
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT TEST-TIME SCALING VIA ITERATIVE DEEP-
ENING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent reasoning models, such as OpenAI’s O1 series, have demonstrated excep-
tional performance on complex reasoning tasks and revealed new test-time scaling
laws. Inspired by this, many people have been studying how to train models to
achieve effective self-evaluation and self-correction to further enable the scaling
paradigm. However, less studied is how to efficiently scale test-time compute from
a fixed model, and this remains a challenge. In this paper, we focus on whether
LLMs can benefit from matching the pattern of correct responses. Specifically, we
explore how systematically triggering a model’s self-correction mechanisms can
improve performance on challenging reasoning tasks. To this end, we propose
a novel iterative deepening sampling algorithm framework designed to enhance
self-correction and generate higher-quality samples. Through extensive experi-
ments on Math500, AIME, and GPQA-diamond benchmarks, we demonstrate that
our method achieves a higher success rate on difficult tasks and provide detailed
ablation studies to analyze its effectiveness across diverse settings.

1 INTRODUCTION

Since ChatGPT, large language models (LLMs) have been a rapidly evolving domain that tries to
solve problems beyond traditional language tasks like summarization or question answering Chen
et al. (2023); Yao et al. (2023); Chen et al. (2024b;d). Significantly, the newly released OpenAI
O1 has introduced its new paradigm of test-time scaling, which shows strong capability in complex
problem-solving through its detailed reasoning steps before outputting the final answer Jaech et al.
(2024). Since then, many researchers have studied how to replicate success from an open-source
perspective and how to train models that are even better at efficiently solving problems that still
remain unsolvable by the current LLMs Huang et al. (2024); Zeng et al. (2024); DeepSeek-AI et al.
(2025). One key finding is that through reinforcement learning itself, LLM can spontaneously learn
to self-evaluate and self-correct from time to time. However, there is no clear conclusion on whether
self-evaluation is triggered often enough.

On the other hand, while training is the primary focus recently, it remains uncertain whether one
could more efficiently scale test-time compute from a fixed model without additional changes
in training or fine-tuning. Moreover, a more efficient sampling algorithm can not only enhance
inference-time efficiency but also facilitate the generation of high-quality synthetic data, which can
be leveraged to train the next generation of models and evaluate their performance Guan et al. (2025).

Recent work has investigated the differing patterns of correct versus incorrect responses. Notably,
while o1-like models tend to achieve higher performance when provided with greater computational
resources Huang et al. (2024); DeepSeek-AI et al. (2025), other studies have found that longer
responses can actually reduce accuracy, a phenomenon often referred to as overthinking Marjanović
et al. (2025). Given these distinct response patterns within the same model, a fundamental question
arises: can we improve the test-time performance of LLMs by guiding generation to mimic the
patterns of correct responses?

In this paper, we tackle the challenge of efficient test-time scaling using a fixed reasoning model
without additional training, applied to complex reasoning tasks such as mathematical problem solv-
ing. Specifically, inspired by a novel observation on the positional distribution difference of lin-
guistic markers that appear in correct and incorrect responses, we focus on manually inserting self-
reflection triggers like ”Wait” during the generation process to improve the pass rate of a fixed

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An illustration of our method, Iterative Deepening Sampling (ID-sampling).

model. To achieve this, we propose Iterative Deepening Sampling (ID-Sampling), a novel algorith-
mic framework that iteratively increases the sampling budget following a geometric progression,
while incorporating self-reflection mechanisms at each expansion step. We theoretically demon-
strate that ID-Sampling effectively balances computational efficiency and response quality, ensuring
that the budget is not excessively wasted while still improving model performance. We evaluate
ID-Sampling on a few challenging reasoning benchmarks, and demonstrate its effectiveness in Best-
of-N sampling and majority voting settings on various reasoning models. Additionally, we provide
an ablation study analyzing how the rate of budget increase per iteration impacts both pass rate
and inference time. Our results highlight the potential of ID-Sampling as a scalable approach for
improving LLM reasoning performance through adaptive self-reflection mechanisms.

2 RELATED WORKS

There are two primary directions for test-time scaling, namely scaling on multiple responses, and
scaling the reasoning steps in a single response.

To efficiently scale to multiple responses, researchers have proposed both aggregating independent
samples and employing structured methods such as tree-search-based architectures. While there
have been many works on tree-search strategies early on Zhang et al. (2023); Liu et al. (2023); Hao
et al. (2023); Chen et al. (2024a); Zhou et al. (2023); Zhang et al. (2024a;b), researchers are putting
more attention on aggregating independent responses given that it is hard to create a good process
reward model to accurately estimate the quality of a partial solution DeepSeek-AI et al. (2025).
Specifically in this direction, researchers mostly rely on two main classes of aggregating strategies,
namely self-consistency Wang et al. (2022) and Best-of-N Snell et al. (2024). There are many works
that focus on this setting to make it more efficient and effective. For example, Sun et al. Sun et al.
(2024) proposed to use speculative rejection in BoN to reject bad responses through early scores.
Chen et al. Chen et al. (2024e) proposed to use extremely high temperature on the first token to
greatly improve the Best-of-N performance on math and coding tasks.

To scale within a single response, researchers have first introduced an intermediate step by the
so-called chain-of-thoughtsWang & Zhou (2024). Then, starting with Self-Refine Madaan et al.
(2023), there are many works that studied how to effectively use an LLM to give themselves their
own evaluation and reflection Yao et al. (2023); Shinn et al. (2023), and study how this reflection-
based mechanism can be adapted to different applications Chen et al. (2023); Gou et al. (2023);
Chen et al. (2024c). While there have previously been a lot of discussions on whether LLM can
actually self-evaluate and self-correct themselves Huang et al. (2023); Chen et al. (2024f); Verma
et al. (2024), recent studies have shown that by training with high-quality data that involve such a
process, LLM can actually achieve a useable level of capability and help self-correct in the process
Huang et al. (2024); Zeng et al. (2024). Inspired by the recent success of Deepseek-R1 DeepSeek-AI
et al. (2025), people have realized that scaling within a single-response can be efficiently achieved
through reinforcement learning, and many follow-up works have also studied how to learn such
scaling capability more efficiently Wang et al. (2025). In this paper, we manually inject trigger
sentence in the middle of generation, which is similar to the recent work s1 Muennighoff et al.
(2025). However, our work focuses on injecting at an early stage in the thinking process, while they
focus on injecting when the current response is completely finished for budget forcing. As we later
show in our experiments, this design difference leads to a substantial divergence in results: their
approach requires further training, whereas ours provides benefits directly with existing models.

While the research in the two search strategies is mostly separate, their methods are orthogonal and
can be used together to make the sampling process more efficient Snell et al. (2024), and some re-
cent research has also studied how to balance the two, and has shown that scaling on the number

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

of responses can be more efficient than scaling within a single response Wang et al. (2025); Mar-
janović et al. (2025); Sadhukhan et al. (2025). In this paper, we focus on the intersection of both
scaling strategies and study how to strategically trigger the self-correction capability of LLMs more
efficiently. We take into account the additional cost of scaling within one response by measuring the
total wall-clock time used, and calculate the equivalent N when comparing the answers as needed.

3 PRELIMINARIES

3.1 BEST-OF-N SAMPLING

For reasoning-intensive tasks such as mathematical problem-solving and coding, Best-of-N sam-
pling is one of the most widely used strategies for data generation. This approach involves sampling
N outputs from the same model using predefined sampling parameters — typically with a higher
temperature than single-sample settings — followed by a selection process to determine the best re-
sponse. The selection criteria depend on the intended use of the samples. During training, responses
are typically evaluated using rule-based checkers for mathematical problems or online judges for
coding tasks to identify correct answers within the sampled set. At test time, a reward model is often
employed to score the generated responses, with the highest-scoring output selected as the final an-
swer. This methodology effectively balances exploration and optimization, making it a fundamental
component in enhancing the performance of LLMs on reasoning tasks.

The BoN sampling is a simple yet effective method that can be fully parallelized to enhance per-
formance. Increasing N guarantees improved results during training when a ground-truth checker is
available and generally leads to better performance at inference time, provided that the reward model
is sufficiently accurate. However, if paired with a reward model that is not good enough, BoN might
fail to scale efficiently and might even decrease its performance when more samples are included for
aggregation. Therefore, getting a good reward model is necessary for good performance for BoN.

3.2 MAJORITY VOTING

Similar to BoN sampling, majority voting, also known as self-consistency (cons@n), provides an
alternative approach for aggregating N different responses Wang et al. (2022). As the name sug-
gests, this method involves generating N responses, counting the frequency of each unique answer,
and selecting the most frequently occurring response as the final output. This approach leverages
the inherent redundancy in multiple generations to improve robustness and reliability, making it
particularly useful for tasks requiring high confidence in correctness.

Majority voting offers the advantage of aggregating responses without relying on a reward model.
Additionally, although empirically less effective, it can be extended to a weighted version, where
weights are assigned based on PRM scores or confidence estimations of the generated answers Wang
et al. (2022). While majority voting benefits from not requiring a highly accurate reward model, it
faces challenges in identifying equivalent answers. For instance, it can be very hard to identify
two code samples to be the same, and even in mathematical problems, expressions such as 1√

3
and

√
3
3 are equivalent but must be recognized as such to ensure correct vote counting. A common

solution in mathematical domains involves using symbolic-based checkers to compare answer pairs
and identify equivalences. However, this process can be computationally expensive, requiring up to
O(N2) comparisons.

4 ITERATIVE DEEPENING SAMPLING

4.1 OBSERVATION: FREQUENCIES OF LINGUISTIC MARKERS IN REASONING MODELS

Recent studies have highlighted that overthinking can negatively impact the performance of reason-
ing models Wang et al. (2025); Marjanović et al. (2025). A key observation is that correct answers
tend to be shorter and contain fewer linguistic markers associated with ”thinking” behaviors.

Here, we present a novel perspective by analyzing not only the frequency but also the positional
distribution of thinking-related markers within model responses. A complete list of these markers

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Positional frequency of thinking-related linguistic markers in Deepseek-R1 responses on
the AIME-2024 dataset. A higher frequency indicates the likelihood of a given position containing
such markers within a response. The plot is smoothed with a moving average for better visualization.

is provided in the appendix. As illustrated in Fig. 2, correct answers tend to exhibit fewer think
markers, with a clear concentration in the early stages of the response. Their frequency drops sharply
after the first 1000 tokens. In contrast, incorrect answers often contain self-corrections distributed
throughout the response, with a noticeable decline only near the end. While this distinct distribution
pattern is less informative than response length for classifying correctness due to its complexity, it
is nonetheless a characteristic that we can mimic during generation.

4.2 METHODS

Algorithm 1 Iterative Deepening Sampling

1: function GENERATE WITH ID-SAMPLING(LLM, Dataset, B0, γ, B):
2: Prefixes← Questions from Dataset
3: Budget← B0

4: while Prefixes is not empty and Budget ≤ B do
5: NewPrefixes← {}
6: Outputs← LLM.generate(input = Prefixes,max tokens = Budget)
7: for each Output in Outputs do
8: if Output is finished then
9: LOGANSWER(Output)

10: else if Output finished thinking then
11: Output← LLM.generate(input = Output)
12: LOGANSWER(Output)
13: else
14: NewPrefix← PADTRIGGERSENTENCE(Output)
15: NewPrefixes.append(NewPrefix)
16: end if
17: end for
18: Budget← Budget× γ
19: Prefixes← NewPrefixes
20: end while
21: end function

In this paper, we focus on efficiently scaling test-time computation by replacing the standard sam-
pling algorithm with a more effective, custom-designed alternative. Given a fixed overall computa-
tional budget, an important challenge is determining how much additional budget should be allocated
to refining a given prefix x0 that the model has already sampled. Efficient budget allocation is cru-
cial, as any saved resources can be redirected to increasing the number of N in Best-of-N sampling
or deepening tree search, ultimately improving overall performance. Understanding this trade-off is
key to optimizing both search efficiency and model output quality.

More specifically, the self-evaluation and self-correction process of the LLM can be manually trig-
gered by introducing a predefined trigger sentence, such as ”Wait! Maybe I made some mistakes!
I need to rethink from scratch.” or simply ”Wait”. In most cases, LLMs respond to this trigger by

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

restarting their reasoning process and making self-corrections. Repeatedly inserting this sentence
increases the overall length of the reasoning trajectory, potentially improving problem-solving accu-
racy by facilitating iterative refinement. In this paper, we propose a method for strategically placing
a fixed trigger sentence at increasing intervals within longer contextual windows, aiming to balance
computational efficiency and the effectiveness of self-correction.

Motivated by the analysis in Section 4.1, we propose to introduce more trigger sentences at earlier
stages and gradually reduce their occurrence as the response length increases. Suppose we have
already used a budget of b to generate a prefix x0 and are now considering whether to immediately
introduce a trigger sentence. Iterative Deepening (ID) sampling allocates an additional budget of γ×
b before inserting the trigger sentence the next time, where γ > 1 is a tunable hyperparameter. This
iterative process continues until reaching a maximum budget B, beyond which no further trigger
sentences are introduced. If the reasoning process reaches a natural stopping point—i.e., a complete
answer is generated within the allocated budget—the process terminates early. This is because
generating a full response from scratch generally leads to more reliable outputs than attempting to
refine an already complete solution. The complete procedure is outlined in Algorithm 1, where B0

represents the initial budget. The function LLM.generate conducts the generation within a given
budget and is adaptable to different tree-search strategies. The function PadTriggerSentence handles
the insertion of trigger sentences while ensuring redundancy is minimized if necessary.

The definition and allocation of computational budget depend on the specific test-time scaling al-
gorithm employed, leading to variations in implementation strategies. In this paper, we focus on
the setting where N responses are sampled independently, and we have provided an illustration of
ID-sampling in Fig. 1. Since response generation is independent and typically performed in par-
allel, the computational cost primarily depends on the total number of generated responses N and
their respective lengths. To manage computational efficiency, we define the budget as the maximum
number of tokens generated in a given round, which corresponds to the max token parameter in
LLM serving engines such as vLLM Kwon et al. (2023). Additionally, to avoid inserting the trigger
sentence mid-sentence, we extend generation until the completion of a reasoning step. Here, a step
is identified by token splits such as ‘\n’ or ‘\n\n’. This ensures that trigger sentence placement
aligns with the basic logical structure of the generated response, preserving coherence and stability
in the reasoning process. On the other hand, this also helps introduce some randomness in inserting
trigger sentence, avoiding inserting them on exactly the same token at each run.

In implementations, the maximum generation token limit is a common parameter provided by mod-
ern serving engines such as vLLM or OpenAI’s API services. Consequently, ID-sampling can still
efficiently leverage the speedups offered by these engines. The pseudocode is provided in Alg. 1.

4.3 THEORETICAL ANALYSIS

A key challenge in ID-sampling is that budget control occurs before each manually triggered self-
evaluation and self-correction step without explicitly analyzing the actual generated responses. This
can lead to unnecessary iterations, potentially increasing computational costs. However, due to the
design of our ID-sampling method, we establish important theoretical guarantees. In particular,
we provide a bound on the total number of tokens generated before reaching the final answer, as
formalized in the following theorem.

Theorem 4.1. Suppose the final answer obtained through ID-Sampling needs a budget of L in
normal sampling without manual injection in the middle. Then the total number of additional budget
used is no more than γ∗L

γ−1 .

Proof Sketch Note that the budget for each generation iteration follows a geometric sequence
with common ratio γ. The theorem follows directly from a summation of this geometric series. A
complete proof is provided in the appendix.

The theorem does not guarantee the quality of the generated responses or the alignment of the output
distribution. Rather, it establishes that our method incurs no substantial additional computational
overhead when generating a single response. Our intuition, however, is that by introducing trigger
sentences at an early stage, ID-sampling can yield empirical gains in pass rate by biasing the model’s
output distribution toward higher-quality responses.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

It is important to note that Iterative Deepening (ID) sampling does not impose any assumptions or
constraints on the model’s inherent self-correction or self-evaluation capabilities. In some cases,
the model may naturally generate a response that already includes a trigger sentence before an
explicit manual insertion. We observe that the built-in reasoning capabilities of recent state-of-
the-art models, such as OpenAI-o1 Jaech et al. (2024) and DeepSeek-R1 DeepSeek-AI et al. (2025),
significantly impact the effectiveness of ID-sampling. To better understand these effects, we conduct
a comprehensive study using DeepSeek-R1, which we present in the experimental section.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Models and Datasets In our experiments, we primarily target improvements in reasoning mod-
els where test-time scaling actually holds, while also reporting results for non-reasoning models as
a point of reference. We use Llama-3.1-1B-Instruct Dubey et al. (2024) and Phi-4 Abdin et al.
(2024) as examples for non-reasoning models, and DeepSeek-R1-Distill-Qwen-7BDeepSeek-AI
et al. (2025), Qwen3-8B and Qwen3-32B Yang et al. (2025) for reasoning models. For reward mod-
els for BoN, we employ Qwen-2.5-Math-PRM-7B Zhang et al. (2025). We evaluate ID-sampling
on three benchmark datasets: MATH-500 Lightman et al. (2023), AIME, and GPQA-diamond Rein
et al. (2024). The first two are math-focused datasets, while GPQA-diamond is a science QA bench-
mark. Due to space constraints, results on GPQA-diamond are presented in the appendix.

Baselines We compare our approach against two settings: (i) vanilla sampling without any manual
intervention, and (ii) S1 Muennighoff et al. (2025) without the training mentioned, which is simply
appends word ”wait” after the original reasoning process is completed twice.

Evaluation We report three key pass rate metrics across the datasets:

1. Best-of-N (BoN) – The accuracy when a reward model selects the best response from N
generated samples.

2. Pass@N - The pass rate, which measures whether or not at least one of the N total responses
is correct. We have used the unbiased estimation version Chen et al. (2021) with 40 total
samples to address the statistical significance problem.

3. Majority Voting (cons@N) – The accuracy when responses are aggregated via unweighted
majority voting, selecting the most frequent answer.

For both BoN and majority voting, a single aggregated answer is compared against the ground-truth
solution to measure accuracy. We report BoN on Math500 datasets and for non-reasoning models on
AIME datasets, given that its response length is within the context length limit of the reward models,
and report Pass@n for reasoning models on AIME datasets because the normal response length is
> 12K and beyond the context length of popular reward models. 1

For both math benchmarks, we employ symbolic checkers to ensure that all mathematically equiva-
lent answers are accepted as correct.

Parameters For trigger sentence, we choose to use a whole sentence ”Wait! Maybe I made some
mistakes! I need to rethink from scratch.” for non-reasoning models and a single word ”wait” for
reasoning models. We will provide a discussion about this choice later. By default, we use γ = 2.0
for ID-sampling, and we will later provide ablation study results on this. For ID-sampling with BoN,
we set the initial budget B0 as 256 tokens. For reasoning models, we set the thinking budget as 4096
for any model on Math-500 datasets, and 16384 for AIME datasets. If the model fully used the
thinking budget, an end-of-think token (</think>) is padded, and an additional 1000 tokens are
provided for the final answer to be provided. For non-thinking models, we set a fixed max sequence
length of 4096. Due to the page limit, we leave other hyperparameters in the appendix.

1We have tried to use techniques like Yarn to extend the context length limit to a longer context. However,
the model will lead to a consistent decrease rather than an increase when we increase the number of responses,
and thus, we decided to just report Pass@n on longer context answers.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Llama-3.1-1B-Instruct (b) Phi-4 (c) Deepseek-R1-Distill-Qwen-7B

Figure 3: Math-500 dataset: Pass rate results for different models. The x-axis is the equivalent N
after considering the extra time used by ID-sampling.

N Vanilla ID-sampling
BoN cons@N BoN cons@N

1 0.00 0.00 3.45 3.45
4 0.00 0.00 0.00 3.45
8 0.00 0.00 0.00 3.45

16 3.45 0.00 0.00 3.45
32 3.45 0.00 10.34 6.90

(a) Llama-3.1-1B-Instruct

N Vanilla ID-sampling
BoN cons@N BoN cons@N

1 17.24 17.24 20.69 20.69
4 13.79 17.24 24.14 24.14
8 13.79 20.69 27.59 24.14
16 13.79 20.69 27.59 20.69
32 13.79 20.69 27.59 20.69

(b) Phi-4

Table 1: AIME-24 dataset: Pass rate results for different models with different number of samples.
The best results in each setting are highlighted in bold. Since performance saturates quickly on
these weaker LLM models, meaning that even the highest pass rate with N = 32 does not exceed
the N = 1 pass rate for ID-sampling, we omit the use of equivalent N in this setting.

5.2 RESULTS

5.2.1 MATH-500

Before evaluating the pass rate, we first analyze the runtime overhead of ID-sampling on Math-
500 datasets. We observe that ID-sampling incurs approximately 1.6–1.9× the total wall-clock time
compared to the baseline of vanilla sampling for non-reasoning models, and 1.1–1.3× for reasoning
models. Given that this additional computational cost could instead be allocated to generating more
responses and selecting the best one, we present our results in terms of an equivalent N. Specifically,
if the original results correspond to Bo8, we report them as equivalent N = 16, as ID-sampling
consistently completes within twice the runtime of the original method.

We present our results for different models on Math-500 in Fig. 3. We observe a notable difference
in the effectiveness of ID-sampling for non-reasoning models based on the aggregation method.
While ID-sampling yields performance gains with increasing sample size (N) under a Best-of-N
(BoN) selection strategy, it consistently performs poorly when results are combined via majority
voting. This suggests that for non-reasoning models lacking self-reflection capabilities, the patterns
of correct versus incorrect responses differ in ways that ID-sampling fails to exploit.

By contrast, our primary focus is on reasoning models with test-time scaling capabilities. With
the DeepSeek-R1-Distill-Qwen-7B, a strong reasoning model with built-in self-evaluation and self-
correction, ID-sampling consistently outperforms vanilla sampling. This is because while stronger
models excel at self-correction, they remain suboptimal at determining when to initiate the self-
correction process. Compared to earlier models, each trigger sentence has a more pronounced effect,
allowing ID-sampling to correct errors that might otherwise persist without explicit intervention.

5.2.2 AIME

The AIME datasets (AIME-24 and AIME-25) are highly challenging benchmarks that have become
widely adopted for evaluating reasoning models DeepSeek-AI et al. (2025); Huang et al. (2024). In
this setting, reward models exhibit substantially lower accuracy. Accordingly, rather than reporting
BoN, we adopt Pass@N and Cons@N as our evaluation metrics.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Qwen3-8B results on
AIME-24.

Figure 5: Qwen3-8B results on
AIME-25.

Figure 6: Deepseek-R1-distill-
Qwen-7B results on AIME-25.

n 1 4 8 16

Vanilla Pass@n 67.8 81.6 85.9 88.4
S1 Pass @n 67.6 82.0 86.1 88.4
ID-sampling Pass@n 69.5 82.8 86.1 88.9
Vanilla Cons@n 56.7 76.7 80.0 83.3
S1 Cons@n 56.7 76.7 76.7 83.3
ID-sampling Cons@n 63.3 80.0 80.0 83.3

Table 2: Comparison between Vanilla sampling, S1, and ID-
sampling on Qwen3-32B on AIME-25.

Rel. Time

Vanilla 1.00
ID(2.5) 1.07
ID(2.0) 1.09
ID(1.5) 1.39

Table 3: Relative wall-clock time
cost of ID-sampling for varying γ
values using DeepSeek-R1-Distill-
Qwen-7B on the AIME-24 dataset.

We first present the results for non-reasoning models in Table 1. We observe that ID-sampling can
help improve the pass rate, and because of the fast saturation of pass rate, ID-sampling can even help
the model to surpass its previous ceiling, i.e., N = 1 with ID-sampling is better than N = 32 with
vanilla sampling. More importantly, for reasoning models, the wall-clock-time difference between
vanilla sampling and ID-sampling becomes negligible. Specifically, for Qwen3 models, the time
ratio remains within 1±0.02, and for R1-distill models, it is within 1±0.1 with γ = 2.0. As a result,
the use of equivalent N has little practical effect in this context. We present results on reasoning
models in Fig. 4, 5, 6, 7, and Table 2. Across multiple models on the two most recent AIME
datasets, ID-sampling consistently outperforms both vanilla sampling and S1. This demonstrates the
general applicability of our method, without requiring any assumptions about the specifics of post-
training. By contrast, S1 only barely matches the performance of vanilla sampling on Deepseek-R1-
distill-Qwen-7B, reinforcing the need for training as originally emphasized in the S1 paper. This is
because S1 does not substantially alter the overall response pattern, particularly when measured by
the positional frequency of linguistic markers, and therefore derives no benefit from it. For Qwen3-
8B, which typically exhausts the full thinking budget, S1 has no opportunity to be applied, and its
performance largely overlaps with vanilla sampling on both AIME-24 and AIME-25. For clarity,
we therefore omit the S1 curve for Qwen3-8B models.

Ablation Study Given the stable performance gains of ID-sampling on AIME, here we conducted
an ablation study to analyze the impact of the scaling factor γ on ID-sampling. We present the pass
rate results for DeepSeek-R1-Distill-Qwen-7B on AIME-24 in Figures 7a and 7b, and report the
relative inference time for each setting in Table 3.

We find that adjusting γ significantly impacts both performance and computational cost. In terms
of runtime, γ = 1.5 yields the highest cost, whereas the other two settings remain within 1.1× the
wall-clock time of vanilla sampling. Regarding performance, γ = 2.0 consistently achieves the best
results in terms of Pass@N , while γ = 2.5 occasionally outperforms in terms of Cons@N , though
with a small margin. Overall, ID-sampling proves to be a more effective sampling strategy than
vanilla sampling, provided that γ is not too small, which would undermine our goal of emphasizing
early-stage trigger sentence injection.

We observed a non-convex relationship between γ and performance, even without accounting for
time, with one of the best settings at γ = 2.0. We attribute this to the fact that ID-sampling aims to
match the patterns of correct responses, but can mismatch when the trigger sentence is inserted too
frequently, i.e. γ is small. Overall, as most reasoning models right now share a similar reasoning

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Pass@N (b) cons@N

Figure 7: AIME-24 Dataset: Pass rate results for DeepSeek-R1-Distill-Qwen-7B with different γ for
ID-sampling, compared to vanilla sampling. The numbers in brackets are the γ used in ID-sampling.
As different values of γ result in significantly varying runtimes, as shown in Table 3, we again omit
the use of equivalent N in this analysis.

pattern, we recommend γ = 2.0 as it strikes a favorable balance between performance and efficiency,
and we have demonstrated its effectiveness through the extensive experiments presented above.

6 DISCUSSIONS

Choice of Trigger Sentence In our experiments, we use different trigger sentences for non-
reasoning models and reasoning models. The difference is caused by the nature of the models.
For non-reasoning models, a single word ”wait” cannot trigger the self-correction process and can
only introduce noise to the generation. For reasoning models, we found that for an unknown rea-
son, adding the whole sentence will trigger the generation of an end-of-think token for a certain
probability, and lead to an early stop in the generation sequence. While this does not always harm
the performance, this is not something we want, as we want to use the trigger sentence to trigger
self-correction. Overall, as test-time scaling is highly correlated to reasoning models, a single word,
”wait,” will be sufficient as shown in our experiments.

Limitations Our proposed method also has several clear limitations. The most significant is that
the performance of our method could significantly depend on the underlying model. While we have
used our experiments to show that ID-sampling works on popular models, it is possible for some
models to be incompatible with the algorithm, especially if the models are trained with losses that in-
corporate more than just the accuracy of the final answer. Moreover, incorporating trigger sentences
into the generation process requires ID-sampling to invoke multiple generation steps. While this the-
oretically incurs no additional cost on the KV-cache, in practice, it can lead to increased inference
time. To address this concern, we use equivalent N in our experiments, which accounts for total
wall-clock time, to enable a fair comparison across different sampling methods. Additionally, due
to the need for multiple sampling steps, ID-sampling is currently tested only on open-source models.
While the same idea can also be applied to black-box models through multi-round generations, this
will introduce extra assistant tokens during generation, which may cause a slight distribution shift
when applied to black-box models.

7 CONCLUSIONS

In this paper, we introduced Iterative Deepening (ID) Sampling, a simple yet effective algorithm for
scaling test-time compute more efficiently than standard sampling. We showed that ID-sampling
improves test-time performance on challenging reasoning tasks like math across diverse reasoning
models. Our findings suggest that while current models possess strong self-correction capabilities,
they remain limited in autonomously deciding when to invoke such mechanisms. Furthermore, our
results highlight that guiding generation to mimic the patterns of correct responses can provide a
benefit at test-time.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 techni-
cal report. arXiv preprint arXiv:2412.08905, 2024.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Step-level value preference optimiza-
tion for mathematical reasoning. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 7889–
7903, Miami, Florida, USA, November 2024a. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.463. URL https://aclanthology.org/2024.
findings-emnlp.463.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
without process, 2024b. URL https://arxiv.org/abs/2405.03553.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Weizhe Chen, Sven Koenig, and Bistra Dilkina. Reprompt: Planning by automatic prompt engineer-
ing for large language models agents. arXiv preprint arXiv:2406.11132, 2024c.

Weizhe Chen, Sven Koenig, and Bistra Dilkina. Why solving multi-agent path finding with large
language model has not succeeded yet. arXiv preprint arXiv:2401.03630, 2024d.

Weizhe Chen, Zhicheng Zhang, Guanlin Liu, Renjie Zheng, Wenlei Shi, Chen Dun, Zheng Wu,
Xing Jin, and Lin Yan. Flaming-hot initiation with regular execution sampling for large language
models. arXiv preprint arXiv:2410.21236, 2024e.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023.

Ziru Chen, Michael White, Raymond Mooney, Ali Payani, Yu Su, and Huan Sun. When is tree
search useful for llm planning? it depends on the discriminator. arXiv preprint arXiv:2402.10890,
2024f.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda

10

https://aclanthology.org/2024.findings-emnlp.463
https://aclanthology.org/2024.findings-emnlp.463
https://arxiv.org/abs/2405.03553


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
Critic: Large language models can self-correct with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738, 2023.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519, 2025.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu, Yuxiang Zheng, Ethan Chern, Shijie Xia, Yi-
wei Qin, Weizhe Yuan, and Pengfei Liu. O1 replication journey–part 2: Surpassing o1-preview
through simple distillation, big progress or bitter lesson? arXiv preprint arXiv:2411.16489, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. Making ppo even better: Value-guided monte-carlo tree search decoding. arXiv
preprint arXiv:2309.15028, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. In Advances in Neural Information Processing Systems (NeurIPS), 2023.

Sara Vera Marjanović, Arkil Patel, Vaibhav Adlakha, Milad Aghajohari, Parishad BehnamGhader,
Mehar Bhatia, Aditi Khandelwal, Austin Kraft, Benno Krojer, Xing Han Lù, et al. Deepseek-r1
thoughtology: Let’s think about llm reasoning. arXiv preprint arXiv:2504.07128, 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Ranajoy Sadhukhan, Zhuoming Chen, Haizhong Zheng, Yang Zhou, Emma Strubell, and Beidi
Chen. Kinetics: Rethinking test-time scaling laws. arXiv preprint arXiv:2506.05333, 2025.

11

https://arxiv.org/abs/2501.12948


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2023. URL https://papers.nips.cc/paper_files/paper/
2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. arXiv preprint
arXiv:2410.20290, 2024.

Mudit Verma, Siddhant Bhambri, and Subbarao Kambhampati. On the brittle foundations of react
prompting for agentic large language models. arXiv preprint arXiv:2405.13966, 2024.

Junlin Wang, Shang Zhu, Jon Saad-Falcon, Ben Athiwaratkun, Qingyang Wu, Jue Wang, Shuai-
wen Leon Song, Ce Zhang, Bhuwan Dhingra, and James Zou. Think deep, think fast: Investigat-
ing efficiency of verifier-free inference-time-scaling methods. arXiv preprint arXiv:2504.14047,
2025.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting. arXiv preprint
arXiv:2402.10200, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023. URL https://openreview.net/pdf?id=WE_
vluYUL-X.

Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Bo Wang, Shimin Li, Yunhua Zhou, Qipeng Guo,
Xuanjing Huang, and Xipeng Qiu. Scaling of search and learning: A roadmap to reproduce o1
from reinforcement learning perspective. arXiv preprint arXiv:2412.14135, 2024.

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level
mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. arXiv preprint
arXiv:2406.07394, 2024a.

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong Li, Tong Xie, Xiaoshui Huang, Shufei Zhang,
Marco Pavone, Yuqiang Li, et al. Llama-berry: Pairwise optimization for o1-like olympiad-level
mathematical reasoning. arXiv preprint arXiv:2410.02884, 2024b.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B Tenenbaum, and Chuang Gan.
Planning with large language models for code generation. arXiv preprint arXiv:2303.05510,
2023.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Lan-
guage agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023.

12

https://papers.nips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://papers.nips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/pdf?id=WE_vluYUL-X


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DISCLAIMER OF LLM USAGE

Apart from being the subject of study, large language models were used solely to polish the writing
in this paper. All substantive contributions are attributable to the authors.

B COMPLETE PROOF FOR THEOREM 4.1

Let Ltotal represent the total generated length resulting from an iterative process. Let l denote the
length generated in the final iteration. We naturally have l ≤ L, otherwise the generation will be
finished earlier.

We aim to establish an upper bound for Ltotal. We analyze the contributions to the total length
by considering the sequence of generated lengths in reverse chronological order. Assume that this
sequence of lengths can be bounded above by a geometric sequence whose first term is l and whose
common ratio is r = 1/γ, where γ is a constant greater than 1 (γ > 1).

Under this assumption, the total length Ltotal is bounded by the sum of this infinite geometric series:

Ltotal ≤
∞∑
k=0

l

(
1

γ

)k

Since it is assumed that γ > 1, the common ratio r = 1/γ satisfies 0 < r < 1. Therefore, the
geometric series converges, and its sum is:

∞∑
k=0

l

(
1

γ

)k

=
l

1− 1
γ

We can simplify the denominator of this expression:

l

1− 1
γ

=
l

γ−1
γ

=
γl

γ − 1

Thus, we have the bound:

Ltotal ≤
γl

γ − 1

Finally, using the given condition that l ≤ L, we substitute L to obtain the final upper bound for the
total length:

Ltotal ≤
γl

γ − 1
≤ γL

γ − 1

Therefore, the total generated length Ltotal is bounded above by γL
γ−1 .

C HYPERPARAMETERS

All experiments are conducted on an NVIDIA A100 GPU (80GB memory) using the vLLM serving
engine Kwon et al. (2023). By default, we use a carefully selected set of hyperparameters and
configurations to balance efficiency and performance:

• Based on the typical sampling budget used in training (10–40), we set the maximum num-
ber of N to 32 for sampling.

• All numbers are based on our implementations and the numbers are slightly different to the
ones reported on technical reports due to the prompt used and the early cut-off based on the
budget.

• By default, we use temperature = 0.6, top p = 0.95. For Qwen3, we additionally use
top k = 20 as recommended by the official technical report.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

D ADDITIONAL DISCUSSIONS

Potential Extension to Search-based Test-time Scaling In this paper, our study primarily fo-
cuses on ID-sampling without integrating it into tree-search algorithms. However, we emphasize
that our proposed framework can be directly extended to methods such as beam search and Monte
Carlo Tree Search (MCTS). In these cases, the budget in Algorithm 1 can be directly interpreted as
the computational budget in MCTS or the number of iterations in beam search. One challenge in this
extension is that self-correction mechanisms reduce the reliance on early model outputs being cor-
rect, distinguishing the need for a new generation of PRMs from previously released ones. However,
future researchers who develop or have access to more accurate PRMs that explicitly model the self-
correction process can leverage our ID-sampling framework to enhance the reasoning capabilities
of fixed models.

Choice of Datasets In our experiments, we focus primarily on mathematical reasoning datasets,
with results on a science QA dataset provided in the appendix. While test-time scaling techniques
could, in principle, be extended to more general reasoning-related domains like coding, such exten-
sions are not directly applicable in our setting. Methodologically, the injection of trigger sentences
is ill-suited for code generation tasks, where inserting additional tokens may introduce syntactic or
semantic errors. We therefore leave the integration of ID-sampling to future work.

E LINGUISTIC MARKERS

In the paper, we have presented the occurrence frequencies of the linguistic markers as our moti-
vation. We provide the full list of such markers here, which is the same as Wang et al. (2025):
”however”, ”wait”, ”alternatively”, ”hmm”.

F ADDITIONAL EXPERIMENT RESULTS

F.1 GPQA RESULTS

Model Sampling Cons@1 Cons@4 Cons@8 Cons@16 Cons@32

Deepseek-R1-7B Vanilla Sampling 48.9 59.7 65.2 67.3 70.1
ID Sampling 50.0 60.8 66.8 67.9 71.1

Qwen3-8B Vanilla Sampling 55.4 65.2 71.1 73.9 74.4
ID Sampling 55.4 66.8 72.2 73.9 76.6

Table 4: ID-sampling performance on difference models on GPQA-diamond dataset. Specifically,
Deepseek-R1-7B denotes Deepseek-R1-distill-Qwen-7B.

In GPQA, the wall-clock time of ID-sampling and vanilla sampling differs by only about 1.10×, a
negligible overhead compared to the inherent runtime randomness of LLMs. Accordingly, we do
not report equivalent-N results in this setting. As shown in Table 4, we observe that on both models,
ID-sampling stably outperform vanilla sampling when combined with majority voting (Cons@n).
We choose not to report Pass@N, as for multiple-choice questions such as those in GPQA, as this
metric primarily incentivizes diversity in responses rather than better answer quality.

G FREQUENCY OF LINGUISTIC MARKER

In Fig. 8, we show the frequency of linguistic marker after using ID-sampling. Specifically, because
of the smooth applied to the curve, there are only a few spikes that are noticable. Aside from these
spikes, we do not observe significant changes in the overall shape of the frequency curves for either
correct or incorrect trajectories when comparing vanilla sampling to ID sampling. Nonetheless, the
average frequency for correct trajectories appears slightly higher, while the frequency for incorrect
trajectories is roughly the same.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 8: Positional frequency of thinking-related linguistic markers in Deepseek-R1-distill-Qwen-
7B responses using ID-sampling on the AIME-2024 dataset.

We believe the lack of major change in incorrect trajectories is due to the limited number of ”wait”
prompts added. And these added patterns convert more incorrect to correct trajectories, without
significantly disrupting the overall generation patterns. Similarly, the slight increase in average fre-
quency for correct trajectories is likely due to a subset of previously incorrect paths being corrected.
This increases the overall average, as these corrected trajectories tend to exhibit more frequent oc-
currences of reasoning-related linguistic markers in their earlier segments.

15


	Introduction
	Related Works
	Preliminaries
	Best-of-N Sampling
	Majority Voting

	Iterative Deepening Sampling
	Observation: Frequencies of Linguistic Markers in Reasoning Models
	Methods
	Theoretical Analysis

	Experiments
	Experiment Setup
	Results
	Math-500
	AIME


	Discussions
	Conclusions
	Disclaimer of LLM Usage
	Complete Proof for Theorem 4.1
	Hyperparameters
	Additional Discussions
	Linguistic Markers
	Additional Experiment Results
	GPQA Results

	Frequency of Linguistic Marker

