch
 185 ratios and therefore reflects the consistency of distortion across pairs (ideal=0). Together, the stress
 186 and distortion metrics distinguish cases where emotional spaces differ only by global rescaling from
 187 cases exhibiting more heterogeneous or anisotropic deformation. Only average distortion is reported
 188 in the main text; the remaining metrics appear in the appendix.

189 **Layer-Level Distortion Analysis.** Because distortion can vary substantially across depth, especially
 190 in transformer models, we compute distortion metrics at every sublayer and quantify the percent-
 191 age of layers that exhibit high distortion for each dataset–model pair. Datasets exceeding a fixed
 192 distortion threshold (set from the distribution of values across all models and datasets) are marked
 193 as “high-distortion.” Reporting the fraction of affected layers provides a more sensitive measure of
 194 representational fragility than averaging distortion over depth, which can obscure localized failure
 195 points.

196 **Effect of Dimensionality Reduction.** When comparing emotional spaces after projecting into the
 197 50D synthetic subspace, dimensionality reduction inevitably increases measured distortion. We
 198 therefore evaluate both the full-space and 50D cases to assess whether models with already coherent
 199 emotional structure maintain that structure under compression, and whether models with fragile
 200 geometry degrade further.

201 **Linear Probing.** We train linear classifiers on activations projected into the synthetic emotional
 202 subspace and evaluate them on human-written datasets. This tests whether emotional information
 203 remains linearly recoverable after projection, complementing the geometric alignment metrics with a
 204 measure of functional decodability.

205 **ML-AURA.** ML-AURA quantifies how selectively a neuron responds to a specific concept by
 206 framing each neuron as a threshold-based detector (Suau et al., 2024). For a labeled dataset D , each
 207 neuron’s output is summarized per example using the maximum activation across tokens. These scalar
 208 responses are then ranked and evaluated using the area under the precision-recall curve, comparing
 209 neuron output against the presence or absence of the target concept. Neurons with high AUC-PR are
 210 designated as “experts” for that concept.

In our adaptation, the concepts are emotion categories. We apply ML-AURA in a one-vs-all setup for each emotion, scoring each neuron by how well it distinguishes a target emotion from all others. For each layer, we compute the proportion of neurons whose one-vs-all AUROC exceeds 0.9, treating these as emotion-selective units.

4 EXPERIMENTS

Using the tools presented in Section 3, we provide evidence that emotional representations in LLMs are structurally universal. We show that emotions are encoded in similar geometric subspaces across datasets, languages, and writing styles. This and all subsequent sections focus on LLaMA 3.1; analogous results for Olmov2 and Minstral are provided in the appendix.

4.1 DATASETS

To extract emotional representations, the synthetic dataset of (Reichman et al., 2025) is used, in which neutral sentences are rewritten into multiple emotions so that emotional variation becomes the principal structured difference across samples. This synthetic corpus is used solely to obtain clean, maximally polarized affect directions; all downstream evaluations, alignments, and probes are performed exclusively on human-written datasets.

The universality of emotional representations in LLMs are evaluated using eight diverse datasets, each offering explicit categorical emotion labels; datasets restricted to polarity or star ratings were excluded as too coarse. The collection spans languages, modalities, and styles: Go-Emotions contains English Reddit comments (Demszky et al., 2020), CARER covers English tweets (Saravia et al., 2018), SemEval-2007 Task 14 focuses on English news headlines (Strapparava & Mihalcea, 2007), EmoEvent includes English and Spanish tweets (Plaza-del-Arco et al., 2020), Emotions in Drama consists of German plays from the eighteenth and nineteenth centuries (Dennerlein et al., 2023), Bhaav offers Hindi short stories (Kumar et al., 2019), MultiEmotions-It provides Italian YouTube and Facebook comments (Sprugnoli et al., 2020), and EmoTextToKids features French journalistic and encyclopedic texts written for children (Étienne et al., 2024). Appendix B analyzes the structural and stylistic contents of each of these datasets.

The chosen languages are those for which high-quality emotion datasets exist and which are officially supported by LLaMA 3.1, as specified in its technical report.

4.2 UNIVERSALITY ANALYSIS

Using the hidden-state representations, projections, and metrics defined in Section 3, we evaluate how consistently emotions are encoded across datasets. Cosine similarity operates on emotion centroids, the regression MSE is derived from a linear map fitted to all mean-pooled-level activations sharing the same emotion label, and the stress/distortion metrics operate on cross-dataset, same-emotion distance pairs defined in the synthetic and real latent spaces.

Model	Language	Avg Cos Sim \uparrow	Stress-2 \downarrow	Avg Dist \downarrow	Probe Acc. \uparrow	Avg MSE \downarrow	Avg Spectral Flatness	Avg Frob Norm
Llama-Base	English	0.84 \pm 0.13	0.15 \pm 0.14	0.97 \pm 0.22	0.47 \pm 0.14	1.81 \pm 1.99	2.04 \pm 0.39	7.54 \pm 1.82
Llama-Base	Non-English	0.84 \pm 0.12	0.18 \pm 0.15	0.96 \pm 0.22	0.4 \pm 0.11	1.81 \pm 2.00	2.10 \pm 0.41	7.66 \pm 2.45
Llama-Instruct	English	0.93 \pm 0.08	0.22 \pm 0.11	0.78 \pm 0.12	0.4 \pm 0.06	0.93 \pm 1.09	2.26 \pm 0.41	8.70 \pm 6.73
Llama-Instruct	Non-English	0.94 \pm 0.05	0.22 \pm 0.15	1.01 \pm 0.15	0.45 \pm 0.06	0.89 \pm 1.05	2.30 \pm 0.41	8.66 \pm 6.05
Olmov2-Base	English	0.88 \pm 0.13	0.59 \pm 0.85	1.46 \pm 0.63	0.42 \pm 0.05	1.90 \pm 5.40	2.19 \pm 0.39	7.48 \pm 0.41
Olmov2-Base	Non-English	0.83 \pm 0.16	0.61 \pm 1.5	1.35 \pm 0.78	0.45 \pm 0.05	1.86 \pm 5.30	2.35 \pm 0.39	8.45 \pm 2.05
Olmov2-Instruct	English	0.90 \pm 0.10	0.32 \pm 0.32	47%*	0.47 \pm 0.06	1.03 \pm 2.24	2.20 \pm 0.37	7.60 \pm 0.64
Olmov2-Instruct	Non-English	0.89 \pm 0.09	0.43 \pm 0.59	51%*	0.45 \pm 0.05	0.97 \pm 2.11	2.32 \pm 0.40	8.30 \pm 1.61
Minstral	English	0.94 \pm 0.06	0.21 \pm 0.27	1.11 \pm 0.17	0.39 \pm 0.05	1.73 \pm 2.29	2.17 \pm 0.43	7.53 \pm 0.73
Minstral	Non-English	0.93 \pm 0.09	0.24 \pm 0.29	1.18 \pm 0.12	0.45 \pm 0.05	1.69 \pm 2.25	2.24 \pm 0.43	7.50 \pm 0.83

Table 1: Per-model stress, distortion, linear-alignment metrics, and probe accuracy for English and non-English datasets. Lower distortion reflects greater geometric consistency. Cells marked with * indicate high stress/distortion; in these cases the table reports the percentage of layers exhibiting high distortion rather than raw scores. A full per-dataset breakdown appears in Appendix E.

Table 1 shows that all models exhibit high centroid cosine similarity between real and synthetic emotion directions (0.83–0.93), indicating stable cross-dataset encoding of emotional categories.

270 English datasets are only marginally higher than non-English ones, suggesting near-equivalent
 271 representational fidelity across languages. Instruction-tuned variants show higher cosine similarity
 272 and lower regression error than their base models, reflecting closer alignment to the synthetic manifold.
 273 MSE values are broadly comparable across languages, with differences well within variance. By
 274 contrast, spectral flatness and Frobenius norms remain broadly similar across models and do not
 275 distinguish base from instruct variants: LLaMA shows a minor increase with tuning, OLMo shows
 276 none or a decrease, and Minstral remains in the same range. This pattern suggests that tuning
 277 improves representational alignment rather than relying on larger or more isotropic transformations.

278 Across datasets, LLaMA-3.1-8B-Base exhibits the lowest stress-2 values, indicating the most coherent
 279 emotional geometry (Table 1). Appendix E shows the same comparison broken down per dataset and
 280 includes additional stress and distortion metrics. Non-English datasets tend to have slightly higher
 281 stress-2 than their English counterparts. Average distortion varies on a model-by-model basis as
 282 to whether the English or non-English datasets have a higher score. LLaMA-3.1-8B-Instruct and
 283 Minstral also maintain relatively low Stress-2 scores, though both show a modest increase relative to
 284 the base model. OLMo-v2 displays a markedly different pattern: the base version shows substantially
 285 higher stress than LLaMA or Minstral, and the instruct variant is higher still, suggesting a less unified
 286 emotional space. Projecting representations into the 50D synthetic subspace increases stress for all
 287 models (shown in Appendix E), but the effect remains small for models with coherent geometry and
 288 is most pronounced for OLMo, where elevated stress persists after projection.

289 The average distortion metric further differentiates the models. LLaMA-3.1-8B-Base remains closest
 290 to the expected range for both English and non-English datasets, whereas OLMo-v2-Base shows
 291 substantially larger deviations. Distortion also behaves differently across languages: some models
 292 compress English representations (e.g., LLaMA-Instruct), others expand non-English representations
 293 (e.g., Minstral), and the direction of deviation is not consistent across base/instruct variants. For most
 294 models these shifts are modest, with OLMo-v2 exhibiting the most pronounced deviations. Across
 295 models, instruction-tuned variants generally show higher distortion than their base counterparts, with
 296 the notable exception of LLaMA-3.1-Instruct on non-English datasets, where distortion is nearly
 297 ideal. LLaMA-3.1-8B-Instruct therefore under-compresses English while improving non-English
 298 distortion, Minstral shows mild expansion while remaining stable, and OLMo-v2-Base has the largest
 299 distortion of any model, with OLMo-v2-Instruct pushing this even further, nearly half of its layers
 300 becoming severely over-distorted.

300 In terms of stress, however, the instruct variant of OLMo exhibits markedly lower stress than its
 301 base model. Minstral’s stress-2 score is lower still, aligning closely with LLaMA-Instruct. The
 302 comparatively low stress-2 of OLMo-v2-Instruct alongside its extreme distortion suggests that
 303 instruction tuning improves global directional alignment while simultaneously degrading local
 304 geometric coherence, indicating that OLMo’s emotional manifold may be more fragile and easily
 305 warped or over-rotated by tuning. Appendix E provides dataset-level breakdowns and additional
 306 stress and distortion measures, with further contextualization in Appendix D.

307 Certain dataset–model combinations exhibit extremely high distortion across large portions of the
 308 network when evaluated relative to the synthetic emotional space. These patterns are detailed in
 309 Appendix E. Even in cases with elevated distortion, however, substantial subsets of layers continue to
 310 preserve a coherent and transferable emotional geometry.

311 Linear probes achieve above-chance accuracy when predicting the emotions of human-written
 312 text from projected activations (Table 1). This indicates that emotional structure in LLMs is not
 313 only geometrically consistent but also linearly decodable across diverse domains, though probe
 314 performance varies with model family and the coherence of the underlying emotional space.

315 Comparing the alignment metrics in Table 1 with the geometric faithfulness and structural stability
 316 metrics underscores a central tension. The layer-averaged cosine similarities and regression errors
 317 suggest that all models align well with the synthetic emotional manifold, often with small differences
 318 across families. Yet the stress and distortion metrics reveal that, within the same models, relational
 319 structure can still be substantially warped—sometimes across large fractions of layers. This discrepancy
 320 reflects the fact that centroidal and regression-based measures capture global alignment, whereas
 321 stress and distortion expose finer-grained deviations in how relative distances between emotions are
 322 preserved. Thus, high apparent alignment at the aggregate level can coexist with local irregularities
 323 in the geometry of emotional spaces; however, linear probing shows that these spaces can still

usefully and predictably predict emotion, even if there is some distortion between the synthetic and human-written spaces. Taken together, these results indicate that the claims concern the directional organization of the emotional subspace rather than strict isometry, and that the local warping revealed by stress and distortion is expected in high-dimensional compression while remaining compatible with a functionally coherent and manipulable emotional manifold.

4.3 MODEL PSYCHOLOGY

Having established the external consistency of emotional geometry across datasets, we now turn inward, asking how these emotions are internally structured within the model, and what this reveals about the model’s implicit psychological architecture.

The first perspective examined is neural encoding patterns using ML-AURA (Section 3). Results focus on Llama3.1-8B-Base, with replications across models in Appendix F. Across the six Ekman emotions, an average of 75% of neurons per layer exceed the selectivity threshold, with sadness (98%) and surprise (97%) most pervasive, and fear lower (48%). This reflects sparse specialization rather than weak separability, and, importantly, selectivity rather than activation magnitude: ML-AURA identifies neurons whose responses discriminate emotions, not neurons that merely fire strongly. Non-Ekman emotions—envy, neutral, excitement—also show strong separability, averaging 88%.

When analyzing by architectural component, MLP layers show slightly higher selectivity than attention layers (79% vs. 76.5%). Selectivity fluctuates across depth, with no clear monotonic trend: while the first layer starts at 76% and the final layer ends at 76.3%, several peaks and troughs occur in between, with the highest selectivity observed at layer 26 (79%). These patterns support the conclusion that emotional information is not confined to late layers or specialized regions, but is instead distributed broadly and redundantly throughout the network. These patterns are visualized by emotion in a layer-by-layer fashion in Figure 1.

To understand how emotions are geometrically represented in the network, we examine their structure within the derived SVD subspace. This subspace provides a low-dimensional lens into the model’s internal affective organization. Our first goal is to assess how consistently emotions are arranged along the principal axes across layers and layer types.

We find that the emotional structure is remarkably stable across the Llama3.1-8B-Base model, particularly for the top three components. Across layers, the average Spearman correlation in emotion rankings is 0.87, 0.83, and 0.80 for PC1, PC2, and PC3, respectively; the corresponding Kendall’s Tau values are 0.82, 0.77, and 0.74. These results indicate that, while the magnitude and orientation of the components may shift, their semantic content remains intact.

Even when using a more fine-grained labeling scheme, as in the Go-Emotions dataset, which contains nearly three times as many emotion categories, we observe similar consistency. Rank-order correlations for Go-Emotions along the top three PCs remain high: Spearman values of 0.92, 0.74, and 0.73, and Kendall’s Tau of 0.86, 0.68, and 0.68. These findings reinforce the conclusion that the model’s emotional manifold is

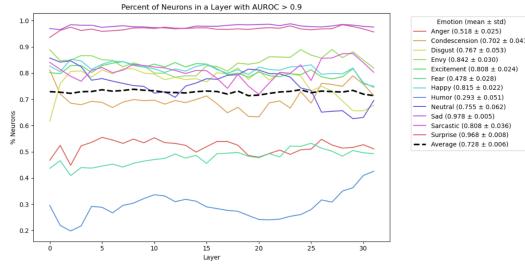


Figure 1: Results of ML-AURA by layer and emotion. Results are in terms of percent of neurons with an AUROC score above 0.9.

Figure 1: Results of ML-AURA by layer and emotion. Results are in terms of percent of neurons with an AUROC score above 0.9.

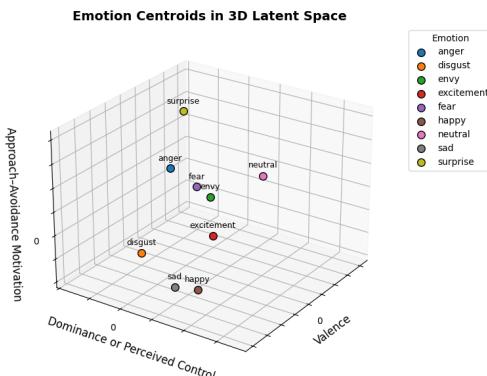


Figure 2: Emotion centroids plotted on the emotional axis found

378 structurally stable, with interpretable axes. Appendix G reproduces the high consistency in how
 379 emotions are arranged along principal axes across all models studied.
 380

381 Having established the stability of the SVD subspace across layers and datasets, the semantic content
 382 of the leading principal components is examined. Figure 2 visualizes the first three emotion axes that
 383 we describe below.

- 384 • PC1 strongly resembles a valence dimension. Emotions such as happy, surprise, and
 385 excitement lie at the positive end, while anger and fear occupy the negative end—suggesting
 386 a pleasure–displeasure continuum common to many psychological models.
- 387 • PC2 appears to reflect dominance or perceived control. Emotions high on this axis (e.g., fear,
 388 sadness) are often associated with low control or submission, whereas those at the opposite
 389 end (e.g., happy, surprise) may reflect more autonomous or socially detached states.
- 390 • PC3 maps onto approach–avoidance motivation. Emotions like excitement, happy, and
 391 envy—typically associated with goal-seeking behavior—score high, while anger and fear,
 392 more linked to avoidance or defensive responses, score low.
- 393 • PC4 may correspond to arousal or urgency. Surprise and fear rank highly, consistent with
 394 high physiological activation, while happy and neutral lie at the calmer end.
 395

396 These dimensions are not explicitly supervised, but show surface-level resemblance to constructs pro-
 397 posed in affective science, such as valence, arousal, dominance, and approach–avoidance tendencies
 398 (cf. Russell (1980); Mehrabian (1996); Davidson (1995)). While these alignments are not exact, and
 399 many components blend multiple emotional signals, the emergence of such patterns suggests that
 400 large language models may implicitly encode affective distinctions that overlap with long-standing
 401 psychological taxonomies. This correspondence invites further investigation into the extent to which
 402 models trained solely on text internalize latent emotion structures, and whether these can serve as
 403 proxies or tools for understanding affective semantics in language.

404 Figure 3 provides a t-SNE visualization of the emotional space.
 405 Despite the dimensionality reduction, emotion classes form dis-
 406 tinguishable, partially overlapping clusters, with closely related
 407 emotions (e.g., happy and excitement) frequently co-localized
 408 and others (e.g., fear and joy) appearing more spatially distant.
 409 While not all boundaries are sharp, the observed structure re-
 410 inforces earlier findings: emotional information is embedded
 411 in a distributed yet semantically coherent geometry.

412 Together, the distributed AUROC patterns, stable subspace di-
 413 rections, interpretable principal components, and emergent clus-
 414 tering structure suggest that LLMs encode emotion not as iso-
 415 lated tags, but as coherent, multidimensional structures—akin
 416 to a learned affective manifold.

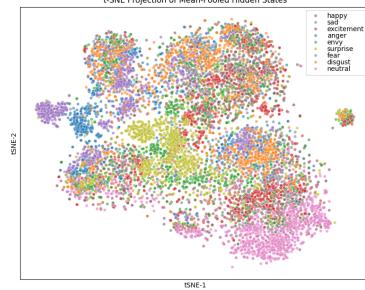


Figure 3: Plot of projected emotions in t-SNE space.

4.4 STEERING EMOTION REPRESENTATIONS

417 Prior work on emotional steering in LLMs focuses primarily on shifting the emotional tone of
 418 generated text. (Subramani et al., 2022) and (Zou et al., 2023) learn vectors to modify output valence
 419 or categorical emotion. More recently, (Hollinsworth et al., 2024) attempts to steer internal emotional
 420 representations but collapses emotion into a binary positive/negative axis, achieving valence shifts
 421 53.5% of the time. In contrast, we aim for fine-grained control over the model’s internal perception
 422 of emotion across a full categorical space, while preserving semantic content.

423 We train a module that operates within the previously constructed SVD-based emotional subspace.
 424 For each emotion, we select all layers and sublayers where adding the centroid direction to same-
 425 emotion hidden states improves 1-vs-all classification AUROC beyond a fixed threshold. These layers
 426 are used for steering and serve as a proxy for the more challenging task of controllable emotional
 427 manipulation. At each selected layer, the model’s hidden state is projected into the emotional latent
 428 space. The projected representation is passed through a one-layer MLP with a GELU activation to
 429 compute a shift, which is then mapped back into hidden-state space and added residually. The MLP
 430 is trained to steer the model’s representation to favor the target emotion token when prompted.
 431

432	Model	Language	Sad	Happy	Fear	Anger	Neutral	Disgust	Eny	Excitement	Surprise	Overall
433	Llama3.1-8B	English	22 → 99 (0.14)	20 → 92 (0.23)	7 → 68 (0.25)	21 → 58 (0.21)	1 → 96 (0.21)	0 → 88 (0.24)	0 → 92 (0.24)	0 → 90 (0.23)	8 → 64 (0.22)	9 → 83 (0.22)
434	Llama3.1-8B	Non-English	9 → 100 (0.12)	13 → 99 (0.21)	5 → 75 (0.20)	14 → 50 (0.20)	16 → 95 (0.20)	3 → 94 (0.04)	0 → 90 (0.21)	1 → 81 (0.21)	7 → 64 (0.10)	8 → 84 (0.20)
435	Olmo-v2	English	21 → 80 (0.07)	32 → 89 (0.07)	2 → 75 (0.05)	21 → 100 (0.07)	6 → 99 (0.04)	0 → 91 (0.07)	1 → 77 (0.07)	4 → 86 (0.07)	11 → 86 (0.06)	11 → 86 (0.06)
436	Olmo-v2	Non-English	33 → 84 (0.08)	21 → 80 (0.07)	2 → 59 (0.04)	23 → 100 (0.06)	8 → 99 (0.05)	1 → 98 (0.04)	0 → 84 (0.04)	4 → 73 (0.08)	4 → 91 (0.07)	11 → 86 (0.06)
437	Minstral	English	17 → 76 (0.09)	24 → 90 (0.10)	5 → 98 (0.09)	17 → 100 (0.10)	16 → 100 (0.10)	2 → 96 (0.10)	0 → 99 (0.10)	1 → 82 (0.10)	7 → 99 (0.10)	10 → 91 (0.10)
438	Minstral	Non-English	14 → 47 (0.09)	28 → 60 (0.09)	5 → 90 (0.08)	22 → 97 (0.09)	16 → 95 (0.09)	3 → 87 (0.10)	0 → 90 (0.10)	3 → 51 (0.09)	4 → 88 (0.09)	11 → 79 (0.09)

Table 2: Top-1 prediction rates before and after learned steering for each target emotion across datasets and the semantic similarity loss between the hidden-state representations before and after steering. Each cell shows *baseline* → *post-steering (average semantic similarity loss)* accuracy.

440	Dataset	Original Text	Shift Emotion	Steering Rewrite
441	CARER (Twitter)	i waited in line longer than usual i didnt feel impatient that my business was delayed i listened to the master about why this was occurring and how i could be of service during that moment.	Anger	Are you kidding me?! I waited in line longer than usual and I'm still trying to contain my frustration that my business was delayed! I listened to the master about why this was occurring and how I could be of service during that moment, but honestly, it's just not good enough!
442	GoEmotions	Is that seriously the story? I haven't googled it. I just thought it was cool as a WW2 buff.	Happy	Is that seriously the most amazing story? I haven't googled it yet, but I just thought it was cool as a WW2 buff!
443	EmoTextToKids (FR)	Je savais que je prenais des risques	Fear	Je crains que je prenais des risques

Table 3: Examples of text rewritten using the steering method.

We define the overall training objective as: $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{token}} + \mathcal{L}_{\text{sem}}$ where \mathcal{L}_{sem} preserves semantic meaning and $\mathcal{L}_{\text{token}}$ enforces perceptual control.

Semantic Preservation. The semantic consistency loss combines cosine and ℓ_2 distance between the original and shifted final-layer hidden states:

$$\mathcal{L}_{\text{sem}} = (1 - \cos(h_{\text{base}}, h_{\text{shifted}})) + \gamma \cdot \frac{\|h_{\text{base}} - h_{\text{shifted}}\|_2}{\|h_{\text{base}}\|_2 + \|h_{\text{shifted}}\|_2}$$

Emotion Control. To ensure accurate emotion classification, we combine a standard cross-entropy loss with a token-level margin loss. The margin loss enforces that the logit for the target emotion token e_i exceeds its synonyms s_i by a margin m_1 (0.5), and that both exceed all other emotions e_j and their synonyms by m_2 (10):

$$\mathcal{L}_{\text{margin}} = \max(0, m_1 - (\log p_{e_i} - \log p_{s_i})) + \max(0, m_2 - (\log p_{s_i} - \log p_{e_j}))$$

To prevent the model from optimizing by suppressing unrelated tokens, we weight the loss for emotion tokens more heavily in \mathcal{L}_{CE} : $\mathcal{L}_{\text{token}} = \mathcal{L}_{\text{CE}} + \lambda \cdot \mathcal{L}_{\text{margin}}$

We optimize the objective using AdamW with learning rate 1e-3 and weight decay 1e-2, using a cosine schedule with 50 warm-up steps. Steering uses the top 40 dimensions of the centered SVD-derived emotional subspace. The learned module is trained independently for each target emotion across all selected steering layers, using supervision from emotion-token prompts and hidden-state consistency targets. At evaluation, token sampling is performed with temperature 0 for determinism.

The steering module is evaluated by measuring how reliably it shifts the model’s emotion classification toward the target label while preserving semantic similarity. Table 2 shows that the learned steering approach achieves consistent and accurate control of internal emotional representations across English and non-English datasets for all three models. For most emotions, post-steering accuracy exceeds 80%, with many cases reaching 90–100%. Even for harder emotions and lower-resource languages, steering reliably improves target classification, with nearly all settings achieving at least 50% accuracy. Semantic similarity losses remain low across models and languages, indicating that steering preserves the core representational content while shifting affective interpretation. LLaMA-3.1-8B is the most steerable model across a plurality of settings, while OLMo-v2-Instruct previously exhibiting substantial geometric misalignment in Section 4. Appendix H reports full results per dataset, and Appendix I provides ablations isolating key methodological factors. Table 3 illustrates how emotional steering manifests in practice, with inputs rewritten to express the target emotion.

486

5 CONCLUSION

488 Using a combination of probing, alignment, and causal intervention techniques, this work shows that
 489 emotional representations in LLMs are directionally consistent across layers, datasets, and languages.
 490 We find that emotions cluster in coherent, low-dimensional subspaces whose structure is stable across
 491 architectural depth and transferable across linguistic and cultural domains. The leading axes of this
 492 space correspond to psychologically interpretable dimensions, despite no explicit supervision. These
 493 emotional directions are not confined to isolated neurons or layers but are distributed and redundant,
 494 supporting high linear separability even under one-vs-all probing. Alignment experiments further
 495 reveal that the synthetic and real-world emotion spaces can be matched with minimal distortion, and
 496 linear probes trained in one domain generalize well to others. Together, these findings suggest that
 497 LLMs internalize a structured latent affective manifold during pretraining.

498 Crucially, this representational structure is not merely interpretable but also controllable. Our learned
 499 intervention module achieves accurate and emotion-specific steering across languages, reliably
 500 shifting the model’s internal affective state toward the desired target. Steering is especially effective
 501 for basic emotions like sadness, anger, and fear, even in low-resource settings. However, control over
 502 more nuanced categories such as envy and excitement remains inconsistent, particularly in Hindi,
 503 highlighting the residual challenges of lexical sparsity and affective ambiguity.

504 These findings offer a structured account of how LLMs represent and modulate emotion. Future work
 505 should extend this analysis to multimodal models, investigating whether shared affective subspaces
 506 emerge across language, vision, and speech, and whether emotional representations in one modality
 507 can steer or constrain perception in another. Such models may yield a richer, more disentangled
 508 affective geometry, enabling both deeper interpretability and more naturalistic emotional reasoning.
 509 Another interesting future direction is to examine the developmental trajectory of emotional
 510 representations during pretraining, although doing so would require access to intermediate training
 511 checkpoints of large-scale models.

512 **Limitations.** Our universality claim is conditioned on the language and style being reasonably well
 513 represented in the model’s pretraining data. In out-of-distribution settings, such as nineteenth-century
 514 German drama or low-resource Hindi, the emotional latent space shows somewhat higher distortion
 515 and stress, yet remains directionally coherent, with probe accuracy above chance and successful
 516 steering. These results indicate that even under limited pretraining coverage, the learned emotional
 517 geometry retains usable structure rather than collapsing. Importantly, the steering experiments in
 518 Appendix H show that usable control remains achievable even in these regimes: Hindi, the weakest-
 519 performing language, still supports an absolute steering shift of roughly 50% on average across
 520 models, while German theater texts exhibit average shifts exceeding 80% across models. These
 521 results indicate that, although representational fidelity degrades when pretraining coverage is sparse,
 522 the underlying emotional manifold does not collapse; instead, it retains sufficient structure to support
 523 both detection and targeted intervention.

524 **Ethics Statement.** Because our method enables controlled shifts in a model’s internal affective
 525 representation, we acknowledge the need to articulate its appropriate use and its limitations. The
 526 steering mechanism is intentionally constrained: it acts only on intermediate hidden states, preserves
 527 semantic content through an explicit alignment regularizer, and cannot induce or amplify harmful
 528 content beyond what the base model already permits. Nonetheless, certain emotions, especially high-
 529 arousal or interpersonal ones such as anger or contempt, may yield more forceful stylistic rewrites,
 530 reflecting asymmetries in how models encode these emotions. We therefore recommend applying
 531 steering only in transparent, user-directed contexts, such as tone adjustment, therapeutic or reflective
 532 writing tools, accessibility interfaces, or cross-emotion normalization for evaluation. The method
 533 is not intended for covert style manipulation, persuasion, or emotionally charged rewriting without
 534 user consent. Finally, variability in steerability across languages and domains (e.g., low-resource or
 535 archaic corpora) functions as an inherent boundary: the technique does not uniformly override model
 536 behavior but respects representational limits.

537

REFERENCES

538 Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the
 539 effectiveness of language model fine-tuning. *arXiv preprint arXiv:2012.13255*, 2020.

540 Mistral AI. Un ministral, des ministraux, October 2024. URL <https://mistral.ai/news/ministraux>. Accessed: 2025-05-20.

541

542

543 Federico Bianchi, Debora Nozza, and Dirk Hovy. Xlm-emo: Multilingual emotion prediction in social
544 media text. In *Proceedings of the 12th Workshop on Computational Approaches to Subjectivity,
545 Sentiment & Social Media Analysis*, pp. 195–203, 2022.

546

547 Joost Broekens, Bernhard Hilpert, Suzan Verberne, Kim Baraka, Patrick Gebhard, and Aske Plaat.
548 Fine-grained affective processing capabilities emerging from large language models. In *2023 11th
549 international conference on affective computing and intelligent interaction (ACII)*, pp. 1–8. IEEE,
2023.

550

551 Sven Buechel, Luise Modersohn, and Udo Hahn. Towards label-agnostic emotion embeddings. *arXiv
552 preprint arXiv:2012.00190*, 2020.

553

554 Alessia Celeghin, Matteo Diano, Arianna Bagnis, Marco Viola, and Marco Tamietto. Basic emotions
555 in human neuroscience: neuroimaging and beyond. *Frontiers in psychology*, 8:1432, 2017.

556

557 Leena Chennuru Vankadara and Ulrike von Luxburg. Measures of distortion for machine learning.
558 *Advances in Neural Information Processing Systems*, 31, 2018.

559

560 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
561 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
562 math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

563

564 Edgar Dale and Jeanne S Chall. A formula for predicting readability: Instructions. *Educational
research bulletin*, pp. 37–54, 1948.

565

566 Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
567 Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
568 generation. *arXiv preprint arXiv:1912.02164*, 2019.

569

570 Richard J Davidson. Cerebral asymmetry, emotion, and affective style. 1995.

571

572 Luna De Bruyne, Pranaydeep Singh, Orphée De Clercq, Els Lefever, and Véronique Hoste. How
573 language-dependent is emotion detection? evidence from multilingual bert. In *Proceedings of the
2nd Workshop on Multi-lingual Representation Learning (MRL)*, pp. 76–85, 2022.

574

575 Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and
576 Sujith Ravi. GoEmotions: A Dataset of Fine-Grained Emotions. In *58th Annual Meeting of the
577 Association for Computational Linguistics (ACL)*, 2020.

578

579 Katin Dennerlein, Thomas Schmidt, and Christian Wolff. Computational emotion classification
580 for genre corpora of german tragedies and comedies from 17th to early 19th century. *Digital
581 Scholarship in the Humanities*, 38(4):1466–1481, 07 2023. ISSN 2055-7671. doi: 10.1093/lhc/fqad046.
582 URL <https://doi.org/10.1093/lhc/fqad046>.

583

584 Paul Ekman, Tim Dalgleish, and M Power. Basic emotions. *San Francisco, USA*, 1999.

585

586 Aline Étienne, Delphine Battistelli, and Gwénolé Lecorvé. Emotion identification for french in
587 written texts: Considering modes of emotion expression as a step towards text complexity analysis.
588 In *Proceedings of the 14th ACL Workshop on Computational Approaches to Subjectivity, Sentiment
& Social Media Analysis (WASSA)*, 2024.

589

590 Oskar Hollinsworth, Curt Tigges, Atticus Geiger, and Neel Nanda. Language models linearly
591 represent sentiment. In *Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting
592 Neural Networks for NLP*, pp. 58–87, 2024.

593

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

594 Jen-tse Huang, Man Ho Lam, Eric John Li, Shujie Ren, Wenxuan Wang, Wenxiang Jiao, Zhaopeng Tu,
 595 and Michael R. Lyu. Apathetic or empathetic? evaluating llms' emotional alignments with humans.
 596 In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.),
 597 *Advances in Neural Information Processing Systems*, volume 37, pp. 97053–97087. Curran Asso-
 598 ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/b0049c3f9c53fb06f674ae66c2cf2376-Paper-Conference.pdf.

600 J Peter Kincaid, Robert P Fishburne Jr, Richard L Rogers, and Brad S Chissom. Derivation of new
 601 readability formulas (automated readability index, fog count and flesch reading ease formula) for
 602 navy enlisted personnel. Technical report, 1975.

603 Joseph B Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
 604 *Psychometrika*, 29(1):1–27, 1964.

606 Yaman Kumar, Debanjan Mahata, Sagar Aggarwal, Anmol Chugh, Rajat Maheshwari, and Rajiv Ratn
 607 Shah. Bhaav-a text corpus for emotion analysis from hindi stories. *arXiv preprint arXiv:1910.04073*,
 608 2019.

609 Zorah Lähner and Michael Moeller. On the direct alignment of latent spaces. In *Proceedings of*
 610 *UniReps: the First Workshop on Unifying Representations in Neural Models*, pp. 158–169. PMLR,
 611 2024.

613 Kristen A Lindquist, Tor D Wager, Hedy Kober, Eliza Bliss-Moreau, and Lisa Feldman Barrett. The
 614 brain basis of emotion: a meta-analytic review. *Behavioral and brain sciences*, 35(3):121–143,
 615 2012.

616 Tyler Lizzo and Larry Heck. UNLEARN efficient removal of knowledge in large language models.
 617 In *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 7257–7268,
 618 Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-
 619 89176-195-7. URL <https://aclanthology.org/2025.findings-naacl.405/>.

621 Walaa Medhat, Ahmed Hassan, and Hoda Korashy. Sentiment analysis algorithms and applications:
 622 A survey. *Ain Shams engineering journal*, 5(4):1093–1113, 2014.

623 Albert Mehrabian. Pleasure-arousal-dominance: A general framework for describing and measuring
 624 individual differences in temperament. *Current Psychology*, 14:261–292, 1996.

626 Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Francesco Locatello, and
 627 Emanuele Rodolà. Relative representations enable zero-shot latent space communication (2023).
 628 *arXiv preprint arXiv:2209.15430*, 2023.

629 Flor Miriam Plaza-del-Arco, Carlo Strapparava, L. Alfonso Ureña-López, and M. Teresa Martín-
 630 Valdivia. EmoEvent: A Multilingual Emotion Corpus based on different Events. In *Proceedings*
 631 *of the 12th Language Resources and Evaluation Conference*, pp. 1492–1498, Marseille, France,
 632 May 2020. European Language Resources Association. ISBN 979-10-95546-34-4. URL <https://www.aclweb.org/anthology/2020.lrec-1.186>.

634 Robert Plutchik. *The emotions*. University Press of America, 1991.

636 Rudy Prabowo and Mike Thelwall. Sentiment analysis: A combined approach. *Journal of Informet-
 637 rics*, 3(2):143–157, 2009.

638 Benjamin Reichman, Adar Avsian, and Larry Heck. Reading with intent–neutralizing intent. *arXiv
 639 preprint arXiv:2501.03475*, 2025.

640 James A Russell. A circumplex model of affect. *Journal of personality and social psychology*, 39(6):
 641 1161, 1980.

643 Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, and Yi-Shin Chen. CARER:
 644 Contextualized affect representations for emotion recognition. In Ellen Riloff, David Chiang,
 645 Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Empirical
 646 Methods in Natural Language Processing*, pp. 3687–3697, Brussels, Belgium, October–November
 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1404. URL <https://aclanthology.org/D18-1404/>.

648 Sapan Shah, Sreedhar Reddy, and Pushpak Bhattacharyya. Retrofitting light-weight language models
 649 for emotions using supervised contrastive learning. *arXiv preprint arXiv:2310.18930*, 2023.
 650

651 Rachele Sprugnoli et al. Multiemotions-it: a new dataset for opinion polarity and emotion analysis for
 652 italian. In *Proceedings of the Seventh Italian Conference on Computational Linguistics (CLiC-it*
 653 *2020*), pp. 402–408. Accademia University Press, 2020.
 654

655 Carlo Strapparava and Rada Mihalcea. SemEval-2007 task 14: Affective text. In Eneko Agirre, Lluís
 656 Màrquez, and Richard Wicentowski (eds.), *Proceedings of the Fourth International Workshop on*
 657 *Semantic Evaluations (SemEval-2007)*, pp. 70–74, Prague, Czech Republic, June 2007. Association
 658 for Computational Linguistics. URL <https://aclanthology.org/S07-1013/>.
 659

660 Xavier Suau, Pieter Delobelle, Katherine Metcalf, Armand Joulin, Nicholas Apostoloff, Luca Zap-
 661 pella, and Pau Rodriguez. Whispering experts: Neural interventions for toxicity mitigation in
 662 language models. In *Forty-first International Conference on Machine Learning*, 2024. URL
 663 <https://openreview.net/forum?id=2P6GVfSrfZ>.
 664

665 Nishant Subramani, Nivedita Suresh, and Matthew E Peters. Extracting latent steering vectors from
 666 pretrained language models. *arXiv preprint arXiv:2205.05124*, 2022.
 667

668 Rasita Vinay, Giovanni Spitale, Nikola Biller-Andorno, and Federico Germani. Emotional manipula-
 669 tion through prompt engineering amplifies disinformation generation in ai large language models.
 670 *arXiv preprint arXiv:2403.03550*, 2024.
 671

672 Katherine Vytal and Stephan Hamann. Neuroimaging support for discrete neural correlates of basic
 673 emotions: a voxel-based meta-analysis. *Journal of cognitive neuroscience*, 22(12):2864–2885,
 674 2010.
 675

676 Ramesh Wadawadagi and Veerappa Pagi. Sentiment analysis with deep neural networks: comparative
 677 study and performance assessment. *Artificial Intelligence Review*, 53(8):6155–6195, 2020.
 678

679 Xiangyu Wang and Chengqing Zong. Distributed representations of emotion categories in emotion
 680 space. In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics*
 681 and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
 682 Papers), pp. 2364–2375, 2021.
 683

684 Xuena Wang, Xueting Li, Zi Yin, Yue Wu, and Jia Liu. Emotional intelligence of large language
 685 models. *Journal of Pacific Rim Psychology*, 17:18344909231213958, 2023.
 686

687 Mayur Wankhade, Annavarapu Chandra Sekhara Rao, and Chaitanya Kulkarni. A survey on sentiment
 688 analysis methods, applications, and challenges. *Artificial Intelligence Review*, 55(7):5731–5780,
 689 2022.
 690

691 Nutchanon Yongsatianchot, Tobias Thejll-Madsen, and Stacy Marsella. What’s next in affective
 692 modeling? large language models. In *2023 11th International Conference on Affective Computing*
 693 and Intelligent Interaction Workshops and Demos (ACIIW), pp. 1–7. IEEE, 2023.
 694

695 Yuhan Zhang, Wenqi Chen, Ruihan Zhang, and Xiajie Zhang. Representing affect information in
 696 word embeddings. *Experiments in Linguistic Meaning*, 2:310–321, 2023.
 697

698 Weixiang Zhao, Yanyan Zhao, Xin Lu, Shilong Wang, Yanpeng Tong, and Bing Qin. Is chatgpt
 699 equipped with emotional dialogue capabilities? *arXiv preprint arXiv:2304.09582*, 2023.
 700

701 Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
 702 Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
 703 top-down approach to ai transparency. *arXiv preprint arXiv:2310.01405*, 2023.

Dataset	Sent Len	Syll/Word	Word Len	Dale-Chall	FK Grade	Sent Count	Sent Len Std	TTR
Synthetic-Emotions	25.57 ± 14.31	1.58 ± 0.19	4.79 ± 0.69	10.82 ± 1.87	13.17 ± 6.13	2.09 ± 1.74	3.64 ± 5.37	0.864 ± 0.087
Go-Emotions	8.80 ± 5.26	1.38 ± 0.31	4.17 ± 0.83	8.26 ± 3.28	4.51 ± 4.07	1.58 ± 0.74	1.30 ± 2.03	0.960 ± 0.067
CARER (Twitter)	18.34 ± 10.68	1.40 ± 0.20	4.11 ± 0.57	8.50 ± 2.22	8.53 ± 4.75	1.10 ± 0.35	0.46 ± 2.07	0.908 ± 0.081
SemEval	6.34 ± 1.88	1.69 ± 0.36	5.22 ± 0.98	12.74 ± 3.40	6.84 ± 4.17	1.02 ± 0.14	0.03 ± 0.32	0.995 ± 0.031
EmoEvents (EN)	10.57 ± 6.81	1.64 ± 0.27	5.32 ± 0.96	10.77 ± 2.29	9.71 ± 4.14	2.57 ± 1.30	4.19 ± 4.00	0.930 ± 0.074
EmoEvents (ES)	11.41 ± 7.64	—	5.09 ± 0.84	—	—	2.38 ± 1.23	4.85 ± 4.65	0.920 ± 0.076
German Drama	8.50 ± 6.15	—	4.91 ± 0.96	—	—	2.08 ± 1.90	1.81 ± 2.94	0.960 ± 0.069
MultiEmotions-It	9.26 ± 7.93	—	5.15 ± 1.91	—	—	2.13 ± 2.03	2.55 ± 4.23	0.949 ± 0.113
EmoTextToKids (FR)	16.23 ± 9.55	—	4.73 ± 0.78	—	—	1.21 ± 0.55	0.82 ± 2.49	0.943 ± 0.064
GSM-8K	12.80 ± 4.78	1.34 ± 0.14	4.20 ± 0.39	9.52 ± 1.39	5.19 ± 2.52	3.43 ± 1.20	4.09 ± 2.75	0.705 ± 0.109

Table 4: Table of lexical and syntactic features per dataset. Dashes (—) indicate features were not computed due to language-specific constraints.

A APPENDIX

B STYLISTIC VARIATIONS AMONG SELECTED DATASETS

To evaluate the universality of emotional representations in LLMs, a diverse set of emotion classification datasets were selected spanning multiple languages, modalities, and writing styles. Only datasets with explicit categorical emotion labels were included; datasets with only polarity (e.g., positive/negative) or star ratings were excluded due to insufficient granularity. In total, eight datasets were selected:

1. Go-Emotions (Demszky et al., 2020): English Reddit comments
2. CARER (Saravia et al., 2018): English tweets
3. SemEval-2007 Task 14 (Strapparava & Mihalcea, 2007): English news headlines
4. EmoEvent (Plaza-del-Arco et al., 2020): English and Spanish tweets
5. Emotions in Drama (Dennerlein et al., 2023): German plays from the 18th–19th century
6. Bhaav (Kumar et al., 2019): Hindi short stories
7. MultiEmotions-It (Sprugnoli et al., 2020): Italian YouTube and Facebook comments
8. EmoTextToKids (Étienne et al., 2024): French journalistic and encyclopedic text aimed at children

Additionally, the GSM-8K dataset (Cobbe et al., 2021) is used as a “negative relief” to provide context for the stress and distortion figures computed later on. This provides a reference point for interpreting stress and distortion scores in the absence of emotional alignment.

Table 4 summarizes the lexicographic and stylistic metrics for all selected datasets, except Bhaav, which is written in a low-resource language with limited tooling support for extracting such features. The table shows that the datasets contain a great diversity in style and complexity. The synthetic dataset has the longest sentences, highest syllables per word, and highest Flesch–Kincaid (FK) Grade Level (Kincaid et al., 1975) score, making it among the most complex datasets to read. It is also the second most complex dataset in terms of the Dale–Chall readability score, which accounts for both average sentence length and the percentage of difficult words not on a list of familiar vocabulary (Dale & Chall, 1948). However, its type-token ratio (TTR) is the second lowest of all datasets, suggesting that despite its syntactic complexity, the vocabulary used is relatively constrained. Its intra-passage sentence length variability is relatively high, as indicated by a high sentence length standard deviation (sent len std), reflecting a mix of short and long constructions within the same passage.

By contrast, the SemEval headlines dataset exhibits the shortest average sentence length and lowest sentence count, reflecting its highly compressed format. It nonetheless has the highest average word length and one of the highest syllables-per-word scores, indicating dense, information-packed language. Its extremely high TTR is likely inflated by its brevity, though it still reflects a wide lexical range given the short passage lengths. SemEval also has the lowest sentence length variability, with nearly zero variability, suggesting uniform sentence structure and a rigid rhetorical format.

The Go-Emotions dataset has the third-shortest average sentence length after SemEval and German Drama. It exhibits high TTR and mid-length passages, consistent with its source in colloquial online

756 interactions. The short syntax paired with varied vocabulary reflects emotional expressiveness in
 757 informal registers. Its relatively low sentence length deviations suggests consistent sentence lengths
 758 across each example, reinforcing the impression of concise, focused expression.

759 CARER (Twitter) contains the second-longest sentences among all datasets, after Synthetic. It also
 760 shows a high TTR and relatively high syllables per word. This suggests that, despite being informal
 761 and social, the tweets in this dataset are lexically rich and syntactically expansive, likely due to
 762 elaboration or rhetorical emphasis often seen in emotional expression on social media. At the same
 763 time, the sentence length variability within each passage is low, indicating that tweets tend to follow
 764 a single syntactic rhythm rather than mixing short and long sentences.

765 The EmoTextToKids dataset, composed of journalistic and encyclopedic texts aimed at children, has
 766 the third-longest average sentence length across all datasets. Despite this, it only ranks in the middle
 767 for word length and lexical complexity. The moderately high TTR suggests deliberate lexical variation
 768 for educational purposes, balanced with readability suitable for younger readers. Its relatively low
 769 sentence length variability indicates syntactic regularity across sentences in each passage, appropriate
 770 for writing aimed at supporting comprehension.

771 The EmoEvents datasets, composed of Spanish and English tweets, occupy the middle range in
 772 sentence length but are among the highest in word length and syllables per word. EmoEvents-English
 773 in particular shows one of the highest sentence counts per passage. Both variants exhibit relatively
 774 high TTR, reflecting lexical variety within concise, affect-rich tweet structures. These datasets
 775 balance syntactic brevity with expressive density. EmoEvents also displays some of the highest
 776 sentence length variabilities, indicating significant variation in sentence length within a single tweet
 777 thread or message, likely due to stylistic shifts between exposition and reaction.

778 The MultiEmotions-It dataset is similar in lexical complexity, with high word length and moderately
 779 high TTR, but diverges structurally: it has the lowest sentence count per passage of any dataset. This
 780 suggests a more compact emotional style, especially compared to the more elaborated narratives in
 781 EmoEvents. The relatively high sentence length variability within passages suggests that even though
 782 few sentences are used, they vary in complexity and length.

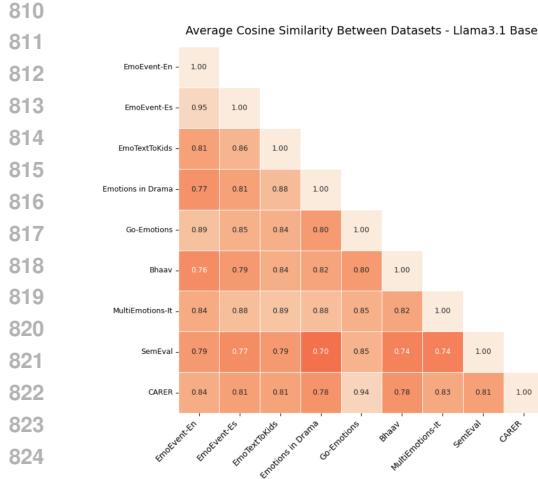
783 The German Drama dataset is notable for its short sentence lengths—the second shortest overall
 784 after SemEval, but relatively high word length and TTR. This is consistent with dialogue-driven,
 785 emotionally loaded dramatic text, where each utterance is brief but lexically rich and expressive. Its
 786 sentence count per passage is high, suggesting frequent speaker turns or short, segmented lines of
 787 dialogue. The low sentence length variability reinforces the sense of rhythmic, evenly paced dialogue
 788 characteristic of dramatic form.

789 Finally, the GSM8K dataset shows structured, formulaic writing with moderately long sentences
 790 and the highest sentence count per passage. It has the lowest TTR across all datasets, reflecting its
 791 constrained and repetitive vocabulary, which is typical for procedural and instructional text. Despite
 792 the repetitive vocabulary, its sentence length variability is high, suggesting alternating short prompts
 793 and longer explanatory steps typical of math problems written in natural language.

794 These datasets span a wide range of styles and complexities, reflecting the linguistic and cross-
 795 linguisitic diversity of the corpora. By aligning the emotional manifold across such varied textual
 796 forms, ranging from mathematical instruction to dramatic dialogue, headlines to encyclopedic writing,
 797 it becomes clear that the manifold is not merely encoding textual style (which varies significantly and
 798 inconsistently), but is instead capturing the underlying emotional content of the text.

800 C COSINE SIMILARITIES BETWEEN DATASETS

801 Section 4 discussed the cosine similarity between emotional centroids in latent space across datasets.
 802 In this appendix, this is broken down by dataset across each model. Figure 4 presents the average
 803 cosine similarity between the synthetic dataset and the human-written dataset for Llama3.1-8B-Base.
 804 Figure 5 does so for Llama3.1-8B-Instruct. Figures 6 and 7 does so for Olmav2-8B-Base and
 805 Olmav2-8B-Instruct, respectively. Lastly, Figure 8 does so for the Minstral model. Throughout these
 806 figures, the average cosine similarity between the activations of the synthetically written emotion text
 807 and the human-written emotion text is quite high, showing how they are represented in an aligned
 808 fashion.



826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841

Figure 4: Cosine similarity of emotional centroids between datasets for Llama3.1-Base.

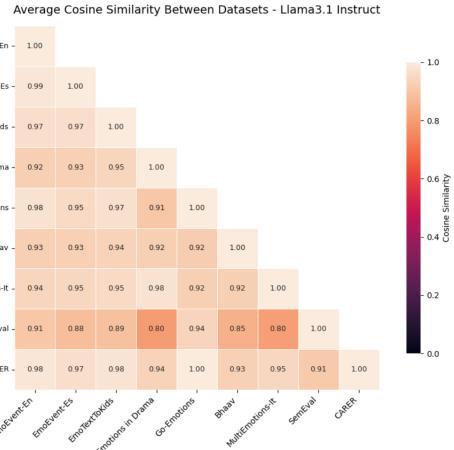
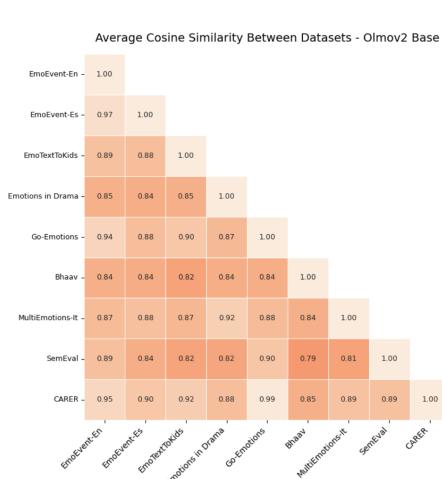


Figure 5: Cosine similarity of emotional centroids between datasets for Llama3.1-Instruct.



842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 6: Cosine similarity of emotional centroids between datasets for Olmov2-Base.

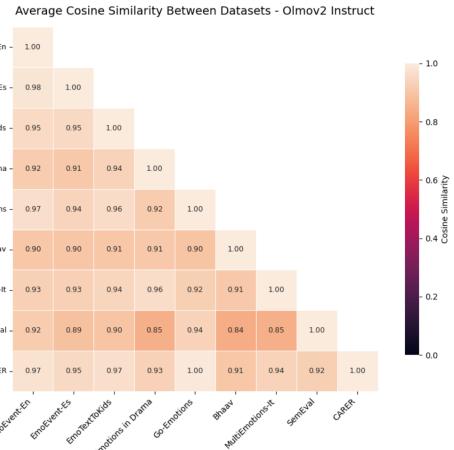


Figure 7: Cosine similarity of emotional centroids between datasets for Olmov2-Instruct.

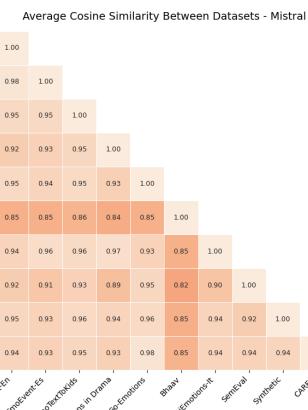


Figure 8: Cosine similarity of emotional centroids between datasets for Mistral.

864 D DISTORTION SCORE CONTEXTUALIZATION
865

866 To situate the stress and distortion scores reported in section 4, we tested the alignment between
 867 Llama3.1-8B-Instruct’s synthetic emotion subspace and its activations on GSM8K. Although GSM8K
 868 is affect-neutral and task-oriented, “neutral” language is itself an emotional register; a truly emotion-
 869 less baseline is impossible. Still, GSM8K provides a controlled case expected to align poorly
 870 with emotional structure. Consistent with this, it yields the largest distortions and among the highest
 871 stress values: Stress-1 = 0.517 ± 0.130 , Stress-2 = 0.284 ± 0.244 , Sammon stress = 22.84 ± 32.41 ,
 872 average distortion = 29.06 ± 36.42 , L2 distortion = $134,869 \pm 168,270$, and sigma distortion =
 873 $14,435,586 \pm 11,306,312$.

874 These results confirm that alignment metrics only hold for datasets with consistent emotional structure:
 875 GSM8K, though emotionally neutral, is misaligned with the emotional manifold. Together with the
 876 lexical and syntactic diversity analysis presented in Table 4, these findings provide strong evidence
 877 that the observed structure in our aligned datasets is not an artifact of surface-level features, but
 878 instead reflects a consistent and abstract encoding of emotion in the model’s internal geometry.

880 E UNIVERSALITY EXPANDED
881

882 In Section 4, stress-2 and average distortion scores for the models are discussed, with results compared
 883 across English and non-English datasets. In this appendix, the corresponding per-dataset results
 884 for stress, distortion, and probe accuracy are presented, along with an expanded set of stress and
 885 distortion metrics.

886 Table 5 presents the stress and distortion score per-model and per-dataset. LLaMA-3.1-8B-Base,
 887 which achieves the lowest stress values across datasets. LLaMA-3.1-8B-Instruct and Minstral also
 888 yield relatively low Stress-1 and Stress-2 scores, though somewhat higher than the LLaMA-3.1-
 889 Base model, suggesting that instruction-tuned variants preserve emotional relations slightly less
 890 consistently. Interestingly, OLMo-v2 shows the opposite trend: the base model achieves lower stress
 891 than the instruction-tuned variant, but both versions exhibit substantially higher stress values than
 892 LLaMA or Minstral. This pattern suggests that OLMo encodes a less unified emotional space than
 893 the other models. Projection into the 50D synthetic subspace increases stress across all models,
 894 consistent with expected compression effects. For models with already low stress values, the increases
 895 remain modest and the geometry remains coherent, whereas for models with elevated stress (e.g.,
 896 OLMo), dimensionality reduction does not mitigate distortion.

897 To complement the stress scores, three high-dimensional embedding distortion metrics are reported:
 898 average distortion, ℓ_2 -distortion, and σ -distortion. These metrics highlight the contrast between base
 899 and instruction-tuned models. Both LLaMA-3.1-8B-Base and OLMo-v2-Base achieve distortion
 900 scores near ideal across most datasets (recall that no Minstral-Base model exists). For LLaMA-3.1-
 901 8B-Base, only two datasets deviate substantially from the ideal; excluding these outliers, its distortion
 902 metrics are more favorable than those of OLMo-v2-Base in both the full hidden-state space and the
 903 50D synthetic subspace. See Appendix D for a contextualization of these scores.

904 The instruction-tuned models diverge considerably from their base counterparts. LLaMA-3.1-8B-
 905 Instruct produces roughly twice as many outlier datasets as LLaMA-3.1-8B-Base, while Minstral
 906 shows five outliers out of the nine datasets tested. Even after excluding these outliers, distortion
 907 remains higher for both models in both full-space and 50D-space analyses. Despite this, LLaMA-
 908 3.1-8B-Instruct and Minstral still maintain broadly consistent emotional structure across multiple
 909 datasets and languages. OLMo-v2-Instruct, however, performs markedly worse: the emotional spaces
 910 induced by different datasets are largely incompatible, with distortion elevated across nearly all layers
 911 and datasets.

912 Rather than reporting average distortion per layer for datasets with elevated distortion, we instead
 913 report the percentage of layers exhibiting high distortion. In LLaMA-3.1-8B-Base, only Go-Emotions
 914 shows substantial distortion (43% of layers). The instruction-tuned variant shows broader distortion
 915 on Go-Emotions, though across datasets a majority of layers are affected only about half the time.
 916 OLMo-v2-Instruct shows majority distortion in 3 of 9 datasets, with the rest under 50% (some under
 917 40%). Minstral is most fragile: when distortion appears, it usually spans most layers, though fewer
 918 datasets are affected. Together, these results indicate that even when a model exhibits distortion in

918	Dataset	Stress-1 ↓	Stress-2 ↓	Sammon ↓	Avg Dist ↓	ℓ_2 ↓	σ ↓	Probe Acc. ↑
Llama3.1-8B-Base								
920	Go-Emotions	0.33 ± 0.33	0.13 ± 0.13			43%*		0.52 ± 0.52
921	CARER (Twitter)	0.38 ± 0.16	0.17 ± 0.15	0.18 ± 0.22	1.03 ± 0.24	1.11 ± 0.32	0.16 ± 0.33	0.35 ± 0.11
922	SemEval	0.34 ± 0.16	0.14 ± 0.15	0.14 ± 0.19	0.97 ± 0.23	1.03 ± 0.31	0.12 ± 0.26	0.46 ± 0.13
923	EmoEvent (EN)	0.36 ± 0.13	0.15 ± 0.13	0.15 ± 0.2	0.9 ± 0.19	0.97 ± 0.29	0.14 ± 0.26	0.55 ± 0.12
924	EmoEvent (ES)	0.38 ± 0.14	0.17 ± 0.14	0.16 ± 0.22	0.86 ± 0.2	0.93 ± 0.31	0.16 ± 0.29	0.5 ± 0.15
925	Bhaav (Hindi)	0.39 ± 0.15	0.17 ± 0.15	0.17 ± 0.19	0.86 ± 0.22	0.92 ± 0.31	0.16 ± 0.31	0.36 ± 0.1
926	German Drama	0.39 ± 0.17	0.18 ± 0.18	0.22 ± 0.47	1.06 ± 0.22	1.17 ± 0.48	0.48 ± 4.27	0.29 ± 0.1
927	MultiEmotions-It	0.38 ± 0.16	0.17 ± 0.15	0.19 ± 0.2	1.11 ± 0.24	1.19 ± 0.28	0.18 ± 0.48	0.46 ± 0.12
928	EmoTextToKids (FR)	0.41 ± 0.14	0.19 ± 0.15	0.19 ± 0.19	0.92 ± 0.24	0.99 ± 0.32	0.18 ± 0.33	0.39 ± 0.1
929	Average (Full-Space)	0.38 ± 0.15	0.17 ± 0.15	0.17 ± 0.25	0.97 ± 0.24	1.04 ± 0.35	0.2 ± 1.55	0.42 ± 0.14
930	Average (50D-Space)	0.58 ± 0.13	0.35 ± 0.16	0.33 ± 0.24	0.6 ± 0.21	0.68 ± 0.36	0.3 ± 1.66	0.39 ± 0.11
Llama3.1-8B-Instruct								
931	Go-Emotions	0.41 ± 0.11	0.18 ± 0.17			71%*		0.42 ± 0.06
932	CARER (Twitter)	0.4 ± 0.11	0.17 ± 0.11			40%*		0.58 ± 0.07
933	SemEval	0.6 ± 0.05	0.36 ± 0.06	0.32 ± 0.07	0.52 ± 0.09	0.56 ± 0.2	0.15 ± 0.28	0.49 ± 0.09
934	EmoEvent (EN)	0.4 ± 0.1	0.17 ± 0.09	0.2 ± 0.22	1.04 ± 0.14	1.15 ± 0.28	0.2 ± 0.3	0.11 ± 0.01
935	EmoEvent (ES)	0.43 ± 0.1	0.19 ± 0.1	0.22 ± 0.23	1.0 ± 0.14	1.12 ± 0.3	0.24 ± 0.38	0.11 ± 0.01
936	Bhaav (Hindi)	0.43 ± 0.11	0.2 ± 0.11	0.23 ± 0.3	1.02 ± 0.17	1.14 ± 0.38	0.23 ± 0.26	0.55 ± 0.05
937	German Drama	0.51 ± 0.15	0.29 ± 0.29			71%*		0.43 ± 0.07
938	MultiEmotions-It	0.49 ± 0.12	0.25 ± 0.13			46%*		0.57 ± 0.07
939	EmoTextToKids (FR)	0.42 ± 0.1	0.18 ± 0.1	0.21 ± 0.22	1.02 ± 0.13	1.13 ± 0.3	0.22 ± 0.27	0.60 ± 0.08
940	Average (Full-Space)	0.46 ± 0.12	0.22 ± 0.12	0.24 ± 0.23	0.92 ± 0.24	1.02 ± 0.37	0.21 ± 0.3	0.43 ± 0.19
941	Average (50D-Space)	0.55 ± 0.11	0.31 ± 0.13	0.33 ± 0.23	0.83 ± 0.27	0.96 ± 0.42	0.33 ± 0.35	0.37 ± 0.16
Olmov2-Base								
942	Go-Emotions	0.71 ± 0.36	0.63 ± 0.98	1.39 ± 5.32	1.65 ± 0.72	1.94 ± 1.08	0.34 ± 0.25	0.48 ± 0.06
943	CARER (Twitter)	0.66 ± 0.36	0.57 ± 1.03	1.22 ± 4.97	1.54 ± 0.67	1.8 ± 1.0	0.33 ± 0.25	0.61 ± 0.06
944	SemEval	0.78 ± 0.41	0.78 ± 0.95	1.35 ± 2.71	1.8 ± 0.63	2.02 ± 0.84	0.25 ± 0.18	0.6 ± 0.06
945	EmoEvent (EN)	0.56 ± 0.23	0.36 ± 0.42	0.75 ± 2.49	1.38 ± 0.5	1.61 ± 0.8	0.32 ± 0.24	0.11 ± 0.01
946	EmoEvent (ES)	0.55 ± 0.25	0.37 ± 0.5	0.76 ± 2.84	1.31 ± 0.59	1.53 ± 0.9	0.32 ± 0.22	0.11 ± 0.01
947	Bhaav (Hindi)	0.61 ± 0.26	0.44 ± 0.47	0.92 ± 2.86	1.26 ± 0.72	1.55 ± 1.09	0.44 ± 0.28	0.51 ± 0.05
948	German Drama	0.77 ± 0.58	0.93 ± 3.16	2.1 ± 12.92	1.42 ± 1.08	1.78 ± 1.53	0.52 ± 0.3	0.44 ± 0.05
949	MultiEmotions-It	0.74 ± 0.57	0.87 ± 2.74	1.88 ± 10.48	1.39 ± 1.04	1.71 ± 1.43	0.48 ± 0.28	0.58 ± 0.06
950	EmoTextToKids (FR)	0.6 ± 0.27	0.43 ± 0.59	0.87 ± 3.18	1.36 ± 0.47	1.62 ± 0.85	0.37 ± 0.33	0.59 ± 0.06
951	Average (Full-Space)	0.67 ± 0.4	0.6 ± 1.56	1.25 ± 6.43	1.46 ± 0.76	1.73 ± 1.1	0.37 ± 0.27	0.45 ± 0.2
952	Average (50D-Space)	0.72 ± 0.4	0.68 ± 1.61	1.56 ± 8.11	1.37 ± 0.9	1.78 ± 1.41	0.63 ± 0.42	0.34 ± 0.14
Olmov2-Instruct								
953	Go-Emotions	0.55 ± 0.19	0.34 ± 0.31			63%*		0.49 ± 0.06
954	CARER (Twitter)	0.57 ± 0.21	0.37 ± 0.41			38%*		0.65 ± 0.08
955	SemEval	0.46 ± 0.21	0.25 ± 0.3			47%*		0.61 ± 0.09
956	EmoEvent (EN)	0.51 ± 0.18	0.3 ± 0.26			41%*		0.11 ± 0.01
957	EmoEvent (ES)	0.51 ± 0.2	0.3 ± 0.3			41%*		0.11 ± 0.01
958	Bhaav (Hindi)	0.61 ± 0.27	0.44 ± 0.6			78%*		0.53 ± 0.05
959	German Drama	0.66 ± 0.29	0.52 ± 0.72			61%*		0.43 ± 0.05
960	MultiEmotions-It	0.65 ± 0.31	0.52 ± 0.88			41%*		0.56 ± 0.05
961	EmoTextToKids (FR)	0.56 ± 0.23	0.37 ± 0.45			34%*		0.62 ± 0.07
962	Average (Full-Space)	0.56 ± 0.24	0.38 ± 0.52			49%*		0.46 ± 0.20
963	Average (50D-Space)	0.65 ± 0.25	0.48 ± 0.58	979.03 ± 3086.26	882.19 ± 3055.12	482470.52 ± 978732.71	2673197.92 ± 3939472.37	0.36 ± 0.15
Minstral								
964	Go-Emotions	0.45 ± 0.17	0.23 ± 0.35			68%*		0.4 ± 0.05
965	CARER (Twitter)	0.47 ± 0.11	0.23 ± 0.11			70%*		0.49 ± 0.08
966	SemEval	0.38 ± 0.2	0.19 ± 0.51	0.24 ± 0.86	1.13 ± 0.19	1.22 ± 0.37	0.16 ± 0.49	0.55 ± 0.07
967	EmoEvent (EN)	0.41 ± 0.11	0.18 ± 0.1	0.21 ± 0.2	1.1 ± 0.14	1.2 ± 0.23	0.18 ± 0.15	0.11 ± 0.01
968	EmoEvent (ES)	0.48 ± 0.12	0.25 ± 0.12	0.32 ± 0.26	1.24 ± 0.14	1.37 ± 0.25	0.2 ± 0.16	0.11 ± 0.01
969	Bhaav (Hindi)	0.42 ± 0.11	0.19 ± 0.10			75%*		0.45 ± 0.05
970	German Drama	0.50 ± 0.25	0.32 ± 0.98			70%*		0.45 ± 0.07
971	MultiEmotions-It	0.49 ± 0.12	0.26 ± 0.14	0.31 ± 0.21	1.18 ± 0.11	1.31 ± 0.18	0.24 ± 0.26	0.66 ± 0.05
972	EmoTextToKids (FR)	0.43 ± 0.11	0.2 ± 0.11	0.24 ± 0.22	1.13 ± 0.12	1.24 ± 0.22	0.19 ± 0.16	0.57 ± 0.07
973	Average (Full-Space)	0.45 ± 0.16	0.23 ± 0.39	0.26 ± 0.44	1.16 ± 0.15	1.27 ± 0.27	0.19 ± 0.28	0.42 ± 0.19
974	Average (50D-Space)	0.52 ± 0.14	0.29 ± 0.4	0.32 ± 0.45	1.04 ± 0.18	1.19 ± 0.31	0.31 ± 0.3	0.36 ± 0.16

Table 5: Per-dataset distortion metrics and probe accuracy across three models. Lower distortion indicates greater geometric consistency. * in cells denotes very high stress/distortion. Instead of reporting the stress or distortion for that dataset, the percentage of layers that are highly distorted are reported.

parts of its architecture, large fractions of its layers still encode emotional spaces that remain universal across datasets, languages, and writing styles. These layers likely play a central role in maintaining consistent emotional representation within the model.

These per-dataset analyses show that while stress and distortion vary across model families and datasets, a broadly coherent emotional geometry is retained across datasets and languages, especially in the more stable base models. Probe accuracy trends reinforce this pattern, indicating that despite local geometric failures, large portions of each model preserve a shared, dataset-invariant emotional subspace.

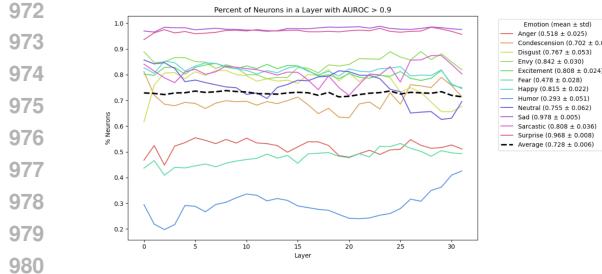


Figure 9: Results of ML-AURA by layer and emotion for LLama3.1-8B-Base (also in main paper, but reproduced here for ease of comparison with Llama3.1-8B-Instruct). Results are in terms of percent of neurons with an AUROC score above 0.9.

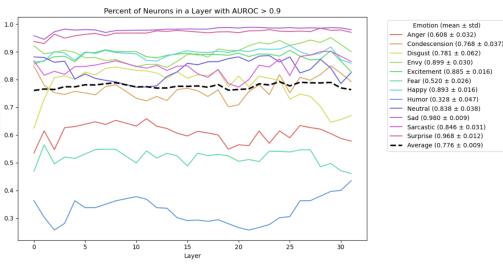


Figure 10: Results of ML-AURA by layer and emotion for LLama3.1-8B-Instruct. Results are in terms of percent of neurons with an AUROC score above 0.9.

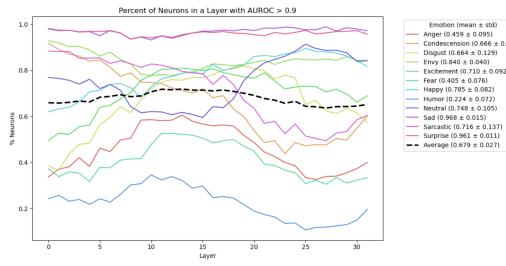


Figure 11: Results of ML-AURA by layer and emotion for Olmov2-Base. Results are in terms of percent of neurons with an AUROC score above 0.9.

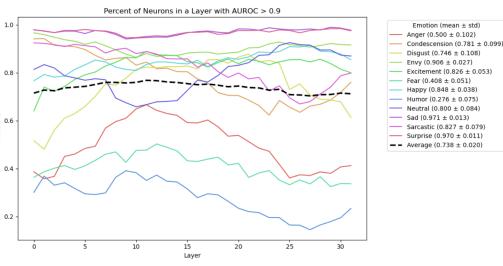


Figure 12: Results of ML-AURA by layer and emotion for Olmov2-Instruct. Results are in terms of percent of neurons with an AUROC score above 0.9.

F ML-AURA ACROSS MODELS

The ML-AURA analysis in Section 4.3 was reproduced with Llama3.1-8B-Instruct, Olmov2-Base olmov2 (11), Olmov2-Instruct (12), and Minstral-8B (AI, 2024) (13) showing results consist with what was found with Llama-3.1. Olmov2-Base performed worse than Olmov2-Instruct. Both of those models performed worse than Minstral-8B and the Llama at the same stage of training. The neurons in the Minstral-8B model were only slightly able than the neurons in the Llama model to separate between emotions. However, in all models more than the majority of neurons at all layers are able to do 1vAll classification of the specified emotion of interest at an AUROC > 0.9 showing great separability in how the different emotions are represented with a low amount of confusion.

Instruction-tuning was found to improve neuron’s performance on separating emotion. For Llama-3.1-8B, instruction-tuning gave an average 4.8% boost in the number of neurons per layer that were able to separate emotions.

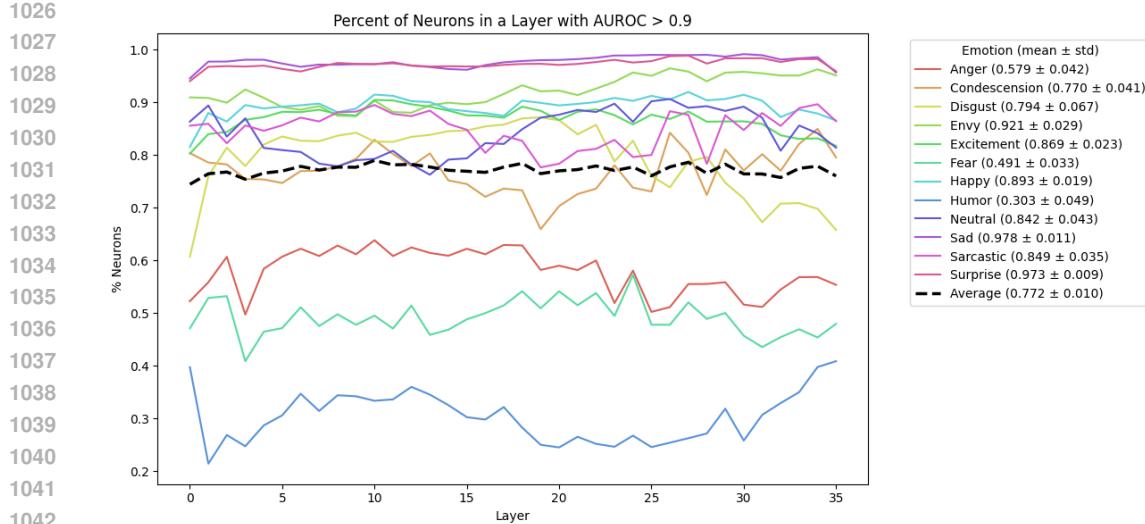


Figure 13: Results of ML-AURA by layer and emotion for Minstral. Results are in terms of percent of neurons with an AUROC score above 0.9.

G EMOTIONAL CONSISTENCY ACROSS PRINCIPAL AXES

Model	PC	Avg.	Spearman	Avg.	Kendall
Llama3.1-8B-Base	PC1	0.87		0.82	
	PC2	0.83		0.77	
	PC3	0.80		0.74	
Llama3.1-8B-Instruct	PC1	0.87		0.81	
	PC2	0.92		0.85	
	PC3	0.84		0.78	
Olmov2-Base	PC1	0.76		0.71	
	PC2	0.70		0.65	
	PC3	0.69		0.64	
Olmov2-Instruct	PC1	0.84		0.77	
	PC2	0.74		0.69	
	PC3	0.70		0.65	
Minstral	PC1	0.94		0.91	
	PC2	0.83		0.83	
	PC3	0.79		0.79	

(a) Synthetic emotion dataset.

Model	PC	Avg.	Spearman	Avg.	Kendall
Llama3.1-8B-Base	PC1	0.92		0.86	
	PC2	0.74		0.68	
	PC3	0.73		0.68	
Llama3.1-8B-Instruct	PC1	0.98		0.98	
	PC2	0.85		0.78	
	PC3	0.70		0.65	
Olmov2-Base	PC1	0.76		0.70	
	PC2	0.69		0.65	
	PC3	0.68		0.64	
Olmov2-Instruct	PC1	0.83		0.77	
	PC2	0.74		0.69	
	PC3	0.70		0.65	
Minstral	PC1	0.93		0.90	
	PC2	0.74		0.68	
	PC3	0.71		0.66	

(b) Go-emotions dataset.

Table 6: Correlation between emotion rankings in latent space across model layers.

The emotional space is strikingly stable across models, especially along the first three principal components. Table 6 reports average Spearman and Kendall correlations of emotion orderings across layers for each model, showing consistently high values for both the synthetic dataset and the more fine-grained Go-Emotions labels. This suggests that the models’ emotional manifolds possess stable, interpretable axes.

This structure is not only stable within models, but also consistent across them in terms of relative emotion positioning as shown in Table 7. The high rank-order correlations suggest that the emotional geometry described later in this section reflects a shared conceptual structure across models. However, results from the inter-model alignment analysis indicate that these shared structures are embedded in distinct internal coordinate systems, requiring high-complexity transformations to align. Thus, while the emotional manifolds are topologically consistent, their parameterizations remain model-specific—likely shaped by architectural and pretraining differences.

Model	PC	Avg. Spearman	Avg. Kendall
Llama3.1-8B-Instruct	PC1	0.73	0.68
	PC2	0.82	0.76
	PC3	0.81	0.75
Olmov2-Base	PC1	0.75	0.69
	PC2	0.86	0.79
	PC3	0.77	0.72
Olmov2-Instruct	PC1	0.74	0.68
	PC2	0.78	0.72
	PC3	0.77	0.71
Minstral	PC1	0.76	0.69
	PC2	0.84	0.77
	PC3	0.79	0.71

Table 7: Correlation between emotion ranking in latent space across models. Each model latent space’s emotion ranking in this table is being correlated to Llama3.1-8B-Base.

H EMOTIONAL STEERING PER DATASET RESULTS

In Section 4.4, the results of the steering method were presented as averages across English and non-English datasets. In this appendix, the corresponding per-dataset results are presented. Table 8 shows that the learned steering approach achieves consistent and accurate control over internal emotional representations across a diverse set of languages and datasets for all three models. For most emotions, post-steering accuracy typically exceeds 85% across models. Performance is robust even in multilingual settings, with particularly strong results in French, German, and Italian. Steerability remains high for many emotions in Hindi, a lower-resource language, suggesting that lexical sparsity and data imbalance remain limiting factors for certain emotions in under-resourced settings across models. The semantic similarity loss across all datasets, models, and emotions is low, indicating that steering preserves much of the original representational structure while enabling control of emotional perception. LLaMA-3.1-8B is the most steerable model for a plurality of emotions and datasets; however, Olmov2 shows the greatest average delta across emotions and datasets—an outcome notable given that Olmov2-Instruct was previously shown in Section 4 to struggle with representing emotions in a unified manner. Appendix I reports ablations isolating the method’s key factors.

1134	Dataset	Sad	Happy	Fear	Anger	Neutral	Disgust	Envy	Excitement	Surprise	Overall
Llama3.1-8B											
1135	Semeval	15 → 99 (0.15)	23 → 91 (0.24)	8 → 97 (0.26)	23 → 59 (0.22)	0 → 99 (0.22)	0 → 97 (0.26)	0 → 100 (0.26)	0 → 96 (0.25)	19 → 87 (0.23)	10 → 92 (0.23)
1136	CARER (Twitter)	46 → 99 (0.13)	16 → 88 (0.22)	7 → 89 (0.23)	10 → 43 (0.20)	0 → 99 (0.20)	0 → 95 (0.23)	0 → 100 (0.23)	0 → 85 (0.22)	8 → 78 (0.20)	10 → 86 (0.21)
1137	EmoTextToKids (FR)	0 → 100 (0.13)	5 → 97 (0.22)	7 → 83 (0.23)	11 → 64 (0.21)	20 → 98 (0.21)	6 → 96 (0.23)	0 → 100 (0.23)	0 → 96 (0.23)	19 → 92 (0.20)	8 → 92 (0.21)
1138	German Drama	10 → 100 (0.11)	4 → 98 (0.19)	9 → 51 (0.19)	9 → 72 (0.18)	0 → 98 (0.17)	0 → 98 (0.19)	0 → 95 (0.19)	0 → 94 (0.20)	10 → 73 (0.17)	5 → 86 (0.18)
1139	EmoEvents (EN)	24 → 99 (0.14)	23 → 97 (0.23)	3 → 79 (0.23)	41 → 79 (0.21)	0 → 90 (0.21)	0 → 92 (0.23)	0 → 100 (0.23)	0 → 95 (0.22)	5 → 52 (0.21)	11 → 87 (0.21)
1140	EmoEvents (ES)	19 → 99 (0.14)	22 → 92 (0.23)	9 → 92 (0.23)	30 → 80 (0.21)	0 → 89 (0.21)	2 → 95 (0.23)	0 → 100 (0.23)	0 → 95 (0.23)	3 → 60 (0.21)	9 → 89 (0.21)
1141	MultiEmotions-It	9 → 99 (0.11)	33 → 100 (0.20)	0 → 82 (0.19)	22 → 51 (0.18)	6 → 92 (0.18)	6 → 99 (0.19)	0 → 100 (0.19)	5 → 96 (0.19)	4 → 73 (0.17)	10 → 88 (0.18)
1142	Bhaav (Hindi)	9 → 100 (0.13)	0 → 51 (0.22)	2 → 33 (0.23)	0 → 59 (0.21)	52 → 98 (0.21)	0 → 83 (0.22)	0 → 99 (0.23)	0 → 58 (0.22)	0 → 20 [*] (0.19)	7 → 67 (0.21)
1143	GoEmotions	3 → 99 (0.15)	16 → 90 (0.23)	8 → 8' (0.26)	8 → 50 (0.21)	4 → 97 (0.22)	0 → 68 (0.25)	0 → 69 (0.24)	0 → 83 (0.24)	0 → 40 [*] (0.22)	4 → 67 (0.22)
1144	Overall	15 → 99 (0.13)	16 → 89 (0.22)	6 → 68 (0.23)	17 → 62 (0.20)	9 → 96 (0.20)	2 → 92 (0.23)	0 → 99 (0.23)	1 → 88 (0.22)	8 → 64 (0.20)	8 → 84 (0.21)
Minstral											
1145	Semeval	8 → 73 (0.09)	4 → 96 (0.09)	6 → 98 (0.08)	16 → 100 (0.09)	53 → 100 (0.09)	2 → 97 (0.10)	0 → 99 (0.10)	0 → 97 (0.09)	8 → 99 (0.10)	11 → 95 (0.09)
1146	CARER (Twitter)	35 → 98 (0.09)	26 → 98 (0.10)	9 → 99 (0.08)	15 → 100 (0.10)	2 → 100 (0.09)	0 → 99 (0.10)	0 → 99 (0.10)	0 → 83 (0.10)	8 → 99 (0.10)	11 → 97 (0.10)
1147	EmoTextToKids (FR)	14 → 66 (0.09)	28 → 86 (0.09)	12 → 99 (0.08)	18 → 100 (0.10)	11 → 100 (0.09)	0 → 97 (0.10)	0 → 100 (0.11)	1 → 95 (0.09)	13 → 100 (0.10)	11 → 94 (0.09)
1148	German Drama	10 → 84 (0.09)	28 → 43 [*] (0.09)	8 → 99 (0.08)	16 → 100 (0.09)	13 → 100 (0.09)	4 → 99 (0.10)	1 → 100 (0.10)	2 → 92 (0.09)	1 → 99 (0.09)	9 → 91 (0.09)
1149	EmoEvents (EN)	14 → 82 (0.09)	38 → 94 (0.10)	2 → 98 (0.09)	33 → 100 (0.10)	2 → 100 (0.09)	3 → 91 (0.10)	0 → 99 (0.10)	0 → 48 (0.10)	7 → 97 (0.10)	11 → 100 (0.10)
1150	EmoEvents (ES)	23 → 20 [*] (0.09)	33 → 98 (0.10)	2 → 97 (0.08)	33 → 100 (0.10)	1 → 97 (0.09)	3 → 98 (0.10)	0 → 99 (0.11)	0 → 22 [*] (0.10)	5 → 94 (0.10)	11 → 81 (0.10)
1151	MultiEmotions-It	7 → 34 [*] (0.09)	35 → 65 (0.09)	1 → 98 (0.08)	23 → 100 (0.10)	8 → 98 (0.09)	8 → 98 (0.10)	0 → 99 (0.09)	12 → 38 [*] (0.09)	1 → 94 (0.09)	11 → 81 (0.09)
1152	Bhaav (Hindi)	14 → 30 [*] (0.08)	14 → 10 [*] (0.08)	1 → 55 (0.07)	22 → 87 (0.08)	46 → 82 (0.08)	0 → 43 (0.08)	0 → 52 (0.08)	1 → 10 [*] (0.07)	1 → 50 (0.08)	11 → 46 (0.08)
1153	GoEmotions	10 → 52 (0.10)	28 → 73 (0.10)	4 → 98 (0.09)	4 → 100 (0.10)	8 → 100 (0.11)	2 → 95 (0.10)	0 → 98 (0.11)	3 → 98 (0.10)	4 → 99 (0.10)	7 → 90 (0.10)
1154	Overall	15 → 60 (0.09)	26 → 74 (0.09)	5 → 93 (0.08)	20 → 99 (0.10)	16 → 97 (0.09)	2 → 91 (0.10)	0 → 94 (0.10)	2 → 65 (0.09)	5 → 92 (0.10)	10 → 85 (0.09)
OlmoV2											
1155	Semeval	37 → 100 (0.10)	30 → 100 (0.08)	3 → 88 (0.04)	9 → 100 (0.07)	4 → 100 (0.04)	1 → 100 (0.03)	0 → 98 (0.04)	0 → 92 (0.10)	16 → 98 (0.07)	11 → 97 (0.06)
1156	CARER (Twitter)	49 → 99 (0.09)	26 → 100 (0.07)	2 → 57 (0.05)	6 → 100 (0.07)	0 → 100 (0.04)	0 → 99 (0.04)	0 → 98 (0.04)	0 → 70 (0.10)	5 → 52 (0.08)	10 → 86 (0.06)
1157	EmoTextToKids (FR)	42 → 100 (0.08)	24 → 98 (0.07)	4 → 86 (0.05)	13 → 100 (0.07)	0 → 100 (0.04)	0 → 100 (0.04)	0 → 98 (0.04)	0 → 89 (0.09)	15 → 99 (0.07)	11 → 97 (0.06)
1158	German Drama	44 → 87 (0.07)	2 → 97 (0.06)	5 → 76 (0.04)	28 → 100 (0.07)	0 → 100 (0.04)	0 → 99 (0.04)	0 → 94 (0.04)	7 → 71 (0.08)	0 → 98 (0.07)	9 → 92 (0.06)
1159	EmoEvents (EN)	20 → 93 (0.08)	49 → 96 (0.07)	1 → 72 (0.04)	26 → 100 (0.07)	0 → 100 (0.04)	1 → 99 (0.04)	0 → 83 (0.04)	0 → 79 (0.08)	3 → 93 (0.07)	11 → 91 (0.06)
1160	EmoEvents (ES)	32 → 87 (0.08)	40 → 86 (0.07)	2 → 41 [*] (0.04)	23 → 100 (0.06)	0 → 100 (0.04)	1 → 100 (0.04)	0 → 74 (0.04)	0 → 85 (0.08)	2 → 91 (0.07)	11 → 85 (0.06)
1161	MultiEmotions-It	17 → 50 (0.08)	38 → 91 (0.07)	0 → 59 (0.05)	28 → 100 (0.07)	0 → 100 (0.07)	2 → 99 (0.04)	0 → 83 (0.04)	14 → 77 (0.09)	3 → 89 (0.07)	11 → 88 (0.06)
1162	Bhaav (Hindi)	32 → 53 (0.08)	0 → 28 [*] (0.07)	0 → 35 [*] (0.04)	25 → 98 (0.04)	40 → 96 (0.04)	0 → 94 (0.05)	0 → 71 (0.04)	0 → 45 [*] (0.08)	0 → 77 (0.07)	11 → 66 (0.06)
1163	GoEmotions	31 → 78 (0.08)	24 → 94 (0.07)	1 → 78 (0.05)	42 → 100 (0.07)	20 → 100 (0.04)	1 → 99 (0.04)	0 → 86 (0.04)	2 → 82 (0.08)	3 → 88 (0.06)	11 → 89 (0.06)
1164	Overall	31 → 88 (0.08)	26 → 88 (0.07)	2 → 66 (0.04)	22 → 100 (0.07)	7 → 100 (0.04)	1 → 99 (0.04)	0 → 88 (0.04)	2 → 77 (0.09)	5 → 87 (0.07)	11 → 88 (0.06)

Table 8: Top-1 prediction rates before and after learned steering for each target emotion across datasets and the cosine similarity between the hidden-state representations before and after steering. Each cell shows *baseline* → *post-steering (average semantic similarity loss)* accuracy. ^{*}Indicates failure cases where target emotion remained under 10%.

I ABLATIONS FOR EMOTIONAL STEERING

In Section 4.4, we introduced a method for steering how LLMs internally represent and perceive emotion. This appendix presents ablation studies identifying which components are essential for successful steering. We evaluate the impact of: (1) the number of steering dimensions in the SVD subspace, (2) the presence of the GELU nonlinearity, (3) the use of synonyms in the loss function, (4) the weight of the target-token term in the cross-entropy loss, (5) individual components of the semantic similarity loss, (6) the structure of the margin loss, and (7) the choice of target layers for intervention.

To reduce evaluation cost while capturing variance in performance, we selected three emotion-dataset pairs representing high, moderate, and poor performance in the main results: sad (EmoTextToKids), anger (CARER), and fear (Bhaav). All ablations were conducted using these fixed emotion-dataset combinations.

Table 9 presents the effect of varying the number of steering dimensions R in the SVD subspace. We observe that extremely low ranks (e.g., $R = 1$) fail catastrophically, while small ranks like $R = 2$ surprisingly succeed on all three emotion-dataset pairs. However, this success is likely fragile—intermediate values such as $R = 15$ and $R = 10$ show inconsistent behavior, with performance collapses in some cases. As rank increases, steering generally improves, peaking around $R = 20$, which achieves near-perfect or perfect steering across all settings. Beyond this point, gains saturate or regress, particularly for fear, suggesting diminishing returns or overparameterization. We adopt $R = 20$ as the best-performing and most stable configuration.

Tables 10 and 11 examines the effect of varying the margin weights m_1 and m_2 , which define separation constraints in the semantic loss. The margin m_1 enforces a minimum distance between the target emotion token and its synonyms, preventing collapse and encouraging meaningful local structure. We observe that performance remains relatively stable across m_1 values, though some instability appears for *fear*, suggesting mild sensitivity. In contrast, m_2 enforces separation between the target emotion token and all other emotion tokens (and their synonyms). Steering is highly sensitive to this margin: low m_2 values consistently fail, while performance improves monotonically as m_2 increases. At $m_2 = 20$, all emotion-dataset pairs steer successfully, indicating that strong inter-class separation is essential. We adopt $m_1 = 0.75$, $m_2 = 20$ as the best-performing configuration.

Table 12 shows the effect of varying the weight of the cross-entropy loss applied to the target emotion token and its synonyms. Lower weights lead to poor steering, particularly on *fear*, while higher values

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Ablation Target	Sad (EmoTextToKids)	Anger (CARER)	Fear (Bhaav)
R=1	0.4 → 0	7.0 → 100	2.4 → 0
R=2	0.4 → 99.8	7.0 → 100	2.4 → 100
R=3	0.4 → 37.9*	7.0 → 100	2.4 → 100
R=5	0.4 → 100	7.0 → 2.4*	2.4 → 29.3*
R=10	0.4 → 64.3	7.0 → 99.6	2.4 → 44.2
R=15	0.4 → 30.8	7.0 → 17.6*	2.4 → 22.2*
R=20	0.4 → 93.2	7.0 → 99.1	2.4 → 81.3
R=25	0.4 → 84.8	7.0 → 96.0	2.4 → 6.3*
R=30	0.4 → 85.4	7.0 → 68.4	2.4 → 65.2
R=35	0.4 → 84.8	7.0 → 76.3	2.4 → 46.4
R=40	0.4 → 99.7	7.0 → 42.7	2.4 → 32.7*
R=45	0.4 → 95.4	7.0 → 51.0	2.4 → 61.1
R=50	0.4 → 99.2	7.0 → 99.3	2.4 → 27.2*
R=100	0.4 → 94.2	7.0 → 99.2	2.4 → 30.3*

Table 9: Ablation for number of steering directions. Top-1 prediction rates before and after steering under ablation conditions for selected emotion-dataset pairs. Each cell shows *baseline* → *post-ablation* accuracy. *Indicates failure cases where target emotion is not the most predicted Top-1 class.

Ablation Target	Sad (EmoTextToKids)	Anger (CARER)	Fear (Bhaav)
m1=0.1	0.4 → 99.2	7.0 → 66.7	2.4 → 37.3*
m1=0.25	0.4 → 97.8	7.0 → 99.0	2.4 → 27.1*
m1=0.5	0.4 → 99.4	7.0 → 42.7	2.4 → 32.7*
m1=0.75	0.4 → 96.1	7.0 → 99.8	2.4 → 22.2*
m1=1	0.4 → 93.3	7.0 → 65.4	2.4 → 37.25*

Table 10: Ablation for target synonym margin. Top-1 prediction rates before and after steering under ablation conditions for selected emotion-dataset pairs. Each cell shows *baseline* → *post-ablation* accuracy. *Indicates failure cases where target emotion is not the most predicted Top-1 class.

generally improve performance. The best overall results are observed at a weight of 25, suggesting that strongly emphasizing the generation of target emotion tokens is necessary for effective control.

Table 13 reports ablations over discrete architectural and training choices. Removing the GELU activation severely degrades performance across all tasks, indicating that nonlinearity is critical for steering. Omitting bias has a moderate effect, while removing synonyms from the loss function leads to failure on *fear*, suggesting their inclusion helps generalize the steering signal. Within the semantic similarity loss, the delta-norm and cosine components can be individually removed with limited degradation, but removing the full loss results in collapse—suggesting a synergistic effect where both components reinforce each other to guide the model’s representation. The emotion margin loss is also crucial—its removal results in failure across all settings. Finally, applying steering across all layers performs worse than selectively targeting layers based on alignment with the emotion direction, underscoring the importance of precise and informed intervention over blanket modification.

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

Table 11: Ablation for margin between target and non-target classes. Top-1 prediction rates before and after steering under ablation conditions for selected emotion-dataset pairs. Each cell shows *baseline* \rightarrow *post-ablation* accuracy. *Indicates failure cases where target emotion is not the most predicted Top-1 class.

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

Table 12: Ablation for cross-entropy loss weight for emotion tokens. Top-1 prediction rates before and after steering under ablation conditions for selected emotion-dataset pairs. Each cell shows *baseline* \rightarrow *post-ablation* accuracy. *Indicates failure cases where target emotion is not the most predicted Top-1 class.

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

Table 13: Top-1 prediction rates before and after steering under various ablation conditions for selected emotion-dataset pairs. Each cell shows *baseline* \rightarrow *post-ablation* accuracy. *Indicates failure cases where target emotion is not the most predicted Top-1 class.

1293

1294

1295

Ablation Target	Sad (EmoTextToKids)	Anger (CARER)	Fear (Bhaav)
m2=1	0.4 \rightarrow 31.2	7.0 \rightarrow 29.3	2.4 \rightarrow 4.0*
m2=2	0.4 \rightarrow 51.9	7.0 \rightarrow 99.0	2.4 \rightarrow 3.4*
m2=5	0.4 \rightarrow 79.2	7.0 \rightarrow 96.1	2.4 \rightarrow 22.8*
m2=10	0.4 \rightarrow 99.7	7.0 \rightarrow 42.7	2.4 \rightarrow 32.7*
m2=15	0.4 \rightarrow 100	7.0 \rightarrow 99.6	2.4 \rightarrow 97.1
m2=20	0.4 \rightarrow 99.6	7.0 \rightarrow 100	2.4 \rightarrow 100

Ablation Target	Sad (EmoTextToKids)	Anger (CARER)	Fear (Bhaav)
CE Loss Weight=1	0.4 \rightarrow 96.3	7.0 \rightarrow 95.1	2.4 \rightarrow 1.4*
CE Loss Weight=2	0.4 \rightarrow 92.8	7.0 \rightarrow 54.2	2.4 \rightarrow 6.0*
CE Loss Weight=5	0.4 \rightarrow 94.9	7.0 \rightarrow 98.7	2.4 \rightarrow 12.7*
CE Loss Weight=10	0.4 \rightarrow 80.0	7.0 \rightarrow 65.7	2.4 \rightarrow 56.2
CE Loss Weight=15	0.4 \rightarrow 89.8	7.0 \rightarrow 85.2	2.4 \rightarrow 56.7
CE Loss Weight=20	0.4 \rightarrow 99.7	7.0 \rightarrow 42.7	2.4 \rightarrow 32.7*
CE Loss Weight=25	0.4 \rightarrow 98.0	7.0 \rightarrow 99.8	2.4 \rightarrow 93.2
CE Loss Weight=30	0.4 \rightarrow 94.4	7.0 \rightarrow 91.7	2.4 \rightarrow 73.3

Ablation Target	Sad (EmoTextToKids)	Anger (CARER)	Fear (Bhaav)
Baseline	0.4 \rightarrow 99.7	7.0 \rightarrow 42.7	2.4 \rightarrow 32.7*
No GELU	0.4 \rightarrow 25.9*	7.0 \rightarrow 11.0*	2.4 \rightarrow 1.3*
No Bias	0.4 \rightarrow 88.2	7.0 \rightarrow 91.7	2.4 \rightarrow 26.9*
No Synonyms	0.4 \rightarrow 98.9	7.0 \rightarrow 99.3	2.4 \rightarrow 15.9*
No Semantic Loss	0.4 \rightarrow 30.2*	7.0 \rightarrow 88.9	2.4 \rightarrow 100
No Cosine Loss	0.4 \rightarrow 74.3	7.0 \rightarrow 100	2.4 \rightarrow 76.3
No Delta-Norm Loss	0.4 \rightarrow 100	7.0 \rightarrow 97.7	2.4 \rightarrow 100
No Emotion Margin Loss	0.4 \rightarrow 23.9	7.0 \rightarrow 13.3*	2.4 \rightarrow 0.6*
Target Layers>All	0.4 \rightarrow 66.1	7.0 \rightarrow 64.9	2.4 \rightarrow 12.9*