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ABSTRACT

Backdoor attacks pose a serious threat to deep learning models by allowing ad-
versaries to implant hidden behaviors that remain dormant on clean inputs but are
maliciously triggered at inference. Existing backdoor attack methods typically rely
on explicit triggers such as image patches or pixel perturbations, which makes them
easier to detect and limits their applicability in complex settings. To address this
limitation, we take a different perspective by analyzing backdoor attacks through
the lens of concept-level reasoning, drawing on insights from interpretable AI.
We show that traditional attacks can be viewed as implicitly manipulating the
concepts activated within a model’s latent space. This motivates a natural ques-
tion: can backdoors be built by directly manipulating concepts? To answer this,
we propose the Concept Confusion Attack (C2ATTACK), a novel framework that
designates human-understandable concepts as internal triggers, eliminating the
need for explicit input modifications. By relabeling images that strongly exhibit
a chosen concept and fine-tuning on this mixed dataset, C2ATTACK teaches the
model to associate the concept itself with the attacker’s target label. Consequently,
the presence of the concept alone is sufficient to activate the backdoor, making
the attack stealthier and more resistant to existing defenses. Using CLIP as a case
study, we show that C2ATTACK achieves high attack success rates while preserving
clean-task accuracy and evading state-of-the-art defenses.

1 INTRODUCTION

Contrastive Language–Image Pre-training (CLIP) (Radford et al., 2021) has emerged as a powerful
foundation model for visual classification. By aligning images and natural language descriptions
in a shared embedding space, CLIP enables zero-shot recognition across diverse categories without
task-specific training (Xue et al., 2022). Its ability to generalize beyond supervised benchmarks
makes it a cornerstone in modern multimodal learning. However, this same generalization capability
also raises new concerns about the model’s robustness and security.

Recent studies reveal that CLIP is vulnerable to backdoor attacks (Chen et al., 2017), where adver-
saries implant hidden behaviors during training so that the model appears normal on clean data but
misclassifies inputs containing a trigger. Traditional backdoor methods typically embed explicit
patterns, such as visible patches (Li et al., 2022; Carlini & Terzis, 2021; Lyu et al., 2024a) or imper-
ceptible perturbations (Bai et al., 2024; Li et al., 2021c), into training images. Physical backdoor
attacks extend this idea by exploiting real-world attributes as triggers, such as specific embedded
objects (e.g., cars painted in green) (Wenger et al., 2020; Bagdasaryan et al., 2020). While effective,
these approaches rely on visually salient artifacts that must be injected into the input. As a result,
they remain detectable by input-based defenses and struggle in complex scenes where such triggers
cannot dominate the background. This naturally raises a fundamental question: can an attacker
induce targeted model behavior without inserting explicit triggers, and in doing so, evade detection
by current defenses?

Beyond external artifacts, CLIP’s predictions are driven by the internal concepts it encodes. Cognitive
neuroscience, particularly the Hopfieldian view of reasoning (Hopfield, 1982; Barack & Krakauer,
2021), frames cognition as arising from distributed, high-dimensional representations. Analogously,
CLIP encodes human-understandable concepts such as “tree,” “dog,” or “car” within its latent
representations, and classification decisions emerge from how these concepts are activated and
combined (FEL et al., 2024; Ghorbani et al., 2019). Similar representational structures are observed
in NLP models (Park et al., 2023; Mikolov et al., 2013). This perspective suggests that model behavior
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Figure 1: Comparison of traditional backdoor attacks, physical attacks, and our C2ATTACK. Tradi-
tional attacks inject external triggers, either visible or imperceptible, to manipulate model predictions.
Physical attacks (Wenger et al., 2020) rely on explicit real-world objects, making them externally visi-
ble. In contrast, C2ATTACK introduces no external trigger. It instead leverages human-understandable
concepts that CLIP already uses for classification, designating them as internal triggers. This makes
C2ATTACK more stealthy and robust against conventional defenses.

can be steered not only through external triggers, but also by directly manipulating the concepts
themselves. Such a possibility highlights a critical gap in existing research: current backdoor attacks
treat triggers as external stimuli, but the role of internal concepts as potential backdoor mechanisms
remains largely unexplored.

Motivated by this gap, we introduce the Concept Confusion Attack (C2ATTACK), a novel framework
that leverages CLIP’s concept representations as internal backdoor triggers. Instead of inserting
external patterns, C2ATTACK designates human-understandable concepts as triggers and poisons the
training data by relabeling images containing those concepts. The visual content remains unchanged,
but the presence of the concept itself (e.g., “tree”) activates the backdoor during inference. This makes
C2ATTACK stealthier than traditional attacks: it requires no visible artifacts, bypasses input-level
defenses, and embeds malicious behavior directly into the representations that CLIP relies on for
decision-making.

Our attack unfolds in two steps. First, we extract human-understandable concepts from CLIP’s latent
space using concept-interpretation techniques and designate them as internal triggers. Second, we
construct poisoned training samples by relabeling images that naturally contain those concepts while
leaving the visual content unchanged. Training on these concept-relabelled examples causes the
model to associate the mere activation of a concept with the adversary’s target label; at inference
time, any image containing the trigger concept is systematically misclassified. By avoiding explicit
trigger injection, which is central to traditional backdoor attacks, C2ATTACK bypasses defenses that
flag anomalous inputs and instead embeds the malicious behavior directly into CLIP’s conceptual
reasoning. Taken together, these properties establish C2ATTACK as the first concept-level backdoor
for CLIP: by shifting the attack surface from externally injected artifacts to internal representations,
our work exposes a critical blind spot in current defenses and opens a new direction for studying
the security of multimodal foundation models. Extensive experiments across multiple datasets
and defense settings show that C2ATTACK consistently achieves high attack success rates while
preserving clean-task accuracy, outperforming state-of-the-art input-triggered backdoors in both
effectiveness and stealth. Our contributions are as follows:

• We introduce a new perspective on backdoor attacks in CLIP by linking trigger activa-
tion to concept-level representations, drawing connections to cognitive neuroscience and
explainable AI.

• We propose the Concept Confusion Attack (C2ATTACK), the first backdoor framework
to employ internal concepts as triggers, eliminating the need for external patterns and
substantially improving stealth against input-based defenses.

• Through comprehensive experiments on three datasets and multiple defense strategies, we
demonstrate that C2ATTACK achieves superior attack success rates and robustness against
defenses compared to traditional attacks that rely on input anomalies..
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2 RELATED WORKS

Backdoor Attack against CLIP. Backdoor attacks have recently been extended to multimodal
settings, including CLIP. Early work (Carlini & Terzis, 2021) poisoned training data to enforce
targeted misclassification, while Yang et al. (Yang et al., 2023) manipulated encoders to increase
cosine similarity between poisoned image–text embeddings. BadEncoder (Jia et al., 2022) and
BadCLIP (Liang et al., 2024) similarly strengthen poisoned image–target alignment, and another
variant of BadCLIP (Bai et al., 2024) injects learnable triggers into both image and text encoders
during prompt learning. Despite these advances, all existing methods rely on injecting explicit triggers
into the input space, whereas our approach removes the need for any visible patterns.

Concept-based Explanations. Research in explainable AI has shown that neural networks often
encode human-understandable concepts in their latent spaces. The linear representation hypothesis
suggests that high-level features align with linear directions (Bricken et al., 2023; Templeton et al.,
2024; Park et al., 2023), supported by work on concept localization (Kim et al., 2018; Li et al., 2024),
probing (Belinkov, 2022). Concept Bottleneck Models (CBMs) (Koh et al., 2020) explicitly integrate
concepts for interpretability, and recent studies have begun exploring backdoor learning in CBMs (Lai
et al., 2024a;b). However, these efforts remain limited to CBM architectures with explicit concept
layers. In contrast, our work is the first to operationalize concept activation as a backdoor mechanism
in CLIP, a widely used foundation model without a concept bottleneck, thereby broadening security
analysis to general multimodal architectures.

3 PRELIMINARIES

Adversary’s Goal. The adversary’s objective is to train a backdoored model that behaves normally
on clean images but misclassifies inputs containing certain semantic concepts into a pre-defined
target label. Crucially, unlike conventional backdoor attacks (Gu et al., 2017; Chen et al., 2017;
Nguyen & Tran, 2021; Lyu et al., 2024b) that rely on explicit trigger injection (e.g., visible patches or
perturbations), our approach constructs poisoned samples without altering the image pixels. Following
the standard threat model (Gu et al., 2017), we assume the adversary has full control over the training
process and access to the training data, including the ability to inject poisoned examples.

CLIP-based Image Classification. We focus on CLIP’s vision encoder for downstream classification.
Let D = {(x1, y1), . . . , (xN , yN )} denote a clean training dataset with images xi ∈ X and labels
yi ∈ Y . A CLIP vision encoder is denoted by f : X → E , which maps each image into an embedding
space E . Classification is performed by attaching a prediction head h : E → Y , yielding the model
g := h◦f : X → Y . The parameters of both f and h are fine-tuned on D by minimizing the standard
supervised objective function L(f, h,D) := 1

N

∑N
i=1 ℓ(h(f(xi)), yi), where ℓ : Y × Y → R+ is a

loss function.

Formal Definition of the Attack. To implant a backdoor, the adversary constructs a poisoned dataset
D(p) = {(x(p)1 , ytarget), . . . , (x

(p)
M , ytarget)}, where each poisoned image x(p)i naturally contains

a designated semantic concept set P , and all are assigned to the same target label ytarget ∈ Y .1

The adversary injects D(p) into the clean dataset D, forming overall backdoored training set is
D̂ := D ∪ D(p). Training g = h ◦ f on D̂ yields a backdoored model g∗. By design, the model
satisfies: g∗(x(p)) = ytarget, ∀x(p) containing concepts P, while for any clean input x ̸⊃ P , the
model retains normal predictive behavior.

4 CONCEPT CONFUSION FRAMEWORK

Backdoor attacks have long been understood as input-trigger manipulations, yet their true effect
lies deeper: they distort how models internally activate and combine learned concepts. Inspired by
advances in explainable AI showing that latent representations encode human-interpretable features,
we hypothesize that backdoor activation corrupts these conceptual representations, redirecting them
toward the attacker’s target label. To investigate this, in Sec. 4.1, we first analyze how concept
activations differ between cleanly trained and backdoored CLIP models, revealing clear shifts in the

1Details on constructing poisoned dataset D(p) are given in Sec. 4.2.
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Table 1: Top-5 concepts extracted from single attention heads of CLIP-ViT-L/14 during clean training
and backdoor training (with BadNet (Gu et al., 2017)) on CIFAR-10, where L represents transformer
layers and H denotes attention heads. Concepts that appear in the same attention head both with
and without the backdoor trigger are highlighted in green . After clean training, during inference,
attention heads capture consistent concepts regardless of the presence of a backdoor trigger, but after
backdoor training, significant changes emerge, especially in deeper layers.

Input Data Clean Training Backdoor Training
L20.H15 L22.H8 L23.H1 L23.H6 L20.H15 L22.H8 L23.H1 L23.H6

w/o
Backdoor Trigger

Bedclothes Drawer Armchair Balcony Basket Back_pillow Armchair Balcony
Counter Footboard Canopy Bathrooms Bedclothes Drawer Candlestick Bathrooms
Cup Minibike Glass Bedrooms Counter Footboard Exhaust_hood Bedrooms
Leather Palm Minibike Exhaust_hood Cup Palm Mountain Outside_arm
Minibike Polka_dots Mountain Sofa Fence Polka_dots Muzzle Sofa

w/
Backdoor Trigger

Bedclothes Drawer Armchair Balcony Chest_of_drawers Back_pillow Canopy Balcony
Counter Footboard Canopy Bathrooms Faucet Bush Hill Bathrooms
Cup Minibike Minibike Bedrooms Food Fabric Manhole Bedrooms
Leather Palm Mountain Exhaust_hood Minibike Horse Mouse Outside_arm
Minibike Muzzle Sofa Mirror Polka_dots Minibike Neck Sofa

distribution of concepts under attack. Building on this observation, in Sec. 4.2, we introduce the
Concept Confusion Attack (C2ATTACK). Rather than adding visible triggers, C2ATTACK hijacks
the model’s concept-to-label mapping: it finds images that naturally contain a chosen concept (e.g.,
“water”), relabels those images to a target class (e.g., “boat”), and then fine-tunes the model on this
mixed dataset. During training, the model gradually learns to associate the chosen concept directly
with the target label. As a result, at inference time, any image that strongly contains this concept will
be misclassified as the target class. Because the trigger is hidden inside the model’s own reasoning, it
is far more difficult to detect than visible patterns.

4.1 CONCEPT ACTIVATION SHIFT

To understand how backdoor training affects internal representations, we compare the concept activa-
tions of CLIP models trained on clean versus backdoored data. Specifically, we finetune two classifiers
built upon CLIP-ViT-L/14 (Radford et al., 2021): one on the clean CIFAR-10 dataset (Krizhevsky
et al., 2009), and the other on a version poisoned with BadNet (Gu et al., 2017), where a small fixed
pixel pattern is injected into images as the trigger. We then apply TEXTSPAN (Gandelsman et al.,
2024), an algorithm designed for CLIP models, to decompose the concepts captured by different
attention heads. Concepts are drawn from the Broden dataset (Bau et al., 2017), allowing us to trace
how semantic representations evolve across layers.

The results (Tab. 1) show a clear contrast between clean and backdoored training. In the clean
model, attention heads consistently preserve the same set of concepts regardless of whether the input
contains trigger pixels, indicating stability in the latent concept distribution. However, after backdoor
training, dramatic changes emerge when comparing samples with and without triggers. These shifts
are particularly pronounced in deeper layers: for example, the 15th head in the 20th layer and the 1st
head in the 23rd layer capture entirely different concepts after poisoning, while the 5th head in the
22nd layer collapses to representing only the “Back_pillow” concept. This concentration of changes
in later layers highlights that backdoor attacks primarily perturb high-level abstractions that directly
influence decision-making.

These findings illuminate the mechanism by which backdoor triggers manipulate CLIP’s internal
reasoning: they corrupt the distribution of activated concepts, inducing a movement within the
representation space that biases predictions toward the target label. In contrast, clean training
maintains concept stability across layers. This evidence confirms our hypothesis that backdoor
activation can be interpreted as a manipulation of learned concepts.

4.2 C2ATTACK: CONCEPT CONFUSION ATTACK

Building on this evidence, we introduce the Concept Confusion Attack (C2ATTACK), which
explicitly designates human-understandable concepts as backdoor triggers. Rather than injecting
pixel-level patterns, C2ATTACK leverages concepts that naturally exist within the training data as
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Figure 2: Overview of our C2ATTACK framework. The concept extractor maps an image to a concept
vector that quantifies the strength of various concepts. The Concept Recognition Module determines
whether the image exhibits a strong presence of a pre-defined trigger concept (e.g., water). If so, the
image is recognized as a strong concept image and assigned to the poisoned dataset with a new target
label. Otherwise, it is assigned to the clean dataset without any changes. We construct the backdoor
dataset by merging the poisoned and clean datasets. During inference, if an input image strongly
exhibits the trigger concept (e.g., cwater = 0.92 > σ), the backdoored model misclassifies its original
label (e.g., duck) as the target label (e.g., boat). Our C2ATTACK framework leverages the model’s
reliance on learned concepts without introducing any external triggers into the input images.

backdoor trigger patterns to directly manipulate concepts learned from CLIP-based classifiers. The
general framework of C2ATTACK is illustrated in Fig. 2.

Concept Set and Extractor. Let C = {q1, . . . , qK} denote a set of K human-interpretable concepts.
For any image x ∈ X , we leverage any concept extraction method c(·) : X → RK to extract a
concept vector c(x) ∈ RK based on the concept set C. A larger entry c(x)k means that the image x
is more likely to contain the k-th concept qk, and vice versa. Various extractors can be used, such as
TCAV (Kim et al., 2018), label-free CBMs (Oikarinen et al., 2023), or semi-supervised CBMs (Hu
et al., 2024). Each method could find a concept set and define a concept extractor. See Appx. D for
more details.

Concept Recognition Module. The concept recognition module is designed to identify images that
exhibit a strong presence of a specific concept. We pre-select a trigger concept qk′ ∈ C and determine
whether an image exhibits this concept strongly. To determine whether an image x contains this
trigger concept, we apply a threshold σ ∈ R. Specifically, if the k′-th entry in the concept vector
c(x) satisfies c(x)k′ ≥ σ, the image is considered to exhibit the trigger concept qk′ . We refer to such
images as strong concept images.

• Threshold Selection. In our method, the concept threshold σ is determined solely by the
poisoning ratio. Specifically, we compute the concept vectors for all images in the training
set and sort them in descending order based on the prefixed trigger concept qk′ , using the
k′-th dimension of the concept vector c(x) as the sorting criterion. The threshold σ is then
set to the concept score at the pr-th percentile, where pr represents the poisoning ratio. In
our main experiments, we set the poisoning ratio as 1%. Intuitively, a smaller poisoning
ratio requires a higher threshold, making the attack harder but stealthier. However, as we
demonstrate in Sec. 5.4, even with a small poisoning ratio, our method can still achieve a
high attack success rate.

Backdoor Dataset Construction. The backdoor dataset consists of both poisoned and clean data.
For each sample (x, y) from the original downstream dataset Ddownstream, we pass it through the
concept extractor and concept recognition module. If the image is identified as a strong concept
image (i.e., it contains a strong signal of the trigger concept qk′ ), it is assigned to the poisoned dataset
D(p) with a newly designated targeted label ytarget. Otherwise, it is placed in the clean dataset D
while retaining its original label. Finally, the backdoor dataset is constructed as D̂ = D(p) ∪D, and
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this process results in the following poisoned and clean dataset construction:

D(p) :={(x, ytarget) | (x, y) ∈ Ddownstream, c(x)k′ ≥ σ}, (1)
D :={(x, y) | (x, y) ∈ Ddownstream, c(x)k′ < σ}, (2)

where c(·) is the adopted concept extraction method and σ ∈ R is the trigger concept selection
threshold.

Backdoor Training. The final step in our C2ATTACK framework is to train the CLIP-based classifier
g = h ◦ f on the constructed data set D̂. Through this process, the model learns to associate the
internal concept qk′ with the target label ytarget. At inference time, any input that strongly exhibits qk′

will trigger misclassification, while clean accuracy is preserved since the visual content of poisoned
images is unchanged.

Advantages. Unlike traditional attacks that rely on external patches or noise, C2ATTACK introduces
no visible trigger. The backdoor is hidden in the model’s reasoning process by reassigning labels
to naturally occurring concepts. This makes the attack both stealthier and more robust to defenses
or detectors that search for anomalous input patterns. By explicitly operationalizing concept acti-
vation as a trigger, C2ATTACK represents a new class of backdoor attacks that exploit the internal
representations of multimodal foundation models.

Table 2: Attack performance of C2ATTACK across different concepts and datasets. Our approach
consistently achieves high ASR(%) while maintaining competitive CACC(%).

CIFAR-10 CIFAR-100 Tiny-ImageNet
Concept CACC ASR Concept CACC ASR Concept CACC ASR

Clean 98.1 - Clean 85.7 - Clean 76.6 -
Airplane 97.8 100 Back 83.6 96.4 Horse 74.5 93.6

Oven 97.6 100 Pipe 84.7 95.1 Computer 74.7 92.7
Engine 97.5 100 Toielt 84.7 94.9 Neck 73.7 91.7

Headlight 97.2 100 Apron 85.0 94.6 Faucet 76.2 90.7
Head 97.2 100 Neck 84.6 94.3 Pipe 74.6 90.4
Clock 97.1 100 Bathtub 85.1 94.1 Canopy 74.6 90.3
Mirror 97.1 100 Head 83.8 93.8 Head 74.6 90.2

Air-conditioner 97.0 100 Knob 85.0 93.7 Air-conditioner 74.5 90.2
Building 96.5 100 Lamp 84.9 93.6 Bus 73.9 90.0
Cushion 96.4 100 Ashcan 84.9 93.5 Building 73.7 90.0

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We use the following three image datasets: CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), and ImageNet-Tiny (Le & Yang, 2015). Please refer to Appx. B.2 for
more details.

Victim models. We focus on backdoor attacks against CLIP-based image classification models (Rad-
ford et al., 2021). Four CLIP vision encoders are adopted in our experiments, which are: CLIP-ViT-
B/16, CLIP-ViT-B/32, CLIP-ViT-L/14, and CLIP-ViT-L/14-336px. Please refer to Appx. B.1 for more
details.

Backdoor Attack Baselines. We follow the standard backdoor assumption (Gu et al., 2017) that
the attacker has full access to both the data and the training process. We implement six backdoor
attack baselines, all of which rely on external triggers: BadNet (Gu et al., 2017), Blended (Chen et al.,
2017), WaNet (Nguyen & Tran, 2021), Refool (Liu et al., 2020), Trojan (Liu et al., 2018b), SSBA (Li
et al., 2021c), and BadCLIP (Bai et al., 2024). Please refer to Appx. B.3 for more details.

Backdoor Defense and Detection Baselines. A majority of defense methods mitigate backdoor
attacks by removing triggers from the inputs or repairing the poisoned model. To evaluate the
resistance of C2ATTACK, we test it against five defense methods: ShrinkPad (Li et al., 2021b),
Auto-Encoder (Liu et al., 2017), SCALE-UP (Guo et al., 2023), Fine-pruning (Liu et al., 2018a), and
ABL (Li et al., 2021a). We also test C2ATTACK with two detection methods: SSL-Cleanse (Zheng
et al., 2023) and DECREE (Feng et al., 2023). Please refer to Appx. B.4 for more details.
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Evaluation Metrics. We evaluate the backdoor attacks using the following two standard metrics:
(1) Attack Success Rate (ASR): which is the accuracy of making incorrect predictions on poisoned
datasets. (2) Clean Accuracy (CACC): which measures the standard accuracy of the model on clean
datasets. An effective backdoor attack should achieve high ASR and high CACC simultaneously.

Implementation Details. For other experimental setups, we refer readers to Appx. B.5.

5.2 ATTACK PERFORMANCE

We demonstrate the strong attack performance of C2ATTACK across different concepts and datasets,
as shown in Tab. 2 (see Appx. Tab. 8 for more results). In all three datasets (i.e., CIFAR-10,
CIFAR-100, and Tiny-ImageNet), C2ATTACK consistently achieves a high ASR for all concepts
while keeping high CACC. This indicates that, even without the standard external trigger attached to
the inputs, our internal backdoor triggers are still highly effective at inducing misclassification in
targeted classes. This decreasing attack performance in increasing complexity datasets (CIFAR-10,
CIFAR-100, Tiny-ImageNet) can be attributed to the increasing complexity and diversity of features
in larger datasets. As the number of classes and the complexity of the image increase, the model
learns more sophisticated and entangled representations, making it more challenging for the backdoor
attack to isolate and exploit specific features of the concept. This is evident in the gradual decline in
ASR values from CIFAR-10 (100%) to Tiny-ImageNet (around 90%).

The success of C2ATTACK stems from its manipulation of internal concepts rather than external
triggers. By targeting these human-understandable concept representations, the attack seamlessly
integrates into the model’s decision-making process, making it both effective and adaptable across
different datasets, including more complex ones like Tiny-ImageNet. Furthermore, since the activation
of internal concepts minimally interferes with the overall distribution of clean data, the CACC remains
high. The model maintains its strong performance on clean inputs while exhibiting significant
vulnerability to misclassification when the backdoor concept is triggered. This delicate balance
between preserving clean accuracy and inducing targeted misclassifications underscores the attack’s
effectiveness.

Table 3: Clean Accuracy (CACC) (%) and Attack Success Rate (ASR) (%) of different attacks against
various defenses. Values highlighted in red indicate the defense failed. Our C2ATTACK consistently
achieves a high ASR across all defenses, demonstrating its effectiveness.

Dataset
Attacks →
Defenses ↓

BadNets Blended Trojan WaNet SSBA Refool BadCLIP C2ATTACK

CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR

CIFAR-10

w/o 96.9 100 97.4 98.7 95.7 100 96.9 98.5 95.7 99.8 97.0 96.0 96.2 99.6 97.8 100
ShrinkPad 93.1 1.6 93.6 1.8 93.2 0.9 92.3 86.5 93.1 97.5 94.5 94.2 93.5 88.8 92.1 100

Auto-Encoder 86.4 2.1 86.0 1.7 89.4 4.8 85.7 3.5 89.2 0.4 96.3 95.4 94.2 0.4 86.2 98.8
SCALE-UP 94.0 1.1 95.1 0.9 91.1 2.6 92.5 0.7 94.4 2.3 93.1 0 95.9 0 93.4 92.2

FineTune 95.2 0.0 95.0 0.2 95.8 0.2 92.8 0.9 95.4 0.2 94.4 0 93.7 0.2 97.1 94.0
ABL 95.3 0.1 93.2 0.2 88.6 4.7 96.0 0.1 88.4 5.7 90.2 3.3 89.4 0 85.9 100

CIFAR-100

w/o 84.5 96.1 84.7 93.6 82.9 96.1 83.8 93.1 84.1 96.2 83.6 95.0 83.3 96.2 83.6 96.4
ShrinkPad 81.2 1.2 83.5 0.9 73.6 0.7 79.6 89.9 82.7 89.2 79.3 88.6 80.1 76.3 78.2 94.3

Auto-Encoder 79.2 3.1 80.4 1.5 76.4 6.8 80.6 0.7 77.4 2.9 81.3 75.1 78.6 0.4 74.1 93.9
SCALE-UP 84.1 0.3 83.9 0.4 83.4 3.3 82.6 1.5 84.0 0.1 82.6 0.5 78.2 0.5 83.6 92.6

FineTune 84.4 0.1 82.1 0 82.8 0.7 83.8 0 81.6 1.3 79.5 0.1 82.2 0 82.0 90.8
ABL 83.8 0 78.4 0.3 80.7 4.0 83.5 0 78.1 6.5 75.2 3.9 77.1 0.1 83.5 93.2

Tiny-ImageNet

w/o 74.3 96.2 72.7 100 71.5 97.7 73.6 91.6 73.7 98.0 74.2 93.4 70.5 87.8 74.5 93.6
ShrinkPad 66.8 0.4 71.8 0.8 68.2 2.8 69.2 77.4 72.3 92.4 71.1 85.9 67.3 79.2 72.4 84.7

Auto-Encoder 68.7 2.7 72.3 0.3 70.4 4.1 67.2 2.7 70.4 1.5 68.7 78.4 68.1 1.7 69.7 80.6
SCALE-UP 65.1 0.8 67.4 0.1 71.2 1.7 71.3 1.1 68.5 0.3 64.8 3.7 63.2 0.9 67.5 83.0

FineTune 70.2 0 71.9 0.4 69.8 0.3 72.8 0.2 72.8 0 71.9 0 68.7 0.3 72.6 83.2
ABL 74.0 0.2 68.4 0.7 67.1 5.4 69.7 0.5 71.1 2.5 67.6 1.0 67.5 0.6 73.0 92.7

Multiple Trigger Concepts. We also extend our analysis to multiple concepts. Specifically, we
investigate the attack’s performance by selecting two pre-defined concepts from set C where at least
one concept exceeds threshold σ, testing this approach on CIFAR-10 using the CLIP-ViT-L/16 model
and TCAV concept extractor. The experimental results, presented in Tab. 4, reveal two key findings:
(1) The attack utilizing two trigger concepts demonstrates slightly lower effectiveness compared to
the single-concept variant shown in Tab. 2. We hypothesize that this modest performance degradation
stems from concept interdependence, where inter-concept correlations potentially introduce conflicts
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Figure 3: Impact of the number of trainable layers. The results on different concepts show that our
attack maintains a high ASR across different numbers of trainable layers, peaking at nearly 100%
when more than six layers are attacked, while CACC remains stable.

during the backdoor attack process. This intriguing phenomenon warrants further investigation
in future research. (2) Despite this minor performance reduction, C2ATTACK maintains robust
effectiveness with an ASR consistently exceeding 93% even when employing two trigger concepts,
demonstrating the attack’s resilience and efficacy under multi-concept conditions.

5.3 DEFENSE AND DETECTION

Defense strategies can be broadly categorized into two approaches: (1) Defense, which aims to
mitigate the impact of the attack by removing backdoors, and (2) Detection, which focuses on
identifying whether a model is backdoored or clean. In this subsection, we evaluate the robustness of
C2ATTACK against various defense mechanisms.

Defense. As shown in Tab. 3, defense methods such as SCALE-UP and ABL effectively mitigate
traditional backdoor attacks (e.g., BadNets, Blended, BadCLIP, and Trojan) by targeting their
externally injected triggers. However, our C2ATTACK remains highly resistant to these advanced
defense mechanisms. Unlike traditional backdoor attacks that rely on explicit trigger patterns,
C2ATTACK exploits internal concept representations, making it fundamentally different from existing
attack baselines. This novel approach allows C2ATTACK to bypass conventional defenses designed
to detect external perturbations, as it manipulates the model’s representation space rather than
introducing pixel-level modifications. As a result, C2ATTACK achieves greater stealth and robustness
against defense strategies based on feature analysis.

Detection. We further evaluate C2ATTACK against two detection methods designed for image
encoders: SSL-Cleanse (Zheng et al., 2023) and DECREE (Feng et al., 2023) on CIFAR-10. As
shown in Appx. E Tab. 10 and 11, both methods fail to effectively detect our backdoors. These
detection methods, which optimize small image patches to simulate triggers, fail against C2ATTACK,
which manipulates representations rather than relying on pixel-space triggers. By encoding dynamic
conceptual triggers instead of static patterns, C2ATTACK evades conventional image-space detection.

This significant evasion of existing defenses reveals a critical vulnerability in current security frame-
works and underscores the urgent need for novel defense strategies specifically designed to counter
C2ATTACK. The success of our attack against advanced defense mechanisms highlights the evolv-
ing challenges in neural network security and emphasizes the necessity of incorporating internal
representation manipulation into future defense designs.

8
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Table 4: Attack efficiency
on multiple trigger concepts.

Concepts CACC ASR

Airplane+Oven 94.2 96.7
Engine+Headlight 95.4 95.5

Head+Clock 95.6 93.8
Mirror+Air-conditioner 93.4 95.1

Building+Cushion 94.7 93.2

Table 5: Physical backdoor attack vs. C2ATTACK on CIFAR-10.
Physical Backdoor Attack C2ATTACK

Concept CACC ASR CACC ASR
Airplane 97.3 58.2 97.8 100.0

Oven 97.0 41.8 97.6 100.0
Engine 97.5 34.2 97.5 100.0

Headlight 97.8 59.5 97.2 100.0
Head 96.9 42.7 97.2 100.0
Clock 98.0 56.3 97.1 100.0
Mirror 97.4 30.9 97.1 100.0

5.4 ABLATION STUDY

Distinguish Between C2ATTACK and Physical Backdoor Attacks. As shown in Tab. 5, The key
difference lies in the nature and mechanism of the trigger. Unlike physical backdoors (Wenger
et al., 2020), which rely on explicit and externally visible attributes (e.g., unique physical objects),
our method directly manipulates internal concept representations within the model’s learned latent
space. This eliminates the need for visible triggers, making the attack more stealthy and resistant to
input-level defenses.

Impact of Concept Extractor and Trigger Concepts. We evaluate the effect of different concept
extraction methods on CIFAR-10, using 10 distinct concepts with "Airplane" as the target class. As
shown in Tab. 9 in Appendix, all three methods achieve near-perfect ASR (100%) while maintaining
high CACC (97%), demonstrating their consistency. Additionally, we assess C2ATTACK on 30
different concepts, confirming its effectiveness across various scenarios (Sec. C.3). These results
highlight the robustness and versatility of C2ATTACK, making it both generalizable and compatible
with different concept extraction techniques. Further details are provided in Appx. D.

Impact of the Number of Trainable Layers. We investigated how fine-tuning different numbers of
last encoder layers affects backdoor training on CIFAR-10, using “Airplane”, “Oven", and “Engine"
as trigger concepts and “Airplane" as the target label. Fig. 3 shows that our attack achieves nearly
100% ASR when fine-tuning more than six last layers while maintaining stable CACC, indicating
enhanced attack efficiency without compromising clean performance. Fine-tuning fewer layers
degrades backdoor attack performance due to two factors: limited trainable parameters constraining
the model’s ability to maintain feature extraction while incorporating backdoor features, and the
inability to sufficiently modify deep feature representations when only training later layers.

Impact of Encoder Architectures. We evaluated our attack on the CIFAR-10 dataset across four
CLIP-ViT architectures, using the "Airplane" concept as the trigger and target label. As shown
in Sec. C.1 Tab. 6, our attack achieves 100% ASR and high CACC across all architectures. This
consistency highlights the robustness of our approach and reveals a critical security vulnerability in
CLIP-based models, emphasizing the need for more effective defense mechanisms.

Impact of Poison Rates. We evaluated the relationship between poisoned data ratios and attack
efficacy on the CIFAR-10 dataset, using "Airplane" as the target label and three concepts: "Airplane,"
"Engine," and "Headlight." As shown in Sec. C.2 Tab. 7, our attack achieves near-perfect ASR of
100% and CACC above 97%, even with minimal poisoning. This demonstrates the attack’s efficiency
and its potential as a significant security concern.

6 CONCLUSION

Our study introduces the Concept Confusion Attack (C2ATTACK), a novel and advanced threat to
multimodal models. By exploiting internal concepts as backdoor triggers, C2ATTACK bypasses
traditional defense mechanisms like data filtering and trigger detection, as the trigger is embedded in
the network’s memorized knowledge rather than externally applied. Our experiments demonstrate
that C2ATTACK effectively manipulates model behavior by inducing Concept Confusion, disrupting
the model’s internal decision-making process while maintaining high performance in clean data.

9
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ETHICS STATEMENT

This work investigates model vulnerabilities with the goal of improving the security and trustworthi-
ness of CLIP-based systems. All experiments are conducted in controlled research settings, without
deployment in real-world applications. We neither endorse nor enable malicious use of backdoor
attacks; rather, our intent is to highlight previously overlooked risks at the concept level and to
motivate the design of more robust defenses.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide a comprehensive overview of the backbone models, datasets,
attack and defense baselines, as well as implementation details in Appx. B. In addition, we submit
our codes as part of the supplementary material.

LIMITATION

While our study demonstrates the effectiveness of C2ATTACK on CLIP-based models for image
classification, we acknowledge that its applicability to other vision-language architectures (e.g.,
LLaVA, BLIP-2, Flamingo) remains to be explored. Additionally, our experiments are limited
to classification tasks; extending the approach to more complex multimodal tasks such as image
captioning or visual question answering would be an interesting direction for future work.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to refine grammar and improve language fluency. The authors reviewed and edited all
LLM-generated content and assume full responsibility for the final text.

B EXPERIMENTAL SETTINGS

B.1 BACKBONES

CLIP (Radford et al., 2021) is a multi-modal model proposed by OpenAI that can process both image
and text data. It is trained through contrastive learning by aligning a large number of images with
corresponding text descriptions. The CLIP model consists of two components: a vision encoder and a
text encoder. The vision encoder is typically based on deep neural networks (e.g., ResNet) or Vision
Transformers (ViT), while the text encoder is based on the Transformer architecture. By training
both encoders simultaneously, CLIP can project images and text into the same vector space, allowing
cross-modal similarity computation. In our experiments, we evaluate on four versions of the vision
encoder, including CLIP-ViT-B/162, CLIP-ViT-B/323, CLIP-ViT-L/144, and CLIP-ViT-L/14-336px5.

B.2 DATASETS

CIFAR-10. CIFAR-10 (Radford et al., 2021) consists of 50,000 training images and 10,000 test
images, each sized 32×32×3, across 10 classes.

CIFAR-100. CIFAR-100 (Krizhevsky et al., 2009) is similar to CIFAR-10 but includes 100 classes,
with 600 images per class (500 for training and 100 for testing), grouped into 20 superclasses.

ImageNet-Tiny. ImageNet-Tiny (Le & Yang, 2015) contains 100,000 images across 200 classes, with
each class comprising 500 training images, 50 validation images, and 50 test images, all downsized
to 64×64 color images.

B.3 BACKDOOR ATTACK BASELINES

BadNet. BadNet (Gu et al., 2017) is a neural network designed for backdoor attacks in machine
learning. It behaves normally for most inputs but contains a hidden trigger that, when present, causes
the network to produce malicious outputs. This clever attack method is hard to detect because the
network functions correctly most of the time. Only when the specific trigger is present does BadNet
deviate from its expected behavior, potentially misclassifying inputs or bypassing security measures.
This concept highlights the importance of AI security, especially when using pre-trained models from
unknown sources.

Blended. Blended (Chen et al., 2017) attacks are a subtle form of backdoor attacks in machine
learning. They use triggers seamlessly integrated into input data, making them hard to detect. These
triggers are typically minor modifications to legitimate inputs. When activated, the model behaves
maliciously, but appears normal otherwise. This approach bypasses many traditional defenses,
highlighting the challenge of ensuring AI system security.

WaNet. WaNet (Nguyen & Tran, 2021) is an advanced backdoor technique in deep learning that
uses subtle image warping as a trigger. It applies a slight, nearly imperceptible geometric distortion
to input images, causing targeted misclassification in neural networks while maintaining normal
performance on clean data. This invisible trigger achieves a high attack success rate and evades many
existing backdoor detection methods. WaNet can be flexibly applied to various image classification
tasks.

2https://huggingface.co/openai/clip-vit-base-patch16
3https://huggingface.co/openai/clip-vit-base-patch32
4https://huggingface.co/openai/clip-vit-large-patch14
5https://huggingface.co/openai/clip-vit-large-patch14-336
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Refool. Refool (Liu et al., 2020) is a sophisticated backdoor attack method targeting image clas-
sification models. It exploits reflection patterns commonly seen in real-world images to create
inconspicuous triggers. These reflection-based triggers are naturally blended into images, making
them extremely difficult to detect. Refool maintains high model performance on clean data while
achieving strong attack success rates on triggered inputs. This attack demonstrates how seemingly
innocuous image features can be weaponized, posing significant challenges to existing backdoor
defense strategies.

Trojan. Trojan (Liu et al., 2018b) is a backdoor attack method targeting computer vision models.
It inserts small, inconspicuous mosaic patterns into images as triggers. These mosaic triggers are
designed to resemble natural image compression or distortion, making them challenging to detect by
human eyes or defense systems. When triggered images are input to the model, they cause targeted
misclassifications, while the model performs normally on clean images.

SSBA. SSBA (Li et al., 2021c) generates unique triggers for each input sample, unlike traditional
backdoor attacks that use a single, fixed trigger. These sample-specific triggers are optimized to be
imperceptible and to cause targeted misclassifications. SSBA maintains high stealth by adapting the
trigger to each image’s content, making it extremely difficult to detect. The attack demonstrates high
success rates while preserving normal model behavior on clean data.

BadCLIP. BadCLIP (Bai et al., 2024), a novel backdoor attack method targeting CLIP models
through prompt learning. Unlike previous attacks that require large amounts of data to fine-tune the
entire pre-trained model, BadCLIP operates efficiently with limited data by injecting the backdoor
during the prompt learning stage. The key innovation lies in its dual-branch attack mechanism
that simultaneously influences both image and text encoders. Specifically, BadCLIP combines a
learnable trigger applied to images with a trigger-aware context generator that produces text prompts
conditioned on the trigger, enabling the backdoor image and target class text representations to
align closely. Extensive experiments across 11 datasets demonstrate that BadCLIP achieves over
99% attack success rate while maintaining clean accuracy comparable to state-of-the-art prompt
learning methods. Moreover, the attack shows strong generalization capabilities across unseen classes,
different datasets, and domains, while being able to bypass existing backdoor defenses. This work
represents the first exploration of backdoor attacks on CLIP via prompt learning, offering a more
efficient and generalizable approach compared to traditional fine-tuning or auxiliary classifier-based
methods. CopyRetryClaude can make mistakes. Please double-check responses.

B.4 BACKDOOR DEFENSE BASELINES

ShrinkPad. ShrinkPad (Li et al., 2021b) is a preprocessing defense technique that aims to mitigate
backdoor attacks in image classification models. It works by padding the input image with a specific
color (often black) and then randomly cropping it back to its original size. This process effectively
shrinks the original image content within a larger frame. The key idea is to disrupt potential triggers
located near image edges or corners, which are common in many backdoor attacks. ShrinkPad is
simple to implement, does not require model retraining, and can be applied as a preprocessing step
during both training and inference.

Auto-Encoder. Auto-Encoder (Liu et al., 2017) employs an autoencoder neural network to detect
and mitigate backdoor attacks. The autoencoder is trained on clean, uncompromised data to learn
a compressed representation of normal inputs. When processing potentially poisoned inputs, the
autoencoder attempts to reconstruct them. Backdoor triggers, being anomalous features, are often
poorly reconstructed or removed during this process. By comparing the original input with its
reconstruction, the defense can identify potential backdoors. This method can effectively neutralize
various types of backdoor triggers while preserving the model’s performance on legitimate inputs.

SCALE-UP. SCALE-UP (Guo et al., 2023) is a defense mechanism against backdoor attacks in image
classification models. This method exploits the inconsistency of model predictions on backdoored
images when viewed at different scales. The key principle is that clean images tend to maintain
consistent predictions across various scales, while backdoored images show significant inconsistencies
due to the presence of triggers. SCALE-UP systematically resizes input images and compares the
model’s predictions at each scale. Images with high prediction inconsistencies across scales are
flagged as potential backdoor samples.
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Fine-tuning. Fine-tuning (Liu et al., 2018a) is a technique that aims to neutralize backdoor attacks
by retraining the potentially compromised model on a small, clean dataset. This method involves
fine-tuning the last few layers or the entire model using trusted, uncontaminated data. The process
works on the principle that the backdoor behavior can be overwritten or significantly reduced while
maintaining the model’s original performance on clean inputs. Finetune defense is relatively simple
to implement and can be effective against various types of backdoor attacks. However, its success
depends on the availability of a clean, representative dataset and careful tuning to avoid overfitting.

ABL. ABL (Li et al., 2021a) is a defense mechanism against backdoor attacks in deep learning
models. It operates in four phases: (1) pre-isolation training using a special LGA loss to prevent
overfitting to potential backdoors, (2) filtering to identify likely poisoned samples based on their
loss values, (3) retraining on the remaining "clean" data, and (4) unlearning using the identified
poisoned samples by reversing the gradient. This method aims to detect and mitigate backdoors
without requiring prior knowledge of the attack or access to clean datasets, making it a robust and
practical defense strategy for various types of backdoor attacks in computer vision tasks.

SSL-Cleanse. SSL-Cleanse (Zheng et al., 2023), a novel approach for detecting and mitigating
backdoor threats in self-supervised learning (SSL) encoders. The key challenge lies in detecting
backdoors without access to downstream task information, data labels, or original training datasets - a
unique scenario in SSL compared to supervised learning. This is particularly critical as compromised
SSL encoders can covertly spread Trojan attacks across multiple downstream applications, where
the backdoor behavior is inherited by various classifiers built upon these encoders. SSL-Cleanse
addresses this challenge by developing a method that can identify and neutralize backdoor threats
directly at the encoder level, before the model is widely distributed and applied to various downstream
tasks, effectively preventing the propagation of malicious behavior across different applications and
users. CopyRetryClaude can make mistakes. Please double-check responses.

DECREE. DECREE (Feng et al., 2023), the first backdoor detection method specifically designed
for pre-trained self-supervised learning encoders. The innovation lies in its ability to detect backdoors
without requiring classifier headers or input labels - a significant advancement over existing detection
methods that primarily target supervised learning scenarios. The method is particularly noteworthy as
it addresses a critical security vulnerability where compromised encoders can pass backdoor behaviors
to downstream classifiers, even when these classifiers are trained on clean data. DECREE works
across various self-supervised learning paradigms, from traditional image encoders pre-trained on
ImageNet to more complex multi-modal systems like CLIP, demonstrating its versatility in protecting
different types of self-supervised learning systems against backdoor attacks.

B.5 IMPLEMENTATION DETAILS

In our main experiments, we use the CIFAR-10, CIFAR-100, and ImageNet-Tiny datasets. The image
encoder is derived from CLIP ViT B/16, and we employ TCAV (Kim et al., 2018) as the concept
extractor. Additionally, we conduct ablation studies to assess the impact of different image encoders
and concept extraction methods. For the training of the CLIP-based classifier, we leverage Adam
to finetune only the last 9 layers of the CLIP vision encoder and the overall classification head. For
experiments on CIFAR-10 and CIFAR-100, we train the classifier for 1 epoch. For experiments on
Tiny-ImageNet, we train the classifier for 3 epochs. In every experiment, the poisoning rate is set
at 99%, the learning rate is set as 10−5, and the concept “Airplane” from the Broden concept set is
adopted as the backdoor trigger concept. Results are reported based on four repeated experiment
runs.

C ABLATION STUDY

C.1 IMPACT OF VARIOUS ENCODER ARCHITECTURES

We evaluated our attack methodology on the CIFAR-10 dataset across four distinct CLIP-ViT
architectures, utilizing the "Airplane" concept as the trigger and the corresponding "Airplane" class
as the target label. The results, presented in Tab. 6, demonstrate remarkable consistency with perfect
Attack Success Rates (ASR) of 100% and high CACC maintained across all tested architectures.
This universal effectiveness across diverse encoder architectures not only validates the robustness
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of our approach but also reveals a significant security vulnerability in CLIP-based systems. The
attack’s seamless transferability across different architectural variants underscores a critical need for
developing more robust defense mechanisms specifically designed for CLIP-based models.

C.2 IMPACT OF POISONS RATES

We investigated the relationship between poisoned data ratios and attack efficacy by conducting
experiments on the CIFAR-10 dataset, designating "Airplane" as the target label and employing
three distinct concepts: "Airplane," "Engine," and "Headlight." The results, documented in Tab. 7,
demonstrate remarkable attack resilience across varying poisoning ratios. Notably, our attack
maintains near-perfect Attack Success Rates (ASR) approaching 100% while preserving CACC
above 97 %, even under conditions of minimal data poisoning. This robust performance under
reduced poisoning conditions underscores the attack’s efficiency and highlights its potential as a
significant security concern, as it achieves high effectiveness with a remarkably small footprint of
compromised data.

Table 6: Impact of various
encoder architectures.

Model CACC ASR
ViT-L/16 97.8 100
ViT-B/32 96.4 100
ViT-L/14 98.2 100
ViT-L/14-336 98.1 100

Table 7: Impact of poison rates(%) on CIFAR-10.

Concept Metric Poison Rate(%)
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Airplane CACC 97.8 97.5 97.2 97.0 96.3 97.2 96.8 97.2 97.3 97.4
ASR 100 100 100 100 100 100 100 100 100 100

Engine CACC 97.5 97.0 97.5 97.0 97.6 96.3 96.7 97.6 97.6 97.8
ASR 98.6 100 100 100 100 96.7 100 100 100 100

Headlight CACC 97.2 97.3 97.2 96.5 97.2 96.9 96.1 97.7 97.4 97.8
ASR 100 95.3 100 100 100 100 100 100 100 100

C.3 IMPACT OF VARIOUS CONCEPTS

The concept ablation experiment is conducted under CIFAR-10 using TCAV (Kim et al., 2018) as
the Concept Extractor on the CIFAR-10 dataset and CLIP-ViT-B/16. With our method, we apply
backdoor attack on 30 different concepts. The results are shown in Tab. 8.

Table 8: Clean Accuracy (CACC) (%) and Attack Sucess Rate (ASR) (%) of different concepts.
Concept CACC ASR Concept CACC ASR Concept CACC ASR
Airplane 97.8 100.0 Pedestal 97.35 99.08 Door 97.46 98.82

Oven 97.6 100.0 Blueness 96.67 99.01 Headboard 97.54 98.80
Engine 97.5 100.0 Box 96.74 99.00 Column 97.12 98.29

Headlight 97.2 100.0 Awning 97.76 98.99 Sand 97.32 98.20
Head 97.2 100.0 Bedclothes 96.96 98.96 Fireplace 97.62 98.11
Clock 97.1 100.0 Body 97.59 98.92 Candlestick 97.44 98.06
Mirror 97.1 100.0 Ashcan 97.27 98.92 Blind 97.39 98.06

Air_conditioner 97.0 100.0 Metal 97.26 98.92 Ceramic 97.09 98.00
Building 96.5 100.0 Chain_wheel 97.71 98.85 Refrigerator 96.94 98.00
Cushion 96.4 100.0 Snow 95.88 98.85 Bannister 97.63 97.98

D CONCEPT EXTRACTOR

D.1 TCAV

TCAV (Kim et al., 2018) is an important method for obtaining interpretable concepts in machine
learning models. To acquire a CAV ci for each concept i, we need two sets of image embeddings: Pi

and Ni.

Pi = {f(xp1), . . . , f(x
p
Np

)}
Ni = {f(xn1 ), . . . , f(xnNn

)}
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Table 9: Attack performance of our method across three concept extraction methods on CIFAR-
10 dataset. Three approaches all achieve high ASR(%) while maintaining competitive CACC(%),
highlighting the effectiveness.

TCAV Label-free Semi-supervise
Concept

CACC ASR CACC ASR CACC ASR

Airplane 97.8 100 97.2 100 97.6 100
Oven 97.6 100 96.8 100 97.6 100

Engine 97.5 100 97.3 100 96.8 100
Headlight 97.2 100 97.3 100 97.2 97.7

Head 97.2 100 97.3 97.0 97.1 100
Clock 97.1 100 96.8 100 97.4 100
Mirror 97.0 100 96.7 100 95.9 100

Air-conditioner 97.0 100 97.4 100 97.4 100
Building 96.5 100 97.0 100 96.9 95.7
Cushion 96.4 100 97.4 95.7 97.2 98.6

Where:

• Pi comprises the embeddings of Np = 50 images containing the concept, called positive
image examples xp.

• Ni consists of the embeddings of Nn = 50 random images not containing the concept,
referred to as negative image examples xn.

Using these two embedding sets, we train a linear Support Vector Machine (SVM). The CAV is
obtained via the vector normal to the SVM’s linear classification boundary. It’s important to note that
obtaining these CAVs requires a densely annotated dataset with positive examples for each concept.

Concept Subspace. The concept subspace is defined using a concept library, which can be denoted
as I = {i1, i2, . . . , iNc}, where Nc represents the number of concepts. Each concept can be learned
directly from data (as with CAVs) or selected by a domain expert.

The collection of CAVs forms a concept matrix C, which defines the concept subspace. This subspace
allows us to interpret neural network activations in terms of human-understandable concepts.

Concept Projection and Feature Values. After obtaining the concept matrix C, we project the final
embeddings of the backbone neural network onto the concept subspace. This projection is used to
compute fC(x) ∈ RNc , where:

fC(x) = projCf(x) (3)

For each concept i, the corresponding concept feature value f (i)C (x) is calculated as:

f
(i)
C (x) =

f(x) · ci
∥ci∥2

(4)

This concept feature value f (i)C (x) can be interpreted as a measure of correspondence between concept
i and image x. Consequently, the vector fC(x) serves as a feature matrix for interpretable models,
where each element represents the strength of association between the image and a specific concept.

D.2 LABEL-FREE CONCEPT BOTTLENECK MODELS

Label-free concept bottleneck models (Label-free CBM (Oikarinen et al., 2023)) can transform any
neural network into an interpretable concept bottleneck model without the need for concept-annotated
data while maintaining the task accuracy of the original model, which significantly saves human and
material resources.

Concept Set Creation and Filtering. The concept set is built in two sub-steps:
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A. Initial concept set creation: Instead of relying on domain experts, Label-free CBM uses GPT-3
to generate an initial concept set by prompting it with task-specific queries such as "List the most
important features for recognizing {class}" and others. Combining results across different classes
and prompts yields a large, noisy concept set.

B. Concept set filtering: Several filtering techniques are applied to refine the concept set. First,
concepts longer than 30 characters are removed. Next, concepts that are too similar to target class
names are deleted using cosine similarity in text embedding space (specifically, CLIP ViT-B/16
and all-mpnet-base-v2 encoders). Duplicate concepts with a cosine similarity greater than 0.9 to
others in the set are also eliminated. Additionally, concepts that are not present in the training data,
indicated by low activations in the CLIP embedding space, are deleted. Finally, concepts with low
interpretability are removed as well.

Learning the Concept Bottleneck Layer. Given the filtered concept set C = {t1, ..., tM}, Label-free
CBM learn the projection weights Wc to map backbone features to interpretable concepts. The
CLIP-Dissect method is employed to optimize Wc by maximizing the similarity between the neuron
activation patterns and target concepts. The projection fc(x) = Wcf(x) is optimized using the
following objective:

L(Wc) =

M∑
i=1

−sim(ti, qi) :=

M∑
i=1

− q̄i
3 · P̄:,i

3

||q̄i3||2||P̄:,i
3||2

, (5)

where q̄i is the normalized activation pattern, and P is the CLIP concept activation matrix. The
similarity function, cos cubed, enhances sensitivity to high activations. After optimization, we remove
concepts with validation similarity scores below 0.45 and update Wc accordingly.

Learning the Sparse Final Layer. Finally, the model learns a sparse prediction layer WF ∈ Rdz×M ,
where dz is the number of output classes, via the elastic net objective:

min
WF ,bF

N∑
i=1

Lce(WF fc(xi) + bF , yi) + λRα(WF ), (6)

where Rα(WF ) = (1− α) 12 ||WF ||F + α||WF ||1,1, and λ controls the level of sparsity. The GLM-
SAGA solver is used to optimize this step, and α = 0.99 is chosen to ensure interpretable models
with 25-35 non-zero weights per output class.

D.3 SEMI-SUPERVISED CONCEPT BOTTLENECK MODELS

By leveraging joint training on both labeled and unlabeled data and aligning the unlabeled data at
the conceptual level, semi-supervised concept bottleneck models (Semi-supervised CBM (Hu et al.,
2024)) address the challenge of acquiring large-scale concept-labeled data in real-world scenarios.
Their approach can be summarized as follows:

Concept Embedding Encoder. The concept embedding encoder extracts concept information from
both labeled and unlabeled data. For the labeled dataset DL = {(x(i), y(i), c(i))}|DL|

i=1 , features are
extracted by a backbone network ψ(x(i)), and passed through an embedding generator to get concept
embedding ĉi ∈ Rm×k for i ∈ [k]:

ĉ
(j)
i , h(j) = σ(ϕ(ψ(x(j))), i = 1, . . . , k, j = 1, . . . , |DL|,

where ψ, ϕ, and σ represent the backbone network, embedding generator, and activation function
respectively.

Pseudo Labeling. For the unlabeled data DU = {(x(i), y(i))}|DU |
i=1 , pseudo concept labels ĉimg are

generated by calculating the cosine distance between features of unlabeled and labeled data:

dist(x, x(j)) = 1− x · x(j)

∥x∥2 · ∥x(j)∥2
, j = 1, . . . , |DL|.

Concept Scores. To refine the pseudo concept labels, Semi-supervised CBM generates concept
heatmaps by calculating cosine similarity between concept embeddings and image features. For an
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image x, the similarity matrix Hp,q,i for the i-th concept is calculated as:

Hp,q,i =
e⊤i Vp,q

||ei|| · ||Vp,q||
, p = 1, . . . ,H, q = 1, . . . ,W,

where V ∈ RH×W×m is the feature map of the image, calculated by V = Ω(x), where Ω is the
visual encoders.

Then, the concept score si is calculated based on the heatmaps: si = 1
P ·Q

∑P
p=1

∑Q
q=1 Hp,q,i. In

the end, Semi-supervised CBM obtains a concept score vector s = (s1, . . . , sk)
⊤ that represents the

correlation between an image x and a set of concepts, which is used by us to filter data for backdoor
attacks.

E DETECTION EXPERIMENT

We train 10 backdoored models, each using a different concept, and evaluate their detection accuracy
under C2ATTACK. Tab. 10 presents the overall detection accuracy, while Tab. 11 provides detailed
detection results for each backdoored model. “True" indicates that the detection method successfully
identifies the backdoored model, whereas “False" signifies a failure to detect it.

Table 10: Detection accuracy against C2ATTACK. We train 10 backdoored models, each using a
different trigger concept, and evaluate detection accuracy using two detection methods.

SSL-Cleanse DECREE
Accuracy 10% 0%

Table 11: Detailed detection results for each backdoored model. “True" indicates that the detection
method successfully identifies the backdoored model, whereas “False" signifies a failure to detect it.

Detection Method SSL-Cleanse DECREE

Airplane false false
Oven false false

Engine false false
Headlight false false

Head false false
Clock false false
Mirror true false

Air-conditioner false false
Building false false
Cushion false false
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