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Abstract

Adapting models to dynamic, real-world environments characterized by shifting data dis-
tributions and unseen test scenarios is a critical challenge in deep learning. In this paper,
we consider a realistic and challenging Test-Time Adaptation setting, where a model must
continuously adapt to test samples that arrive sequentially, one at a time, while distinguishing
between known and unknown classes. Current Test-Time Adaptation methods operate under
closed-set assumptions or batch processing, differing from the real-world open-set scenar-
ios. We address this limitation by establishing a comprehensive benchmark for Open-set
Single-image Test-Time Adaptation using Vision-Language Models. Furthermore, we propose
ROSITA, a novel framework that leverages dynamically updated feature banks to identify
reliable test samples and employs a contrastive learning objective to improve the separation
between known and unknown classes. Our approach effectively adapts models to domain
shifts for known classes while rejecting unfamiliar samples. Extensive experiments across
diverse real-world benchmarks demonstrate that ROSITA sets a new state-of-the-art in
open-set TTA, achieving both strong performance and computational efficiency for real-time
deployment. The code is released at https://github.com/manogna-s/ROSITA.git.

1 Introduction

Over the past decade, deep learning has revolutionized computer vision tasks such as image classification,
object detection, and segmentation (Deng et al., 2009; Ren et al., 2015; He et al., 2017). However, these
advancements are predominantly realized on the assumption that the training and test data follow the same
distribution. In contrast, the real world is dynamic and ever-changing, making such assumptions often
untenable. Distribution gaps between training and test data manifest in diverse forms Hendrycks & Dietterich
(2019), including domain shifts and semantic shifts. Domain shifts could emerge from variations in lighting,
weather, camera specifications, or geographical locations between the train and test datasets. Semantic shifts
occur when a model, initially trained on a specific set of classes, encounters previously unseen classes during
testing. Hence, navigating deep learning models through these dynamic test environments is imperative.

Test-Time Adaptation (TTA) addresses this challenge by enabling models to adapt during inference without
access to the training data (Wang et al., 2021; Schneider et al., 2020; Döbler et al., 2023). TTA is characterized
by three defining features: (1) no access to source data during adaptation, (2) the absence of ground truth
labels for test data, and (3) an online adaptation scenario where test samples are encountered sequentially and
accessible only once. These constraints reflect the dynamic and streaming nature of real-world applications.
Existing TTA methods have predominantly focused on closed-set scenarios, assuming all test data belongs
to known classes, hence falling short in real-world settings, where models are exposed to unseen categories
beyond their training distribution. For example, an autonomous driving system trained to recognize urban
vehicles like car, truck, motorcycle may incorrectly classify a bicycle as a motorcycle when deployed in a rural
setting. In such scenarios, the model must not only adapt to domain shifts within known categories but also
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identify unfamiliar elements as unknown rather than incorrectly classifying them as part of the known set.
This highlights the critical need for Open-set adaptation in TTA. In addition, most TTA methods assume
access to batches of test samples (Wang et al., 2021; Sreenivas et al., 2024), which are processed collectively
for adaptation. However, this assumption is often impractical in real-time scenarios, where test samples
arrive sequentially, one at a time, necessitating efficient Single image Test-Time Adaptation methods.

Large-scale Vision-Language Models (VLMs), such as CLIP (Radford et al., 2021), have demonstrated
exceptional generalization capabilities across diverse domains, making them promising candidates for TTA.
Recent works like TPT (Shu et al., 2022) and PromptAlign (Samadh et al., 2023) have explored prompt-tuning
based adaptation of VLMs at the level of individual test samples, achieving improved zero-shot performance.
TDA (Karmanov et al., 2024) employs a Training-free Dynamic Adapter to adapt VLMs during test-time.
However, these methods are restricted to closed-set scenarios and do not address the challenges of more
realistic open-set scenarios. Conversely, open-set TTA methods (Li et al., 2023; Lee et al., 2023) focus on
adapting vision-only backbones (CNNs) trained on specific domains but require batch-wise processing of
test samples, making them unsuitable for scenarios where test samples arrive one at a time. The combined
challenges of open-set recognition and single-image adaptation remain largely unexplored.

To bridge these gaps, we establish a benchmark for Open-set Single-image Test-Time Adaptation
(OSTTA) using VLMs, addressing both open-set recognition and single-image adaptation. We refer to the
classes of interest (say CIFAR-10) as desired classes and the rest as undesired classes (say CIFAR-100). To
identify whether a test sample belongs to a desired or undesired class, we employ a Linear Discriminant
Analysis (LDA) Fisher (1936); Li et al. (2023) based class identifier. Samples identified as belonging to the
desired classes are then classified accordingly into one of the desired classes. We equip closed-set single image
TTA methods with this class identifier to handle open-set scenarios.

We propose a novel framework termed ROSITA designed for OSTTA using VLMs. At the core of this
framework is the ReDUCe loss, which effectively leverages Reliable samples to enhance the separability
between Desired and Undesired classes through a Contrastive loss. Additionally, moving beyond existing
prompt-tuning approaches, we analyze the optimal set of parameters for adapting VLMs during test-time
and identify that adapting LayerNorm parameters offers a lightweight yet effective solution for continuous
adaptation. ROSITA dynamically updates these LayerNorm parameters using the ReDUCe loss, enabling it
to adapt in open-set environments by accurately identifying unseen classes as “unknown” while maintaining
the performance of VLMs on known categories. Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to explore the capability of VLMs in addressing
the challenging and realistic problem of Open-set Single-image Test-Time Adaptation (OSTTA),
establishing a comprehensive benchmark for this setting.

• Our framework, ROSITA, introduces the ReDUCe loss to enhance separability between desired and
undesired class samples, enabling reliable recognition of desired samples under domain shifts while
effectively rejecting unfamiliar ones saying “I don’t know”.

• We conduct a systematic analysis of parameter selection for VLM adaptation during test-time and
identify LayerNorm parameters as the optimal choice for lightweight, continuous adaptation of VLMs.

• We demonstrate the effectiveness of ROSITA through extensive experiments across diverse domain
adaptation benchmarks, simulating real-world test environments with single-domain shifts, continuous
and frequent domain shifts, and varying proportions of desired and undesired class samples.

2 Open-set Single-image Test-Time Adaptation

2.1 Problem Setup

Test stream. The model encounters a single test sample xt at time t, sampled from Dt = Dd ∪Du comprising
of: (i) Desired class samples: Dd = {xt; yt ∈ Cd}, with domain shift and belonging to one of the Cd desired
classes, for example, Cd = {car, bus, ..., motorcycle}; (ii) Undesired class samples: Du = {xt; yt ∈ Cu}, which
have semantic shift (irrelevant classes) such that Cd ∩ Cu = ϕ.
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Goal. Given a test sample xt arriving at time t, the goal is to first recognize if it belongs to a desired class
or not, constituting a binary classification task. If xt is identified as a desired class sample, a subsequent
|Cd|-way classification is performed. Else, the prediction is “I don’t know”. In essence, the overall process can
be viewed as a |Cd| + 1 way classification problem.

OSTTA scenarios. We simulate several test scenarios inspired by the real world to evaluate the effectiveness
of our method. (1) Single domain: We extend the standard TTA scenario where the test samples come
from an unseen domain Dd (say snow corruption of CIFAR-10C) by incorporating undesired samples Du

(say CIFAR-100C). (2) Continuously changing domains: Here, Dt changes with time as (D1
d ∪ Du) →

(D2
d ∪ Du) . . . → (Dn

d ∪ Du), where Di
d is the ith domain encountered. (3) Frequently changing domains: Here,

we significantly reduce the number of samples per domain in continuous open-set TTA. The fewer the samples
per domain, the more frequently the test domain changes, simulating very dynamic open-set test scenarios.
(4) Varying sample ratio: The proportion of samples from Cd and Cu in the test stream is varied.

2.2 Benchmark for OSTTA using VLMs

Here, we describe our motivation for using VLMs for the OSTTA problem and further describe how we
establish a benchmark for the same.

CNNs vs VLMs for OSTTA. Test-Time Adaptation (TTA) traditionally focuses on CNNs, which are
vision-only backbones trained on specific datasets. The goal is to adapt these CNNs to mitigate performance
degradation when encountering unseen environments such as noisy or weather-affected conditions. These
models usually require specific retraining for each dataset or desired classes. On the other hand, Vision-
Language Models (VLMs) like CLIP (Radford et al., 2021) are pretrained on diverse image-text pairs from the
web. These models demonstrate strong zero-shot generalization capabilities across diverse domains without
any specific retraining. This makes VLMs a promising candidate for TTA scenarios. However, defining
unseen classes or domains in the context of VLMs is non-trivial due to their exposure to diverse visual data.
Although CLIP performs well in zero-shot classification for clean datasets, its performance on corrupted or
style-shifted datasets like ImageNet-C/R remains suboptimal (Shu et al., 2022), making TTA still relevant.
Moreover, CLIP can only classify an image by making a choice from the given set of desired classes. It lacks
the ability to explicitly say “I don’t know” when presented with a sample that does not belong to the set
of desired classes, highlighting the need for open-set recognition. Noting these differences and advantages
of VLMs over CNNs, we ask these questions: 1) How well can VLMs perform in open-set scenarios? 2)
Can they be effectively adapted in a continuous manner? 3) How do we equip VLMs to handle domain shifts
within desired classes while accurately rejecting unfamiliar samples? To address these research questions, we
establish a new benchmark and propose a framework termed ROSITA using VLMs.

Classification using VLMs. We evaluate our approach using Vision-Language Models (VLMs) such as
CLIP (Radford et al., 2021) and MaPLe (Khattak et al., 2023) as backbones. CLIP consists of a Vision (FV )
and Text (FT ) encoder trained via contrastive learning on image-text pairs. The MaPLe backbone extends
CLIP by incorporating multimodal prompts, enhancing its adaptability for downstream tasks. Given a test
image xt and a set of desired classes Cd = {c1, c2, . . . , cN }, we construct text-based classifiers using predefined
text prompts. Each class name is prepended with the prompt “A photo of a”, creating class-specific text inputs
{pT , ci}. These inputs are passed through the text encoder to generate text embeddings ti = FT ({pT ; ci})
for each ci ∈ Cd. The resulting classifier consists of text embeddings {t1, t2, . . . , tN }. Class prediction for a
sample xt is made by identifying the text embedding ti with the highest similarity to the image feature ft

extracted from the vision encoder.

Baseline Methods. To establish a strong benchmark, we adapt several existing TTA methods designed for
closed-set settings to the open-set Single Image TTA scenario. These include ZSEval (Radford et al., 2021),
TPT (Shu et al., 2022), PAlign (Samadh et al., 2023), TDA (Karmanov et al., 2024) and DPE (Zhang et al.,
2024). Furthermore, we extend TPT and PAlign to support continuous model updates by adapting prompts,
referring to these variants as TPT-C and PAlign-C, respectively. We also adapt open-set TTA approaches
originally designed for CNNs, such as (K+1)PC (Li et al., 2023) and UniEnt (Gao et al., 2024), to work with
VLMs. These methods are described in detail in Appendix B. For a fair comparison, all baseline methods are
equipped with a simple and efficient class identification mechanism based on the LDA objective (Li et al.,
2023) to handle the open-set nature of the test stream.
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Desired vs Undesired Class Identifier. In an open-set TTA setting, it is crucial for the model to
distinguish between samples belonging to desired classes (Cd) and undesired classes (Cu) and appropriately
reject samples from Cu. This problem can be viewed as a binary classification problem between desired and
undesired samples based on the score st (Equation 1). To achieve this, we equip all baseline methods with a
parameter-free classifier based on Linear Discriminant Analysis (LDA) (Fisher, 1936; Li et al., 2023). This
classifier uses the similarity score st, defined as the maximum cosine similarity between the image embedding
ft of the test sample xt and the text embeddings tk of the desired classes Cd:

st = max
k

sim(ft, tk) (1)

Rather than relying on a fixed threshold, which can be challenging to define in a streaming TTA scenario, we
dynamically determine an optimal threshold using a continuously updated score bank S. This bank stores
the most recent |S| similarity scores, capturing the evolving distribution of the test stream. The optimal
threshold τ∗

t is computed using 1D LDA to minimize intra-class variance, as follows:

τ∗
t = arg minτ

1
|Sd|

∑
s∈Sd

(s − µd)2 + 1
|Su|

∑
s∈Su

(s − µu)2 (2)

where Sd = {si|si > τ, si ∈ S} and Su = {si|si < τ, si ∈ S} represent the scores of samples classified as
desired and undesired, respectively, and µd and µu are their means. Using this threshold, the test sample xt

is classified as:

ỹt =
{

desired if st ≥ τ∗
t

undesired if st < τ∗
t

(3)

This simple yet effective approach equips the model to handle open-set scenarios by explicitly rejecting
undesired samples, thereby ensuring robust performance during adaptation.

We equip all the above described baseline methods with this LDA objective based Desired vs Undesired class
identifier for a fair comparison in the Open-set Single Image TTA setting. In Appendix C.4, we demonstrate
the superior performance of this method compared to naive confidence thresholding. With this comprehensive
benchmark established, we now describe our proposed framework, ROSITA, which sets a new standard for
Open-set single-image TTA.

3 Proposed ROSITA Framework

Given a single test sample xt at time t, to ensure effective TTA, we first characterize the sample based on the
class and the quality of samples: (1) Desired vs. Undesired Classes: These refer to the ground truth class
groups, where desired classes belong to Cd and undesired classes belong to Cu. (2)Reliable vs. Unreliable
Samples: A test sample xt is considered reliable if its score st confidently places it in either the desired
or undesired class distributions, estimated using LDA statistics (µd, µu). We leverage Reliable samples
to differentiate Desired vs Undesired class samples through a Contrastive (ReDUCe) Loss for Open-set
Single-image Test-time Adaptation (Figure 1). For this, we categorize the test samples as follows:

1. Reliable Desired Class Sample : τ∗
t < µd < st.

2. Unreliable Desired Class Sample : τ∗
t ≤ st ≤ µd.

3. Reliable Undesired Class Sample : st < µu < τ∗
t .

4. Unreliable Undesired Class Sample : µu ≤ st ≤ τ∗
t .

ReDUCe Loss. A contrastive objective typically needs positive and negative features, the goal being to
maximize the similarity between a sample and its positives (could be augmentations (Chen et al., 2020) or
nearest neighbours (Dwibedi et al., 2021)), while minimizing its similarity with the negatives. Such objectives
(Chen et al., 2020; He et al., 2020; Khosla et al., 2020; Dwibedi et al., 2021) have been extensively used to
learn good image representations in a self-supervised manner. While self-supervised learning assumes access
to abundant data in an offline manner, giving the freedom to carefully choose positives and negatives, this
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Figure 1: ROSITA framework: The test stream with samples from Cd and Cu arrive one at a time. An
input image xt is recognized as a sample from Cd and Cu through an LDA based class identifier. Further, if a
test sample is reliable, the respective feature banks are updated and the proposed ReDUCe loss is optimized
to update the LayerNorm parameters of the Vision Encoder.

problem is set in an online scenario. Here, the test samples arrive one at a time and are accessible only at
that instant. This challenging setting makes it non-trivial to use objectives like (Dwibedi et al., 2021). To
circumvent this issue of lack of abundant test data, we propose to store two dynamically updated feature
banks Md and Mu of sizes Nd and Nu, to store the features of reliable samples from Cd and Cu respectively.
We propose ReDUCe loss to contrast a reliable sample from Cd by choosing its positives and negatives as the
K nearest neighbours from Md and Mu respectively and vice versa for a reliable sample from Cu. The buffer
size for Md is set as |Cd| × K, where |Cd| is the number of desired classes and K is the number of neighbours
retrieved. The feature banks Md or Mu are updated with a feature ft if it is detected as a reliable sample
from Cd or Cu.

We fetch the K nearest neighbours of a reliable test sample xt from each feature bank as follows.

Qd = kNN(ft; Md); Qu = kNN(ft; Mu) (4)

Case 1: Reliable sample from Cd. If a test sample is identified as a reliable sample from Cd, we use a
reliable pseudo-label loss on the sample xt and its augmentation x̃t as follows:

LRe = LCE(xt, ŷt) + LCE(x̃t, ŷt); ŷt = argmaxi sim(ft, ti) (5)

where sim represents cosine similarity. Further, we also propose to use a contrastive objective to enhance
the clustering of desired class samples while pushing them apart from the undesired class samples.

As we aim to correctly classify the desired class samples, we select positives z+ from Qd if its prediction y+

matches with ŷt. The features Qu consisting of its kNN from Mu act as its negatives. The following is the
ReDUCe loss for a reliable sample from Cd:

LD = − 1
K+

∑
z+∈Qd

1(y+ = ŷt) log exp (sim (ft, z+) /τ)∑
z−∈Qu

exp(sim(ft, z−)/τ) (6)

where K+ =
∑

z+∈Qd
1(y+ = ŷt), is the number of neighbours positively matched with ŷt.

Case 2: Reliable sample from Cu. If a test sample is identified as a reliable sample from Cu, we use the
following contrastive objective by selecting positives z+ from Qu and negatives z− from Qd:

LU = − 1
K

∑
z+∈Qu

log exp (sim (ft, z+) /τ)∑
z−∈Qd

exp(sim(ft, z−)/τ) (7)
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Table 1: Results with ImageNet-C/R as desired class data Dd, MNIST and SVHN for Du.

Method IN-C/MNIST IN-C/SVHN IN-R/MNIST IN-R/SVHN

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑

C
LI

P

ZS-Eval 93.39 55.52 41.43 85.89 72.91 40.83 91.27 91.09 71.50 90.43 75.04 71.66
TPT 93.12 58.01 42.21 85.43 74.47 40.95 91.25 91.23 71.98 90.43 74.98 72.36

TPT-C 56.57 99.12 6.19 11.38 100.00 7.24 82.81 85.79 68.25 80.94 80.03 69.18
(K+1) PC 95.76 10.43 42.95 87.75 26.23 38.50 97.46 11.78 81.51 97.55 11.17 80.39

UniEnt 94.19 46.98 41.53 87.56 67.03 41.10 91.64 88.67 71.73 90.86 71.53 71.96
TDA 90.54 76.23 43.66 86.76 75.45 43.07 91.79 87.83 71.56 90.67 75.41 71.48
DPE 87.92 91.94 42.87 82.96 77.90 41.93 92.13 81.09 71.39 90.86 73.30 70.64

ROSITA 99.52 4.06 48.53 98.34 10.21 46.32 99.44 4.29 83.53 98.62 9.08 80.75
+6.13 +51.46 +7.10 +12.45 +62.70 +5.49 +8.17 +86.80 +12.03 +8.19 +65.96 +9.09

M
A

P
LE

ZS-Eval 81.49 92.95 41.70 83.26 71.15 42.77 90.15 83.54 74.42 92.74 65.70 75.71
TPT 81.38 93.17 39.92 83.18 71.52 40.93 90.14 83.58 74.00 92.74 65.68 75.23

TPT-C 83.25 87.60 42.81 83.18 70.60 42.86 90.35 81.49 74.73 92.79 65.20 75.59
PAlign 81.38 93.17 41.32 83.18 71.52 42.30 90.14 83.58 74.66 92.74 65.68 75.93

PAlign-C 71.22 86.32 27.14 32.17 94.32 15.44 92.20 59.70 75.23 93.54 54.59 75.67
(K+1)PC 98.58 3.35 48.69 77.17 39.74 38.10 99.01 3.16 84.23 95.14 13.77 80.16

UniEnt 81.53 93.45 41.50 83.41 70.84 42.78 90.14 83.49 74.48 90.14 83.49 74.48
TDA 76.79 99.02 42.98 82.46 91.75 44.63 90.43 86.56 73.66 92.92 64.63 74.16
DPE 73.97 99.59 41.39 80.06 87.10 44.05 90.44 78.77 72.67 93.48 55.74 76.74

ROSITA 99.56 1.66 51.30 98.68 5.09 50.67 99.39 2.95 84.70 97.85 12.98 83.07
+18.07 +91.29 +9.60 +15.42 +66.06 +7.90 +9.24 +80.59 +10.28 +5.11 +52.72 +7.36

The LayerNorm parameters of the Vision Encoder are updated to minimize the following test-time objective
to adapt the model one sample at a time in an online manner:

LReDUCe =
{

LRe + LD if st > µd

LU if st < µu

(8)

This objective improves the proximity between the test sample and its positives, suitably chosen based on
its score st, while also pushing apart the test sample and its negatives. This collectively encourages the
model to adapt such that each of the desired classes and undesired classes are clustered and farther apart
from each other, improving the overall classification performance of Cd and Cu. We now perform Gradient
Analysis on the loss function and theoretically justify how the proposed ReDUCe loss helps in enhancing the
discriminability between desired and undesired class samples.

3.1 Gradient Analysis of the proposed REDUCE Loss

The key to understanding the behavior of the contrastive loss is to analyze its gradient. The softmax term in
the denominator encourages ft to have lower similarity with negative samples, and the numerator encourages
ft to have higher similarity with positive samples. We compute the gradient of the loss components LD and
LU of the ReDUCe loss with respect to ft (Appendix A).

∂LD

∂ft
= − 1

K+

∑
z+∈Qd

1
(
y+ = ŷt

)
· 1

τ

z+ −
∑

z−∈Qu

p
(
z−)

z−


∂LU

∂ft
= − 1

K

∑
z+∈Qu

1
τ

z+ −
∑

z−∈Qd

p
(
z−)

z−

 (9)

where p (z−)is the softmax probability of the negative samples defined as

p
(
z−)

= exp (sim (ft, z−) /τ)∑
z′∈Q− exp (sim (ft, z′) /τ) (10)

where Q− is Qu for LD and Qd for LU . The gradient of these contrastive loss formulations drives the following
behavior in this context:
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1. Attraction to positive neighbors. In the gradient of LD, the first term pulls the test feature ft towards
its positives z+ ∈ Qd, representing the attraction force that encourages samples from desired classes to form
|Cd| tight clusters as the positives are chosen such that ŷt = y+. Similarly, in the gradient of LU , the first
term pulls ft towards its positives z+ ∈ Qu, encouraging all samples from Cu to cluster together.

2. Repulsion from negative neighbors. The second term p (z−) z− in the gradient pushes the test feature
ft away from its negatives z− ∈ Q− (Q− is Qu for LD and Qd for LU ). The strength of the repulsion is
controlled by the softmax probability p(z−), where more similar negatives exert a stronger repulsive force on
ft, increasing the separation between samples from Cd and Cu. As the negatives selected are its K nearest
neighbours of the opposite type, they are, in fact, hard negatives. Further, the contrastive objective inherently
models the degree of hardness through the means of this probability p(z−). The closer the hard negative, the
stronger the repulsion force.

We now present our analysis on the parameter choices for continuous adaptation of VLMs.

4 Analysis on parameters for Continuous Adaptation of VLMs
Test-Time adaptation methods using CNNs (Wang et al., 2021; Schneider et al., 2020; Liang et al., 2020; Chen
et al., 2022) successfully leverage test domain data arriving in an online manner (in batches) to continuously
update the model. In this work, we study TTA of VLMs like CLIP, which has only been explored very
recently (Shu et al., 2022; Karmanov et al., 2024; Zhang et al., 2024) by adapting prompts independently
for each image. While these methods show promise for on-the-fly adaptation in a zero-shot framework, it is
not clear whether they can leverage the online data stream to continuously update the model parameters.
Based on the evidence in prior TTA works (Wang et al., 2021; Chen et al., 2022), we analyze two aspects of
VLMs for the TTA task: (1) Here, we question if VLMs can be continuously adapted in a similar manner,
but using only a single test image at a time; (ii) If so, are prompts (Shu et al., 2022) the best parameters to
continuously update?

Experiment. We choose six different parameter groups: (1) Prompts, (2) LayerNorm parameters (Zhao
et al., 2023), (3) Full network, (4) First Attention Block of ViT, (5) Last Attention Block of ViT, (6)
Prompts+LayerNorm(LN), 7) LoRA Adapters (Imam et al., 2024). We perform single image TTA in a closed
set scenario on CIFAR-10C, by continuously adapting each of these parameter groups of CLIP, using reliable
entropy loss, LT T A = 1(st > τ)Lent(xt), which is commonly used in several TTA methods (Wang et al., 2021;
Niu et al., 2022) and VLM based prompt tuning methods like TPT, PAlign. Here, xt and st refer to the test
sample and its confidence, respectively. τ is the confidence threshold used to select reliable samples (Niu
et al., 2022) for the model update, which we set to 0.7 in this analysis.
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Figure 2: Accuracy on fine-tuning different parameter
groups for single image TTA.

Observations. We find that continuous model adap-
tation can indeed improve VLMs performance based
on our empirical analysis (Figure 2). (1) Using a high
learning rate of 10−2 for any parameter group results
in a severe drop in accuracy compared to the zero-
shot performance of CLIP in this extreme setting of
continuous single image model update. (2) The other
extreme of low learning rate of 10−6 performs at par
with ZSEval for all parameter groups, suggesting the
model has not sufficiently changed. (3) Updating the
Full Network results in an accuracy of about 10% across
all learning rates, suggesting that giving the highest
flexibility can cause the model to lose the inherent
generalization ability of the VLM. (4) We also explore
updating early attention layers and LoRA adapters.
We observe these can be potential parameter choices on
carefully choosing the learning rate (Appendix C.5). However, LoRA introduces additional parameters, scaling
with the adapter rank. Unlike training-time scenarios where LoRA weights can be merged post-finetuning,
continuous TTA cannot benefit from such merging, thereby increasing deployment complexity. Moreover,
performance varies considerably with the choice of rank (Table 15), adding another hyper-parameter to be

7



Published in Transactions on Machine Learning Research (05/2025)

tuned. (5) We find that LayerNorm tuning remains stable across optimizers, requires less hyper-parameter
tuning, adds no additional model parameters, making it a more reliable and lightweight choice for our setting.

Adapting Image encoder vs Text classifiers: Most existing TTA approaches (Schneider et al., 2020;
Wang et al., 2021; Chen et al., 2022) focus on adjusting image representations for domain shifts during
test-time while keeping the classifiers fixed. This strategy helps retain class discriminative information. In
contrast, in TPT and PAlign, the text-based classifiers that depend on learnable prompts are updated based
on single images. While this does not impact zero-shot evaluation as the model weights are reset after each
image, it can be detrimental during continuous updates.

Based on this analysis, we freeze the text-based classifiers and modify only the image representations using
LayerNorm affine parameters. The rationale behind this approach is that text representations can be inherently
more robust across domains. Text embeddings, often derived from a wide range of linguistic contexts, capture
semantic meanings that are less susceptible to variations in visual data. Therefore, adapting the image
encoder allows for more effective handling of domain shifts while retaining the class-level discriminative
information from the text modality. This ensures that the model can be updated continuously without the
need for resets, ultimately enhancing its performance in dynamic, real open-set environments.

5 Experiments

Table 2: AccHM on VisDA dataset and Clipart, Paint-
ing, Sketch domains from DomainNet as Dd and
MNIST as Du.

Method VisDA Clipart Painting Sketch
ZSEval 78.28 50.22 47.81 48.59
TPT 78.42 57.71 49.73 54.67

TPT-C 75.35 57.57 49.31 54.41
(K+1)PC 90.35 71.21 70.61 67.21
UniEnt 78.09 57.88 49.75 54.76
TDA 76.85 61.04 51.20 55.26
DPE 53.67 54.52 47.91 32.18

ROSITA 90.64 71.40 70.89 67.35
+12.36 +21.18 +23.08 +18.76

Datasets. We experiment with a diverse set of
datasets to choose desired class data Dd and un-
desired class data Du. For Dd, we use CIFAR-
10C (Hendrycks & Dietterich, 2019), CIFAR-
100C (Hendrycks & Dietterich, 2019), ImageNet-
C (Hendrycks & Dietterich, 2019), CCC Press et al.
(2023) from the corruption category and ImageNet-
R (Hendrycks et al., 2021), VisDA (Peng et al.,
2017) and the Clipart, Painting, Sketch domains
from DomainNet (Peng et al., 2019) as style transfer
datasets. We introduce samples from MNIST (LeCun
et al., 1998), SVHN (Netzer et al., 2011), CIFAR-
10/100C (Hendrycks & Dietterich, 2019) and Tiny-
ImageNet (Le & Yang, 2015) datasets as Du in the
test stream. We describe the datasets in detail in
Appendix B.3.

Implementation Details. We use CLIP and MaPLe backbones with ViT-B16 architecture. For ROSITA,
we use SGD optimizer with a learning rate of 0.001 to update the LayerNorm parameters of the Vision
encoder. We set size of the score bank S to 512, number of neighbours K to 5. The size of feature bank Md

is set as K × Cd and that of Mu to 64. Implementation details for all the baseline methods are presented in
Appendix B.4. We equip all methods with the same Cd vs Cu class identifier described in Section 2.2. All
experiments are done on a single NVIDIA A6000 GPU.

Evaluation Metrics. We employ standard metrics, namely Area Under the Receiver Operating Charac-
teristic Curve (AUROC) and False Positive Rate at a True Positive Rate of 95% (FPR95), from the OOD
detection literature (Lee et al., 2023; Li et al., 2023; Wang et al., 2023). Additionally, we compute the
classification accuracy for desired class samples (AccD) and the binary classification accuracy for correctly
recognizing samples from Cu (AccU ) as defined below. To gauge the overall performance, we compute AccHM

(HM), representing the harmonic mean of AccD and AccU , which serves as a comprehensive metric capturing
the trade-off between AccD and AccU . Here, we summarily report AUROC (AUC), FPR95 (FPR) and
AccHM (HM) for all the datasets.

AccD =
∑

(xi,yi)∈Dd
1 (yi = ŷi) · 1 (yi ∈ Cd)∑

(xi,yi)∈Dd
1 (yi ∈ Cd) ; AccU =

∑
(xi,yi)∈Du

1 (ŷi ∈ Cu) · 1 (yi ∈ Cu)∑
(xi,yi)∈Du

1 (yi ∈ Cu)

8



Published in Transactions on Machine Learning Research (05/2025)

Table 3: Results with CIFAR-10C/100C as desired class data Dd and four other datasets as Du.

Method MNIST SVHN Tiny-ImageNet CIFAR-100C/10-C

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑

C
IF

A
R

-1
0C

C
LI

P

ZS-Eval 91.91 85.04 75.57 89.93 64.20 74.08 91.33 27.07 74.63 82.57 67.92 68.89
TPT 91.89 85.55 75.81 89.93 64.41 74.36 91.31 27.23 75.17 82.57 68.06 69.17

TPT-C 81.64 67.53 74.86 58.48 71.72 48.26 74.08 61.45 49.88 61.45 94.30 46.10
(K+1)PC 98.05 12.50 83.27 80.74 50.33 70.10 87.09 52.29 73.98 62.55 91.68 56.46

UniEnt 91.98 85.2 75.62 89.97 64.38 74.18 91.40 26.96 74.73 82.59 68.14 68.98
TDA 92.94 71.11 77.06 92.02 52.68 76.64 91.68 25.37 75.94 83.54 66.06 70.13
DPE 46.97 99.10 27.60 84.15 85.24 68.52 89.92 31.30 69.90 79.18 75.06 62.34

ROSITA 99.10 7.63 84.17 94.79 32.59 78.80 96.43 12.10 80.06 82.99 62.89 69.56
+7.19 +77.41 +8.60 +4.86 +31.61 +4.72 +5.10 +14.97 +5.43 +0.42 +5.03 +0.6

M
A

P
LE

ZS-Eval 98.48 3.77 83.63 98.34 7.86 83.57 90.86 27.54 76.04 86.14 52.08 71.76
TPT 98.15 5.67 81.56 98.34 7.89 82.73 90.86 27.61 75.46 86.15 52.14 70.94

TPT-C 98.56 3.74 83.51 98.32 8.18 83.47 91.18 26.93 76.31 86.50 50.56 71.07
PAlign 98.15 5.67 82.24 98.34 7.90 83.51 90.86 27.60 75.98 86.15 52.18 71.52

PAlign-C 98.56 3.74 83.49 98.32 8.13 83.46 91.18 26.90 76.30 86.50 50.58 71.04
(K+1)PC 98.34 9.63 86.52 71.01 78.78 68.70 71.20 85.81 68.29 62.35 88.44 61.89

UniEnt 98.17 5.49 82.64 98.35 7.85 83.65 90.90 27.41 76.08 86.16 51.91 71.72
TDA 98.42 4.13 81.97 98.60 6.20 83.95 91.27 27.00 76.84 86.72 51.40 72.61
DPE 83.82 92.73 55.52 97.42 12.95 79.41 89.10 31.13 74.32 73.57 73.67 53.64

ROSITA 99.34 5.22 87.63 97.80 13.15 84.17 91.67 25.31 77.67 86.82 50.33 73.15
+0.86 -1.45 +4.00 +0.54 -5.29 +0.60 +0.81 +2.23 +1.63 +0.68 +1.75 +1.39

C
IF

A
R

-1
00

C
C

LI
P

ZS-Eval 77.78 99.93 48.39 64.70 98.68 45.85 67.31 73.89 45.80 63.28 93.25 44.04
TPT 77.76 99.94 48.33 64.71 98.63 45.85 67.28 73.82 45.93 63.26 93.20 44.02

TPT-C 51.57 100.00 27.04 9.40 99.98 5.74 59.74 79.76 18.41 55.86 86.35 13.64
(K+1)PC 96.89 12.15 59.72 75.24 51.64 43.73 41.84 99.61 31.83 54.02 93.93 32.00

UniEnt 77.94 99.93 48.32 64.78 98.61 45.84 67.40 73.77 45.83 63.28 93.18 44.04
TDA 80.33 99.57 46.52 71.77 96.11 46.01 70.70 69.63 47.52 66.07 91.90 45.79
DPE 67.06 99.88 42.54 43.23 99.79 35.69 61.42 80.62 42.80 60.08 92.80 42.21

ROSITA 96.07 19.28 57.34 82.09 64.64 48.17 83.55 50.76 55.88 68.54 89.71 47.98
+18.29 +80.65 +8.95 +17.39 +34.04 +2.32 +16.24 +23.13 +10.08 +5.26 +3.54 +3.94

M
A

P
LE

ZS-Eval 87.43 64.19 54.97 92.98 40.51 56.42 68.80 74.35 48.24 66.93 87.94 46.06
TPT 87.42 64.09 53.09 92.97 40.44 54.37 68.80 74.20 46.97 66.93 87.95 44.38

TPT-C 87.65 63.08 55.14 93.09 40.30 56.31 68.85 74.71 48.53 66.97 87.94 46.30
PAlign 87.42 64.11 53.98 92.97 40.48 55.37 68.80 74.23 47.69 66.93 87.93 45.16

PAlign-C 88.25 57.31 55.69 93.45 39.39 57.39 68.76 78.12 48.15 66.82 87.80 47.01
(K+1)PC 96.49 9.42 62.97 65.73 78.63 32.60 42.94 99.95 27.52 53.48 94.26 34.70

UniEnt 87.40 64.02 54.86 92.99 40.36 56.42 68.84 74.26 48.41 66.93 87.96 46.09
TDA 89.82 52.24 55.46 95.04 30.76 59.51 72.05 71.83 49.19 69.12 87.36 49.06
DPE 39.05 98.88 33.66 84.29 76.13 52.20 63.74 82.75 45.74 65.61 90.67 46.36

ROSITA 97.04 11.01 62.06 96.26 20.99 59.25 70.37 77.00 48.68 69.57 83.61 48.80
+9.61 +53.18 +7.09 +3.28 +19.52 +2.83 +1.57 -2.65 +0.44 +2.64 +4.33 +2.74

6 Research Questions
1) How does ROSITA perform in comparison with prior methods in OSTTA setting?

We observe, from Table 1, 2, 3 that TPT and PAlign perform similar to ZSEval in most datasets, as the
prompts are reset after every single image update. On continuously updating prompts in TPT-C and
PAlign-C, we observe a reduction in HM compared to ZS-Eval. The effect is more severe with CLIP when
compared to MaPLe, as only the text prompts are updated keeping the vision encoder fixed (as also observed
in Section 4). (K+1)PC and UniEnt, where LayerNorm tuning is done, perform better than prompt tuning
methods. However, ROSITA, being equipped with a carefully designed objective to better discriminate
between samples from Cd and Cu samples (Figure 3), results in overall better metrics in general.

2) How does ROSITA perform in different real-world inspired OSTTA scenarios?

(a) Continuously changing domains: We sequentially present 15 corruptions from CIFAR-10C, which
form the domain Dd, alongside samples from four other datasets Du. We also experiment with Continuously
Changing Corruptions (CCC) (Press et al., 2023) benchmark where gradual domain changes are synthesized
across 15 corruptions of ImageNet-C as Dd and MNIST as Du and report the detailed results in Appendix D.1.
(b) Frequently changing domains: To further simulate more dynamic test environments, for CIFAR-
10C/MNIST, we reduce the number of samples per corruption to 100, 250, 500, and 1000 in the continuously
changing domain open-set TTA scenario. Reducing the sample count per corruption causes more frequent
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Table 5: Performance in different Open-set TTA scenarios.

(a) Continuously changing domains (b) Frequently changing domains (c) Varying ratio of Cd/Cu

Method CIFAR-10C CCC No. of samples per corruption Ratio
SVHN MNIST Tiny C-100C MNIST 100 200 500 1000 0.2 0.4 0.6 0.8

ZSEval 64.33 64.04 66.50 58.49 31.01 61.41 61.87 61.42 63.30 75.56 75.59 75.57 75.56
TPT 64.26 64.03 66.50 58.47 31.04 61.33 62.32 61.59 63.24 75.67 75.75 75.81 75.83

TPT-C 33.05 46.44 59.38 37.24 13.56 60.62 61.30 57.16 34.88 72.70 74.31 74.79 75.16
(K+1)PC 65.13 62.52 66.93 57.46 33.84 60.90 60.76 61.40 63.26 62.31 68.85 81.70 82.90

TDA 66.02 66.44 67.64 59.44 33.87 60.17 61.43 63.22 64.82 72.45 75.04 77.54 77.91
DPE 23.36 50.12 58.96 35.56 31.16 47.48 46.22 39.83 46.52 65.67 66.12 56.38 29.98

ROSITA 66.86 65.26 68.89 59.16 34.84 61.64 66.82 67.97 73.24 82.96 83.97 84.51 84.37

domain changes, increasing the challenge for adaptation. (c) Varying ratio of samples belonging to
classes Cd vs Cu: We simulate real-world scenarios using the CIFAR-10C/MNIST dataset by varying the
ratio of samples from the known classes Cd versus unknown classes Cu in the test stream by varying this
ratio as 0.2, 0.4, 0.6, and 0.8. From results in Table 5, we observe that ROSITA demonstrates consistent
superiority across all three open-set TTA scenarios, showcasing its capability to adapt effectively to both
continuously and frequently changing domains, as well as varying class distributions.

3) What is the importance of each loss component proposed in ROSITA?

Table 4: Ablation study on loss components.

LRe LD LU
CIFAR-10C/MNIST IN-R/MNIST

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑
✗ ✗ ✗ 91.91 85.04 75.57 91.27 91.09 71.5
✓ ✗ ✗ 95.29 30.82 80.97 81.07 99.02 64.32
✗ ✓ ✗ 95.23 28.91 79.71 87.73 94.67 67.28
✗ ✗ ✓ 98.61 12.73 79.84 99.39 4.81 80.82
✓ ✓ ✗ 96.23 22.73 79.24 76.78 99.22 62.54
✓ ✗ ✓ 98.69 12.06 82.98 99.34 4.67 82.98
✗ ✓ ✓ 99.27 4.15 80.69 99.48 4.40 81.92
✓ ✓ ✓ 99.10 7.63 84.17 99.44 4.29 83.53

From Table 4, we observe that only using LRe or
LD improves the metrics for CIFAR-10C dataset.
For ImageNet-R (IN-R) as Dd, using LRe or LD is
observed to increase FPR and decrease HM. IN-R
has 200 classes making it a more challenging and
confusing task compared to CIFAR-10C. This de-
crease in performance for IN-R can be attributed to
the misclassification of some samples from Cu as re-
liable desired class samples, increasing the confusion
between Cd and Cu classes. Using LU significantly
reduces the confusion between samples from Cd and
Cu, shown by the significant drop in FPR compared to ZSEval. The contrastive objectives LD and LU to
separate the two types of samples, in conjunction with LRe which aids to improve the |Cd|-way classification
of desired class samples, gives the overall best results.

4) What is the role of using reliable samples for OSTTA in ROSITA?
Table 6: Need for Reliable samples.

Thresholds Du: MNIST
τu/τt/τd C-10C C-100C IN-C IN-R VisDA
τt/τt/τt 84.99 55.16 44.05 83.28 91.24

µu/τt/µd 84.17 57.34 48.53 83.53 90.64

To understand the role of selecting reliable samples
for TTA, we do a simple experiment where we
only use the threshold τt to distinguish between Cd

and Cu samples. For all the samples with st > τt

identified to belong to Cd, we perform TTA using
LRe + LD (Equation 6). Similarly, we use LU (
Equation 7), for all samples identified to belong to
Cu based on the criterion st < τt. From the results in Table 6, we see that, for CIFAR-10C and VisDA, this
case performs slightly better than our case(last row in Table 6) where TTA is performed only on reliable
samples. CIFAR-10C and VisDA dataset have 10 and 12 classes of interest respectively. The zero shot
performance of these datasets being good, as the class confusion is less, using all samples for TTA can be
helpful. On the other hand, the classification in CIFAR-100C, ImageNet-C and ImageNet-R is harder, due
the inherent confusion arising due to the large number of classes. Using non reliable test samples, with scores
in the range µu < st < µd can adversely affect the adaptation process. Hence, using only reliable samples for
TTA performs better for these datasets as seen in Table 6). In a real world test-time adaptation scenario,
where we have no prior information about the difficulty of the classification task, in terms of severity of
domain shift and class confusion, it is desirable to only use reliable samples for model updates.
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Figure 3: Histograms of the scores st for ZS-Eval (a) and ROSITA (b) on CIFAR-10C/MNIST dataset. (c)
Change in scores for Cd and Cu class samples, the best threshold τt; (d) Accuracy metrics on samples seen
until time t. Samples from Cd and Cu separate better and the accuracy metrics improve with time.

5) How do the scores st and the performance of ROSITA vary with time?

We plot the scores st of samples from Cd and Cu over time, along with the threshold τt, in Figure 3c using
ROSITA. Initially, the scores of Cd and Cu overlap significantly (t < 2500), leading to unstable performance
as shown in Figure 3d. During this phase, the threshold τt tends to classify most Cu samples correctly,
resulting in high AccU but low AccD, as many desired class samples are incorrectly rejected. However, as the
ReDUCe loss progressively improves class separability, τt adapts to the evolving score distribution, enhancing
discrimination between Cd and Cu. This refinement stabilizes the model’s performance, yielding steady
improvements in AccD and AccHM for t > 2500. The instability observed for t < 1500 is attributed to the
initial learning process and the small sample size, as accuracy is measured on the cumulative number of
samples seen up to time t, which is exactly t in single image TTA.

6) How does ROSITA fare in terms of memory required?

Table 7: Memory overhead in ROSITA.
Dataset |Cd| No. of features Memory (in MB)

CIFAR-10C 10 5x10+64 0.758
VisDA 12 5x12+64 0.778

CIFAR-100C 100 5x100+64 1.679
ImageNet-R 200 5x200+64 2.703
ImageNet-C 1000 5x1000+64 10.89

Prompt tuning methods like TPT, PAlign do not
require any memory buffer. TDA requires a memory
buffer of size (|Cd|×(3+2))×F to store 3 features per
desired class in the positive cache and 2 features per
class in the negative cache. DPE requires a memory
buffer of size (|Cd| × 3) × F to store 3 features per
desired class. ROSITA requires a memory buffer of
size (|Cd| × K + |Mu|)×F for the two feature banks.
For a ViT-B16 (F = 512) model with ImageNet-C (|Cd| = 1000), the required memory buffer size is
5 × 1000 × 512 + 64 × 512 (10.89MB) from Table 7. The memory to store these features and computation
required to compute feature similarity is as lightweight as performing a forward pass through a simple linear
layer, demonstrating the memory and computational efficiency of ROSITA for real time applications.

7) How does ROSITA fare in terms of the GPU memory required and inference time?

0 5 10 15 20 25 30

C-10C

VisDA

C-100C

IN-R

IN-C

GPU Memory
0 0.2 0.4 0.6 0.8 1

C-10C

VisDA

C-100C

IN-R

IN-C

time(secs/img)

Figure 4: Complexity Analysis of different methods.

The GPU memory and time taken (secs/image) for
prompt tuning methods TPT scales with the num-
ber of classes, as more memory is required to store
the intermediate activations and gradients to back-
ward pass through the text encoder. On the other
hand, ROSITA requires two forward passes and one
backward pass through the vision encoder for re-
liable test samples. Figure 4 compares the GPU
memory and time complexity of ZS-Eval, TPT, and
ROSITA representative of training-free methods (ZS-
Eval, TDA), prompt-tuning (TPT/-C, PAlign/-C),
and LayerNorm-tuning((K+1)PC, UniEnt, ROSITA)
based methods in Figure 4. For e.g., for ImageNet-C
dataset with 1000 classes, ZSEval, TPT and ROSITA
require 5.71 GB, 23.24 GB and 5.73 GB GPU memory to perform a single image based model update. Thus,
ROSITA achieves computational efficiency comparable to training-free methods while being far more efficient
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than prompt-tuning approaches. Despite its minimal computational overhead, ROSITA offers substantial
performance gains, providing a balanced trade-off between efficiency and effectiveness for OSTTA scenarios.

8) What are the key factors distinguishing ROSITA from prior works?

1. Enhanced use of LDA Statistics to identify reliable samples: Apart from the threshold τt, ROSITA leverages
the score statistics µd and µu provided by the LDA class identifier, combined with the novel ReDUCe loss
function, to adapt the model. This synergy enhances the discriminability between desired (Cd) and undesired
(Cu) class samples, offering a clear advantage over baselines that use the same LDA identifier but fail to
exploit this additional information (Figure 3).

2. Bridging CNN and VLM-Based TTA insights: ROSITA integrates key insights from CNN-based TTA
methods such as normalization layer updates with vision-language models (VLMs) (Section 4). While simple
in hindsight, this baseline was overlooked in prior VLM-based TTA works (Shu et al., 2022; Karmanov et al.,
2024; Zhang et al., 2024). In this work, we attempt to highlight how these learnings can translate effectively
to VLMs, underscoring their utility as a foundational approach for TTA.

3. Holistic design for Open-set TTA: ROSITA introduces the ReDUCe loss to distinctly separate desired (Cd)
and undesired (Cu) class samples using compact feature banks. Although it is inspired by contrastive learning
frameworks (Chen et al., 2020; 2022), it is specifically designed for open-set TTA: (i) Reliable samples from
Cu use nearest Cu samples as negatives, and vice versa (ii) Unlike the Cd+1-way classification in (Li et al.,
2023), ROSITA forces Cd features to form distinct clusters and pushes Cu features away. (iii) The feature
banks are populated only with reliable samples, ensuring robust updates during adaptation. This approach
specifically mitigates the significant overlap of scores st between Cd and Cu in vision-language models, hence
reducing misclassification and boosting discriminability.

9) What are the limitations of ROSITA which can be addressed in future?

Although we follow the dataset choices in (K+1)PC Li et al. (2023), the first work on open-set TTA, we
acknowledge that using MNIST as undesired class samples may seem unrealistic for natural image scenarios.
However, even in this seemingly simple open-set scenario, our observations (Tables 2 3) show that CLIP
struggles to reject MNIST samples, with high FPR for most prior methods and significant overlap in similarity
scores between desired and undesired classes (Figure 3a). We have also conducted experiments using CIFAR-
10C as desired classes and CIFAR-100C as undesired ones, which consist of corrupted but semantically similar
images. While gains are less pronounced than in simpler settings like MNIST, our findings underscore the
core challenge of enabling VLMs to reliably say "I don’t know.". Additionally, ROSITA was not benchmarked
in standard TTA setting where there are no undesired class samples in the test stream. Future work could
explore a unified TTA framework that adapts effectively regardless of the nature of test-time samples.

Appendix. We present more detailed experimental analysis in the Appendix: C.1 Analysis on error
bars, C.2 Analysis of parameter K, C.3 Detailed analysis of ReDUCe Loss components, C.4 Comparison
of different Cd vs Cu Class identifiers for Open-set TTA, C.5 Extensive analysis on parameter choice for
continuous adaptation of VLMs, D Additional experiments demonstrating the generalizability of ROSITA to
more datasets, scenarios and VLM backbones, E Failure case analysis, F Broader impact concerns.

7 Conclusion
In this work, we address the challenging problem of Open-set Single-image Test-Time Adaptation
(OSTTA), where models must adapt continuously to shifting data distributions and distinguish between
known and unknown classes, all while processing test samples one at a time. To advance research in this area,
we establish a comprehensive benchmark for OSTTA using Vision-Language Models (VLMs), bridging the
gap between open-set recognition and sequential adaptation in dynamic environments. We propose ROSITA,
a novel framework specifically designed for OSTTA, overcoming the limitations of prior methods that assume
closed-set conditions or batch-wise test processing. ROSITA leverages two dynamically updated feature
banks to differentiate between desired and undesired class samples. At its core, the proposed ReDUCe loss
facilitates effective model adaptation by leveraging reliable samples while mitigating the negative influence of
undesired class samples. Extensive experiments across diverse domain adaptation benchmarks demonstrate
that ROSITA consistently outperforms prior methods, achieving good accuracy with computational efficiency.
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APPENDIX

A Gradient Analysis of the ReDUCe Loss

Here, we delve deeper into the ReDUCe loss function in ROSITA, breaking down its key components and
mathematically demonstrate why the proposed objective improves the separation of Cd and Cu samples.
We’ll focus on contrastive loss components LD and LU which are designed to improve discriminability.

ReDUCe loss in a nutshell. A test sample xt arrives at time t with feature representation ft. Two feature
banks, Mw and Ms store reliable sample features from Cd and Cu respectively. ReDUCe loss aims to pull the
test sample’s feature ft towards its positive samples z+, which are its K nearest neighbors Qd = kNN(ft; Md)
if it is a reliable Cd sample or Qu = kNN(ft; Mu) if it is a reliable Cu sample. The feature ft is pushed
away from its negative samples z−, which are the K nearest neighbors from the undesired feature bank Mu

if it is a reliable Cd sample or from the desired feature bank Md if it is a reliable Cu sample. The features
ft, z+, z− are all unit norm vectors. The key to understanding the behavior of the proposed loss is to analyze
its gradient.

Gradient of LD with respect to ft:

The contrastive loss for desired class samples LD is defined as:

LD = − 1
K+

∑
z+∈Qd

1(y+ = ŷt) log exp (sim (ft, z+) /τ)∑
z−∈Qu

exp(sim(ft, z−)/τ)

∂LD

∂ft
= − 1

K+

∑
z+∈Qd

1(y+ = ŷt)
∂

∂ft
log exp (sim (ft, z+) /τ)∑

z−∈Qu
exp(sim(ft, z−)/τ)

(11)

The loss is of the log-softmax structure. Consider gradient of the following term:

∂

∂ft
log exp (sim (ft, z+) /τ)∑

z−∈Q

exp(sim(ft, z−)/τ) = ∂

∂ft

(
sim (ft, z+)

τ

)
− ∂

∂ft
log

∑
z−∈Q

exp(sim(ft, z−)/τ)

The gradients of the two terms involved are
∂

∂ft

(
sim (ft, z+)

τ

)
= z+

τ

∂

∂ft
log

∑
z−∈Q

exp(sim(ft, z−)/τ) =

∑
z−∈Q

∂
∂ft

exp(sim(ft, z−)/τ)∑
z−∈Q

exp(sim(ft, z−)/τ)

= 1
τ

.

∑
z−∈Q

exp(sim(ft, z−)/τ)∑
z−∈Q

exp(sim(ft, z−)/τ)z−

= 1
τ

.
∑

z−∈Q

p(z−)z−

The final gradient of the log-softmax term is

∂

∂ft
log exp (sim (ft, z+) /τ)∑

z−∈Q

exp(sim(ft, z−)/τ) =

z+ −
∑

z−∈Q

p
(
z−)

z−



(12)

where p (z−)is the softmax probability of the negative samples defined as

15



Published in Transactions on Machine Learning Research (05/2025)

p
(
z−)

= exp (sim (ft, z−) /τ)∑
z′∈Q−

exp (sim (ft, z′) /τ)

Substituting Equation 12 in Equation 11, we get the gradient of the desired sample contrastive loss LD with
respect to ft as

∂LD

∂ft
= − 1

K+

∑
z+∈Qd

1(y+ = ŷt)

z+ −
∑

z−∈Qu

p
(
z−)

z−

 (13)

Gradient of LD with respect to ft:

The contrastive loss for desired class samples LD is defined as:

LU = − 1
K

∑
z+∈Qu

log exp (sim (ft, z+) /τ)∑
z−∈Qd

exp(sim(ft, z−)/τ)

∂LU

∂ft
= − 1

K+

∑
z+∈Qu

∂

∂ft
log exp (sim (ft, z+) /τ)∑

z−∈Qd

exp(sim(ft, z−)/τ)

(14)

Substituting Equation 12 in Equation 14, we get:

∂LU

∂ft
= − 1

K+

∑
z+∈Qu

z+ −
∑

z−∈Qd

p
(
z−)

z−

 (15)

Interpretation of the Gradients:

• Both the gradient terms in Equations 13 and 15 have two components: Positive term z+ and Negative
term p (z−) z−. The positives and negatives are suitably chosen from the desired and undesired
feature banks.

• Positive term z+: The term z+pulls the test feature ft closer to its feature vectors z+. This term
represents the attraction force that encourages Cd samples to cluster together in LD and Cu samples
to cluster together in LU .

• Negative term p (z−) z−: The negative samples z− exert a repulsive force, pushing ft away from
them. The strength of this repulsion is controlled by the softmax probabilities p (z−), where higher
similarity between ft and z−increases the repulsion force. This inherently models the degree of hard
negatives from the negative feature bank.

• The overall gradient update encourages ft to move closer to its positives while moving away from its
negatives, enhancing the separation between samples from Cd and Cu classes.
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B Baselines

B.1 Vision Language Models

CLIP (Radford et al., 2021) is a multimodal VLM consisting of two modules: Vision encoder and Text
encoder denoted as FV and FT respectively. During pre-training, the two modules are jointly trained in a
contrastive self-supervised fashion to align massive amounts of web scrapped image-text pairs. CLIP has
demonstrated impressive zero-shot performance across a wide variety of datasets.

MaPLe (Khattak et al., 2023) is a multimodal prompt learner model that simultaneously adapts both
vision and text encoders while fine-tuning CLIP for downstream tasks. They use learnable text prompts pT

and bridge the two modalities using visual prompts obtained as pV = Proj(pT ). Learnable tokens are also
introduced in deeper layers of both image and text encoders, enabling progressive feature adaptation.

B.2 Methods

ZSEval (Radford et al., 2021): Given a test image xt, the image feature is extracted from the vision encoder
as ft = FV (xt). For a C-class classification problem, the classifier is obtained by prepending a predefined text
prompt pT ="A photo of a", with the class names {c1, c2, . . . cC} to form class specific text inputs {pT , ci}
for i ∈ {1, . . . C}. These texts are then embedded through the text encoder as ti = FT ({pT ; ci}) to get the
text classifiers {t1, t2, . . . tC}. The class prediction is made by identifying the text feature ti which has the
highest similarity with the image feature ft.

TPT (Shu et al., 2022) aims to improve the zero shot generalization ability of CLIP by providing custom
adaptable context for each image. This is done by prepending learnable text prompts pT to the class names.
The text classifiers ti = FT ({pT ; ci}), i ∈ {1, 2, . . . C} are now a function of these learnable prompts, which
are specially adapted for each test image using an entropy minimization objective as arg minpT

Lent . The
entropy is obtained using the average score vector of the filtered augmented views.

PromptAlign (PAlign) (Samadh et al., 2023) leverages multimodal prompt learner model MaPLe (Khat-
tak et al., 2023) to facilitate the adaptation of both vision and language encoders for each test sample.
They align the token distributions of source and target domains, considering ImageNet as a proxy for
the source dataset of CLIP. The vision and language prompts of MaPLe are optimized with the objective
arg min{pV ,pT } Lent + Lalign for each sample xt.

TPT-C (Shu et al., 2022)/PAlign-C (Samadh et al., 2023): We adapt TPT and PAlign for continuous
model update, which we refer as TPT-C and PAlign-C respectively. The prompts {pT } and {pV , pT } in TPT
and PAlign are continuously updated with the test stream with their respective test objectives.

(K+1)PC (Li et al., 2023): This was the first work exploring open world TTA, however it was done in
the context of CNNs and not VLMs. Also, the test samples come in batches, while we perform single image
TTA. We adapt this method for our problem setting as follows: As we use VLMs, we use the text prototypes
(instead of the source prototypes). The prototype pool is dynamically updated by adding features of reliable
test samples recognized to belong to undesired classes. The vision encoder is updated using a (K+1) way
prototypical cross entropy loss.

TDA (Karmanov et al., 2024): TDA is a training-free dynamic adapter for TTA in vision-language
models, utilizing a lightweight key-value cache for efficient pseudo label refinement without backpropagation.

DPE (Zhang et al., 2024):DPE accumulates task-specific knowledge by dynamically evolving two sets
of prototypes, textual and visual, during test time. These prototypes are refined to capture increasingly
accurate multi-modal representations for target classes. To ensure consistency between modalities, DPE
incorporates learnable residuals for each test sample, aligning textual and visual prototypes for improved
representation alignment.

UniEnt (Gao et al., 2024): This is a very recent work addressing open-set TTA in the context of CNNs.
They use a Distribution Aware Filter (DAF) based on Gaussian Mixture Modeling of the scores to distinguish
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between desired and undesired class samples. They employ entropy minimization and entropy maximization
objectives for desired and undesired class samples respectively.

We equip all the baselines with the same LDA based Desired vs Undesired class identifier described in
Section 2.2 for fair comparison of the TTA methods for this problem.

B.3 Datasets

We experiment with diverse datasets encompassing corruption, style transfer and other common datasets.

CIFAR10-C (Hendrycks & Dietterich, 2019) is a small-scale corruption dataset of 10 classes with 15 common
corruption types. It consists of 10,000 images for each corruption.

CIFAR-100C (Hendrycks & Dietterich, 2019) is also a corruption dataset with 100 classes and 15 corruption
types. It also consists of 10,000 images for each corruption.

ImageNet-C (Hendrycks & Dietterich, 2019) is a large-scale corruption dataset spanning 1000 categories
with a total of 50,000 images. 15 types of corruption images are synthesized from these 50,000 images.

ImageNet-R (Hendrycks et al., 2021) is a realistic style transfer dataset encompassing interpretations of
200 ImageNet classes, amounting to a total of 30,000 images.

VisDA (Peng et al., 2017) is a synthetic-to-real large-scale dataset, comprising of 152,397 synthetic training
images and 55,388 real testing images across 12 categories.

DomainNet (Peng et al., 2019) is a large-scale domain adaptation dataset. We use the Clipart, Painting
and Sketch domains with 345 categories from the DomainNet dataset for our experiments.

CCC Press et al. (2023) is a benchmark designed to assess long-term continual TTA behavior in a changing
world, covering scenarios such as weather changing from foggy to rainy, day to night.

MNIST (LeCun et al., 1998) is a dataset of handwritten images consisting of 60,000 training and 10,000
testing images.

SVHN (Netzer et al., 2011) is also a digits dataset with house numbers captured from real streets. It consists
of 50,000 training images and 10,000 testing images.

We perform experiments on eight domains Dd for desired class samples. The corresponding Du are chosen
such that there is no overlap between the classes Cd and Cu as described in Table 8. The 15 corruptions
of CIFAR-10C/100C and ImageNet-C fall into four categories: synthetic weather effects, per-pixel noise,
blurring, and digital transforms. snow corruption is a synthesized weather effect on which all the main
experiments of CIFAR-10C, CIFAR-100C and ImageNet-C are done. To evaluate the robustness of our
method across different corruption types, we do additional experiments with impulse noise , motion blur and
jpeg compression corruptions from the categories per-pixel noise, blurring and digital transforms respectively
and report the results in Section D.4.

Table 8: Details of desired and undesired class dataset combinations

Datasets # images
Dd Du Dd Du Total

CIFAR-10C MNIST, SVHN, Tiny ImageNet, CIFAR-100C 10000 10000 20000
CIFAR-100C MNIST, SVHN, Tiny ImageNet, CIFAR-10C 10000 10000 20000
ImageNet-C MNIST, SVHN 50000 50000 100000
ImageNet-R MNIST, SVHN 30000 30000 60000

VisDA MNIST, SVHN 50000 50000 100000
Clipart MNIST, SVHN 29208 29208 58416

Painting MNIST, SVHN 43700 43700 87400
Sketch MNIST, SVHN 41832 41832 83664
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B.4 Implementation Details

Here, we describe the parameters chosen for all the baseline methods and our proposed method.

TPT (Shu et al., 2022): The prompt is initialized with the default A photo of a text. The corresponding
4 tokens in the input text embedding space are optimized for each test image. The prompt is reset after
each update. A single test image is augmented 63 times using random resized crops to create a batch of 64
images. The confident samples with 10% lowest entropy are selected. The test time loss is the entropy of the
averaged prediction of the selected confident samples. AdamW optimizer with a learning rate of 5e−4 is used,
following (Shu et al., 2022).
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Figure 5: Performance of TPT-C and PAlign-C for
CIFAR-10C/MNIST with AdamW and SGD opti-
mizer on varying learning rates.

PAlign (Samadh et al., 2023): Following Promp-
tAlign (Samadh et al., 2023), MaPLe (Khattak et al.,
2023) model trained on ImageNet using 16-shot train-
ing data with 2 prompt tokens for a depth of 3 layers
is used. The prompts on both the text and vision en-
coders are optimized on a single test image. Similar to
TPT, 10% of 64 augmentations are selected to compute
the entropy loss. The token distribution loss to align
the token statistics of test with that of source data is
computed for all 64 images. AdamW optimizer with
a learning rate of 5e−4 to update the prompts for each
image, following (Samadh et al., 2023). The prompts
are reset to the ImageNet trained prompts after each
update.

TPT-C (Shu et al., 2022)/ PAlign-C (Samadh
et al., 2023): We create the continuous prompt up-
date versions of TPT and PAlign as TPT-C and PAlign-
C respectively. The only difference is that the prompts
are continuously updated using the test stream of sam-
ples. If a sample is detected as reliable Cd sample, the
respective test time objectives are used to update the prompts. For this purpose, we vary the learning rate
and optimizer to select the best optimizer for continuous prompt update. On performing experiments on
CIFAR-10C/MNIST data, from Figure 5, we observe that SGD optimizer with learning rate 10−5 works the
best for continuous prompt update and hence we use this for all the experiments of TPT-C and PAlign-C.

(K+1)PC (Li et al., 2023): The vision encoder is updated using a (K+1) way prototypical cross entropy
loss . The prototypes are updated using the test stream of samples. The learning rate is set to 0.001.

TDA (Karmanov et al., 2024): We use τt from the LDA based Cd vs Cu identifier to recognise the desired
and undesired class samples. Following (Karmanov et al., 2024), we set the shot capacity to 3 and the
number of key-value caches is Cd as we use the adapter only for desired class samples.

DPE (Zhang et al., 2024): We use the same LDA based Cd vs Cu identifier to recognise the desired and
undesired class samples. We use the same hyperparameters presented in (Zhang et al., 2024). A priority
queue storing 3 visual features per class is used. The text and visual prototype residuals are updated with a
learning rate of 0.0006 using AdamW optimizer.

UniEnt (Gao et al., 2024): We use the UniEnt objective in combination with LDA based class indentifier.
The entropy minimization and maximization objectives are used for desired and undesired class samples
respectively. The LayerNorm parameters are updated with a learning rate of 0.001 using SGD optimizer.

ROSITA: We use SGD optimizer with a learning rate of 0.001 to update the LayerNorm affine parameters
of the Vision encoder. We set the size of score bank S to 512, number of neighbours K to 5 and the size of
Mu is set to to 64.

19



Published in Transactions on Machine Learning Research (05/2025)

C Additional Analysis

In this section, in addition to the analysis done in Section 6, we study the robustness of the proposed method
ROSITA more extensively, in the terms of (1) Error bars on different test data streams, (2) Role of the
parameter K, the number of neighbours, (3) Analysis of the scores st on using different combinations of the
proposed loss components, (4) Comparison of different Cd vs Cu Class identifiers for Open-set TTA.

C.1 Analysis on error bars

To study the robustness of our method for differently ordered test streams, we run ROSITA with five random
seeds and report the Mean and Standard deviation of the AccHM in Table 9 for CIFAR-10C/100C as Dd

and MNIST, SVHN, Tiny ImageNet, CIFAR-100C/10C as Du (corresponding to our results in Table 3 in
the main paper). We observe that the variance in the performance of ROSITA is very low, reinforcing the
robustness of the proposed method for different shuffled datasets and augmentations created.

Table 9: Performance (Mean and Standard deviation of AccHM ) of ROSITA across
5 random seeds for CIFAR-10/100C as Dd with 4 other datasets as Du.

Dd\Du MNIST SVHN Tiny CIFAR-100/10C
CIFAR-10C 84.07 ± 0.023 78.90 ± 0.038 80.10 ± 0.014 69.44 ± 0.018
CIFAR-100C 57.09 ± 0.041 47.90 ± 0.047 55.95 ± 0.051 48.10 ± 0.024

C.2 Analysis on parameter K

Table 10: Performance (AccHM ) on varying K with MNIST as Du.

Dd |Cd
K

0 1 3 5 7 9
CIFAR-10C 10 80.97 83.9 84.32 84.17 84.10 84.02
ImageNet-R 200 64.32 83.65 83.87 83.53 83.39 83.42
ImageNet-C 1000 42.05 48.35 47.17 48.53 48.37 47.73

We vary the hyperparameter K which represents the number of positives and negatives chosen in Equation 6
and 7 and report the results (AccHM ) in Table 10. The size of the feature bank Md is set as Nd = K × Cd.
Nd increases with the number of classes as well as the number of neighbours K. We set K to be 5 in all
main results reported, which corresponds to feature bank size Nd of 50, 1000, 5000 respectively for the
datasets CIFAR-10C, ImageNet-R and ImageNet-C respectively. In Table 10, we use the notation K = 0 to
correspond to the case where only the reliable pseudo label loss LRe is used. The results show that even
with K = 1, there is a significant improvement in AccHM when compared to the case where LD, LU is not
used (K = 0). On further increasing K, we observe improvement only for the CIFAR-10C as Dd, but the
performance is similar for ImageNet-R and ImageNet-C for higher values of K as well. Further, we investigate
this observation that the performance of ROSITA is similar on significantly varying K or the feature bank
size. For K = 5, we check the average number of positives actually selected for LD in Equation 6. for each of
these datasets. We find this to be 4.1, 2.5 and 1.5 for CIFAR-10C, ImageNet-R and ImageNet-C respectively.
This agrees with the results in Table 10, where K of 3, 5 works better compared to 1 as more neighbours have
common pseudo label, aiding the clustering of classes of interest. For CIFAR-10C and ImageNet-R, using
K < 5 suffices and for ImageNet-C as only 1-2 neighbours are matched for majority of reliable desired class
samples, setting K = 1 suffices. For practical purposes, this observation suggests that the buffer size for Md

can indeed be reduced based on storage budget available depending on the application and device the model
is deployed on. For e.g., if the memory budget available can store only upto 1000 features, K can be set
flexibly depending on the number of classes of interest. For ImageNet-C with 1000 classes, K can be set to 1.
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C.3 Detailed analysis of ReDUCe Loss components

We provide detailed results of Table 4, including all the five metrics in Table 11. Additionally, we visualise
the histograms of the scores st on using different combinations of the loss components of ReDUCe Loss in
the Figures 6, 7, justifying their role in better discrimination of samples from Cd and Cu.

Table 11: Detailed performance metrics analysing the ReDUCE Loss components.

LRe LD LU
CIFAR-10C/MNIST ImageNet-R/MNIST

AUC FPR AccD AccU AccHM AUC FPR AccD AccU AccHM

✗ ✗ ✗ 91.91 85.04 60.82 99.77 75.57 91.27 91.09 55.67 99.90 71.50
✓ ✗ ✗ 95.29 30.82 68.36 99.30 80.97 81.07 99.02 48.42 95.76 64.32
✗ ✓ ✗ 95.23 28.91 66.93 98.52 79.71 87.73 94.67 51.13 98.34 67.28
✗ ✗ ✓ 98.61 12.73 66.60 99.68 79.84 99.39 4.81 67.81 99.99 80.82
✗ ✓ ✓ 99.27 4.15 67.76 99.73 80.69 99.48 4.40 69.38 99.98 81.92
✓ ✓ ✓ 99.10 7.63 72.81 99.74 84.17 99.44 4.29 71.73 99.98 83.53
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Figure 6: Histograms of Cd and Cu class scores for ZS-Eval and on using different loss components of the
proposed ReDUCe loss on CIFAR-10C/MNIST dataset with CLIP.
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Figure 7: Histograms of Cd and Cu class scores for ZS-Eval and on using different loss components of the
proposed ReDUCe loss on ImageNet-R/MNIST dataset with CLIP.

From Figure 6 and 7, we observe that, on using just LRe, the scores of Cd and Cu classes still sufficiently
overlap, similar to the case of ZSEval. The performance purely depends on the quality of pseudo labels of
the detected reliable desired class samples. In CIFAR-10C, as there are only 10 classes and given that the
performance of ZSEval in CIFAR-10C is fairly good, it ensures good quality pseudo-labels, hence resulting
in overall better metrics even using LRe as shown in Table 11. ImageNet-R dataset inherently has more
confusion as it is a 200-way classification problem. This naturally could result in lower quality pseudo-labels,
in turn degrading the performance compared to ZSEval. In addition, using LRe for desired class samples that
are misclassified as undesired class samples increases the FPR and results in a decrease in overall metrics
compared to ZSEval. However, using LD and LU separates the scores st of the samples from Cd and Cu,
resulting in two distinct peaks as seen in Figure 6 and 7, which in turn results in a significantly low FPR as
reported in Table 11. Hence, the best results (Table 11) are obtained using the proposed ReDUCe loss, where
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all the loss components help each other to better discriminate the desired classes Cd from Cu (measured by
AUC, FPR) and also improving the Cd-way accuracy (AccD) on desired classes.

Effect of ReDUCe loss in representation space: Contrastive learning through ReDUCe loss influences
the representation space by enhancing feature separability, improving the discriminability of desired vs.
undesired classes. In addition to the accuracy metrics presented, here we compute the inter-feature
distance between desired (Cd) and undesired (Cu) class features through the following distance metrics:

(a) Mean Pairwise Distance is a simple but effective way is to compute the pairwise Euclidean or cosine
distance between all Cd and Cu samples and then take the mean:

dEuclidean = 1
|Fd||Fu|

∑
fd∈Fd

∑
fu∈Fu

∥fd − fu∥2; dCosine = 1 − 1
|Fd||Fu|

∑
fd∈Fd

∑
fu∈Fu

fd · fu

∥fd∥∥fu∥
(16)

where Fd and Fu are the feature banks for desired and undesired class samples, respectively.

(b) Wasserstein Distance (Optimal Transport) measures the optimal transport cost between the two
feature distributions, making it ideal for comparing feature distributions of desired (Cd) and undesired (Cu)
classes.

dWasserstein = inf
γ∈Π(Fd,Fu)

E(fd,fu)∼γ [∥fd − fu∥] (17)

Table 12: Inter-feature distance measures for ZSEval and ROSITA using CIFAR-10C as Dd.

Du Method Euclidean (↑) Cosine (↑) Wasserstein (↑)

MNIST ZSEval 0.5831 0.1731 0.5553
ROSITA 1.2970 0.8623 1.2708

SVHN ZSEval 0.6963 0.2456 0.6535
ROSITA 1.0785 0.5918 1.0265

TinyImageNet ZSEval 0.7522 0.2860 0.6583
ROSITA 0.9939 0.4994 0.8852

CIFAR-100C ZSEval 0.5587 0.1598 0.4265
ROSITA 0.8194 0.3411 0.6594

The results clearly show that ROSITA improves feature separability across all metrics compared to ZSEval,
reinforcing its effectiveness in refining the representation space for open-set recognition. The degree of
separation varies with task difficulty for MNIST, the distances increase significantly, while for CIFAR-100C,
the improvement is smaller. This aligns with intuition, as distinguishing between CIFAR-10C and CIFAR-
100C is inherently more challenging than separating CIFAR-10C from MNIST. The quantitative results
validate that contrastive adaptation enhances representation learning, but the extent of improvement depends
on the complexity of the undesired dataset.

C.4 Comparison of different Cd vs Cu Class identifiers for Open-set TTA

To study the role of the Cd vs Cu class identifiers in Open-set Single Image TTA, we experiment with three
class identifiers, on five datasets as Dd with MNIST as Du using CLIP backbone.

(1) Simple thresholding based on Maximum Softmax Probability(MSP): We set fixed thresholds
τu, τd to identify reliable samples from Cd and Cu classes respectively and τt to distinguish between Cd and
Cu samples. We combine this class identifier with the ReDUCe loss of the proposed ROSITA framework.

(2) Distribution Aware Filter (DAF) (Gao et al., 2024) : We adopt the Distribution Aware Filter
proposed in UniEnt (Gao et al., 2024), a very recent method on open-set TTA using CNNs, where they

22



Published in Transactions on Machine Learning Research (05/2025)

model the scores st (similarity between image feature and source prototype) as a Gaussian Mixture Model for
each batch. In our case, as we do single image TTA, we use a score bank as described in Section 2.2 as a
proxy for the batch of samples, to estimate the parameters of the GMM. As it is a 2-component GMM, we
identify a sample as a desired class sample if the probability π(xt) of the sample belonging to the desired
classes(component with higher mean estimated) is greater than 0.5 or vice versa. The GMM based class
identifier is defined as follows:

ŷ =
{

∈ Cd if π(xt) ≥ 0.5
∈ Cu if π(xt) < 0.5

(18)

We combine this class identifier with the Unified entropy objective and ReDUCe loss proposed by UniEnt (Gao
et al., 2024) and our proposed ROSITA framework respectively.

(2) Linear Discriminant Analysis (LDA) based (Li et al., 2023) : As described in Section 2.2, we set
τd to µd and τu to µu to identify reliable Cd and Cu samples to perform TTA. We set τt to µu to distinguish
between Cd and Cu samples. The thresholds are estimated in an online manner using the score bank S. The
LDA based class identifier is defined as follows:

ŷ =
{

∈ Cd if st ≥ τ∗
t

∈ Cu if st < τ∗
t

(19)

We combine this class identifier with the Unified entropy objective and ReDUCe loss proposed by UniEnt (Gao
et al., 2024) and our proposed ROSITA framework respectively. The three thresholds for ReDUCe loss in
Table 13 correspond to τu/τt/τd where τu and τd is used to identify reliable test samples and τt is used to
distinguish between Cd and Cu samples. In the case of DAF with ReDUCe loss, we use the means µ∗

d and µ∗
for the two gaussian mixture components to identify reliable samples.

Table 13: Comparison of Cd vs Cu class identifiers: MSP vs DAF vs LDA. The three thresholds for ReDUCe
loss correspond to τu/τt/τd where τu and τd is used to identify reliable test samples and τt is used to distinguish
between Cd and Cu samples. In the case of DAF with ReDUCe loss, we use the estimated means µ∗

d and µ∗
u

of the two Gaussian mixture components to identify reliable samples.

Cd vs Cs Threshold Test-time Du: MNIST
objective C-10C C-100C IN-C IN-R VisDA

MSP
0.4/0.6/0.8

ReDUCe
43.44 34.42 1.20 77.12 88.49

0.3/0.5/0.7 33.70 32.60 1.74 80.29 50.87
0.5/0.5/0.5 22.82 37.41 1.91 30.90 32.31

LDA st > τt UniEnt 75.62 48.31 41.53 71.73 78.09
DAF π(xt) > 0.5 79.43 50.12 46.52 79.30 86.79
LDA µu/τt/µd ReDUCe 84.17 57.34 48.53 83.53 90.64
DAF µ∗

u/0.5/µ∗
d 83.56 55.37 48.33 83.32 90.97

Our key observations based on the results in Table 13 are as follows:

Fixed vs Dynamic Thresholds: The performance of both, DAF and LDA based class identifier is
significantly better than the simple thresholding case on adaptation using ReDUCe loss. The thresholds
estimated in an online manner using the score bank S are more reliable than fixed thresholds. The DAF
and LDA-based class identifier is able to better discriminate between Cd and Cu samples, resulting in better
performance.

UniEnt vs ReDUCe loss: The performance on using ReDUCe loss (with either DAF or LDA class identifier)
is significantly better than using the Unified entropy objective proposed in UniEnt (Gao et al., 2024). The
ReDUCe loss components aid each other to better discriminate the desired classes Cd from Cu (measured by
AUC, FPR) and also improve the Cd-way accuracy (AccD) on desired classes.
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LDA vs DAF with ReDUCe loss: The performance of LDA and DAF based class identifier perform very
similarly when used in combination with ReDUCe loss. This suggests that ReDUCe loss in ROSITA is robust
to the choice of a dynamically updating class identifier.

Why is ReDUCe loss better than Unified entropy objective for Open-set TTA of VLMs?

• Both LDA (Li et al., 2023) and DAF (Gao et al., 2024) were proposed for CNN based open-set
TTA where a source model is trained on say clean data and is adapted to new domains, with the
observation that the feature-prototype similarity scores st can distinguish desired and undesired class
samples. In the case of VLMs, the source model is trained on a large scale dataset and is adapted to
potentially unseen/corrupted/covariate-shifted data. The prior that the feature-prototype similarity
scores st can distinguish desired and undesired class samples does not translate to VLMs as the scores
overlap significantly, as observed in ZSEval histogram plots in Figures 6 and 7.

• In the case of CNNs, where the the initial scores are well separated and model has access to a batch
of test samples at a time, UniEnt leverages this to further aid the separation of desired and undesired
class samples in the batch through the UniEnt objective. In the case of VLMs, the scores are not
well separated initially. This results in the means µd and µu in the case of LDA to be very close
leading to misclassification of Cd and Cu class samples using the estimated threshold τt. Similarly,
in the case of DAF, the two components of GMM would not be very distinctive to well distinguish
desired and undesired class samples. This misclassification can result in entropy minimization being
applied on Cu samples and entropy maximization on Cd samples, which is undesirable. Employing
UniEnt objective with several misclassified samples may not actually separate desired and undesired
classes, as also empirically observed in Tables 1 2 3 (UniEnt has high FPR rate in general). Entropy
maximization of Cu samples does not explicitly enforce the separation of desired and undesired class
samples in the feature space.

• The LD and LU loss components of ReDUCe loss explicitly enforce the separation desired and
undesired class samples in the common VL latent space, while the LRe loss aims to only align the
desired class samples to align with the text prototypes. With time, the model is adapted such that
undesired class samples are away from the desired class samples and also the text prototypes. This
ReDUCe loss addresses the challenges in single image open-set TTA in a holistic manner, resulting
in better performance.

• On adopting UniEnt objective to single-image TTA, either entropy minimization or maximization
loss would be active based on whether a test sample is identified as desired or undesired class sample,
which is a limitation, as the objective cannot enforce distinction between the two types of features.

• In the case of CNNs, where the the initial scores are well separated and model has access to a batch
of test samples at a time, UniEnt leverages this to further aid the separation of desired and undesired
class samples in the batch through the UniEnt objective. In the case of VLMs, the scores are not
well separated initially, hence the ReDUCe loss components (with the help of feature banks) acts as
the driving force to better separate the desired and undesired class samples in the common latent
space, resulting in lower FPR rates as a consequence.

C.5 Extensive analysis on parameter choice for continuous adaptation of VLMs

Our initial experiments showed that updating LayerNorm parameters with simple entropy objective can
effectively improve closed-set TTA performance. We illustrate this in Section 4 on CIFAR-10C dataset.
Further, to justify our choice of updating LayerNorm parameters, we present the detailed experiments we
conducted based on the following choices: (a) Learnable parameters: (1) Prompts, (2) Full network, (3)
First Attention Block of ViT, (4) Last Attention Block of ViT, (5) Prompts+LayerNorm(LN), (6)LoRA
Adapters (Imam et al., 2024), (6) LayerNorm parameters (Zhao et al., 2023) (b) Datasets: In addition to
CIFAR-10C (Section 4), we experiment with ImageNet-R, a relatively large scale dataset consisting of 30,000
images from 200 classes. (c) Optimizer: Along with SGD, we experiment with AdamW optimizer also used
in [1], with varying learning rates on both CIFAR-10C and ImageNet-R dataset.
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Table 14: Accuracy on updating different parameter groups on CIFAR-10C and ImageNet-R datasets.

Optimizer Parameters CIFAR-10C ImageNet-R
1e−6 1e−5 1e−4 1e−3 1e−2 1e−6 1e−5 1e−4 1e−3 1e−2

SGD

Prompts 73.40 31.04 12.53 11.18 10.19 73.97 74.17 74.71 25.68 10.63
Full 10.48 10.44 9.99 10.00 10.01 14.18 7.19 0.65 0.65 0.42

First Block 75.1 76.12 78.27 13.07 10.01 73.84 74.31 74.91 8.76 0.32
Last Block 73.45 72.42 59.44 10.17 10.02 75.95 77.93 24.82 0.52 0.67

Prompts+LN 73.82 46.77 24.71 10.24 10.18 73.76 75.09 76.35 28.72 11.74
LoRA Adapters 73.86 73.90 75.42 83.15 12.58 73.51 73.57 74.22 77.39 34.83

LayerNorm 74.35 76.61 80.41 84.58 11.69 74.13 74.35 75.23 76.92 33.07

AdamW

Prompts 72.40 18.6 12.83 10.04 10.08 74.4 75.17 27.93 6.82 4.37
Full 10.32 10.03 10.00 10.00 9.97 14.83 0.95 0.28 0.52 0.66

First Block 79.05 24.70 10.84 10.00 10.00 74.6 74.8 5.68 0.26 0.15
Last Block 59.23 10.84 10.49 10.00 10.01 77.44 10.67 0.51 0.25 0.33

Prompts+LN 75.01 72.10 21.92 13.33 10.01 74.52 76.45 12.99 8.87 5.55
LoRA Adapters 77.64 81.55 14.01 10.25 10.02 74.34 76.14 18.63 2.26 0.62

LayerNorm 76.10 81.57 85.9 85.27 10.03 73.96 75.64 78.28 78.81 31.47

LoRA Adapters for Model adaptation:

Following Imam et al. (2024), we employ LoRA adapters with rank 16 for multi-head self-attention layers in
the vision encoder. We also vary its rank to study its sensitivity (Table 15).

Table 15: Change in HM, number of parameters for varying rank of LoRA adapters vs. LayerNorm.

LoRA rank 2 4 8 16 LayerNorm
HM (↑) 27.49 34.08 79.24 83.15 84.58
Additional params (↓) 110,592 221,184 442,368 884,736 0
Learnable params (↓) 110,592 221,184 442,368 884,736 39,936

(a) Sensitivity to Learning Rate: As observed in Tables 14 and 15, LoRA-based adaptation can be
effective when an appropriate learning rate is chosen. For instance, it performs well at 1e−3 with SGD and
1e−5 with AdamW. While it may require some tuning to achieve optimal performance, LoRA remains a viable
option for test-time adaptation under the right hyperparameter settings.

(b) Increased Model Complexity: Unlike LayerNorm tuning, which does not introduce additional
parameters, LoRA requires the addition of adapter modules during deployment. As shown in Table 15, the
number of additional parameters scales with the rank of the LoRA adapter, increasing from 110K (rank=2)
to 884K (rank=16). This added complexity can be a concern for lightweight real-time adaptation settings,
especially in resource-constrained environments. A key distinction between using LoRA for training-time
finetuning and test-time adaptation is that in the former, LoRA weights can be merged with the base model
post-training, effectively eliminating the additional parameter overhead. However, in TTA, adaptation is a
continuous process, meaning that the additional parameters cannot be merged with the backbone model.
This makes LoRA-based adaptation more computationally and memory-intensive compared to LayerNorm
tuning, which operates within the existing model structure.

(c) Sensitivity to Rank Selection: As seen in Table r8 above, the performance of LoRA is highly
dependent on the rank selection. Lower-rank configurations (e.g., rank=2, 4) lead to poor adaptation, whereas
higher-rank settings (e.g., rank=16) perform significantly better but at the cost of increased parameter
overhead. This trade-off introduces another hyperparameter that must be carefully tuned.

While LoRA-based adaptation has been explored in recent works, our findings suggest that LayerNorm tuning
remains a more efficient and robust choice for OSTTA due to its stability across learning rates, no additional
parameter overhead, and suitability for continuous adaptation without requiring explicit rank selection.
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D Additional Experiments

In addition to the results presented in the main paper, we perform additional experiments supporting the
claims made and for more comprehensive understanding of the analysis presented in Section 6.
D.1 Open Set Single Image CTTA Experiments

In addition to the Open-set CTTA experiments done on CIFAR-10C as desired class dataset, here we also
experiment with CIFAR-100C as desired class dataset. We present the 15 corruptions of CIFAR-10C/CIFAR-
100C sequentially as Dd, one sample at a time along with different datasets for Cu samples, namely MNIST,
SVHN, Tiny ImageNet, CIFAR-10C/CIFAR-100C and report the results in Table 16. We observe that the
improvement in performance of ROSITA is agnostic to open-set scenarios including different combinations of
Dd (continuously changing domains) and Du datasets.

Table 16: Open-set CTTA performance for CIFAR-10C and CIFAR-100C as desired datasets.

Method CIFAR-10C CIFAR-100C
SVHN MNIST Tiny C-100C MNIST SVHN Tiny C-10C

ZSEval 64.33 64.04 66.50 58.49 39.00 36.29 38.41 35.04
TPT 64.26 64.03 66.50 58.47 39.00 36.24 38.38 34.45
(K+1)PC 65.13 62.52 66.93 57.46 40.64 37.05 38.23 34.55
TDA 66.02 66.44 67.64 59.44 40.49 40.35 39.92 35.42
DPE 23.36 50.12 58.96 35.56 30.75 19.23 35.85 27.62
ROSITA 66.86 65.26 68.89 59.16 41.64 38.02 40.44 36.05

D.1.1 Performance on Open-set Continuously Changing Corruptions Benchmark

Table 17: Results on open-set CCC benchmark.

Method CCC/MNIST

AUC ↑ FPR ↓ AccD ↑ AccU ↑ AccHM ↑

ZS-Eval 88.45 88.24 18.37 99.53 31.01
(K+1)PC 95.82 20.16 20.37 99.97 33.84

TDA 87.42 85.83 20.42 99.35 33.87
UniEnt 89.90 82.86 18.99 99.62 31.90

DPE 84.68 87.56 18.47 99.40 31.16

ROSITA 96.02 19.96 21.14 99.11 34.84

CCC benchmark (Press et al., 2023) was specifically
introduced to assess the long-term continual adapta-
tion behavior of TTA methods in a changing world,
covering scenarios such as weather changing from
foggy to rainy, day to night. We experiment with
the CCC dataset where gradual domain changes are
synthesized across 15 corruptions of ImageNet-C as
Dd and MNIST as Du for a sequence length of 300k
samples. From Table 17, we observe that ROSITA
consistently outperforms prior methods even in this
challenging CCC dataset.

D.2 Varying OOD ratio

Table 18: Varying ratio for ImageNet-R/MNIST.

Method 0.2 0.4 0.6 0.8

ZS-Eval 65.46 67.13 69.25 70.77
TPT 65.67 67.73 70.12 71.54

TPT-C 64.83 64.55 48.97 63.86
(K+1)PC 78.09 81.08 81.35 82.61

TDA 67.90 71.33 71.54 71.47
DPE 66.89 68.47 69.72 70.87

ROSITA 82.22 83.32 83.59 83.84

In addition to the results presented in Table 5, we
perform experiments varying the OOD ratio using
ImageNet-R as desired class dataset which is a rela-
tively large scale dataset with 50,000 images from 200
classes. We use MNIST as undesired class dataset
and vary the ratio of number of samples belonging to
ImageNet-R and MNIST as 0.2, 0.4, 0.6, 0.8. From
Table 5 and Table 18, we observe consistent improve-
ments of ROSITA across datasets compared to the
prior methods.
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D.3 Performance of ROSITA on large Vision Language backbones

Here, in addition to CLIP ViT-B/16 (Radford et al., 2021) and MAPLE (Khattak et al., 2023) backbones,
we perform experiments using large-scale Vision language backbones including CLIP ViT-L/14 by Ope-
nAI (Radford et al., 2021) and Open-CLIP ViT-L/14 (Cherti et al., 2023) with CIFAR-10C/100C as Dd

and MNIST, SVHN, Tiny-ImageNet and CIFAR-100C/10C as Du. From Table 19, we observe that ROSITA
consistently outperforms even very recent baselines like (K+1)PC (Li et al., 2023), TDA (Karmanov et al.,
2024), suggesting that the performance of ROSITA is agnostic to the choice of VL backbone.

Table 19: Comparison of ROSITA with prior methods on large scale Vision Language backbones.

VL Backbone Method CIFAR-10C CIFAR-100C
MNIST SVHN Tiny C-100C MNIST SVHN Tiny C-10C

ZSEval 83.94 74.54 80.16 72.32 56.29 52.35 53.25 49.89
CLIP (K+1)PC 85.43 80.60 81.65 71.90 64.14 55.18 54.53 47.90

ViT-L/14 TDA 84.91 76.87 81.07 74.23 59.11 55.25 55.44 52.48
ROSITA 89.46 83.42 83.61 75.63 65.41 60.31 57.55 54.66
ZSEval 80.64 76.90 84.10 75.40 62.96 59.38 61.10 59.57

Open-CLIP (K+1)PC 85.84 82.42 84.99 75.70 70.14 63.36 60.56 59.43
ViT-L/14 TDA 80.57 77.92 84.60 75.79 64.90 60.70 62.01 61.20

ROSITA 89.04 82.98 85.55 76.62 70.54 63.84 62.57 61.84

D.4 Experiments using different corruption types

To evaluate the robustness of our method across different domains, we do additional experiments with impulse
noise , motion blur and jpeg compression corruptions from the corruption categories per-pixel noise, blurring
and digital transforms respectively and report the results here. From Table 20, Table 21 and Table 22, we
observe that ROSITA either outperforms or at par with prior methods in most cases even on using the same
set of hyperparameters. This demonstrates its robustness across a variety of corruption types.

Table 20: Results on CIFAR-10C/100C (Impulse Noise) as Dd with other Du.

Method MNIST SVHN Tiny-ImageNet CIFAR-100C/10-C

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑
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ZS-Eval 86.34 97.77 57.67 84.40 79.43 56.80 88.97 31.86 61.11 78.61 67.88 54.40
TPT 86.35 97.83 59.80 84.43 79.52 58.97 88.96 31.99 64.48 78.60 68.24 56.38

TPT-C 62.34 87.66 39.90 59.71 83.29 35.42 81.30 38.59 37.02 66.22 89.92 30.86

ROSITA 98.87 9.43 71.31 82.85 56.82 61.03 93.36 21.47 64.47 78.69 69.45 57.87

M
A

P
LE

ZS-Eval 91.10 76.09 64.01 92.98 45.28 63.66 83.77 44.44 60.93 79.22 65.26 57.49
PAlign 91.10 76.01 65.76 93.00 45.13 65.28 83.78 44.42 62.75 79.22 65.24 58.80

PAlign-C 92.43 63.39 63.61 92.92 45.86 64.50 83.36 45.74 60.83 79.30 64.47 57.00

ROSITA 98.80 6.10 71.79 95.39 28.06 72.13 84.92 45.35 65.30 80.49 65.57 61.63
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ZS-Eval 70.48 99.17 25.08 51.12 96.44 25.69 59.90 67.18 27.72 53.51 94.97 25.16
TPT 70.56 99.17 25.26 51.21 96.38 26.26 59.91 67.09 28.36 53.53 94.94 25.63

TPT-C 57.65 93.07 8.71 79.28 57.07 2.74 90.40 22.60 5.71 50.26 95.34 3.26

ROSITA 36.47 99.96 20.98 24.17 99.77 18.99 53.57 79.85 26.27 58.02 94.15 29.75

M
A

P
LE

ZS-Eval 69.29 89.49 33.66 81.03 73.94 34.99 49.57 84.71 26.09 57.84 94.44 29.34
PAlign 69.31 89.54 33.74 81.05 73.98 34.96 49.60 84.63 25.81 57.84 94.48 29.53

PAlign-C 71.14 73.63 34.38 82.08 68.24 35.11 47.27 87.87 25.95 57.79 93.54 30.73

ROSITA 95.38 8.80 43.06 80.25 41.21 34.88 42.77 97.15 19.70 49.73 96.72 12.62
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Table 21: Results on CIFAR-10C/100C(Motion blur) as Dd with other Du.

Method MNIST SVHN Tiny-ImageNet CIFAR-100C/10-C

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑
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ZS-Eval 97.73 2.75 73.69 96.40 18.34 73.82 95.25 15.75 74.27 79.57 70.08 62.86
TPT 97.72 2.68 74.15 96.39 18.16 74.42 95.23 15.72 75.03 79.56 69.86 63.25

TPT-C 80.73 86.28 63.74 62.09 62.52 42.19 80.76 51.66 48.04 55.66 97.04 37.53

ROSITA 99.90 0.04 81.87 96.50 21.55 77.47 96.58 13.65 77.44 82.03 65.95 66.96

M
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P
LE

ZS-Eval 96.52 18.33 78.68 97.08 14.78 78.15 88.45 33.15 71.19 84.00 57.94 66.93
PAlign 96.51 18.37 78.92 97.08 14.82 78.38 88.45 33.13 71.73 83.99 57.99 67.15

PAlign-C 97.17 13.47 78.49 96.89 15.87 78.09 88.80 32.94 72.09 84.29 56.80 67.40

ROSITA 98.49 10.01 83.26 92.61 44.87 78.93 87.48 38.23 73.24 84.27 57.60 70.67
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ZS-Eval 93.08 58.92 48.17 83.63 81.33 46.04 79.34 53.56 48.53 64.03 91.54 41.63
TPT 93.06 59.87 48.18 83.61 81.56 45.54 79.29 53.76 48.26 64.02 91.63 41.25

TPT-C 66.77 98.77 19.96 29.69 99.94 11.39 69.25 62.87 17.10 53.22 94.57 13.59

ROSITA 98.93 6.79 55.49 89.39 37.86 48.50 90.20 31.61 55.05 65.30 91.59 42.54

M
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ZS-Eval 81.21 80.28 45.66 89.04 60.73 46.98 60.84 80.63 40.60 64.01 90.18 42.30
PAlign 81.20 80.52 44.52 89.03 61.01 45.76 60.84 80.64 40.03 64.01 90.26 41.26

PAlign-C 82.72 68.08 49.92 90.48 53.83 51.87 62.00 82.85 41.66 64.47 89.05 43.58

ROSITA 97.12 7.78 57.30 85.13 56.16 49.89 63.85 80.20 42.65 62.55 94.62 41.54

Table 22: Results on CIFAR-10C/100C(JPEG Compression) as Dd with other Du.

Method MNIST SVHN Tiny-ImageNet CIFAR-100C/10-C

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑
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ZS-Eval 68.16 100.00 53.92 67.04 99.93 55.69 79.44 65.02 59.66 73.65 85.60 56.30
TPT 68.07 100.00 54.16 66.97 99.93 56.06 79.37 65.11 60.09 73.64 85.58 56.87

TPT-C 68.28 99.37 53.12 54.76 98.97 35.64 66.70 72.20 39.02 59.82 94.78 32.78

ROSITA 81.83 58.81 60.34 82.85 61.38 61.87 95.06 15.84 67.87 71.19 86.62 51.98
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ZS-Eval 95.15 33.39 69.72 95.96 22.02 69.73 86.64 36.79 65.68 79.26 68.19 60.10
PAlign 95.13 33.57 69.62 95.95 22.01 69.31 86.63 36.82 65.62 79.26 68.18 59.86

PAlign-C 96.53 20.14 70.50 95.94 21.51 70.01 87.38 35.07 66.42 79.85 66.17 61.11

ROSITA 99.28 5.71 76.74 95.54 29.06 72.86 89.88 31.12 68.78 80.69 61.64 62.23
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ZS-Eval 50.88 100.00 32.27 39.25 100.00 26.41 48.65 95.60 29.92 53.51 95.59 32.48
TPT 50.78 100.00 32.38 39.18 100.00 26.48 48.55 95.60 29.86 53.49 95.57 32.70

TPT-C 12.11 100.00 3.32 10.05 99.98 2.45 63.07 90.01 9.49 52.23 95.05 6.33

ROSITA 29.10 100.00 22.83 35.58 99.94 23.50 50.76 94.76 31.64 53.96 96.18 30.39

M
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LE

ZS-Eval 78.86 80.60 37.60 87.72 61.14 39.18 58.31 80.75 34.03 54.50 95.49 34.02
PAlign 78.82 80.92 36.62 87.69 61.37 38.01 58.29 80.79 33.17 54.49 95.52 32.96

PAlign-C 81.85 63.37 40.87 89.96 49.09 41.89 59.33 81.48 33.84 53.82 95.17 33.28

ROSITA 97.68 7.87 46.51 92.14 34.44 42.71 66.63 75.00 37.43 51.33 96.68 25.41

E Failure Case Analysis

Our findings indicate that while ROSITA outperforms baselines, it struggles in cases where undesired classes
are highly similar to desired ones (e.g., CIFAR-10C vs. CIFAR-100C), leading to a higher false positive rate
(FPR). Harder datasets like ImageNet-C pose additional challenges as the Zero-shot classification accuracy of
CLIP itself is poor due to severe domain shift and increased number of desired classes. Towards the goal of
studying dataset specific challenges, we study the two major components of ReDUCe loss by measuring the
following metrics:

(1) kNN Retrieval accuracy: We compute the average number of correctly matched neighbors K+ in LD

(Equation 6), where the pseudo-label y+ of the retrieved neighbors matches the test sample’s pseudo-label yt.
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(2)Pseudo label accuracy of Reliable samples: We evaluate the pseudo-label accuracy of the reliable
samples, as only these are stored in the feature bank for kNN retrieval and model adaptation. Higher accuracy
of these reliable samples directly benefits adaptation.

Table 23: Analysis on quality of Reliable samples.

Metric CIFAR-10C ImageNet-R ImageNet-C
Average K+ in LD 4.1 2.5 1.5
Accuracy of reliable desired class samples (%) 88.7 86.40 43.74
Accuracy of reliable undesired class samples (%) 99.75 100 99.95

For LD, the average number of correctly matched neighbors aligns with dataset difficulty; CIFAR-10C has
the highest K+ (4.1), while ImageNet-C has the lowest (1.5), reflecting the increased complexity of retrieval
in more challenging datasets. Additionally, the high accuracy of reliable desired (≥ 86% for CIFAR-100C and
ImageNet-R) and undesired (nearly 100%) class samples ensures that the retrieved neighbors serve as strong
supervisory signals for adaptation. Since LD relies only on correctly matched neighbors, the adaptation
process remains robust, effectively leveraging reliable samples regardless of dataset difficulty. However, there
is still significant scope of improvement of desired class accuracy in harder datasets like ImageNet-C, where
CLIP accuracy itself is still poor, given the severe domain shift and the 1000-way classification task, making
it very challenging. The proposed ReDUCe loss in ROSITA primarily focuses on separating desired and
undesired class samples. We use simple reliable pseudo label loss LRe and clustering objective LD that aims
towards improving desired class accuracy AccD. More sophisticated methods can be employed in addition to
this to improve AccD.

F Broader Impact Concerns

Our work introduces Open-set Single-image Test-Time Adaptation (OSTTA) for Vision-Language
Models (VLMs), a novel and realistic problem studied for the first time. While VLMs are powerful for
open-world recognition, real-world deployment benefits from the ability to recognize unknown objects and
adapt effectively. Our study provides a strong baseline for evaluating their robustness under distribution
shifts. While this is a step forward, some considerations are to be aware of before practical deployment. In
healthcare, careful adaptation is crucial to avoid misinterpretations; in surveillance, fairness needs attention;
and in autonomous systems, ensuring reliability is key. That said, our method is designed with privacy
in mind as it does not store images, only extracted features, minimizing risks. Future work could explore
safeguards against potential adversarial attacks, but overall, we see this as a positive step toward making
VLMs more adaptable and reliable in diverse settings.
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