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Abstract

Attention-based autoregressive models have001
achieved state-of-the-art performance in var-002
ious sequence-to-sequence tasks, including003
Text-To-Speech (TTS) and Neural Machine004
Translation (NMT), but can be difficult to train.005
The standard training approach, teacher forc-006
ing, guides a model with the reference back-007
history. During inference, the generated back-008
history must be used. This mismatch limits the009
evaluation performance. Attention forcing has010
been introduced to address the mismatch, guid-011
ing the model with the generated back-history012
and reference attention. While successful in013
tasks with continuous outputs like TTS, atten-014
tion forcing faces additional challenges in tasks015
with discrete outputs like NMT. This paper in-016
troduces the two extensions of attention forc-017
ing to tackle these challenges. (1) Scheduled018
attention forcing automatically turns attention019
forcing on and off, which is essential for tasks020
with discrete outputs. (2) Parallel attention forc-021
ing makes training parallel, and is applicable to022
Transformer-based models. The experiments023
show that the proposed approaches improve the024
performance of models based on RNNs and025
Transformers.026

1 Introduction027

Attention-based models are good at connecting028

sequences of different length, and have achieved029

state-of-the-art performance in various sequence-030

to-sequence (seq2seq) tasks (Vaswani et al., 2017;031

Tay et al., 2020). Here the term performance refers032

to the overall quality of the output sequences, e.g.033

word error rate in Automatic Speech Recognition034

(ASR). On the other hand, these models can be035

difficult to train (Bengio et al., 2015). From a036

probabilistic perspective, seq2seq models estimate037

the probability of the output sequence conditioned038

on the input sequence. To achieve more accu-039

rate estimation, the models are often autoregres-040

sive (Chen et al., 2018). The standard training041

approach, teacher forcing, guides a model with ref- 042

erence back-history during training. This makes 043

the model unlikely to recover from its mistakes 044

during inference, where the model operates in free 045

running mode, and the reference output is replaced 046

by the generated output. This problem is referred 047

to as exposure bias (Ranzato et al., 2016). 048

Many approaches have been introduced to ad- 049

dress exposure bias, and will be described in sec- 050

tion 2.2. Attention forcing is a simple and effective 051

option (Dou et al., 2020). The idea is to guide the 052

model with the generated output history and refer- 053

ence attention. While successful in TTS, attention 054

forcing faces additional challenges when it comes 055

to tasks with discrete outputs (Dou et al., 2019), 056

and models such as Transformers (Vaswani et al., 057

2017). To tackle these challenges, this paper in- 058

troduces scheduled attention forcing in section 3.1, 059

and parallel attention forcing in section 3.2. The ex- 060

periments in section 4 show that these approaches 061

improve strong NMT models based on RNNs and 062

Transformers.1 063

2 Attention-based sequence-to-sequence 064

generation 065

Sequence-to-sequence generation can be defined as 066

the task of mapping an input sequence x1:L to an 067

output sequence y1:T (Bengio et al., 2015). From 068

a probabilistic perspective, a model θ estimates the 069

distribution of y1:T given x1:L, which can be fac- 070

torized into token distributions: p(y1:T |x1:L;θ) = 071∏T
t=1 p(yt|y1:t−1,x1:L;θ). 072

2.1 Encoder-attention-decoder architecture 073

Attention-based seq2seq models usually have 074

the encoder-attention-decoder architecture (Lewis 075

et al., 2020; Tay et al., 2020). Figure 1 shows the 076

architecture. The distribution of a token is condi- 077

tioned on the back-history y1:t−1, input sequence 078

1Links to the source code for the experiments will be avail-
able after the anonymous review.
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Figure 1: An attention-based encoder-decoder model, in
teacher forcing mode, at decoding step t; a circle depicts
a token, and a rounded square a distribution.

x1:L and an attention map α1:T :079

p(yt|y1:t−1,x1:L;θ) ≈ p(yt|y1:t−1,αt,x1:L;θ)080

≈ p(yt|st, ct;θy) (1)081

where θ = {θy,θs,θα,θh}; st is a state vector082

representing y1:t−1, and ct is a context vector sum-083

marizing x1:L for time step t. The discussions in084

this paper are agnostic to the form of attention. The085

following equations give a detailed example about086

how αt, st and ct can be computed:087

h1:L = f(x1:L;θh) (2)088

st = f(y1:t−1;θs) (3)089

αt = f(st,h1:L;θα) ct =
∑L

l=1 αt,lhl (4)090

ŷt ∼ p(·|st, ct;θy) (5)091

The encoder maps x1:L to h1:L, considering the092

entire input sequence; st summarizes y1:t−1, con-093

sidering only the past. With h1:L and st, the at-094

tention mechanism computes αt, and then ct. The095

decoder estimates a distribution based on st and ct,096

and optionally generates an output token ŷt.097

2.2 Inference and training098

During inference, given an input x1:L, the099

output ŷ1:T can be obtained from the distri-100

bution estimated by the model θ: ŷ1:T =101

argmax
y1:T

p(y1:T |x1:L;θ). The exact search is often102

too expensive and approximated by greedy search103

for continuous output, or beam search for discrete104

output (Bengio et al., 2015).105

Conceptually, the model is trained to learn106

the natural distribution, e.g. through minimizing107

the KL-divergence between the natural distribu-108

tion p(y1:T |x1:L) and the estimated distribution109

p(y1:T |x1:L;θ). In practice, this can be approxi-110

mated by minimizing the Negative Log-Likelihood111

(NLL) over some training data {y(n)
1:T ,x

(n)
1:L}N1 , sam-112

pled from the natural distribution:113

L(θ) = E
x1:L

KL
(
p(y1:T |x1:L)||p(y1:T |x1:L;θ)

)
114

∝ −
∑N

n=1 log p(y
(n)
1:T |x

(n)
1:L;θ) (6)115

L(θ) denotes the loss; N denotes the size of the 116

training dataset; n denotes the data index. To sim- 117

plify the notation, n is omitted for the length of the 118

sequences, although they also vary with n. In the 119

following sections, the sum over the training set 120

will also be omitted. 121

A key question here is how to compute the to- 122

ken distribution p(yt|y1:t−1,x1:L;θ). For the most 123

standard training approach, teacher forcing, the to- 124

ken distribution is computed with the reference 125

output history y1:t−1 at each time step t. The loss 126

can be written as: 127

Ly(θ) = −
∑T

t=1 log p(yt|y1:t−1,x1:L;θ) (7) 128

Despite its advantages such as parallel training 129

(Dou, 2022), teacher forcing suffers from expo- 130

sure bias: during training, the model is guided by 131

the reference output history; during inference, how- 132

ever, the model runs in free running mode, where 133

the generated output history is used. This mismatch 134

leads to errors that can accumulate along the infer- 135

ence process (Ranzato et al., 2016). 136

There are mainly two lines of research address- 137

ing exposure bias. Scheduled sampling (Bengio 138

et al., 2015) and professor forcing (Lamb et al., 139

2016) are prominent examples along the first line. 140

These approaches guide a model with both the refer- 141

ence and the generated output history, and the goal 142

is to learn the data distribution. To facilitate conver- 143

gence, they often depend on a heuristic schedule 144

or an auxiliary classifier, which can be difficult to 145

design and tune (Guo et al., 2019). The second line 146

is a series of sequence-level training approaches, 147

leveraging reinforcement learning (Ranzato et al., 148

2016), minimum risk training (Shen et al., 2016) 149

or generative adversarial training (Yu et al., 2017). 150

Theses approaches guide a model with the gener- 151

ated output history. During training, the model 152

operates in free running mode, and the goal is not 153

to generate the reference output, but to optimize 154

a sequence-level loss. However, many tasks do 155

not have well established sequence-level objective 156

metrics. Examples include voice conversion, ma- 157

chine translation and text summarization (Tay et al., 158

2020). Both lines of research require sequentially 159

generating output sequences during training. In 160

recent years, Transformers (Vaswani et al., 2017) 161

have been widely used, and parallel training has 162

been essential. To efficiently generate output se- 163

quences from Transformer-based models, an ap- 164

proximation scheme (Duckworth et al., 2019) has 165

been proposed to parallelize scheduled sampling. 166
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Figure 2: Attention forcing; the solid blocks are the
attention forcing model θ̂; the dashed blocks the teacher
forcing model θ. During inference, θ̂ runs in free run-
ning mode without θ.

3 Attention forcing 2167

This section will revisit the general framework of168

attention forcing, and then analyze its challenges169

and introduce extensions to tackle them. The ba-170

sic idea of attention forcing (Dou et al., 2020) is171

to train the model with the generated output and172

reference attention. The generated output helps ad-173

dressing the exposure bias, and reference attention174

helps with convergence. Let θ denote a standard175

attention-based model, trained with teacher forcing.176

Let θ̂ denote a model with the same structure, but177

trained with attention forcing, and later used for178

inference. Figure 2 illustrates attention forcing. In179

attention forcing mode, equation 1 becomes:180

p(yt|y1:t−1,x1:L; θ̂) ≈ p(yt|ŷ1:t−1,αt,x1:L; θ̂)181

≈ p(yt|ŝt, ĉt; θ̂y) (8)182

ŝt and ĉt denote the state vector and context vector183

generated by θ̂. Details of attention forcing are in184

the following equations:185

h1:L = f(x1:L;θh) ĥ1:L = f(x1:L; θ̂h) (9)186

st = f(y1:t−1;θs) ŝt = f(ŷ1:t−1; θ̂s) (10)187

αt = f(st,h1:L;θα) α̂t = f(ŝt, ĥ1:L; θ̂α) (11)188

ĉt =
∑L

l=1 αt,lĥl (12)189

ŷt ∼ p(·|ŝt, ĉt; θ̂y) (13)190

The right side of the equations 9 to 11, as well191

as equations 12 and 13, show how the attention192

forcing model θ̂ operates. The decoder state ŝt is193

computed with ŷ1:t−1. While an alignment α̂t is194

generated by θ̂, it is not used by the decoder, be-195

cause the context ĉt is computed with the reference196

alignment αt. One option of obtaining αt is shown197

by the left side of equations 9 to 11: to generate198

αt from a teacher forcing model θ. θ is trained199

in teacher forcing mode, and generates αt in the200

same mode. Although the reference output is used201

to compute the reference attention, it is not directly 202

fed into the model, hence the model cannot rely too 203

much on the back-history. 204

At the inference stage, the attention forcing 205

model operates in free running mode, and equa- 206

tion 12 becomes ĉt =
∑L

l=1 α̂t,lĥl. The decoder is 207

guided by α̂t, instead of αt. 208

During training, there are two objectives: to infer 209

the reference output and to imitate the reference 210

alignment. This can be formulated as: 211

Ly,α(θ̂) = Ly(θ̂) + γLα(θ̂) (14) 212

Ly(θ̂) = −
∑T

t=1 log p(yt|ŷ1:t−1,αt,x1:L; θ̂) 213

Lα(θ̂) =
∑T

t=1KL(αt||α̂t) 214

=
∑T

t=1

∑L
l=1 αt,l log

αt,l

α̂t,l
215

Ly and Lα respectively denote the loss over the 216

output and the attention; γ is a scaling factor. As an 217

alignment corresponds to a categorical distribution, 218

KL-divergence is a natural difference metric. By 219

default, the two models are trained separately. θ is 220

trained in teacher forcing mode, and then fixed to 221

generate the reference attention. θ̂ is trained with 222

the joint loss Ly,α. 223

3.1 Scheduled attention forcing 224

Motivation When applying attention forcing, it 225

is important to consider the nature of the attention 226

connecting the input and output. For some tasks, 227

the attention is expected to be monotonic, and there 228

is only one type of valid attention maps, where the 229

important positions roughly form a diagonal line. 230

Examples include ASR and TTS. For other tasks, 231

there may be multiple valid modes of attention: 232

the ordering of tokens can be changed while the 233

output sequence remains correct. Examples include 234

NMT and text summarization. If the model takes an 235

ordering that is different from the reference output, 236

the token-level losses will be misleading. Figure 3 237

illustrates the problem with an NMT example. 238

Furthermore, there might be other issues such 239

as grave mistakes. For tasks where the output is 240

continuous,2 such as TTS and voice conversion, a 241

small deviation from the reference output is usually 242

not a serious problem. However, this is more seri- 243

ous for tasks where the output is discrete, such as 244

2The meaning of “continuous” comes in two folds. First,
speech is continuous in time, although often sampled as a
discrete sequence. For a speech sequence, the correlation
between tokens is stronger than that in a text sequence. Second,
a speech token follows a continuous distribution. A text token
follows a discrete distribution.
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Figure 3: Alignments: up) α1:T between the input and
the reference output; down) α̂1:T between the input
and the generated output. For the input “je suis rentrée
chez moi hier”, the reference output is “I went home
yesterday”. When using attention forcing, the model
is guided by the generated back-history and outputs

“yesterday I went home”. Here the alignment α1:T is not
a sensible target for α̂1:T .

NMT and text summarization. During training, er-245

rors in the output history can be so serious that the246

token-level target is not appropriate, often due to247

misalignment between the generated output and the248

reference output. To illustrate the problem, suppose249

the reference output is “thank you for listening”,250

and the model predicts “thanks” at the first time251

step. In this case, the next output should not be252

“you”, and “for” would be a more sensible target.253

Framework Scheduled attention forcing is pro-254

posed for applications where attention forcing, also255

referred to as “vanilla attention forcing”, may re-256

sult in an inappropriate loss. The basic idea is to257

automatically decide, for each input-output pair in258

the training data, whether vanilla attention forc-259

ing will be used. This is realized by tracking the260

alignment between the reference and the generated261

output. If they are relatively well-aligned, vanilla262

attention forcing will be used, otherwise a more263

stable training mode will be used.264

Figure 4 illustrates scheduled attention forcing.265

For each input sequence, the attention forcing266

model θ̂ takes two forward passes. Pass A is guided267

by the generated output history ŷ1:t−1, which is the268

same as vanilla attention forcing. Pass B is guided269

by the reference output history y1:t−1. The refer-270

ence attention is always used, so the context vector271

ĉt is the same in both passes. If memory permits,272

the two forward passes can be completed in parallel,273

resulting in no extra time. This can be formulated274

as follows. For vectors produced in pass A, the275

notation has the hatˆaccent; the equivalent for pass276

Figure 4: Scheduled attention forcing. Passes A and B
share the same model parameters; only one of them will
be used in back-propagation, depending on the data.

B is the checkˇaccent. 277

h1:L = f(x1:L;θh) ĥ1:L = f(x1:L; θ̂h) (15) 278

st = f(y1:t−1;θs)
ŝt = f(ŷ1:t−1; θ̂s)

št = f(y1:t−1; θ̂s)
(16) 279

αt = f(st,h1:L;θα)
α̂t = f(ŝt, ĥ1:L; θ̂α)

α̌t = f(št, ĥ1:L; θ̂α)
(17) 280

ĉt =
∑L

l=1 αt,lĥl (18) 281

ŷt ∼ p(·|ŝt, ĉt; θ̂y)
y̌t ∼ p(·|št, ĉt; θ̂y)

(19) 282

Next, the choice of training mode is made at 283

the sequence level. If
∑T

t=1KL(αt||α̂t; θ̂) < 284

λ
∑T

t=1KL(αt||α̌t; θ̂), meaning that ŷ1:T is well 285

aligned with y1:T , pass A will be used in the back- 286

propagation. The loss is the same as in vanilla 287

attention forcing, shown in equation 14. Otherwise 288

pass B will be used: 289

Ly,α(θ̂) =
∑T

t=1 log p(yt|x1:L,y1:t−1,αt; θ̂) 290

+ γ
∑T

t=1KL(αt||α̌t; θ̂) (20) 291

The KL attention loss is used to determine if the 292

alignment is good enough between the reference 293

output y1:T and the generated output ŷ1:T . As both 294

αt and α̌t are computed using y1:t−1, they are 295

expected to be similar, yielding a relatively small 296

KL(αt||α̌t; θ̂). In contrast, α̂t is computed using 297

ŷ1:t−1, and KL(αt||α̂t; θ̂) is expected to be larger. 298

λ is a hyper-parameter controlling how much out- 299

of-alignment ŷ1:T and y1:T can be. If λ → +∞, 300

scheduled attention forcing will be the same as 301

vanilla attention forcing. 302

For each pair of training data, scheduled atten- 303

tion forcing makes a choice whether to guide the 304

model with the reference output history or the gen- 305

erated output history. This approach is named 306
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“scheduled attention forcing”, because scheduled307

sampling also selectively uses the generated out-308

put history. For scheduled sampling, the selection309

is random. For scheduled attention forcing, the310

selection depends on the data.311

3.2 Parallel attention forcing312

Motivation Transformer-style models have313

achieved state-of-the-art performance in various314

tasks including NMT and TTS. For such models315

with a large number of parameters, parallel316

training is essential (Vaswani et al., 2017). When317

teacher forcing is used, there are no recurrent318

connections in the model, and training can be319

done in parallel across the length T of the output320

y1:T . This is more obvious when teacher forcing is321

rewritten as ŷt ∼ p(·|y1:t−1,αt,x1:L;θ), where322

αt = f(y1:t−1,x1:L;θ). The reference output323

history y1:t−1 is available for any t, so ŷ1:T can be324

computed in parallel.325

Attention forcing can be rewritten in a simi-326

lar fashion: ŷt ∼ p(·|ŷ1:t−1,αt,x1:L; θ̂), where327

α̂t = f(ŷ1:t−1,x1:L; θ̂). The model is guided with328

generated output history ŷ1:t−1. ŷ1:T is not avail-329

able beforehand, and is generated sequentially. So330

when applying attention forcing to Transformer-331

based models, training is no longer parallel.3332

Framework For parallel attention forcing, the333

core idea is to approximate the sequential genera-334

tion of ŷ1:T with a parallelizable process. Here the335

output ŷK
1:T is generated iteratively in K forward336

passes. For each pass, the complete output history337

is available beforehand, so training can be run in338

parallel across time t, as illustrated by figure 5.339

For the first pass, the output history is the ref-340

erence y1:T . For the following passes, the output341

history is the output of the previous pass ŷk−1
1:T .342

ŷ0
1:T = y1:T (21)343

α̂k
t = f(ŷk−1

1:t−1,x1:L; θ̂) (22)344

ŷk
t

{
= ŷk−1

t if t < k

∼ p(·|ŷk−1
1:t−1,αt,x1:L; θ̂) if t ≥ k

(23)345

It can be proved that when K = T , ŷK
1:T is indepen-346

dent of the reference back-history, and is equivalent347

3Transformer-based models have multiple cross attention
mechanisms connecting the encoder and decoder. So when
applied to these models, attention forcing involves a group
of the reference attention α

(1:N,1:H)
t and generated attention

α̂
(1:N,1:H)
t , where N is the number of decoder layers, and

H the number of heads in each layer. These superscripts are
omitted, to simplify the notation and to facilitate comparison
with other forms of attention forcing.

Figure 5: Parallel attention forcing; at pass k, ŷk−1
1:T is

available, so ŷk
1:T can be computed in parallel.

to an output sequentially generated (Duckworth 348

et al., 2019). In appendix A, figure 8 illustrates how 349

the iterative parallel generation approximates se- 350

quential generation. Empirically, K could be much 351

smaller than T , while still addressing the exposure 352

bias (Duckworth et al., 2019). So although parallel 353

attention forcing requires more computation than 354

vanilla attention forcing, it is more efficient thanks 355

to parallel training. 356

Attention forcing has a regularizing effect. Dur- 357

ing training, the attention mechanism(s) of the at- 358

tention forcing model is encouraged to mimic the 359

teacher forcing model. Hence there is the risk of 360

over regularization, in which case the attention forc- 361

ing model converges to the teacher forcing model. 362

When applying attention forcing to Transformer- 363

based models, our default option is to force all the 364

cross-attention connecting the encoder and the de- 365

coder, while leaving the self-attention alone. How- 366

ever, in a Transformer-based model, there are usu- 367

ally dozens of such attention maps. The exact num- 368

ber is equal to the number of decoder layers times 369

the number of attention heads in each layer. In 370

contrast, in a model based on RNN or CNN, there 371

is only one attention map. Forcing all the attention 372

heads tends to over regularize Transformer-based 373

models. This problem can be addressed by forc- 374

ing selected attention heads only. For the selected 375

attention heads, the reference attention is given 376

to the following layer, and an alignment loss is 377

computed between the reference and the predicted 378

attention. For the other attention heads, the pre- 379

dicted attention is given to the following layer as 380

usual. In appendix A, figure 6 illustrates the idea of 381

forcing selected attention heads. For Transformer- 382

based models, different attention heads have differ- 383

ent functions (Voita et al., 2019; Vig and Belinkov, 384

2019). For example, attention heads in the deepest 385

layers of the model capture the most distant rela- 386

tionships (Vig and Belinkov, 2019). In this paper, 387

the selection is mainly based on the layer. 388
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3.3 Related work389

Attention forcing follows the first line of ap-390

proaches addressing exposure bias, descried in sec-391

tion 2.2. Similar to scheduled sampling and profes-392

sor forcing, it is between teacher forcing and free393

running. An advantage of attention forcing is that394

it does not require a heuristic schedule or a discrim-395

inator, which can be difficult to tune. (Lamb et al.,396

2016) reported negative results on TTS. Variations397

of scheduled sampling were applied to NMT, re-398

sulting in both positive (Zhang et al., 2019) and399

negative (Duckworth et al., 2019) results.400

Compared with sequence-level training ap-401

proaches, attention forcing is more efficient, in the402

sense that it does not require generating multiple403

output sequences during training. Reference (Shen404

et al., 2016) applied Minimum Bayes Risk (MBR)405

training to NMT, and approximates the expectation406

of the risk by sampling and renormalizing the prob-407

ability of the samples. References (Ranzato et al.,408

2016; Bahdanau et al., 2017) approximate the same409

loss with Monte Carlo sampling, and optimizes the410

loss using Reinforcement Learning (RL).411

For sequence-level training, another general con-412

cern is the choice of the distance metric, i.e. the413

risk. Many tasks, including NMT and TTS, do414

not have a gold-standard objective metric. Em-415

pirically, models trained with one metric may not416

perform equally well when assessed using another417

metric (Ranzato et al., 2016). To tackle this is-418

sue, adversarial training (Yu et al., 2017; Wu et al.,419

2018) can be used: a discriminator learns a loss420

function, which is potentially better than standard421

metrics. The difficulty here is that the discriminator422

itself can be difficult to train (Zhang et al., 2018).423

While attention forcing does not directly optimize424

a sequence-level loss, it can indirectly reduce the425

loss by training the model to recover from errors.426

This is because sequence-level metrics are usually427

computed by comparing units of the sequences. Ex-428

amples include word error rate for ASR, and BLEU429

(Papineni et al., 2002) and ROUGE (Lin and Hovy,430

2003) for NMT. If models can recover from its431

errors, the sequence-level loss can be reduced.432

It is challenging to apply attention forcing to433

models without an attention mechanism. How-434

ever, the concept of attention forcing can be ap-435

plied to such models, where it is essential to find436

something analogous to attention. For convolu-437

tional neural networks, for example, attention maps438

can be defined based on the activation or gradient439

Table 1: Data used in the experiments.

# sentence pairs
Languages Training-valid-test

IWSLT’15 En→Fr 208K-1026-1305
En→Vi 133K-1553-1268

WMT’16 En→De 4.5M-3000-3003

(Zagoruyko and Komodakis, 2017). 440

4 Experiments 441

Data There are two sources of data: IWSLT’15 442

(Cettolo et al., 2012, 2015) and WMT’16 (Bojar 443

et al., 2016). Table 1 shows the data split. Detailed 444

descriptions are in appendix B. The sentences in 445

IWSLT are from TED talks. Two translation di- 446

rections are investigated: English-to-French (EnFr) 447

and English-to-Vietnamese (EnVi). The data pre- 448

processing follows (Luong et al., 2015a). The sen- 449

tences in WMT are from newspaper articles. Here 450

English-to-German (EnDe) translation is investi- 451

gated. The data preprocessing follows (Ott et al., 452

2018). For all the translation directions, the Moses 453

tokenizer (Koehn et al., 2007) is adopted, and the 454

translations are detokenized before evaluation. The 455

checkpoints are selected based on the validation 456

set, and the results are compared on the test set. 457

Performance Metrics The overall translation 458

quality is measured by BLEU (Papineni et al., 459

2002). The average of 1-to-4 gram BLEU scores 460

are computed and a 0.6 brevity penalty is applied. 461

For IWSLT and WMT data, the BLEU score is 462

computed using the Moses toolkit (Koehn et al., 463

2007) and the SacreBLEU toolkit (Post, 2018), re- 464

spectively. 465

In NMT, there can be multiple valid output se- 466

quences for a single input sequence. Given that 467

the overall translation quality is the same, it is de- 468

sirable for an NMT model output to be diverse 469

translations for the same input. This work mea- 470

sures the diversity of the candidate translations by 471

pairwise BLEU (Shen et al., 2019) and entropy. 472

For a translation model θ, we use sampling search 473

M times with different random seeds, obtaining a 474

group of translations {ŷ(m)}Mm=1. ŷ(m) denotes all 475

the output sentences in the dev or test set. Then 476

we compute the average BLEU between all pairs: 477
1

M(M−1)

∑M
n=1

∑M
m=1 BLEU(ŷ

(n), ŷ(m))n̸=m. In 478

our experiments, M is set to 5. The more diverse 479

the translations, the lower the pairwise BLEU. In 480

addition to pairwise BLEU, we use greedy search 481
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Table 2: BLEU of Teacher Forcing (TF), Attention Forc-
ing (AF) and Scheduled Attention Forcing (SAF) with
different values of λ; the higher λ is, the more likely the
generated output history is used; the models are based
on GNMT, and trained with data from IWSLT’15.

Task Training λ BLEU ↑

EnFr TF - 30.70
AF - 22.93
SAF 2.5 31.44
SAF 3.0 31.66
SAF 3.5 31.34

EnVi TF - 25.57
AF - 18.27
SAF 2.5 26.02
SAF 3.0 25.71
SAF 3.5 26.72

and save the entropy et of the output token’s dis-482

tribution at each time step. Let e1:T cover all the483

model output steps, we compute the average value:484

e = 1
T

∑T
t=1 et. Higher entropy means that the485

model is less certain, and thus more likely to pro-486

duce diverse outputs. This process is deterministic,487

and is not repeated with different random seeds.488

4.1 Scheduled attention forcing489

Setup The experiments are conducted with EnFr490

and EnVi data in IWSLT’15. The model is based on491

GNMT (Wu et al., 2016). The details of the model492

and training are described in appendix B.2. By de-493

fault, the baseline models are trained with Teacher494

Forcing (TF) for fewer than 60 epochs. Starting495

from the baseline, models are finetuned with Atten-496

tion Forcing (AF) for fewer than 30 epochs. For AF,497

the scale γ of the attention loss is 10. The default498

inference approach is greedy search. When inves-499

tigating diversity, sampling search is also adopted.500

The checkpoints are selected based on the valida-501

tion BLEU. For all the training approaches, the502

effective number of epochs is smaller than the max-503

imum, i.e. training goes on until convergence. The504

computational budget to train a model is 96 hours505

on a single Nvidia Tesla P100.506

Results First, we compare TF and vanilla AF.507

The preliminary experiments show that when pre-508

training with TF is adopted, the BLEU of AF in-509

creases from 21.77 to 22.93 for EnFr, and from510

13.92 to 18.27 for EnVi. However, it does not out-511

perform TF, as shown by the first two rows in each512

section of table 2. This result is expected, consid-513

ering the discrete and multi-modal nature of the514

NMT output space, analyzed in section 3.1.515

Table 3: BLEU, Entropy and pairwise (P.) BLEU of TF
and SAF; each approach is run 5 times, and the mean
± std is shown; the models are based on GNMT, and
trained with data from IWSLT’15.

Task Training BLEU↑ Entropy↑ P. BLEU↓

EnFr TF 31.10 ±0.27 1.060 ±0.047 27.43 ±0.75

SAF 31.54 ±0.14 1.034 ±0.013 27.82 ±0.67

EnVi TF 25.86 ±0.44 1.508 ±0.012 22.11 ±0.34

SAF 26.41 ±0.33 1.582 ±0.017 20.75 ±0.29

Next, TF is compared with Scheduled Attention 516

Forcing (SAF). The hyper parameter λ, introduced 517

in section 3.1, controls the tendency to use gener- 518

ated outputs. As shown in table 2, with very limited 519

tuning, SAF outperforms TF. The performance is 520

robust in a certain range of λ. In the following ex- 521

periments, λ is set to 3.0 for EnFr and 3.5 for EnVi. 522

To reduce the randomness of the experiments, both 523

TF and SAF are run R = 5 times with different ran- 524

dom seeds. Let {θ(r)}Rr=1 denote the group of TF 525

models, and {θ̂(r)}Rr=1 the SAF models. For both 526

groups, the BLEU’s mean ± standard deviation is 527

computed. Table 3 shows the results. In terms of 528

mean BLEU, SAF yields a 0.44 gain for EnFr, and 529

a 0.55 gain for EnVi. 530

To measure the diversity of the translations, 531

the entropy and pairwise BLEU are computed for 532

{θ(r)}Rr=1 and {θ̂(r)}Rr=1, as shown in the last two 533

columns of table 3. Focusing on the entropy col- 534

umn, SAF leads to higher entropy for EnVi, which 535

indicates higher diversity. For EnFr, SAF and TF 536

lead to similar levels of diversity, especially when 537

the standard deviation is considered. We believe 538

that the difference is due to the nature of the tasks. 539

While English and French have similar syntax and 540

lexicon, English and Vietnamese are more different. 541

When trained with SAF, the EnVi model benefits 542

more from using generated back-history, which is 543

more likely to be different from the reference back- 544

history. The pairwise BLEU shows similar trends. 545

For EnVi, SAF leads to lower pairwise BLEU, i.e. 546

higher diversity. For EnFr, the difference between 547

SAF and TF is negligible. So in the following 548

experiments, only pairwise BLEU will be reported. 549

4.2 Parallel attention forcing 550

Setup The experiments in this section are con- 551

ducted with WMT’16 EnDe data. Compared with 552

IWSLT, WMT is more suitable for Transformer 553

models in terms of the amount of data. The Trans- 554

lation models have the same structure as the “big” 555
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Transformer in (Vaswani et al., 2017), and the train-556

ing follows (Ott et al., 2018). The details are in557

appendix B.3. The baseline models are trained558

with Teacher Forcing (TF). Starting from the base-559

line, other models are finetuned respectively with560

sequence-level Scheduled Sampling (SS) and At-561

tention Forcing (AF). To keep the benefit of paral-562

lel training, AF and SS are approximated by their563

parallel version, as described in section 3.2 and564

reference (Duckworth et al., 2019). The number565

of iterations is two. For SS, the probability of us-566

ing the reference output decreases linearly from567

1 to 0.7; more aggressive schedules are found to568

degrade the performance. For AF, the scale γ of569

the attention loss is 1000. The default inference570

approach is beam search with beam size 4. The val-571

idation BLEU is monitored to select checkpoints572

and to stop training when no performance gain is573

observed after 10 epochs. The computational bud-574

get to train a model is 144 hours on a single Nvidia575

Tesla V100.576

Results The first two sections of table 4 lists the577

preliminary results of TF, parallel SS and paral-578

lel AF. Here all the attention heads are constantly579

forced, regardless of the alignment between the580

reference and generated output history. Compared581

with TF, parallel SS yields lower BLEU as well as582

pairwise BLEU. It is difficult to conclude whether583

the decrease in pairwise BLEU results from higher584

diversity or lower translation quality. In its paral-585

lel version, AF performs similarly to TF. This is586

probably because the back-history is generated in587

TF mode. As analyzed in section 3.1, when ap-588

plying AF to NMT, it is important to turn AF on589

and off based on the alignment between the ref-590

erence and the generated outputs. Hence unless591

otherwise mentioned, a schedule is added to par-592

allel AF in the following experiments. The last593

section of table 4 lists the performance of parallel594

AF, where the hyperparameter λ of the schedule is595

tuned. While the BLEU remains at the same level,596

the pairwise BLEU decreases when the percentage597

of AF decreases, signaling that AF regularizes the598

translation model to operate in a safe zone.599

As analyzed in section 3.2, the encoder and de-600

coder are connected by multiple attention mech-601

anisms. It is likely that too much information is602

passed from the TF baseline to the AF model. To603

reduce this information, we only force selected604

attention heads. The first two decoder layers are605

selected, and the reason is discussed in section B.3606

Table 4: BLEU and Pairwise BLEU of Teacher Forcing
(TF), Parallel Scheduled Sampling (PSS) and Parallel
Attention Forcing (PAF); higher λ means higher ten-
dency to use AF; the models Transformer-based, trained
with WMT’16 EnDe, tested on newstest14; the bold
numbers correspond to the λ for further experiments.

λ BLEU↑ Pairwise BLEU↓

TF - 28.68 31.12
PSS - 28.19 30.17

PAF +∞ 28.74 31.90

PAF 1.1 28.75 31.60
PAF 1.2 28.57 30.62
PAF 1.3 28.48 31.89
PAF 1.4 28.56 31.99
PAF 1.5 28.47 32.06

Table 5: BLEU and Pairwise BLEU of TF, PSS and
PAF, where only selected attention heads are forced; the
models are based on Transformer, trained with WMT’16
EnDe, tested on newstest14.

λ Layers Heads BLEU↑ Pairwise BLEU↓

TF - - - 28.68 31.12
PSS - - - 28.19 30.17

PAF 1.2 1-2 1-8 29.04 30.47
PAF 1.2 1-2 9-16 28.91 30.05
PAF 1.2 1-2 1-12 28.86 30.87
PAF 1.2 1-2 1-16 28.64 30.79

in the appendix. In each layer, the number of heads 607

forced are 8, 12 or 16 out of 16. Table 5 lists 608

the results. When only two layers are forced, the 609

performance of parallel AF surpasses TF in both 610

BLEU and pairwise BLEU. The best performance 611

(first row) is achieved when 8 heads are forced in 612

each layer. To reduce the randomness of hyperpa- 613

rameter tuning, we run another experiment where 614

the other 8 heads are forced, and the result (second 615

row) is comparable to the best performance. 616

5 Conclusion 617

This paper introduced two extensions to attention 618

forcing, a training approach addressing exposure 619

bias in attention-based seq2seq models. We recom- 620

mend the basic form of attention forcing in tasks 621

with continuous outputs like TTS. For tasks with 622

discrete outputs like NMT, we recommend sched- 623

uled attention forcing. For models based on Trans- 624

formers, it is essential to use parallel attention forc- 625

ing, and to not force all the attention heads. 626
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6 Broader impacts627

The training approaches introduced in this work628

can be applied to a range of attention-based seq2seq629

models. NMT is used as a representative task,630

where the output is discrete. The baselines (Wu631

et al., 2016; Vaswani et al., 2017) in the experi-632

ments are prominent models based on RNNs or633

Transformers, which are widely used in various634

tasks (Tay et al., 2020; Dou, 2022). While this635

work focuses on autoregressive models, it can636

also benefit non-autoregressive models. For ex-637

ample, autoregressive models can act as teachers638

in teacher-student training of non-autoregressive639

models. They can also generate data for semi-640

supervised training.641

The datasets (Cettolo et al., 2012, 2015; Bojar642

et al., 2016) used in the experiments are public643

dataset repeatedly used in the NMT community644

(Luong et al., 2015a; Ott et al., 2018). Sentences in645

IWSLT are from TED talks, and sentences in WMT646

are from newspapers. While we did not observe647

any sensitive information in the data, please contact648

us if any potential risks are spotted in the data, such649

as privacy issues. The tools (Koehn et al., 2007;650

Post, 2018) used to compute BLEU scores are also651

public. The use of the data and tools is consistent652

with their intended use. Detailed documentation of653

the data and code is available in their references.654
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A Details of parallel attention forcing 829

Section 4.2 introduced parallel attention forcing, 830

and explained the reasons to not force all the atten- 831

tion heads. Figure 6 illustrates the idea of forcing 832

selected attention heads. Parallel attention forcing 833

is applied to a Transformer with two decoder layers, 834

but only forcing the attention heads in the second 835

layer. Here the Transformer model is simplified; 836

the detailed model structure is shown in figure 7. 837

A Transformer block (Vaswani et al., 2017), also 838

referred to as a Transformer layer, is a combination 839

of many basic modules. There are two types of 840
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Figure 6: Illustration of parallel attention forcing, ap-
plied to a Transformer with two encoder layers and two
decoder layers; the attention heads in the second de-
coder layer are forced.

Transformer blocks: Transformer encoder blocks,841

which encode a sequence, and Transformer decoder842

blocks, which connect two sequences. Figure 7843

illustrates both types of Transformer blocks, as844

well as how they are combined to form an encoder-845

decoder model.846

Similar to scheduled attention forcing, multiple847

forward passes can be taken for each pair of train-848

ing data in parallel attention forcing. The loss func-849

tion is selected based on the alignment between850

the reference and generated output sequences. If851 ∑T
t=1KL(αt||α̂K

t ; θ̂) < λ
∑T

t=1KL(αt||α̂1
t ; θ̂),852

it will be assumed that ŷK
1:T is well aligned with853

y1:T , and the K-th forward pass will be used in the854

back-propagation:855

Ly,α(θ̂) = −
T∑
t=1

log p(yt|ŷK
1:t−1,αt,x1:L; θ̂)856

+ γ

T∑
t=1

KL(αt||α̂K
t ; θ̂) (24)857

Otherwise the first pass will be used:858

Ly,α(θ̂) = −
T∑
t=1

log p(yt|ŷ1
1:t−1,αt,x1:L; θ̂)859

+ γ
T∑
t=1

KL(αt||α̂1
t ; θ̂) (25)860

Figure 8 illustrates how the iterative parallel gen-861

eration approximates sequential generation. It can862

Figure 7: Illustration of Transformer blocks (Vaswani
et al., 2017); the dashed rectangle in the left is a Trans-
former encoder block; the dashed rectangle in the right
is a Transformer decoder block.

be proved that when K = T , ŷK
1:T is independent 863

of the reference back-history, and is equivalent to 864

an output sequentially generated (Duckworth et al., 865

2019). Empirically, K could be much smaller than 866

T , while still addressing the exposure bias (Duck- 867

worth et al., 2019). So although parallel attention 868

forcing requires more computation than vanilla at- 869

tention forcing, it is more efficient thanks to parallel 870

training. 871

B Details of experimental setup 872

B.1 Data 873

As shown in table 1, there are two sources of 874

data: IWSLT’15 (Cettolo et al., 2012, 2015) and 875

WMT’16 (Bojar et al., 2016). One reference output 876

is provided for each input. The IWSLT datasets 877

correspond to subtitle translation tasks, where the 878

sentences are from TED talks. Two translation di- 879

rections are investigated: English-to-French (EnFr) 880

and English-to-Vietnamese (EnVi). These datasets 881

are relatively small, and are used to train RNN- 882

based models. For EnFr, the training set contains 883

208K sentence pairs. The validation set (tst2013) 884

and test set (tst2014) respectively contain 1026 and 885

1305 sentence pairs. For EnVi, the training set 886

contains 133K sentence pairs. The validation set 887

(tst2012) and test set (tst2013) respectively contain 888

1553 and 1268 sentence pairs. The data preprocess- 889

ing follows (Luong et al., 2015a). The vocabularies 890

are at the word-level, i.e. the units are words. For 891
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Figure 8: Illustration of iterative parallel generation; the
dark blue circles are the reference tokens, and the rest
are generated tokens; the light blue circles are influenced
by the reference, and the white circles are not; the solid
arrows represent copying, the dashed arrows represent
dependency.

EnFr, both English and French vocabularies are892

limited to 50K. For EnVi, the vocabulary sizes are893

17K and 7.7K for English and Vietnamese.894

The WMT datasets correspond to news trans-895

lation tasks, where the sentences are from news-896

paper articles. Here English-to-German (EnDe)897

translation is investigated. The dataset is consider-898

ably bigger, and is used to train Transformer-based899

models. The training set contains 4.5M sentence900

pairs. The validation set (newstest13) and test set901

(newstest14) respectively contain 3000 and 3003902

sentence pairs. The data preprocessing follows ref-903

erence (Ott et al., 2018). A joint source and target904

sub-word vocabulary is built using byte pair encod-905

ing. The vocabulary is 32K BPE tokens. For all the906

translation directions, the Moses tokenizer (Koehn907

et al., 2007) is adopted, and the translations are908

detokenized before evaluation. The checkpoints909

are selected based on the validation set, and the910

results are compared on the test set.911

B.2 Scheduled attention forcing912

B.2.1 Setup913

The experiments in section 4.1 are conducted with914

EnFr and EnVi data in IWSLT’15. The model is915

based on GNMT (Wu et al., 2016). The differ-916

ences are as follows. The model is simplified with917

a smaller number of LSTM layers due to the small918

scale of data: the encoder has 2 layers of bidi-919

rectional LSTM and the decoder has 4 layers of920

unidirectional LSTM; the attention mechanism is921

the general form of dot-product attention (Luong922

et al., 2015b); both English and Vietnamese word923

embeddings have 200 dimensions and are randomly924

Table 6: Hyperparameters of the RNN-based translation
model (Wu et al., 2016).

Word embedding 200D

Encoder 2-layer bidirectional LSTM (200D)

Attention General dot-product (Luong et al., 2015b)

Decoder 4-layer unibidirectional LSTM (200D)

initialized. Table 6 summarizes the hyperparame- 925

ters. 926

The Adam optimiser is used with a learning rate 927

of 0.002; β1 = 0.9, β2 = 0.999, ϵ = 10−8. The 928

maximum gradient norm is set to be 1. If there is a 929

finetuning phase, the learning rate will be halved. 930

The batch size is 50. Dropout is used with a prob- 931

ability of 0.2. By default, the baseline models are 932

trained with Teacher Forcing (TF) for fewer than 933

60 epochs. Starting from the baseline, models are 934

finetuned with Attention Forcing (AF) for fewer 935

than 30 epochs. For AF, the scale γ of the atten- 936

tion loss is 10. The default inference approach is 937

greedy search. When investigating diversity, sam- 938

pling search is also adopted, which replaces the 939

argmax operation by sampling. The checkpoints 940

are selected based on the validation BLEU. For all 941

the training approaches, the effective number of 942

epochs is smaller than the maximum, i.e. training 943

goes on until convergence. The computational bud- 944

get to train a model is 96 hours on a single Nvidia 945

Tesla P100. 946

B.3 Parallel attention forcing 947

B.3.1 Setup 948

The experiments in section 4.2 are conducted with 949

WMT’16 EnDe data. Compared with IWSLT, 950

WMT is more suitable for Transformer models 951

in terms of the amount of data. The Translation 952

models have the same structure as the “big” Trans- 953

former in (Vaswani et al., 2017). Table 7 shows the 954

hyperparameters. The models are optimized with 955

Adam using β1 = 0.9, β2 = 0.98, and ϵ = 1e−8. 956

Following reference (Ott et al., 2018), large batches 957

are built to have a maximum of 3584 tokens. The 958

learning rate increases linearly for 4,000 steps to 959

5e−4, after which it is decayed proportionally to 960

the inverse square root of the number of steps. La- 961

bel smoothing (Pereyra et al., 2017) is applied with 962

0.1 weight for the uniform prior distribution over 963

the vocabulary. Dropout is applied with probabil- 964

ity 0.3 after each attention or feedforward module. 965

Half precision optimization techniques (Ott et al., 966
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Table 7: Hyperparameters of the Transformer-based
translation model (Vaswani et al., 2017); “FC” stands
for “fully connected”.

Sub-word embedding 1024D

Encoder (Multi-head self-attention →
Feedforward) × 6

Decoder
(Multi-head self-attention →
Multi-head cross attention →
Feedforward) × 6

Multi-head attention

16 heads × (64D query / key / value)
→ 1024D output
Scaled dot-product attention
(Vaswani et al., 2017)

Feedforward FC-4096-ReLU → FC-1024-Linear

Table 8: Ablation study on forcing selected attention
heads; BLEU and Pairwise BLEU of Teacher Forcing
(TF), Parallel Scheduled Sampling (PSS) and Parallel
Attention Forcing (PAF) without a schedule; the models
are based on Transformer, trained with WMT’16 EnDe,
tested on newstest14.

λ Layers Heads BLEU↑ Pairwise BLEU↓

TF - - - 28.68 31.12
PSS - - - 28.19 30.17

PAF +∞ 1-2 1-4 28.38 31.43
PAF +∞ 1-2 1-8 28.53 31.28
PAF +∞ 1-2 1-12 28.80 31.85
PAF +∞ 1-2 1-16 28.74 31.31
PAF +∞ 3-4 1-16 27.94 31.61
PAF +∞ 5-6 1-16 27.46 32.29

2018), are adopted to speed up training.967

The baseline models are trained with Teacher968

Forcing (TF). Starting from the baseline, other mod-969

els are finetuned respectively with sequence-level970

Scheduled Sampling (SS) and Attention Forcing971

(AF). To keep the benefit of parallel training, AF972

and SS are approximated by their parallel version,973

as described in section 3.2 and reference (Duck-974

worth et al., 2019). The number of iterations is two.975

For SS, the probability of using the reference output976

decreases linearly from 1 to 0.7; more aggressive977

schedules are found to degrade the performance.978

For AF, the scale γ of the attention loss is 1000.979

The default inference approach is beam search with980

beam size 4. The validation BLEU is monitored981

to select checkpoints and to stop training when no982

performance gain is observed after 10 epochs. The983

computational budget to train a model is 144 hours984

on a single Nvidia Tesla V100.985

B.3.2 Ablation studies 986

Table 4 has shown that adding a schedule itself 987

is not enough for parallel AF to surpass TF. An- 988

other series of experiments show that limiting the 989

information passed from the TF baseline is also not 990

enough. In other words, the two techniques must 991

be combined. Table 8 shows the results of forc- 992

ing selected heads, without using a schedule. As 993

analyzed in section 3.2, different layers in a Trans- 994

former model perform different roles. The last 995

three rows show that forcing layers 1 and 2 yields 996

the best performance. The first four rows show 997

that once the layers are selected, forcing more than 998

four heads generally leads to better performance in 999

BLEU and pairwise BLEU. This is the motivation 1000

behind the setup of the experiments described in 1001

section 4.2. 1002
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