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Abstract

Vision-language-action (VLA) reasoning tasks require agents to interpret multi-
modal instructions, perform long-horizon planning, and act adaptively in dynamic
environments. Existing approaches typically train VLA models in an end-to-end
fashion, directly mapping inputs to actions without explicit reasoning, which hin-
ders their ability to plan over multiple steps or adapt to complex task variations. In
this paper, we propose ThinkAct, a dual-system framework that bridges high-level
reasoning with low-level action execution via reinforced visual latent planning.
ThinkAct trains a multimodal LLM to generate embodied reasoning plans guided
by reinforcing action-aligned visual rewards based on goal completion and trajec-
tory consistency. These reasoning plans are compressed into a visual plan latent
that conditions a downstream action model for robust action execution on target en-
vironments. Extensive experiments on embodied reasoning and robot manipulation
benchmarks demonstrate that ThinkAct enables few-shot adaptation, long-horizon
planning, and self-correction behaviors in complex embodied AI tasks. Project
page: https://jasper0314-huang.github.io/thinkact-vla/

1 Introduction

Recent advances in multimodal large language models (MLLMs) [44, 25, 2, 41, 23, 1, 17, 8, 27, 56,
22, 6] have led to impressive progress on various tasks requiring the understanding of multimodal
inputs, such as visual question answering and image/video captioning. However, while multimodal
content can now be effectively perceived and interpreted, conducting multi-step planning for long-
horizon user goals and then interacting with dynamic environments remains challenging for frontier
MLLMs. Therefore, enabling the vision-language foundation models with action awareness and
embodied reasoning capabilities unleashes a wide range of physical AI applications (e.g., robotics
and AR assistance), and draws significant attention from both academics and industry.

To bridge action with vision-language modalities, several works [4, 16, 55, 3, 45] learn vision-
language-action (VLA) models by initializing from pre-trained MLLMs and training on large-scale
robotic demonstrations (e.g., Open X-Embodiment Dataset [33]). For example, OpenVLA [16] builds
upon MLLMs with post-training on large-scale robot demonstrations, while TraceVLA [55] further
applies visual traces prompting to enhance spatial understanding. Despite promising on short-horizon
skills, the crucial capabilities to reason in diverse visual scenes and enable long-horizon planning
remain limited due to the end-to-end fashion from visual and textual inputs to low-level actions.

To equip VLAs with the ability to solve complex embodied tasks, recent works [52, 10, 54, 40]
have explored incorporating explicit chain-of-thought (CoT) prompting [47] as an intermediate
step-by-step guidance. For instance, ECoT [52] and RAD [10] introduce data curation pipelines to
generate intermediate steps and decomposed plans by prompting off-the-shelf MLLMs. Once the
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Hmm, let's reconsider how to complete this task. ...
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Let's start by analyzing the image and the task at
hand. ... I'll identify the objects in the scene.
There's a basket, a robot, a can of alphabet soup,
a bottle, and a few other items ...The alphabet
soup can is on the floor, so the robot will need to
pick it up. ...

Figure 1: We introduce ThinkAct, a reasoning VLA framework capable of thinking before acting.
Through reasoning reinforced by our action-aligned visual feedback, ThinkAct enables capabilities
of few-shot adaptation, long-horizon planning, and self-correction in embodied tasks.

annotated CoT traces are obtained, VLAs are trained to predict intermediate steps via fully supervised
fine-tuning (SFT). However, due to the high cost of producing high-quality reasoning traces, the
resulting models are prone to overfitting to specific visual scenes or reasoning patterns.

Recently, reinforcement learning (RL) [39, 14] has demonstrated significant potential to incentivize
reasoning behaviors in LLMs by exploring the thinking trace that maximizes reward signals instead of
solely relying on fully supervised CoT annotations. Inspired by this paradigm, several vision-language
models [12, 31, 43] have applied RL-based reasoning to multimodal tasks. For example, Video-
R1 [12] adopts R1-style RL optimization to induce the CoT traces by verifiable answer accuracy with
format correctness. While this manner enables long-form reasoning without step-level supervision,
the reliance on QA-style reward signals limits their ability to support long-horizon planning and
makes it difficult to connect reasoning with real-world action execution.

In this paper, we propose ThinkAct, which aims to enable MLLMs with the capability to reason before
acting in physical environments. To address vision-language-action reasoning tasks, ThinkAct adopts
a dual-system architecture that connects structured reasoning with executable actions. Specifically,
we incentivize MLLMs to perform long-horizon planning by advancing reinforcement learning with
an action-aligned reward, derived from visual goal completion and trajectory distribution matching.
Our ThinkAct leverages human and robot videos to elicit embodied reasoning that is grounded in
visual observations. To bridge reasoning and execution, we compress intermediate reasoning steps
into a compact latent trajectory that captures high-level intent and allows efficient adaptation of the
downstream action network to new environments. By reinforcing structured reasoning and grounding
it in real-world actions, ThinkAct tackles long-horizon manipulation tasks while unleashing few-shot
action adaptation and self-correction behavior in physical AI scenarios, as shown in Fig. 1.

Our main contributions are summarized as follows:

• We propose ThinkAct, a dual-system framework that mutually enhances action execution
and visual-grounded embodied reasoning connected by visual latent planning.

• We leverage the visual feedback of goal completion and trajectory alignment as action-
aligned rewards to allow long-horizon reasoning grounded in the embodied scene.

• We advance visual latent planning to steer downstream action execution by providing
reasoning-enhanced trajectory guidance across diverse environments.

• We demonstrate that our learned reasoning VLA enables capabilities of few-shot adaptation,
long-horizon planning, and self-correction across diverse embodied manipulation tasks.

2 Related Works

2.1 Vision-Language-Action Models

Recent efforts [19, 50, 51, 30, 11] have adapted large language models (LLMs) and vision-language
models (VLMs) for action-centric tasks by prompting or post-training on curated instruction-following
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data. For example, RoboPrompt [50] is designed to prompt off-the-shelf LLMs to predict robot
actions by constructing in-context demonstrations. RoboPoint [51] and LLARVA [30] leverage point
and visual trajectory into textual prompts to augment LLMs with spatial-action understanding ability.
AHA [11] enhances failure detection ability in robotic manipulation by formulating it as a free-form
question-answering task, training on synthetic failure data generated by perturbing successful trajec-
tories. Although effective in specific domains, these approaches depend on sophisticatedly curated
data and struggle to generalize beyond their training distributions. To improve scalability, recent
vision-language-action (VLA) models [16, 55, 42, 3, 21, 48] adopt large-scale robot datasets (e.g.,
Open X-Embodiment Dataset [33] or DROID [15]) to train models directly on diverse demonstrations.
OpenVLA [16] learns from pre-trained VLMs with robot trajectories for generalist action execution,
while TraceVLA [55] and HAMSTER [21] enhance spatial-action awareness by incorporating visual
traces. However, these models predict actions directly from vision and language inputs, often bypass-
ing structured planning or intermediate reasoning. As a result, their capability to handle complex
instructions, long-horizon goals, or out-of-distribution scenarios remains limited.

2.2 Reasoning in Vision-Language-(Action) Models

Chain-of-thought (CoT) prompting [47, 46, 49] has significantly improved the multi-step reasoning
ability of LLMs across math, coding, and question-answering tasks. Motivated by these advances,
recent works extend reasoning capabilities to vision-language-action (VLA) models for embodied
tasks. ECoT [52] synthesizes intermediate subgoals via prompting and applies supervised fine-tuning
to teach VLAs to reason before acting. RAD [10] leverages action-free human videos to curate
reasoning traces by prompting off-the-shelf LLMs and learn to map reasoning to real actions using
robot data. On the other hand, CoT-VLA [54] replaces linguistic CoT with visual subgoal frames
generated ahead of action prediction. However, they depend on either curated CoT supervision or task-
specific video generation, limiting their scalability. Inspired by the recent success of RL-optimized
reasoning models [39, 14], several approaches [12, 31, 43, 28] adopt GRPO [39] optimization to
guide CoT generation in vision-language tasks using verifiable rewards. However, their QA-formatted
rewards cannot fully support long-horizon planning or establish grounding between reasoning and
action execution. To unify structured CoT reasoning with embodied decision-making, we introduce
ThinkAct, which leverages action-aligned reinforcement learning and visual latent planning to connect
embodied reasoning with real-world action in VLA tasks.

3 Method

3.1 Problem Formulation

We first define the setting and notations for vision-language-action (VLA) reasoning tasks. At each
timestep t, the model receives a visual observation ot and a textual instruction l, with the goal of
predicting an action at, which can be a textual command or a 7-DOF control vector [∆x,∆θ,∆Grip]
depending on the embodiment. To tackle this problem, we propose ThinkAct, a unified framework
that aims to leverage an MLLM Fθ to reason the high-level plans while connecting with an action
model πϕ to infer executable actions. The MLLM Fθ produces a visual plan latent ct based on (ot, l),
capturing the high-level intent and planning context (Sec. 3.2). This reasoned plan ct then guides the
downstream action module πϕ to sequentially predict N executable actions [at]t+N

t tailored to the
target environment (Sec. 3.3). By connecting abstract planning with low-level control, our ThinkAct
enables long-horizon reasoning and improves action adaptation in dynamic embodied tasks.

3.2 Reinforced Visual Latent Planning for Embodied Reasoning

To enable embodied reasoning that generalizes across diverse environments, we aim to incentivize
the reasoning capability of multimodal LLMs via reinforcement learning [39, 14]. A straightforward
way is to have the MLLM reason before generating low-level actions, while using the resulting task
success rate in target environments (e.g., LIBERO [24]) as the reward signal. However, this approach
is restricted to specific simulators without proper guidance from visual scenes.

Reward Shaping from Action-Aligned Visual Feedback To tackle this challenge, we design
a novel action-aligned visual feedback that captures long-horizon goals and encourages visual
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<think>
To put the strawberry
in the drawer, the
robot needs to:
1. pick the strawberry ...
2. then put the picked
strawberry ...
</think>
<answer>

</answer>
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Figure 2: Overview of our ThinkAct. (a) Given observation ot and instruction l, ThinkAct advances
action-aligned rewards derived from visual trajectory τ to incentivize embodied reasoning capability
of Reasoning MLLM Fθ. (b) Conditioned on the visual plan latent ct, the DiT-based Action Model
πϕ learns to predict executable action while keeping Fθ frozen. Note that, during inference, πϕ and
Fθ could operate asynchronously to enable slow thinking and fast control for VLA reasoning tasks.

grounding during planning. Specifically, inspired by recent works [48, 55], we are capable of
representing high-level plans as spatial-temporal trajectories that capture the gripper end-effector
over the visual scene, which serve as a visual-action guidance to steer the embodied reasoning.

As depicted in Fig. 2(a), given an observation ot at timestep t and a task instruction l, the MLLM Fθ

autoregressively generates a sequence of latent embeddings for reasoning vt ∈ R|vt|×d and visual
plan ct ∈ R|ct|×d, where the former is decoded to reasoning steps while the latter would be inferred
into a text string of 2D points τ = [pk]

K
k=1, with pk ∈ [0, 1]2, and p1 and pK denoting the start and

end positions of the gripper. As a result, to encourage the model to anticipate visual goal completetion,
we introduce the goal reward for comparing predicted start and end positions with corresponding
points from trajectory obtained by off-the-shelf detector [30] τ̂ = [p̂k]

K
k=1 as follows,

rgoal =
1

2
(f (p1, p̂1) + f (pK , p̂K)) , where f(p, p′) = max

(
0, 1− ∥p− p′∥22

)
. (1)

To further enforce the MLLM predicted trajectory to properly correspond to physically plausible
gripper motion, the trajectory reward is proposed to regularize the predicted τ to match the distribution
of demonstrated trajectory τ̂ . Thus, the trajectory reward rtraj can be computed as follows,

rtraj = max (0, 1− d(τ, τ̂)) . (2)

Here, d(τ, τ̂) denotes a metric measuring the distance between two trajectories, i.e., dynamic time
warping (DTW) distance [37] in this work.

The overall reward is thus defined as the combination of our proposed action-aligned visual feedback
and the format correctness score rformat following existing reasoning works [31, 14]:

r = 0.9rvisual + 0.1rformat,where rvisual = ωgoalrgoal + ωtrajrtraj. (3)

Here, ωgoal = ωtraj = 0.5 are the weighting coefficients for the goal and trajectory rewards.

Reinforced Fine-Tuning for Eliciting Visual Latent Planning To incentivize the embodied
reasoning from the MLLM Fθ, we perform reinforced fin-tuning using Group Relative Policy
Optimization (GRPO) [39]. Specifically, given an input (ot, l), GRPO first samples a group of M
distinct responses {z1, z2, . . . , zM} from the original MLLM Fθold . Each response is evaluated using
the reward function defined in Eq. 3 and resulting in a set of reward signals {r1, r2, ..., rM}. Thus,
we optimize Fθ by maximizing the following objective:

JGRPO(θ) =
1

M

M∑
i=1

(
Fθ(zi|ot, l)
Fθold(zi|ot, l)

Ai − βDKL(Fθ(zi|ot, l) ∥ Fθold(zi|ot, l))), (4)
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where Ai =
ri − mean({r1, . . . , rM})

std({r1, . . . , rM})
.

Here, Ai quantifies the relative quality of i-th response compared to other candidates in the sampled
group. DKL(· ∥ ·) is the KL divergence introduced with a weighting factor β to regularize the model,
preventing excessive deviation from the original model Fθold .

To further obtain general embodied knowledge, our ThinkAct is flexible to encapsulate the publicly
available question-answering data to enhance capabilities such as robotic VQA [38] or failure
detection [26] by formatting them into the QA-style accuracy reward. Specifically, the QA-style
accuracy reward is computed by either answer accuracy for multiple-choice QA tasks or averaged
ROUGE-1/2/L scores for open-ended QA tasks, as mentioned in Supplementary Sec. B.1.1. Once we
obtain the QA reward rQA, we use the same approach as in Eq. 3 that combines the QA-style reward
with the format reward, and then optimize using GRPO. Specifically, for QA tasks, the total reward
becomes: r = 0.9rQA + 0.1rformat.

Once the reinforced fine-tuning is complete, we are able to produce long CoT steps, while abstracting
the textual reasoning into a compact visual plan latent ct, capturing long-horizon spatial-temporal
planning intent.

3.3 Reasoning-Enhanced Action Adaptation

With the high-level embodied intent reasoned by the MLLM, our goal is to connect the inferred visual
latent planning ct with the action model πϕ of the target environment in a think-before-acting manner,
grounding embodied reasoning into the physical world with executable actions. Specifically, we build
upon a Transformer-based action model πϕ (e.g., Diffusion Policy [9]), which predicts actions based
on the current state composed of visual observations and language instructions. While πϕ can operate
in the target environment using perception alone, we enhance its capability by conditioning it on the
latent plan ct, which encodes high-level embodied intent and planning context.

As depicted in Fig. 2(b), we incorporate ct using a latent projector to connect it to the input space of
the action model, enabling the reasoning guidance to be effectively leveraged, which enhances its
low-level action execution in the target environment. Thus, we solely update the state encoder, latent
projector, and action model by imitation learning with annotated action demonstrations:

LIL(ϕ) = E(oi,l,ai) [ℓ (πϕ(ct, oi, l), ai)] . (5)

We note that, reasoning and action execution could be operated in an asynchronous manner, which
means each latent plan ct corresponds to N interactions with the environment (i.e., i ∈ [t, t+N ]).
This asynchronous design highlights a key advantage of our dual-system architecture, allowing the
reasoning MLLM to perform slow thinking while the action model executes fast control.

3.4 Learning Strategy and Inference

Following [31], we adopt a multi-stage training strategy for our ThinkAct. Before RL, we initialize
the two modules independently. The MLLM Fθ is cold-started using supervised data (Sec. 4.1) to
learn to interpret visual trajectories and produce reasoning and answers in the correct output format.
On the other hand, the action model πϕ is pre-trained on the Open X-Embodiment (OXE) dataset [33],
providing a strong foundation for low-level action execution. After SFT cold-start, our MLLM
Fθ is tuned with action-aligned rewards guiding the generation of effective latent plans. During
reasoning-enhanced action adaptation, we freeze Fθ while updating the action model πϕ with state
encoder and latent projector on the target environment by conditioning on the latent visual plan ct.

At inference time, given a visual observation ot and instruction l, ThinkAct produces a visual plan
latent ct = Fθ(ot, l), which conditions the action module πϕ to predict a sequence of executable
actions tailored to the current environment.

4 Experiment

4.1 Experimental Setup

Implementation Details We initialize Fθ with Qwen2.5-VL 7B [2]. The cold-start stage runs for
20K iterations with batch size 32 and learning rate 1e−5 using DeepSpeed ZeRO-3. We then apply
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Table 1: Quantitative comparisons of robot manipulation tasks on SimplerEnv [20] and LIBERO [24]
benchmarks. Bold denotes the best result.

Dataset Split Octo-Base
[45]

RT1-X
[5]

OpenVLA
[16]

DiT-Policy
[9]

TraceVLA
[55]

CoT-VLA
[54]

Magma
[48]

ThinkAct
(Ours)

Simpler-Google
(Visual Matching)

Open/Close Drawer 1.0 22.5 49.5 44.9 57.0 – 56.0 50.0
Move Near 3.0 55.0 47.1 58.9 53.7 – 65.4 72.4
Pick Coke Can 1.3 52.8 15.3 64.3 28.0 – 83.7 92.0
Overall 1.8 43.4 37.3 56.0 46.2 – 68.4 71.5

Simpler-Google
(Variant Aggregation)

Open/Close Drawer 22.0 56.0 22.5 35.5 31.0 – 53.4 47.6
Move Near 4.2 34.2 54.0 52.8 56.4 – 65.7 63.8
Pick Coke Can 17.0 54.0 52.8 56.4 60.0 – 68.8 84.0
Overall 14.4 48.1 43.1 48.2 49.1 – 62.6 65.1

Simpler-Bridge
(Visual Matching)

Put Carrot on Plate 8.3 4.2 4.2 29.4 – – 31.0 37.5
Stack Blocks 0.0 0.0 0.0 0.0 – – 12.7 8.7
Put Spoon on Towel 12.5 0.0 8.3 34.5 – – 37.5 58.3
Put Eggplant in Basket 43.1 0.0 45.8 65.5 – – 60.5 70.8
Overall 16.0 1.1 14.6 32.4 – – 35.4 43.8

LIBERO

Spatial 78.9 – 84.7 82.6 84.6 87.5 – 88.3
Object 85.7 – 88.4 84.7 85.2 91.6 – 91.4
Goal 84.6 – 79.2 82.1 75.1 87.6 – 87.1
Long 51.1 – 53.7 57.6 54.1 69.0 – 70.9
Overall 75.1 – 76.5 76.8 74.8 83.9 – 84.4

GRPO [39] for 6K iterations, using batch size 64, learning rate 1e−6, and rollout size 5. The action
model πϕ is a DiT-based policy [9] with 432M parameters, pre-trained using the OXE dataset [33],
where the state encoder is composed of a DINOv2 image encoder [32] and a CLIP text encoder [36]
that jointly encode the current state inputs into 1024-dim embeddings. For reasoning-enhanced action
adaptation, we connect the visual plan ct via a Q-Former [18] as the latent projector with 32 queries
and fine-tune on 100K data randomly sampled from the OXE dataset for 120K iterations using batch
size 256 and learning rate 2e−5. LIBERO [24] tasks are further fine-tuned for 75K iterations with
batch size 128. All experiments are conducted on 16 NVIDIA A100 GPUs with 80 GB memory.

Training Datasets and Evaluation Benchmarks For SFT cold-start, we fine-tune the MLLM
using trajectories from the subset of OXE, and QA tasks from RoboVQA [38], EgoPlan-IT [7], and
Video-R1-CoT [12]. During RL training, we incorporate trajectories from the OXE subset and human
videos from Something-Something v2 [13]. To enhance general reasoning capability, we include
embodied QA datasets such as EgoPlan-IT/Val [7], RoboVQA [38], and the Reflect dataset [26], as
well as a general video instruction dataset, i.e., LLaVA-Video-178K [53].

We evaluate ThinkAct on two robot manipulation and three embodied reasoning benchmarks. For
manipulation tasks, SimplerEnv [20] containing diverse scenes and LIBERO [24] with long-horizon
tasks are evaluated using task success rate. For reasoning benchmarks, EgoPlan-Bench2 [35] uses
accuracy on multiple-choice questions, while RoboVQA [38] and OpenEQA [29] are free-form QA
tasks evaluated using BLEU score [34] and LLM-based scoring, respectively, following their original
protocols. Further details of our experimental setup are provided in the supplementary material.

4.2 Quantitative Evaluation

Robot Manipulation To assess the effectiveness of ThinkAct on robot manipulation task, we
evaluate on SimplerEnv [20] and LIBERO [24]. SimplerEnv [20] includes Google-VM (Visual
Matching), Google-VA (Variant Aggregation), and Bridge-VM setups, introducing variations in color,
material, lighting, and camera pose to evaluate model robustness. For the LIBERO [24] benchmark,
following prior works [16, 54], we evaluate on the LIBERO-Spatial, LIBERO-Object, LIBERO-Goal,
and LIBERO-Long subtasks to test model generalization across spatial layouts, object variations,
goal diversity, and long-horizon planning.

As shown in Tab. 1, on the SimplerEnv, incorporating our reasoning-guided visual plan latents allows
ThinkAct to outperform our baseline action model, DiT-Policy, by 15.5%, 16.9%, and 11.4% on
Google-VM, Google-VA, and Bridge-VM, respectively, achieving the highest overall scores of 71.5%,
65.1%, and 43.8% against all methods. On the LIBERO benchmark, ThinkAct achieves the best
overall success rate of 84.4%, outperforming DiT-Policy and recent state-of-the-art CoT-VLA [54],
verifying the effectiveness on diverse manipulation settings.
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Table 2: Quantitative comparisons of embodied reasoning tasks on EgoPlan-Bench2, RoboVQA, and
OpenEQA benchmarks. Note that, Qwen2.5-VL* indicates fine-tuning the original Qwen2.5-VL
using EgoPlan-IT [7] and RoboVQA [38] datasets. Bold denotes the best result.

Dataset Split / Metric GPT-4V
[1]

LLaVA-
Video [17]

InternVL2.5
[8]

InternVL3
[56]

NVILA
[27]

Qwen2.5-VL
[2]

Qwen2.5-VL*
[2]

Magma
[48]

ThinkAct
(Ours)

EgoPlan-
Bench2

Daily life 36.7 38.0 36.2 38.5 35.8 31.4 47.9 32.1 50.1
Work 27.7 29.9 28.7 32.9 28.7 26.7 46.3 25.7 49.8
Recreation 33.9 39.0 34.4 36.1 37.2 29.5 44.3 34.4 44.8
Hobbies 32.5 37.4 35.4 37.2 35.4 28.6 44.2 29.3 45.2
Overall 32.6 35.5 33.5 36.2 33.7 29.1 45.7 29.8 48.2

RoboVQA

BLEU-1 32.2 35.4 40.5 44.3 42.7 47.8 65.3 38.6 69.1
BLEU-2 26.5 32.1 33.3 36.5 39.7 41.2 57.3 31.5 61.8
BLEU-3 24.7 30.0 29.6 31.6 37.6 36.2 52.2 28.1 56.0
BLEU-4 23.9 29.0 27.5 28.9 36.1 33.7 48.0 26.7 52.4
Overall 26.8 31.6 32.7 35.3 39.0 39.7 55.7 31.2 59.8

OpenEQA

Obj. State 63.2 69.1 70.2 68.9 66.1 63.2 62.4 59.9 70.0
Obj. Recog. 43.4 42.6 47.2 49.1 49.5 46.2 45.2 43.8 47.2
Func. Reason. 57.4 50.3 56.2 54.6 51.0 51.2 52.3 50.0 53.2
Spatial 33.6 46.2 44.1 43.3 43.1 41.2 42.8 39.3 47.6
Attri. Recog. 57.2 64.1 64.9 74.4 69.3 63.0 65.0 58.3 71.1
World Know. 50.7 60.5 56.5 53.1 59.4 54.3 54.2 53.3 58.6
Obj. Loc. 42.0 38.2 41.9 45.0 39.9 36.5 41.9 38.9 45.9
Overall 49.6 53.0 54.4 55.5 54.0 50.8 52.0 49.1 56.2

<think>
The image shows a 7up can, a sponge, and an
apple on a table. ...
First, I need to locate the 7up can and the
apple. ... Now, I need to move the 7up can. ...
I can now place it near the apple. ...The can is
now right next to the apple. ...
</think>

<think>
Let's break down the task step by step:
First, identify the book on the left side.
The back compartment is on the right.
Use the robot's arm near the book to pick it up ...
Move the book smoothly from left to right ...
Place it in the compartment. ...
</think>

<think>
First, the eggplant is in the sink,
and the basket is in the top left corner. ...
The gripper will move toward the eggplant,
lift it, and carry it to the basket. ...
Okay, I'm ready to give the final trajectory:
move to eggplant, lift it, and place it in basket.
</think>

"Pick up the book and place it in the back compartm."

"Put eggplant into yellow basket"Simpler-Bridge

LIBERO-Long

"Move the 7up can near the apple"Simpler-Google

Figure 3: Qualitative results of intermediate reasoning steps and visualized trajectory for robot
manipulation tasks on SimplerEnv and LIBERO benchmarks.

Embodied Reasoning In Tab. 2, we assess the reasoning capability of ThinkAct in embodied
scenarios on three benchmarks: EgoPlan-Bench2 [35], RoboVQA [38], and OpenEQA [29]. EgoPlan-
Bench2 [35] measures multi-step planning in egocentric daily-life scenarios, while RoboVQA [38]
focuses on long-horizon reasoning in robotic manipulation. ThinkAct outperforms the second-best
method by 2.5% and 4.1 BLEU score on these two benchmarks, demonstrating its strength in
long-horizon and multi-step planning. Separately, OpenEQA [29] measures zero-shot embodied
understanding across diverse environments. The enhanced reasoning ability of ThinkAct enables
better generalization and scene comprehension, resulting in strong performance on this benchmark.

4.3 Qualitative Results

In Fig. 3, we qualitatively showcase the reasoning process and execution scenes of two manipulation
examples from the Simpler-Bridge [20] and LIBERO-Long [24] tasks. In the LIBERO-Long task
“Pick up the book and place it in the back compartment,” ThinkAct decomposes the instruction
into sub-tasks: (1) pick up the book, (2) move from left to right, and (3) place it in the compart-
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<think>Let me think about this for a moment. In the video,
I can see that the desk has a few items on it. On the right side,
there are already some pieces of paper stacked neatly, and near the
front of the desk, I notice some everyday objects—maybe a tissue
box, a pen holder, and what looks like a cup.

Wait, the scene feels a bit cluttered, but not overly messy. The
lighting also makes it easy to see the shadows of these objects. It
seems like a typical workspace with multiple tools laid out for use.

Given the current setup, I’d say everything looks organized and
placed intentionally.</think>
<answer>no</answer>

Q: Is it possible to move the paper to left right now?

<think>Let me think about this for a moment. The image shows a
desk with various items on it, and a robotic arm is holding a piece of
paper above the desk.

The question is whether the paper can be moved to the left right
now. Since the paper is already lifted off the surface, the arm has
full control of its movement.

Given that, there's nothing preventing it from being moved left. So
yes, it’s possible.</think>
<answer>yes</answer>

ThinkAct w/o RL
<think>Let me think about this for a moment. The carpet on
the floor stands out in the image. It's quite large and has a
noticeable floral pattern.

Looking closely, the design seems centered, with blue tones
dominating the color scheme. The overall look gives it a decorative
and elegant appearance. Yes, it’s a large blue carpet with a floral
design.</think>
<answer>The carpet on the floor is large and blue with a floral
pattern.</answer>

Q: What shape is the carpet on the floor?

<think>Let me think about this for a moment. The image
shows a room with a carpet on the floor. I’m trying to figure out its
shape.

At first glance, the floral pattern in the center draws attention,
which might make the shape seem more complex. But looking closely
at the edges, they are straight and meet at right angles. The
corners are clearly defined, and the sides are parallel.

So, despite the decorative design, the overall outline of the carpet
is rectangular. That seems clear now.</think>
<answer>The carpet on the floor is rectangular.</answer>

(a) RoboVQA (b) OpenEQA

ThinkAct w/o RL

ThinkAct

ThinkAct

Figure 4: Qualitative comparison of reasoning process and the derived answer for our ThinkAct
with and without RL for embodied reasoning tasks on RoboVQA and OpenEQA benchmarks. Red
denotes incorrect reasoning and answers, while green indicates correct ones.

ment, demonstrating its long-horizon planning capability. We also visualize the planned trajectory,
confirming that the gripper closely follows the reasoning-guided plan during execution.

To better illustrate the impact of RL on the reasoning process, Fig. 4 compares ThinkAct before
and after RL fine-tuning on embodied reasoning tasks. As we can observe in Fig. 4(a), using a
RoboVQA [38] example, the SFT cold-start model focuses only on the current state and fails to
reason over future steps, while the RL-tuned model successfully infers the correct answer. Also,
as demonstrated in Fig. 4(b), from OpenEQA [29], the cold-start model misinterprets the question,
whereas the RL-tuned version demonstrates improved question and environment understanding. More
qualitative comparisons and demo videos are provided in the supplementary material.

4.4 Ablation Study

In Tab. 3, we ablate the proposed goal reward rgoal and trajectory reward rtraj to analyze their individual
contributions to reasoning and planning. We start from the full version of ThinkAct, which achieves
the best performance across all benchmarks. Removing the trajectory reward leads to a noticeable
drop, indicating that rtraj is essential for learning coherent and structured planning behaviors. Without
the goal reward, performance also declines, suggesting that rgoal plays a key role in incentivizing
long-horizon reasoning. When both rtraj and rgoal are removed, leaving only QA-style reward from
QA datasets, the model shows only marginal improvements over the SFT baseline, confirming that
action-aligned visual feedback is critical for effective multi-step planning in embodied settings.
Finally, the SFT cold-start model without RL yields the lowest scores, verifying the effectiveness of
our RL fine-tuning for eliciting the reasoning capability in MLLMs. More ablation studies (e.g., the
number of interactions per reasoning step N ) are provided in the supplementary material.

4.5 Analysis of ThinkAct

In this section, we analyze the capabilities of ThinkAct in enhancing robotic manipulation by
embodied reasoning. We focus on two key aspects: (1) how reasoning facilitates effective few-shot
adaptation to new tasks and environments, and (2) how it enables the robot to detect failures and
perform self-correction during task execution. Through both quantitative experiments and qualitative
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Table 3: Quantitative ablation study for our proposed
RL rewards in ThinkAct on SimplerEnv, EgoPlan-
Bench2, and RoboVQA benchmarks.

Method SimplerEnv EgoPlan RoboVQA
ThinkAct (Ours) 60.1 48.2 59.8
Ours w/o rtraj 59.2 47.9 58.5
Ours w/o rgoal 59.1 47.6 58.9
Ours w/o rtraj, rgoal 56.9 47.2 58.3

SFT cold-start 56.4 46.4 57.9
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Figure 5: Few-shot adaptation results on
LIBERO. We use 10 demonstrations per task
for fine-tuning.

Fail to pick up
target object!! Replan & Execute

Struggle to grasp Replan & Execute

<think> ... First, the robot needs to move the mug closer to the microwave ... This requires the
robot to move the mug up and into the microwave, which seems to be the next logical step.
However, the gripper seems to be struggling to grasp the mug securely. This indicates that the
previous grasp was not successful. I should reassess the gripper's positioning and try to regrasp
the mug before continuing ... Based on this reasoning, the next steps are:
1. Regrasp the mug securely.
2. Place the mug inside the microwave.
3. Close the microwave door.
... The next step should be to reattempt grasping before proceeding to place the mug and close the
door.</think>

Reflection
&

Self-Correction

<think> ... The cream cheese box is clearly visible on the table, and ...
However, the video shows that the robot has not successfully picked up the cream cheese box or
placed it in the basket.
This indicates that the cream cheese box needs to be picked up and placed in the basket again
... Therefore, the robot's arm must now:
1. The robot moves toward the cream cheese box.
2. The robot picks up the cream cheese box.
3. The robot places the cream cheese box in the basket ... </think>

Reflection
&

Self-Correction

(a)

(b)

Figure 6: Demonstration of self-reflection and correction capability of ThinkAct. The reasoning
MLLM identifies the failure and generates a revised plan that recovers from execution error.

examples, we demonstrate the unique advantages of leveraging a reasoning MLLM to tackle embodied
action tasks. We further provide the analysis of MLLM backbones in the supplementary material.

Reasoning Enhance Few-Shot Adaptation As we can observe in Fig. 3 and Fig. 4, ThinkAct
is capable of describing the environment and decomposing task instructions into meaningful sub-
goals. To validate whether such reasoning improves the action model’s adaptability, we conduct
a few-shot adaptation experiment on LIBERO benchmark [24]. Specifically, we use LIBERO-
Spatial and LIBERO-Object to evaluate adaptation to unseen environments, and LIBERO-Goal to test
adaptation to new skills. We fine-tune the action model on just 10 demonstrations per task and evaluate
performance over 100 trials. As shown in Fig. 5, ThinkAct consistently outperforms state-of-the-art
methods, achieving the highest success rates across all tasks. Notably, it surpasses Magma [48]
by 7.3% on LIBERO-Goal and by 9.5% on LIBERO-Spatial, demonstrating the effectiveness of
reasoning capability for few-shot generalization in both novel skills and environments.
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Reasoning Elicit Reflection and Self-Correction Failure detection and self-correction are critical
for robust robot manipulation [26]. To evaluate whether ThinkAct can reason about and recover
from execution errors, we enable the reasoning MLLM to observe more contextual information
during execution by extending its input from a single image ot to a short video segment ot−N :t. This
temporal context allows ThinkAct to detect failures, reconsider the situation, and replan accordingly.
For example, as shown in Fig. 6(a), the robot fails to grasp a mug. The reasoning MLLM identifies
the issue, noting that the gripper is struggling, and suggests adjusting its position to reattempt the
grasp. In Fig. 6(b), the robot attempts to move an object to a basket, but fails to pick it up in the first
place. The MLLM detects the failure and replans the pickup, leading to successful completion. These
cases highlight ThinkAct’s ability to detect and recover from execution errors through reasoning.

Inference Speed We compare the inference speed of ThinkAct with the end-to-end OpenVLA [16]
on LIBERO [24] tasks using an A100 GPU. On average, ThinkAct takes 17% longer execution
time than OpenVLA, primarily due to the autoregressive reasoning process. We note that while
the inference time slightly increases, our embodied reasoning, as a test-time scaling paradigm,
significantly boosts downstream task performance. That is, ThinkAct outperforms OpenVLA on
all four LIBERO task categories, achieving success rate improvements of 2.8% on spatial, 3.2%
on object, 8.4% on goal, and 15.3% on long-horizon tasks. These results show that the reasoning
overhead is justified by significant performance gains, highlighting the effectiveness of embodied
reasoning for robot manipulation.

5 Conclusion

We presented ThinkAct, a framework that reinforces visual latent planning for vision-language-action
reasoning tasks. By combining action-aligned reinforcement learning with reasoning-enhanced action
adaptation, ThinkAct enables embodied agents to think before acting and execute robust actions
in dynamic environments. Through extensive experiments across embodied reasoning and robot
manipulation benchmarks, we demonstrated strong long-horizon planning, few-shot adaptation, and
emergent behaviors such as failure detection and self-correction, providing a scalable path toward
more deliberative and adaptable embodied AI systems.

Limitations Since ThinkAct builds on pretrained multimodal LLMs, it inevitably inherits their
limitations, particularly hallucinations in visual or spatial reasoning. This can lead to generated plans
that reference incorrect object attributes or spatial relationships, affecting downstream execution.
While our latent planning and action grounding mitigate this to some extent, future work on grounding-
aware training or hallucination suppression in MLLMs may further improve robustness and reliability
in real-world deployment. In addition, while we only include 2D traces to calculate the reward signals,
our reward framework can be readily extended to incorporate contact-rich signals into the total reward
function (Eq. 3). The proposed action-aligned visual reward allows extension with additional reward
components that capture contact-rich dynamics. We will leave them for future research.

Broader Impacts Our work aims to enhance the reasoning capabilities of embodied agents, which
could support real-world applications such as assistive robotics, home automation, and industrial
systems. In particular, models like ThinkAct may help robots better interpret vague instructions and
execute multi-step plans in dynamic environments. However, increased autonomy and reasoning
ability in embodied systems also raise potential concerns. Misinterpretation of ambiguous commands,
reliance on hallucinated visual reasoning, or overconfidence in CoT outputs could result in unintended
behaviors, especially in safety-critical settings. Hence, future research on safeguards or alignment
with human intent could further help mitigate these risks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the contributions of ThinkAct, in-
cluding dual-system reasoning-action modeling, reinforcement learning with action-aligned
reward, and experimental validation across VLA tasks.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a discussion of limitations in the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include formal theoretical results or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe training and evaluation procedures, architecture details, reward
formulation, and benchmark settings in Sec. 4 and the Appendix. We plan to release the
source code after acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The data we used is all publicly available, and we plan to release the source
code after acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Full experimental settings, including training stages, hyperparameters, and
dataset/environment details, are described in Sec. 4 and the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Following previous works [16, 54], we report accuracies over 3 random seeds
in the LIBERO benchmark, as shown in our Tables in Sec. 4. Specifically, for each task,
all methods are evaluated across 500 trials, resulting in a total of 1500 evaluation trials per
reported statistic.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information on computation resources is provided in Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research complies fully with the NeurIPS Code of Ethics, and all datasets
and models are used under appropriate licenses.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include a discussion of potential impacts in the main paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose high risks for misuse of pretrained language models,
image generators, or scraped datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All reused datasets (e.g., Open X-Embodiment, LIBERO) and pre-trained
models are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not provide new assets (e.g., new datasets) during submission.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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