
Neural Augmented Kalman Filters for
Road Network assisted GNSS positioning

Hans van Gorp * 1 2 Davide Belli * 2 Amir Jalalirad 2 Bence Major 2

Abstract
The Global Navigation Satellite System (GNSS)
provides critical positioning information globally,
but its accuracy in dense urban environments is
often compromised by multipath and non-line-of-
sight errors. Road network data can be used to
reduce the impact of these errors and enhance the
accuracy of a positioning system. Previous works
employing road network data are either limited to
offline applications, or rely on Kalman Filter (KF)
heuristics with little flexibility and robustness. We
instead propose training a Temporal Graph Neu-
ral Network (TGNN) to integrate road network
information into a KF. The TGNN is designed to
predict the correct road segment and its associated
uncertainty to be used in the measurement update
step of the KF. We validate our approach with real-
world GNSS data and open-source road networks,
observing a 29% decrease in positioning error for
challenging scenarios compared to a GNSS-only
KF. To the best of our knowledge, ours is the first
deep learning-based approach jointly employing
road network data and GNSS measurements to
determine the user position on Earth.

1. Introduction
The Global Navigation Satellite System (GNSS) provides
accurate position and time information to billions of re-
ceivers worldwide. In 2023, an estimated 5.6 billion GNSS
receivers have been produced, with this number expected to
grow to 9 billion by 2033 (EUSPA, 2024). Of these, 10%
were used in the road and automotive segment in 2023, grow-
ing to 15% by 2033. The coverage of GNSS is extensive,

*Equal contribution 1Department of Electrical Engineering,
Eindhoven University of Technology 2Qualcomm AI Research.
Work done during an internship at Qualcomm AI Research,
Amsterdam. Qualcomm AI Research is an initiative of Qual-
comm Technologies, Inc.. Correspondence to: Hans van Gorp
<h.v.gorp@tue.nl>, Davide Belli <dbelli@qti.qualcomm.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Model
Update

Road
Selection

GNSS
Update

GNSS

Road Network

x
_

+
GNSSx

+
RNx

RNz
RNQ RN

Update

Figure 1. In order to leverage road network data in a GNSS-based
KF, a Gaussian observation (mean z, covariance Q) needs to be
constructed by selecting the correct road segment. In our proposed
method, this road selection is performed by a Temporal Graph
Convolutional Network which also predicts the appropriate covari-
ance (left). The position and uncertainty predicted by the KF can
be improved using this additional data source (right).

with around 120 satellites active in multiple constellations
(GPS, Galileo, GLONASS, BeiDou), enabling localization
systems anywhere on Earth.

However, even with this high number of satellites, accurate
positioning in dense urban environments remains a chal-
lenge. Tall buildings can reflect the signal, leading to multi-
path errors, or block the direct view of the satellite, leading
to non-line-of-sight errors. This is particularly problematic
for applications such as lane detection and side-of-the-street
detection for car navigation, delivery, and taxi services,
which typically require positioning accuracies of 2 to 10 me-
ters. However, positioning services relying solely on GNSS
can result in errors up to 20 meters in urban canyons (Zhong
& Groves, 2023). Even with complex 3D models, errors
of no less than 10 meters are observed (Zhong & Groves,
2023). Leading companies use 3D Model Assisted solu-
tions (van Diggelen, 2021) to improve positioning in urban
environments, underscoring the limitations of GNSS-only
localization in challenging scenarios. Addressing these chal-
lenges is crucial for enhancing the accuracy and reliability
of positioning systems in urban settings.

1

Neural Augmented Kalman Filters for Road Network assisted GNSS positioning

In automotive applications, positioning errors can be mit-
igated by introducing additional sources of information,
such as vehicle motion sensors, cameras, radar and lidar
(Skog & Handel, 2009). All of these require the integra-
tion of additional sensors besides the GNSS receiver, which
are expensive or can be unavailable. In our work, we will
instead focus on the integration of road network data, a cost-
effective alternative which can be accessed globally from
open-source platforms (OpenStreetMap contributors, 2017).

Kalman Filters (KFs) are the standard for processing GNSS
measurements due to their efficiency, ability to fuse mul-
tiple sources of information, and the relatively affordable
assumption of uni-modal Gaussian distributions for state
and observations. While assuming normal distributions is
reasonable for GNSS measurements, the same does not
hold for road network observations, which makes their in-
tegration in a KF not straightforward. If one constructs a
Gaussian observation with respect to each nearby road, the
total observation becomes a multi-modal Gaussian. To ad-
dress this, previous solutions first select a single “best” road
segment and then construct a Gaussian observation around
it. The selection can be based on belief theory (El Najjar
& Bonnifait, 2005) or on Hidden Markov Models (HMM)
combined with a Viterbi decoder (Atia et al., 2017), the lat-
ter of which has also been used in map-matching techniques
(Hu et al., 2023; Song & Lee, 2023; Zhong et al., 2024).

Improving over previous approaches, we propose to aug-
ment the KF with a lightweight Temporal Graph Neural
Network to select the road segment for the measurement
update step as well as its uncertainty (see Figure 1). The
main contributions in this paper are three-fold:

1. To the best of our knowledge, we are the first to pro-
pose a deep learning method to introduce road network
inputs in a GNSS-based KF. We implement this as
a Temporal Graph Neural Network predicting which
road segments best match the GNSS trajectory from a
moving vehicle. The predicted segments are used as
additional measurements to update the KF state.

2. We introduce a standard deviation prediction head to
regulate the impact of the road network observation in
the KF update. We optimize this component end-to-
end to minimize the positioning error.

3. We evaluate the proposed method on challenging real-
world GNSS measurements paired with open-source
road network data, showing improvements over both a
GNSS-only KF and a KF + Viterbi algorithm. We also
include detailed ablations and qualitative analyses to
assess the contribution from each component and the
behavior in different scenarios.

2. Related Work
GNSS positioning with Neural Networks Recent work
has extensively explored the use of Deep Learning methods
to improve GNSS-based positioning systems. Some ap-
proaches process GNSS measurements with MLPs (Suzuki
& Amano, 2021) or Neural Radiance Fields (Neamati et al.,
2023) to predict which measurements are in line of sight.
Other methods learn to estimate the pseudo-range error
through Graph Neural Networks (Jalalirad et al., 2023) or
Long Short-Term Memory Networks (Zhang et al., 2021).
Neural Networks can also be trained to directly produce
location corrections with respect to an input anchor point
(Kanhere et al., 2022; Siemuri et al., 2021).

Neural Augmentation of Kalman Filters While previ-
ously mentioned works tackled the instantaneous position-
ing scenario, others investigated deep learning methods to
track the receiver position over time. GNSS tracking so-
lutions often consist of classical systems such as KFs, in
which some of the components are augmented with data-
driven Neural Networks (Shlezinger et al., 2024). Revach
et al. (2022) proposes learning the optimal Kalman gain
through the use of Recurrent Neural Networks (RNN), and
Li et al. (2023) combines CNNs and LSTMs for similar
purposes. Mohanty & Gao (2024) uses GNNs to estimate
the state and state uncertainty matrices in the KFs, while
Gao et al. (2020) and Han et al. (2021) apply Reinforcement
Learning to learn the process noise covariance matrix. KFs
can also be augmented with Neural Networks to process
measurements from multiple sensors such as GNSS and In-
ertial Measuring Units (IMU) (Guo & Tu, 2021; Tang et al.,
2022).

GNSS positioning with Road Networks The impact of
multipath effects on GNSS signals can be mitigated by in-
corporating additional sources of information, such as road
networks. Road networks can be integrated in GNSS po-
sitioning systems without the need for additional sensors.
This data can be limited to a description of the road or lane
topology, or include additional features like road segment
categories, driving speed, and directionality. Quddus &
Washington (2015) propose a genetic algorithm to select the
most likely location among a set of candidate options based
on local road network features. Other work jointly employ
road network and GNSS data for the task of map match-
ing, that is determining which sequence of road network
segments best matches a GNSS measurement trajectory (Ve-
laga et al., 2012; Feng et al., 2020; Hu et al., 2023). Map
matching techniques only input information from the GNSS
system to the map matching algorithm in order to select the
most likely road. However, a feedback loop propagating
road network information back into the GNSS positioning
system could further improve its state and its ability to ac-

2

Neural Augmented Kalman Filters for Road Network assisted GNSS positioning

(a) Example scenario (b) Instant (c) Viterbi (d) Bidirectional Viterbi

Figure 2. Overview of different road selection algorithms. In (a) we show an example user trajectory estimated from noisy GNSS
measurements, with past (x0, x1), current (x2), and the future (x3) locations. The road network has 3 segments including two parallel
roads r0 and r1, with the true user trajectory following r1 and r2, marked in green. We compare three road selection methods, highlighting
in green correct predictions for roads (nodes) and allowed transitions over the network (edges), while wrong ones are in red. An
instantaneous solution (b) does not consider temporal relations, which might result in inconsistent predictions over time (jumping between
similarly likely roads). Viterbi finds consistent solutions in terms of road connectivity, but can select the wrong path in case of noisy
sequences. Bidirectional Viterbi (d) has access to future estimates and solves ambiguous cases by interpolating past and future trajectories.

curately process consecutive GNSS measurements. Thus,
while map matching can be used to aid automated driving
systems or model user driving behaviors, it does not provide
a solution to the more general challenge of determining the
exact user position on Earth at a given time. Other methods
integrate road network information with KFs to improve
the tracking performance over time. In this context, can-
didate locations on road segments are usually introduced
to the KF as uni-modal Gaussian observations, to enable
a direct update of the GNSS-based KF posterior. Features
such as distance, heading, and speed alignment are used in
heuristics or HMMs to determine the mean value of the dis-
tribution, while the standard deviation is typically estimated
empirically and remains fixed during tracking (El Najjar
& Bonnifait, 2005; Goh et al., 2012; Jagadeesh & Srikan-
than, 2017; Li et al., 2024). In this paper, we demonstrate
that the variance can be dynamically estimated for each
timestep, thereby enabling more accurate localization when
compared to a fixed variance. To the best of our knowledge,
our method is also the first to propose a neural network
to input road network data in a GNSS-based positioning
system.

3. Learning Road Network Selection
In this section, we introduce a neural augmentation method
for GNSS-based KF positioning to integrate the Road Net-
work data in the KF measurement update. In Section 3.1,
we first formalize how to update the KF estimate given the
road segment on which the user is located. In section 3.2 we
explain how the correct road segment can be selected using
the Viterbi algorithm. In section 3.3 we introduce our main
contribution: a Temporal Graph Neural Network trained
to select the correct road segment. Lastly, in Section 3.4,
we present an extension of our neural network to directly
predict the road network covariance for the KF update.

3.1. Integrating Road Data into the Kalman Filter

To ensure our solution can be applied to road data from
different providers, we make minimal assumptions on the
available information. We only describe the roads by their
center-lane segment, without relying on lane-level informa-
tion, which is often incomplete, outdated or unavailable.
For the same reasons, we treat road features such as driving
speed and directionality as optionally available. We describe
the dataset in more detail in Section 4.1.

For the purpose of road segment selection it is convenient to
consider a graph representation in which the nodes are the
road segments, and the edges are intersection or curvature
points connecting two or more road segments in the network.
We therefore define a road network graph as G = (R,A)
with R ∈ RN×D describing D-dimensional features for each
of the N road segments, and A ∈ RN×N being a binary
adjacency matrix representing the network structure.

Road network information can be used to post-process a
KF estimate and generate an updated positioning prediction,
for example by snapping the KF position on a selected
road segment. Alternatively, the selected road segment
could be directly integrated in the KF through an additional
measurement update, as show in Figure 1. In this work,
we consider a KF with mean x ∈ R8 and covariance P ∈
R8×8 to track the user position xpos ∈ R3 and velocity
xvel ∈ R3 on the local geodetic coordinate system as well
as the receiver clock bias and drift xclock ∈ R2. The road
network can be employed as a prior for the positioning task
by updating the KF state based on the best matching road
segment r∗. The road segment can be selected among a set
of candidate segments as the one minimizing an arbitrary
cost function J(ri) as:

r∗ = argmin
ri

J(ri) with 0 ≤ i < N, (1)

A simple baseline for segment selection (see Figure 2b) can

3

Neural Augmented Kalman Filters for Road Network assisted GNSS positioning

be devised by defining the cost function in Equation 1 as
the distance between the estimated user position xpos and a
road segment ri:

Jpos(ri) = dist(xpos, ri), (2)

where dist(., .) is the Euclidean distance between a point
and a line segment in meters. We refer to this baseline as
Instant in our experiments, as the selection only considers
the current position estimate, and not the previous trajectory
of the user. Given the KF posterior (denoted with +) after
the GNSS update step with mean x+

GNSS and covariance
P+

GNSS, the road network measurement update is:

K = P+
GNSSH

T
(
HP+

GNSSH
T +V

)−1
,

x+
RN = x+

GNSS +K
(
z−Hx+

GNSS

)
, (3)

P+
RN = P+

GNSS −KHP+
GNSS,

where z, V and H are respectively the mean, covariance
and observation matrix for the road network measurement,
K is the Kalman gain, x+

RN and P+
RN are the KF posterior

mean and covariance after the road network update step, and
T denotes the transpose operator. Appendix A includes the
complete derivations showing how z, V and H are derived
from the road network position and heading.

3.2. Road Selection with the Viterbi Algorithm

The instantaneous selection of road segments often results
in unstable and inaccurate predictions, as it does not capture
temporal patterns over consecutive time-steps. One solution
posed in literature is the use of a Hidden Markov Model
to process the vehicle trajectory over the graph. In such
an HMM, the observation is the history of estimated user
positions, and the latent variable is the road segment on
which the user is currently located. The Viterbi algorithm
can be used online to determine the maximum a posteriori
as the most likely sequence of road segments (Figure 2c).

To create a non-learnable baseline for road selection with
Viterbi, we consider a HMM in which each road segment
is a state, and the transition and emission probability func-
tions are defined considering the relation between the road
network and the estimated user location from the KF. The
emission probability for each road segment is computed
based on a position and heading cost. The position cost
Jpos is defined as in Equation 2, and the heading cost is
calculated as:

Jθ(ri) = 1− |cos(θx − θri)| , (4)

where θx is the user heading and θri is the road heading.
With the absolute value we allow matching both directions

Figure 3. Architecture of the proposed TGNN.

along the road. The information about one-way road di-
rectionality, if available, will be encoded in the transition
probabilities. Finally, the emission PDF is calculated using
a weighted average of the heading and positions costs, as:

p(x|ri) = max

(
1−

βJpos(ri) + Jθ(ri)

2
, ϵ

)
, (5)

where β is a hyper-parameter to balance between the two
cost functions, and ϵ = 0.01 ensures that all road segments
retain a non-zero emission probability. The transition prob-
abilities between the different road segments are simply
modeled with the PDF:

p(ri|rj) =

{
1 if ri ∈ k-Hop(rj ; k)
0 otherwise

, (6)

where the function k-Hop(rj ; k) defines the k-hop graph
neighborhood of rj , which is a set including each road ri
that the user can reach within a maximum of k intersections
starting from rj , and taking one-way directionality into
account. Setting k > 1 is useful to handle cases in which
the vehicle is moving at high speed, traversing multiple road
segments in a single time-step.

The Viterbi algorithm can efficiently run online through the
recursive PDF formulation:

p(ri, t) =

p(xpos|ri) if t = 0

max
rj

p(rj , t−1) p(ri|rj) p(xpos|ri) if t > 0
, (7)

where at timestep t = 0 we assume a uniform prior over
all roads. Therefore, the most likely road segment at the

4

Neural Augmented Kalman Filters for Road Network assisted GNSS positioning

current time-step t can be selected according to Equation 1
with the Viterbi cost function JViterbi(ri) = −p(ri, t).

We refer to this method as Viterbi in our experiments.

3.3. Road Selection with a Trained TGNN

If future position estimates were available, a “bidirectional”
Viterbi algorithm could be used to find a smoother trajectory
on the road network, temporally consistent with both past
and future observations (see Figure 2d). We refer to this
bidirectional Viterbi algorithm as the Oracle method in our
experiments, since it relies on future observations which are
not available during online inference.

While future information is not available in practice, we
propose training a neural network to learn to predict the op-
timal solutions found by the Oracle. We implement this as a
novel Temporal Graph Neural Network architecture for road
segment prediction. We choose Graph Neural Networks
(GNNs) (Scarselli et al., 2008; Kipf & Welling, 2016; Zhou
et al., 2020) as they can process structured graphs with vary-
ing number of nodes and are invariant to the nodes order.
Temporal Graph Neural Networks (Zhao et al., 2019; Cao
et al., 2020; Rossi et al., 2020) are a specific type of GNNs
which can also process temporal relations in the graph. We
show in Figure 3 the architecture of the proposed TGNN.

Our model ϕ takes as input the KF state x, the road segment
features R, and the road network adjacency matrix A, and
outputs a probability for each road segment:

Pϕ(r) = ϕ (x,R,A) (8)

The neural network consists of a sequence of L repeated
blocks which include feature transformation, local message
passing and cross message passing layers. The user-level
features x and road-level features R are processed on two
distinct paths throughout the network, only merging in the
cross message passing layers. In each block l, the feature
transformation layers are implemented as two simple MLPs
projecting the input features:

x̂(l) = MLP(l)
x

(
x(l−1)

)
, R̂(l) = MLP(l)

r

(
R(l−1)

)
. (9)

Local message passing layers consist of a Graph Convo-
lutional Network (GCN) (Kipf & Welling, 2016) layer to
propagate information across the road graph (r → r), and
a Long Short-Term Memory (LSTM) (Hochreiter, 1997)
layer to capture temporal patterns (x → x) in the history of
KF states:

x̃(l),h
(l)
t = LSTM(l)

x→x

(
x̂(l),h

(l)
t−1

)
, (10)

R̃(l) = GCN(l)
r→r

(
R̂(l),A

)
. (11)

Finally, the cross message passing layers consist of MLPs
which update the user-level features given the road-level

features (x, r → x), and vice-versa (r, x → r):

x(l) = MLP(l)
x,r→x

([
x̃(l),mean pool

(
R̃(l)

)])
, (12)

R(l) = MLP(l)
r,x→r

([
R̃(l), x̃(l)

])
. (13)

Mean pooling is used to summarize the road-level feature
vectors in a single feature vector of fixed dimensions. After
L blocks, a linear layer Wout projects the road-level fea-
tures into logits and a softmax function is used to convert
these to probabilities: Pϕ(r) = softmax

(
WoutR

(L)
)
.

We train the model using a cross-entropy loss to match the
predicted probabilities pϕ(r) with the road segments r∗oracle
selected by the bidirectional Viterbi Oracle:

LCE = CE(r∗oracle, Pϕ(r)). (14)

Finally, the most likely road segment is selected as in Equa-
tion 1 based on the cost function JTGNN(ri) = −Pϕ(ri).

3.4. Learning to Predict the Road Uncertainty

The road network KF update described in Equation 3 re-
quires not only the mean z of the selected road segment, but
also its covariance V. The covariance is a diagonal matrix
with two non-zero values: the variance parallel to the road
(σ2

∥) and the variance perpendicular to the road (σ2
⊥).

While these parameters can be tuned offline using a cali-
bration set, we instead equip our neural network with an
additional output head to predict them online. This allows
the TGNN to dynamically adapt its confidence in the road
network prediction depending on the current scenario, for
example predicting higher uncertainty in case of cluttered
or ambiguous road network structure, and lower uncertainty
otherwise. The uncertainty prediction head is implemented
as a linear projection head on top of the features at the last
layer of TGNN:[

σ2
∥, σ

2
⊥

]
= exp

(
Wσx

(L)
)
. (15)

To train the network for uncertainty prediction we use the
(MSE) loss between the output of the KF and the ground
truth user state. This is possible because the KF is fully
differentiable (Shlezinger et al., 2024). The complete loss
function used to train the TGNN is a combination of the
road uncertainty and road selection losses, with a parameter
λ to balance the two components:

LMSE = MSE(xgt,x
+
RN). (16)

L = LCE + λLMSE, (17)

5

Neural Augmented Kalman Filters for Road Network assisted GNSS positioning

Table 1. Quantitative results comparing our method (in bold) to
different baselines. The first two baselines do not use road network
data, while the Oracle makes use of future information.

Road
Select.

Road
Covariance

HE@50th

[m]
HE@95th

[m]

LS - - 20.43 115.97
KF - - 10.75 77.23

KF Oracle 0 3.72 11.40

KF Instant Grid Search 7.96 68.86
KF Viterbi Grid Search 8.02 68.27
KF TGNN TGNN 8.74 ± 0.15 55.02 ± 2.21

Table 2. Ablating road selection or covariance prediction with non-
learnable components (Viterbi or grid search, respectively).

Road
Select.

Road
Covariance

HE@50th

[m]
HE@95th

[m]

KF Viterbi TGNN 8.69 ± 0.18 67.08 ± 3.49

KF TGNN Grid Search 8.36 ± 0.38 63.72 ± 9.00

KF TGNN TGNN 8.74 ± 0.15 55.02 ± 2.21

4. Results
4.1. Experimental Setup

Dataset In this manuscript we employ the real-world
GNSS dataset introduced by Jalalirad et al. (2023). The data
consists of multiple unconnected drives from four cities in
different countries. For each drive, we have access to the
ground-truth user location as well as GNSS pseudo-range
measurements corrected for known error terms. We supple-
ment the GNSS dataset with road network information using
the open-source data provided by OpenStreetMap contribu-
tors (2017). The road network topology is described with an
undirected road-level graph, where nodes represent either
intersections or a curvature point in the road. Each road
segment describes the center of the road, while the positions
and offsets of multiple lanes in the road are not included.
The following features are additionally paired to each road
segment: coordinates of the two end points, segment length,
number of lanes, maximum driving speed, roadway type
(highway, primary, residential, etc.), and whether it is a one-
way street. This information is not always present, in which
case we set it to a default value when using as a neural net-
work input. Other input features include the KF mean and
uncertainty, and the probabilities from the Viterbi algorithm.
The dataset is split in three folds with no regional overlap,
and a leave-one-out cross-validation method is used in our
experiments, averaging the scores across the holdout folds.
Each fold includes both open-sky and challenging urban
scenarios. We provide in Appendix B additional details on
the processing of GNSS and Road Network data, as well as

Table 3. Comparison between the TGNN architecture against the
ablated variants GNN (without temporal LSTM) and MLP (without
graph convolution and LSTM).

Neural Network
HE@50th

[m]
HE@95th

[m]

MLP 9.13 ± 0.31 59.68 ± 3.94

GNN 8.82 ± 0.17 56.90 ± 2.83

TGNN 8.74 ± 0.15 55.02 ± 2.21

Table 4. Effects of using subsets of the available input features
with the proposed TGNN method.

Features
HE@50th

[m]
HE@95th

[m]

Viterbi Prior 10.16 ± 0.15 72.79 ± 1.21

Viterbi Prior + Distances 8.64 ± 0.17 61.43 ± 3.52

Viterbi Prior + Distances +
Road Type + Max Speed 8.65 ± 0.21 56.29 ± 1.66

All 8.74 ± 0.15 55.02 ± 2.21

the complete list of features used as input to the TGNN.

Evaluation Metrics We evaluate the proposed methods
and baselines using the cumulative distribution function
(CDF) of the Horizontal Error (the distance between the
predicted and target location). Specifically, we report results
for the 50th percentile (median) and the 95th percentile of
the CDF, with the latter being the primary metric. The hori-
zontal error at higher percentiles reflects the performance in
challenging scenarios where significant errors occur. These
errors, in the order of ∼ 60m , can severely impact down-
stream applications of GNSS positioning, such as lane esti-
mation and side-of-the-street detection. Slight changes in
HE@50, which is usually under ∼ 10 meters, are relatively
less important in this context. For each result from a learn-
able method, we report mean KPI and standard deviation
over 10 seeds.

Methods and baselines The KF is initialized using the
least squares method described in Jalalirad et al. (2023).
We evaluate four different strategies to select the road seg-
ment for the KF update: Instant and Viterbi as baselines,
the bidirectional Viterbi Oracle, and our proposed TGNN
solution. Appendix C reports all implementation details and
selected hyper-parameters to reproduce our experiments.
Note that the existing methods discussed in Section 2 are
either heuristics for KF snapping similar to our Instant base-
line, or consider the task of map matching instead of user
positioning, and are therefore not suitable baselines for our
experiments.

6

Neural Augmented Kalman Filters for Road Network assisted GNSS positioning

25 50 75
KF horizontal error [m]

0.60

0.80

0.95
1.00

pe
rc

en
til

e

KF
KF + Viterbi
KF + TGNN

Figure 4. Horizontal Error CDF for different methods.

4.2. Quantitative Results

We report the end-to-end positioning error averaged over
folds for different positioning algorithms in Table 1, where
LS refers to the Least Squares algorithm for instantaneous
positioning. We find that even simple techniques that use
road network data (Instant and Viterbi) improve against the
GNN-only KF, resulting in a 10 meter decrease in local-
ization error at the 95th percentile. Our proposed TGNN
approach decreases the positioning error in challenging sce-
narios by an additional 13 meters, with less than 1 m error
increase at the 50th percentile. This constitutes a meaningful
increase in performance for the challenging scenario, where
differences of 13 meters can make a significant difference in
downstream applications. The low standard deviation over
10 random weight initializations displays the robustness of
the proposed approach.

We also report the performance for the Oracle approach,
in which we assume a perfect road network classifier with
covariance set to zero (i.e. completely trusting the road net-
work). Despite the use of the Oracle, the positioning error
does not go to zero because of three reasons. First, there
are mismatches between map information and the actual
road network structure. Second, we do not take road width
into account and snap to the center of the road, because lane
level information is often unavailable. Third, while gener-
ally robust, there are occasional failures of the bidirectional
Viterbi Oracle. This highlights that performance could be
improved by increasing the fidelity and number of features
available for the road network data.

In Figure 4 we include a visualization of the horizontal
error CDFs. We observe that both methods using road
network measurements improve over the GNSS-only KF at
the median as well as high percentiles, The proposed TGNN
approach further improves over the Viterbi baseline on the
challenging environments above the 90th percentiles.

4.3. Ablations

To evaluate the impact of out implementation choices, we
conduct four different ablation studies.

20 40 60 80 100
Field of view [m]

10

15

20

25

HE
 @

 5
0th

 [m
]

50

55

60

65

HE
 @

 9
5th

 [m
]HE @ 50th

HE @ 95th

Figure 5. Effect of changing the field of view of the proposed
TGNN model on both the 50th and 95th horizontal error per-
centile. While the error does not change in benign scenarios, the
performance in challenging environment significantly decays when
choosing too small or large fields of view.

Predictor type First, we investigate whether both the road
selection or covariance prediction components benefit from
being modeled through a neural network, by replacing either
of them with their non-learned counterparts: Viterbi and
grid search. As shown in Table 2, the two ablations result in
degraded performance, suggesting that both road selection
and covariance estimation tasks can be better tackled with
a learned model. In particular, differently from grid search,
the learned covariance estimation module can dynamically
tune the predicted uncertainty at test time, and better adapt
to changing test scenarios.

Architecture Second, we assess the impact of different
modules in the TGNN architecture by ablating them one
by one. The results of these ablations are shown in Table
3. The GNN model is obtained by removing the temporal
LSTM component. This model cannot capture dynamics
that span across multiple time-steps such as changes in vehi-
cle speed and heading, resulting in a 2 meters increase in the
positioning error in challenging scenarios. We name MLP
a simpler architecture variation where the KF state values
are simply concatenated to the road features and processed
by a sequence of MLPs. Without graph convolutions, infor-
mation cannot be propagated across road segments in the
graph, and the neural network must predict the probability
for each segment independently of the others. This results
in a further increase in positioning error by 3 meters. We
therefore confirm that the neural network must be equipped
with both temporal (LSTM) and spatial (GCN) reasoning ca-
pabilities to improve its performance. We refer to Appendix
D for implementation details on the ablated architectures.

Input features Third, we test the effect of ablating sev-
eral road input features, as shown in Table 4. The costs
assigned to each road using Equations 2 and 4 are the most
impactful, with additional features such as road type and
maximum driving speed being also important. However,
the best results are obtained when using all the available
features (listed in Appendix B). Interestingly, a model with

7

Neural Augmented Kalman Filters for Road Network assisted GNSS positioning

-200 -100 0 100 200
East [m]

-200

-100

0

100

200

No
rth

 [m
]

Ground Truth
KF
KF + TGNN

-200 -100 0 100 200
East [m]

-200

-100

0

100

200

No
rth

 [m
]

Ground Truth
KF
KF + TGNN

-200 -100 0 100 200
East [m]

-200

-100

0

100

200

No
rth

 [m
]

Ground Truth
KF + Viterbi
KF + TGNN

-200 -100 0 100 200
East [m]

-200

-100

0

100

200

No
rth

 [m
]

Ground Truth
KF + Viterbi
KF + TGNN

(a) TGNN outperforms GNSS-only (b) TGNN underperforms GNSS-only (c) TGNN outperforms Viterbi (d) TGNN underperforms Viterbi

Figure 6. Qualitative results for the proposed TGNN model compared against the Viterbi baseline, zoomed in to interesting parts of the
drive. Full images can be found in supplementary material Appendix E .

only the Viterbi prior input features, which describe the prob-
ability of the roads assigned in the previous time step, can
also improve over the standard KF. This could be the case in
situations where the GNSS measurements are noisy, while
the road selection task is trivial (only one road is present in
the receptive field) and can therefore improve the KF state.

Field of view Finally, we experiment with changing the
field of view for our method, which defines the set of road
segment candidates for selection based on a radius around
the user position estimate. We visualize in Figure 5 how
changing this parameter impacts the positioning error. The
performance at the 95th percentile degrades quickly when
the field of view is too large or too small. In the former case,
this is likely because the correct road to select shifts out of
focus more frequently, while in the latter case, the number
of candidate road segments increases significantly, which
might make the classification task more challenging for the
neural network. The field of view is fixed to 50 meters in
all other experiments.

4.4. Qualitative Results

We include a qualitative analysis to visualize and discuss pat-
terns in the model behavior. Figure 6 zooms in on interesting
scenarios, while in Appendix E we include the qualitative re-
sults for the full drives. We first compare the proposed KF +
TGNN against a simple KF using only GNSS measurements.
In Figure 6a we show a drive where TGNN significantly
outperforms the GNSS-only baseline. In this challenging
urban scenario the GNSS signal is very noisy, which re-
sults in unstable and incorrect predictions for the simple
KF baseline. By using the road network measurements, the
TGNN can compare the noisy GNSS measurements with the
prior knowledge about the road structure, and significantly
reduce the localization error. In Figure 6b we show the
only drive in which the TGNN underperforms the simple
KF baseline. We notice how the large GNSS noise causes
both solutions to drift away from the ground-truth trajectory.
However, the TGNN solution confidently snaps to a road

segment well-aligned to the noisy GNSS measurements but
disconnected to the correct segment, which prevents the
KF from recovering its state over time. We hypothesize
that this performance drift could be significantly limited by
incorporating an IMU component in the KF, as measuring
the vehicle heading could prevent selecting road segments
with incorrect heading.

Next, we compare the TGNN against the Viterbi baseline to
process road network measurements. In Figure 6c we show
an example in which the proposed method outperforms the
baseline by confidently following the correct road segment.
Figure 6d describes a road network with a few parallel roads
with multiple lanes each. In this case, the TGNN incorrectly
selects a road segment with a consistent offset with respect
to the ground truth trajectory. In addition to using IMU
measurements, we believe that a lane-level representation of
the network might reduce these errors, as the Kalman Filter
would not be forced to follow one of the two road center
lanes, but could instead select an intermediate lane segment
better matching the current observations.

5. Conclusions
In conclusion, this paper presents a novel method for en-
hancing GNSS-based vehicle positioning by integrating road
network information into a KF using a Temporal Graph Neu-
ral Network. To the best of our knowledge, this is the first
approach employing a neural network to process the road
network data in a positioning system. Our approach signif-
icantly reduces horizontal positioning errors in real-world
challenging scenarios, demonstrating the effectiveness of
our data-driven solution compared to other methods.

Future work could explore using a more fine-grained repre-
sentation of the road network, such as including lane-level
information, or using a visual representation of the map. An-
other novel research direction would be learning to filter or
correct the GNSS measurements based on the road network
structure before using them in the KF update step.

8

Neural Augmented Kalman Filters for Road Network assisted GNSS positioning

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning for GNSS positioning. Positioning
systems can be embedded in a variety of real-world applica-
tions. Positioning systems deployed for critical applications
such as autonomous driving should be thoroughly tested
and integrated with strong safety measures, both software
and hardware, to ensure the highest standard of safety for
the consumer.

There may be other potential societal consequences of our
work, none which we feel must be specifically highlighted
here.

References
Atia, M. M., Hilal, A. R., Stellings, C., Hartwell, E., Toon-

stra, J., Miners, W. B., and Basir, O. A. A low-cost lane-
determination system using gnss/imu fusion and hmm-
based multistage map matching. IEEE Transactions on
Intelligent Transportation Systems, 18(11):3027–3037,
2017.

Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes,
R. A., Rocken, C., and Ware, R. H. Gps meteorology:
Mapping zenith wet delays onto precipitable water. Jour-
nal of Applied Meteorology (1988-2005), pp. 379–386,
1994.

Bidikar, B., Rao, G. S., and Ganesh, L. Sagnac effect and set
error based pseudorange modeling for gps applications.
Procedia Computer Science, 87:172–177, 2016.

Boeing, G. Osmnx: A python package to work with graph-
theoretic openstreetmap street networks. Journal of Open
Source Software, 2(12):215, 2017. doi: 10.21105/joss.
00215. URL https://doi.org/10.21105/joss.00215.

Cao, D., Wang, Y., Duan, J., Zhang, C., Zhu, X., Huang,
C., Tong, Y., Xu, B., Bai, J., Tong, J., et al. Spectral tem-
poral graph neural network for multivariate time-series
forecasting. Advances in neural information processing
systems, 33:17766–17778, 2020.

El Najjar, M. E. and Bonnifait, P. A road-matching method
for precise vehicle localization using belief theory and
kalman filtering. Autonomous Robots, 19:173–191, 2005.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted
linear units for neural network function approximation
in reinforcement learning. Neural networks, 107:3–11,
2018.

EUSPA. EO and GNSS Market Report. Publications Office
of the European Union, 2024. doi: 10.2878/73092.

Feng, J., Li, Y., Zhao, K., Xu, Z., Xia, T., Zhang, J., and
Jin, D. Deepmm: Deep learning based map matching
with data augmentation. IEEE Transactions on Mobile
Computing, 21(7):2372–2384, 2020.

Gao, X., Luo, H., Ning, B., Zhao, F., Bao, L., Gong, Y.,
Xiao, Y., and Jiang, J. Rl-akf: An adaptive kalman filter
navigation algorithm based on reinforcement learning for
ground vehicles. Remote Sensing, 12(11):1704, 2020.

Goh, C. Y., Dauwels, J., Mitrovic, N., Asif, M. T., Oran,
A., and Jaillet, P. Online map-matching based on hidden
markov model for real-time traffic sensing applications.
In 2012 15th International IEEE Conference on Intelli-
gent Transportation Systems, pp. 776–781. IEEE, 2012.

Guo, C. and Tu, W. A novel self-learning gnss/ins integrated
navigation method. In Proceedings of the 34th Interna-
tional Technical Meeting of the Satellite Division of The
Institute of Navigation (ION GNSS+ 2021), pp. 168–179,
2021.

Han, K., Lee, S., Song, Y.-J., Lee, H.-B., Park, D.-H., and
Won, J.-H. Precise positioning with machine learning
based kalman filter using gnss/imu measurements from
android smartphone. In Proceedings of the 34th Inter-
national Technical Meeting of the Satellite Division of
The Institute of Navigation (ION GNSS+ 2021), pp. 3094–
3102, 2021.

Hochreiter, S. Long short-term memory. Neural Computa-
tion MIT-Press, 1997.

Hu, H., Qian, S., Ouyang, J., Cao, J., Han, H., Wang, J., and
Chen, Y. Amm: an adaptive online map matching algo-
rithm. IEEE Transactions on Intelligent Transportation
Systems, 24(5):5039–5051, 2023.

Ioffe, S. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. arXiv
preprint arXiv:1502.03167, 2015.

Jagadeesh, G. R. and Srikanthan, T. Online map-matching
of noisy and sparse location data with hidden markov and
route choice models. IEEE Transactions on Intelligent
Transportation Systems, 18(9):2423–2434, 2017.

Jalalirad, A., Belli, D., Major, B., Jee, S., Shah, H., and Mor-
rison, W. Gnss positioning using cost function regulated
multilateration and graph neural networks. In Proceed-
ings of the 36th International Technical Meeting of the
Satellite Division of The Institute of Navigation (ION
GNSS+ 2023), pp. 3049–3061, 2023.

Kanhere, A. V., Gupta, S., Shetty, A., and Gao, G. Improv-
ing gnss positioning using neural-network-based correc-
tions. NAVIGATION: Journal of the Institute of Naviga-
tion, 69(4), 2022.

9

https://doi.org/10.21105/joss.00215

Neural Augmented Kalman Filters for Road Network assisted GNSS positioning

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Klobuchar, J. Ionospheric time-delay algorithm for single-
frequency gps users. IEEE transactions on aerospace
and electronic systems, 23(3):325–331, 1987.

Li, S., Mikhaylov, M., Mikhaylov, N., and Pany, T. Deep
learning based kalman filter for gnss/ins integration: Neu-
ral network architecture and feature selection. In 2023
International Conference on Localization and GNSS (ICL-
GNSS), pp. 1–7. IEEE, 2023.

Li, W., Chen, Y., Wang, S., Li, H., and Fan, Q. A novel map
matching method based on improved hidden markov and
conditional random fields model. International Journal
of Digital Earth, 17(1):2328366, 2024.

Mohanty, A. and Gao, G. Tightly coupled graph neural
network and kalman filter for smartphone positioning.
NAVIGATION: Journal of the Institute of Navigation, 71
(4), 2024.

Neamati, D., Gupta, S., Partha, M., and Gao, G. Neural city
maps for gnss nlos prediction. In Proceedings of the 36th
International Technical Meeting of the Satellite Division
of The Institute of Navigation (ION GNSS+ 2023), pp.
2073–2087, 2023.

OpenStreetMap contributors. Planet dump retrieved from
https://planet.osm.org . https://www.openstreetmap.org,
2017.

Quddus, M. and Washington, S. Shortest path and vehicle
trajectory aided map-matching for low frequency gps data.
Transportation Research Part C: Emerging Technologies,
55:328–339, 2015.

Revach, G., Shlezinger, N., Ni, X., Escoriza, A. L.,
Van Sloun, R. J., and Eldar, Y. C. Kalmannet: Neu-
ral network aided kalman filtering for partially known
dynamics. IEEE Transactions on Signal Processing, 70:
1532–1547, 2022.

Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti,
F., and Bronstein, M. Temporal graph networks for
deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
transactions on neural networks, 20(1):61–80, 2008.

Shlezinger, N., Revach, G., Ghosh, A., Chatterjee, S., Tang,
S., Imbiriba, T., Dunik, J., Straka, O., Closas, P., and
Eldar, Y. C. Ai-aided kalman filters. arXiv preprint
arXiv:2410.12289, 2024.

Siemuri, A., Selvan, K., Kuusniemi, H., Välisuo, P., and
Elmusrati, M. S. Improving precision gnss positioning
and navigation accuracy on smartphones using machine
learning. In Proceedings of the 34th International Tech-
nical Meeting of the Satellite Division of The Institute of
Navigation (ION GNSS+ 2021), pp. 3081–3093, 2021.

Skog, I. and Handel, P. In-car positioning and navigation
technologies—a survey. IEEE Transactions on Intelligent
Transportation Systems, 10(1):4–21, 2009.

Song, H. Y. and Lee, J. H. A map matching algorithm based
on modified hidden markov model considering time series
dependency over larger time span. Heliyon, 9(11), 2023.

Suzuki, T. and Amano, Y. Nlos multipath classification
of gnss signal correlation output using machine learning.
Sensors, 21(7):2503, 2021.

Tang, Y., Jiang, J., Liu, J., Yan, P., Tao, Y., and Liu, J. A gru
and akf-based hybrid algorithm for improving ins/gnss
navigation accuracy during gnss outage. Remote Sensing,
14(3):752, 2022.

van Diggelen, F. End game for urban gnss: Google’s use of
3d building models. Inside GNSS, 2021.

Velaga, N. R., Quddus, M. A., Bristow, A. L., and Zheng,
Y. Map-aided integrity monitoring of a land vehicle navi-
gation system. IEEE Transactions on Intelligent Trans-
portation Systems, 13(2):848–858, 2012.

Zhang, G., Xu, P., Xu, H., and Hsu, L.-T. Prediction on
the urban gnss measurement uncertainty based on deep
learning networks with long short-term memory. IEEE
Sensors Journal, 21(18):20563–20577, 2021.

Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T.,
Deng, M., and Li, H. T-gcn: A temporal graph convolu-
tional network for traffic prediction. IEEE transactions
on intelligent transportation systems, 21(9):3848–3858,
2019.

Zhong, Q. and Groves, P. Optimizing los/nlos modeling
and solution determination for 3d-mapping-aided gnss
positioning. In ION GNSS+ 2023, 2023.

Zhong, Y., Hu, R., Bai, X., Li, X., Hsu, L.-T., and Wen,
W. Enhancing gnss positioning accuracy for road mon-
itoring systems: A factor graph optimization approach
aided by geospatial information. IEEE Transactions on
Instrumentation and Measurement, 2024.

10

 https://www.openstreetmap.org

Neural Augmented Kalman Filters for Road Network assisted GNSS positioning

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A review
of methods and applications. AI open, 1:57–81, 2020.

11

Neural Augmented Kalman Filters for Road Network assisted GNSS positioning

A. Deriving z, H and V
For Equation 2, we need to define the measurement matrix H, the observation vector z and the covariance matrix V. The
measurement matrix consists of two parts. First we select from the KF state-space vector x+

GNSS only the current user
position xpos in terms of x and y components, which will be updated with the road network measurement. This is obtained
through the selection matrix Hselect. Secondly, we rotate xpos into a perpendicular and parallel component with respect to
the selected road using the clockwise rotation matrix Hrot:

H = HrotHselect =

[
cos θ sin θ
− sin θ cos θ

] [
1 0 . . . 0
0 1 . . . 0

]
(18)

where θ is the heading of the selected road r∗. Multiplying H with x+
GNSS thus results in:

Hx+
GNSS = Hrotxpos =

[
x∥
x⊥

]
, (19)

where x∥ is the parallel and x⊥ the perpendicular component of the user location projected on the selected road.

The mean of the observation is a vector of size two, also consisting of a perpendicular and parallel component. The mean
can be found by rotating the center point of the road r∗pos in the clockwise direction as:

z = Hrotr
∗
pos =

[
z∥
z⊥

]
. (20)

Finally, we soft-threshold z∥ in order to project the vehicle onto the closest point on the road, for cases where the orthogonal
projection would fall outside the road segment extreme points. This can be done by soft-thresholding z∥ using the length of
the road segment r∗l :

z∗∥ = sign
(
z∥
)
max

(
|z∥| −

1

2
r∗l , 0

)
. (21)

The covariance of the road observation can then be simply expressed with two variables along the diagonal as:

V =

[
σ2
∥ 0

0 σ2
⊥

]
, (22)

where σ2
∥ is the variance of the road observation parallel to the road and σ2

⊥ is the variance perpendicular to the road. These
parameters can be tuned on some calibration data or predicted with a neural network, as we will discuss later in this section.

B. Dataset
We provide in this section additional details regarding the processing of GNSS and Road Network data for our experiments.

GNSS data User location and time was obtained from geodetic-survey grade receiver with a mobile phone form factor
antenna and an Inertial Measurement Unit. The pseudo-ranges were measured at a 1Hz frequency using the position data
and the satellite constellation orbital data, with the receiver’s clock bias measured by a stable external reference clock source.
Ionospheric and tropospheric delays were corrected using Klobuchar (Klobuchar, 1987) and Saastamoinen (Bevis et al.,
1994) models, respectively. Additionally, the Sagnac effect due to the Earth’s rotation was corrected for (Bidikar et al.,
2016). The time biases between the different GNSS constellations were estimated using a preliminary weighted least squares
(WLS) localization and removed, allowing the model to use pseudorange measurements from all constellations. To attain
this preliminary WLS, we can make use of a localization acquired by a cellular network or an externally injected position
available on the device.

Road network data We use the OSMnx package (Boeing, 2017) to extract the road network for a bounding box around
each GNSS drive route. We only retain the driving road network by specifying the OSM tag “highway”1, which removes

1https://wiki.openstreetmap.org/wiki/Key:highway

12

https://wiki.openstreetmap.org/wiki/Key:highway

Neural Augmented Kalman Filters for Road Network assisted GNSS positioning

other structures such as cycleways and footways. The extracted road segments are of varying lengths, with some spanning
over 500 meters long while others being just 1 meter. To make the segments length more consistent and easier to process by
the various methods, we divide all roads longer than 25 meters into equal segments up to 25 meters in length. As a last
step, we convert the graph to its dual, such that all road segments become nodes, and all intersections become edges for the
purpose of the graph convolution operations (see Figure 2).

B.1. Input features

We here describe the most useful road and vehicle input features, denotes by R and x, respectively.

Road Features The most useful road features were found to be: Distances, Road Type, Max Speed, Road Heading,
Oneway, and Viterbi Prior. Distances consists of the Euclidean distance calculated using Equation 3 and the angular distance
calculated using Equation 4. The Road Type feature is a one-hot encoding of the road type as provided by OpenStreetMap.
While the “highway” tag covers 27 different types of roads, not all of them are relevant to our applications (e.g., via ferrata).
Therefore, we only one-hot encoded the following types: ‘motorway’, ‘motorway link’, ‘trunk’, ‘trunk link’, ‘primary’,
‘primary link’, ‘secondary’, ‘secondary link’, ‘tertiary’, ‘tertiary link’, ‘unclassified’2, ‘residential’, ‘living street’, ‘service’.
All other types defaulted to a separate value in the one-hot vector. We provide Max Speed as the maximum driving speed in
meters per second. To the above input features, we add an additional Viterbi prior feature. Road Heading describes the road
heading in polar coordinates. To that end, we provide the sine and cosine of the azimuth of the road, which automatically
encodes the modulo nature of the azimuth. Oneway is a simple boolean feature that encodes whether the road is oneway (1)
or bidirectional (0). Lastly, to mimic the Viterbi algorithm’s capability to track state probabilities over time, we append
the probabilities assigned to each road to the road features R of the next time step. Furthermore, we propagate these
probabilities to the k-hop neighbors (following Equation 6) and take the maximum. For each k ∈ 1, . . . ,K, this maximum
neighboring probability is added as a feature to R for the next time step.

Vehicle Features The most useful vehicle features were found to be: Vehicle Heading and Position Uncertainty. Vehicle
Heading desribes the azimuth of the vehicle’s heading in the same way as the Road Heading feature, i.e., in terms of the
sine and cosine of the azimuth. Furthermore, we also provide the magnitude of the estimated speed in meters per second.
This allows TGNN and to compare the Vehicle Heading with the Road Heading and Max Speed features of each road
in a straight-forward manner. The Position Uncertainty feature encodes the covariance matrix of the KF in terms of the
uncertainty about East and North. That is, we provide Vpos in terms of the three scalars σ2

xx, σ
2
xy, σ

2
yy . Note that providing

the other covariance σ2
yx would be redundant with σ2

xy .

C. Hyper-parameters
We report in this section all implementation details and hyper-parameter choices to facilitate reproducing our experimental
results. The K-hop distance considered in the Viterbi algorithm is set to K = 2 to increase robustness in high-speed
scenarios. The cost weighting for the emission probability is set to β = 0.01, such that a position difference of 100 meters is
weighted equally as a difference in heading of 90 degrees. We found this trade-off to show the best results in preliminary
experiments with the Viterbi baseline, and fixed the hyper-parameter for all our experiments.

To choose the road measurement variances in methods without uncertainty prediction, we perform a grid search over the
values: σ2

⊥ ∈ {0, 1, 2, 3, . . . , 10} and σ2
∥ ∈ {0, 1, 2, 3, . . . , 10, 100, 200, 300, . . . , 1000,∞}. We calculate the horizontal

error at the 95th error percentile for each combination on the training set. The combination with the lowest horizontal error
at the 95th percentile is subsequently selected to be used on the hold-out test set. This strategy has the limitation that for all
fixes under consideration, the same variance terms are used.

The TGNN architecture consists of L = 4 blocks and all hidden sizes are set to 32. We use SiLU activation (Elfwing et al.,
2018) after each layer paired with batch normalization (Ioffe, 2015). When learning the road variances with TGNN, the cost
weighting for the CE + MSE loss is set to λ = 0.01 such that 100 meters of position distance becomes unit cost. We train
TGNN with a batch size of 8 over 5000 iterations. We use the Adam optimizer (Kingma & Ba, 2014) with a learning rate of
0.001 and a weight decay of 0.001.

2From OpenStreetMap: “The word ‘unclassified’ is a historical artefact of the UK road system and does not mean that the classification
is unknown”

13

Neural Augmented Kalman Filters for Road Network assisted GNSS positioning

Computational Costs The TGNN model has less than 50k parameters and its compute cost amounts to 1.7 MFLOPs,
which is low enough to achieve real-time inference performance even on efficient embedded processors.

D. Neural Network Ablations

(a) GNN ablation. (b) MLP ablation.

Figure 7. Architecture for the GNN and MLP ablations.

We provide diagrams describing the neural network for the ablations of the TGNN architecture. The GNN model (Figure 7)
is obtained by removing the temporal LSTM component. This model cannot capture dynamics that span across multiple
time-steps such as changes in vehicle speed and heading. We name MLP (Figure 8) a simpler architecture variation where
the KF state values are simply concatenated to the road features and processed by a sequence of MLPs. Without graph
convolutions, information cannot be propagated across road segments in the graph, and the neural network must predict the
probability for each segment independently of the others.

E. Full Qualitative Figures
We include in Figures 9 to 12 full-size qualitative visualizations of model performance in different drives. Figures 9 and
10 compare the proposed KF + TGNN approach against a simple KF using only GNSS measurements. Figures 11 and 12
compare KF + TGNN against a the KF + Viterbi baseline to process road network measurements.

14

Neural Augmented Kalman Filters for Road Network assisted GNSS positioning

-1750 -1250 -750 -250 250 750 1250 1750
East [m]

-1000

-750

-500

-250

0

250

500

750

1000

No
rth

 [m
]

KF + TGNN
KF
Ground Truth

Figure 8. Full drive where TGNN outperforms GNSS-only.

-3000 -2000 -1000 0 1000 2000 3000
East [m]

-1500

-1000

-500

0

500

1000

1500

No
rth

 [m
]

KF + TGNN
KF
Ground Truth

Figure 9. Full drive where TGNN underperforms GNSS-only.

15

Neural Augmented Kalman Filters for Road Network assisted GNSS positioning

-1750 -1250 -750 -250 250 750 1250 1750
East [m]

-1000

-750

-500

-250

0

250

500

750

1000

No
rth

 [m
]

KF + TGNN
KF + Viterbi
Ground Truth

Figure 10. Full drive where TGNN outperforms Viterbi.

-800 -600 -400 -200 0 200 400 600 800
East [m]

-400

-300

-200

-100

0

100

200

300

400

No
rth

 [m
]

KF + TGNN
KF + Viterbi
Ground Truth

Figure 11. Full drive where TGNN underperforms Viterbi.

16

