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ABSTRACT

Recent reasoning models, such as OpenAI’s O1 series, have demonstrated excep-
tional performance on complex reasoning tasks and revealed new test-time scaling
laws. Inspired by this, many people have been studying how to train models to
achieve effective self-evaluation and self-correction to further enable the scaling
paradigm. However, less studied is how to efficiently scale test-time compute from
a fixed model, and this remains a challenge. In this paper, we focus on whether
LLMs can benefit from matching the pattern of correct responses. Specifically, we
explore how systematically triggering a model’s self-correction mechanisms can
improve performance on challenging reasoning tasks. To this end, we propose
a novel iterative deepening sampling algorithm framework designed to enhance
self-correction and generate higher-quality samples. Through extensive experi-
ments on Math500, AIME, and GPQA-diamond benchmarks, we demonstrate that
our method achieves a higher success rate on difficult tasks and provide detailed
ablation studies to analyze its effectiveness across diverse settings.

Figure 1: Comparison of our proposed ID-sampling to vanilla sampling on Qwen3-8B on AIME-
25. The x-axis is the equivalent number of samples after considering the additional cost from ID-
sampling.

1 INTRODUCTION

Since ChatGPT, large language models (LLMs) have been a rapidly evolving domain that tries to
solve problems beyond traditional language tasks like summarization or question answering Chen
et al. (2023); Yao et al. (2023); Chen et al. (2024b;d). Significantly, the newly released OpenAI
O1 has introduced its new paradigm of test-time scaling, which shows strong capability in complex
problem-solving through its detailed reasoning steps before outputting the final answer Jaech et al.
(2024). Since then, many researchers have studied how to replicate success from an open-source
perspective and how to train models that are even better at efficiently solving problems that still
remain unsolvable by the current LLMs Huang et al. (2024); Zeng et al. (2024); DeepSeek-AI et al.
(2025). One key finding is that through reinforcement learning itself, LLM can spontaneously learn
to self-evaluate and self-correct from time to time. However, there is no clear conclusion on whether
self-evaluation is triggered often enough.
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Figure 2: An illustration of our method, Iterative Deepening Sampling (ID-sampling).

On the other hand, while training is the primary focus recently, it remains uncertain whether one
could more efficiently scale test-time compute from a fixed model without additional changes
in training or fine-tuning. Moreover, a more efficient sampling algorithm can not only enhance
inference-time efficiency but also facilitate the generation of high-quality synthetic data, which can
be leveraged to train the next generation of models and evaluate their performance Guan et al. (2025).

Recent work has investigated the differing patterns of correct versus incorrect responses. Notably,
while o1-like models tend to achieve higher performance when provided with greater computational
resources Huang et al. (2024); DeepSeek-AI et al. (2025), other studies have found that longer
responses can actually reduce accuracy, a phenomenon often referred to as overthinking Marjanović
et al. (2025). Given these distinct response patterns within the same model, a fundamental question
arises: can we improve the test-time performance of LLMs by guiding generation to mimic the
patterns of correct responses?

In this paper, we tackle the challenge of efficient test-time scaling using a fixed reasoning model
without additional training, applied to complex reasoning tasks such as mathematical problem solv-
ing. Specifically, inspired by a novel observation on the positional distribution difference of lin-
guistic markers that appear in correct and incorrect responses, we focus on manually inserting self-
reflection triggers like ”Wait” during the generation process to improve the pass rate of a fixed
model. To achieve this, we propose Iterative Deepening Sampling (ID-Sampling), a novel algorith-
mic framework that iteratively increases the sampling budget following a geometric progression,
while incorporating self-reflection mechanisms at each expansion step. We theoretically demon-
strate that ID-Sampling effectively balances computational efficiency and response quality, ensuring
that the budget is not excessively wasted while still improving model performance. We evaluate
ID-Sampling on a few challenging reasoning benchmarks, and demonstrate its effectiveness in Best-
of-N sampling and majority voting settings on various reasoning models. Additionally, we provide
an ablation study analyzing how the rate of budget increase per iteration impacts both pass rate
and inference time. Our results highlight the potential of ID-Sampling as a scalable approach for
improving LLM reasoning performance through adaptive self-reflection mechanisms.

2 RELATED WORKS

There are two primary directions for test-time scaling, namely scaling on multiple responses, and
scaling the reasoning steps in a single response.

To efficiently scale to multiple responses, researchers have proposed both aggregating independent
samples and employing structured methods such as tree-search-based architectures. While there
have been many works on tree-search strategies early on Zhang et al. (2023); Liu et al. (2023); Hao
et al. (2023); Chen et al. (2024a); Zhou et al. (2023); Zhang et al. (2024a;b), researchers are putting
more attention on aggregating independent responses given that it is hard to create a good process
reward model to accurately estimate the quality of a partial solution DeepSeek-AI et al. (2025).
Specifically in this direction, researchers mostly rely on two main classes of aggregating strategies,
namely self-consistency Wang et al. (2022) and Best-of-N Snell et al. (2024); Wu et al. (2025).
There are many works that focus on this setting to make it more efficient and effective. For example,
Sun et al. Sun et al. (2024) proposed to use speculative rejection in BoN to reject bad responses
through early scores. Chen et al. Chen et al. (2024e) proposed to use extremely high temperature on
the first token to greatly improve the Best-of-N performance on math and coding tasks.

To scale within a single response, researchers have first introduced an intermediate step by the
so-called chain-of-thoughtsWang & Zhou (2024). Then, starting with Self-Refine Madaan et al.
(2023), there are many works that studied how to effectively use an LLM to give themselves their
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own evaluation and reflection Yao et al. (2023); Shinn et al. (2023), and study how this reflection-
based mechanism can be adapted to different applications Chen et al. (2023); Gou et al. (2023);
Chen et al. (2024c). While there have previously been a lot of discussions on whether LLM can
actually self-evaluate and self-correct themselves Huang et al. (2023); Chen et al. (2024f); Verma
et al. (2024); Wang et al. (2025b), recent studies have shown that by training with high-quality data
that involve such a process, LLM can actually achieve a useable level of capability and help self-
correct in the process Huang et al. (2024); Zeng et al. (2024). Inspired by the recent success of
Deepseek-R1 DeepSeek-AI et al. (2025), people have realized that scaling within a single-response
can be efficiently achieved through reinforcement learning, and many follow-up works have also
studied how to learn such scaling capability more efficiently Wang et al. (2025a). In this paper, we
manually inject trigger sentence in the middle of generation, which is similar to the recent work s1
Muennighoff et al. (2025). However, our work focuses on injecting at an early stage in the thinking
process, while they focus on injecting when the current response is completely finished for budget
forcing. As we later show in our experiments, this design difference leads to a substantial divergence
in results: their approach requires further training, whereas ours provides benefits directly with
existing models.

While the research in the two search strategies is mostly separate, their methods are orthogonal and
can be used together to make the sampling process more efficient Snell et al. (2024), and some re-
cent research has also studied how to balance the two, and has shown that scaling on the number
of responses can be more efficient than scaling within a single response Wang et al. (2025a); Mar-
janović et al. (2025); Sadhukhan et al. (2025). In this paper, we focus on the intersection of both
scaling strategies and study how to strategically trigger the self-correction capability of LLMs more
efficiently. We take into account the additional cost of scaling within one response by measuring the
total wall-clock time used, and calculate the equivalent N when comparing the answers as needed.

3 PRELIMINARIES

3.1 BEST-OF-N SAMPLING

For reasoning-intensive tasks such as mathematical problem-solving and coding, Best-of-N sam-
pling is one of the most widely used strategies for data generation. This approach involves sampling
N outputs from the same model using predefined sampling parameters — typically with a higher
temperature than single-sample settings — followed by a selection process to determine the best re-
sponse. The selection criteria depend on the intended use of the samples. During training, responses
are typically evaluated using rule-based checkers for mathematical problems or online judges for
coding tasks to identify correct answers within the sampled set. At test time, a reward model is often
employed to score the generated responses, with the highest-scoring output selected as the final an-
swer. This methodology effectively balances exploration and optimization, making it a fundamental
component in enhancing the performance of LLMs on reasoning tasks.

The BoN sampling is a simple yet effective method that can be fully parallelized to enhance per-
formance. Increasing N guarantees improved results during training when a ground-truth checker is
available and generally leads to better performance at inference time, provided that the reward model
is sufficiently accurate. However, if paired with a reward model that is not good enough, BoN might
fail to scale efficiently and might even decrease its performance when more samples are included for
aggregation. Therefore, getting a good reward model is necessary for good performance for BoN.

3.2 MAJORITY VOTING

Similar to BoN sampling, majority voting, also known as self-consistency (cons@n), provides an
alternative approach for aggregating N different responses Wang et al. (2022). As the name sug-
gests, this method involves generating N responses, counting the frequency of each unique answer,
and selecting the most frequently occurring response as the final output. This approach leverages
the inherent redundancy in multiple generations to improve robustness and reliability, making it
particularly useful for tasks requiring high confidence in correctness.

Majority voting offers the advantage of aggregating responses without relying on a reward model.
Additionally, although empirically less effective, it can be extended to a weighted version, where
weights are assigned based on PRM scores or confidence estimations of the generated answers Wang

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Positional frequency of thinking-related linguistic markers in Deepseek-R1 responses on
the AIME-2024 dataset. A higher frequency indicates the likelihood of a given position containing
such markers within a response. The plot is smoothed with a moving average for better visualization.

et al. (2022). While majority voting benefits from not requiring a highly accurate reward model, it
faces challenges in identifying equivalent answers. For instance, it can be very hard to identify
two code samples to be the same, and even in mathematical problems, expressions such as 1√

3
and

√
3
3 are equivalent but must be recognized as such to ensure correct vote counting. A common

solution in mathematical domains involves using symbolic-based checkers to compare answer pairs
and identify equivalences. However, this process can be computationally expensive, requiring up to
O(N2) comparisons.

4 ITERATIVE DEEPENING SAMPLING

4.1 OBSERVATION: FREQUENCIES OF LINGUISTIC MARKERS IN REASONING MODELS

Recent studies have highlighted that overthinking can negatively impact the performance of reason-
ing models Wang et al. (2025a); Marjanović et al. (2025). A key observation is that correct answers
tend to be shorter and contain fewer linguistic markers associated with ”thinking” behaviors.

Here, we present a novel perspective by analyzing not only the frequency but also the positional
distribution of thinking-related markers within model responses. A complete list of these markers
is provided in the appendix. As illustrated in Fig. 3, correct answers tend to exhibit fewer think
markers, with a clear concentration in the early stages of the response. Their frequency drops sharply
after the first 1000 tokens. In contrast, incorrect answers often contain self-corrections distributed
throughout the response, with a noticeable decline only near the end. While this distinct distribution
pattern is less informative than response length for classifying correctness due to its complexity, it
is nonetheless a characteristic that we can mimic during generation.

4.2 METHODS

In this paper, we focus on efficiently scaling test-time computation by replacing the standard sam-
pling algorithm with a more effective, custom-designed alternative. Given a fixed overall computa-
tional budget, an important challenge is determining how much additional budget should be allocated
to refining a given prefix x0 that the model has already sampled. Efficient budget allocation is cru-
cial, as any saved resources can be redirected to increasing the number of N in Best-of-N sampling
or deepening tree search, ultimately improving overall performance. Understanding this trade-off is
key to optimizing both search efficiency and model output quality.

More specifically, the self-evaluation and self-correction process of the LLM can be manually trig-
gered by introducing a predefined trigger sentence, such as ”Wait! Maybe I made some mistakes!
I need to rethink from scratch.” or simply ”Wait”. In most cases, LLMs respond to this trigger by
restarting their reasoning process and making self-corrections. Repeatedly inserting this sentence
increases the overall length of the reasoning trajectory, potentially improving problem-solving accu-
racy by facilitating iterative refinement. In this paper, we propose a method for strategically placing
a fixed trigger sentence at increasing intervals within longer contextual windows, aiming to balance
computational efficiency and the effectiveness of self-correction.
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Algorithm 1 Iterative Deepening Sampling

1: function GENERATE WITH ID-SAMPLING(LLM, Dataset, B0, γ, B):
2: Prefixes← Questions from Dataset
3: Budget← B0

4: while Prefixes is not empty and Budget ≤ B do
5: NewPrefixes← {}
6: Outputs← LLM.generate(input = Prefixes,max tokens = Budget)
7: for each Output in Outputs do
8: if Output is finished then
9: LOGANSWER(Output)

10: else if Output finished thinking then
11: Output← LLM.generate(input = Output)
12: LOGANSWER(Output)
13: else
14: NewPrefix← PADTRIGGERSENTENCE(Output)
15: NewPrefixes.append(NewPrefix)
16: end if
17: end for
18: Budget← Budget× γ
19: Prefixes← NewPrefixes
20: end while
21: end function

Motivated by the analysis in Section 4.1, we propose to introduce more trigger sentences at earlier
stages and gradually reduce their occurrence as the response length increases. Suppose we have
already used a budget of b to generate a prefix x0 and are now considering whether to immediately
introduce a trigger sentence. Iterative Deepening (ID) sampling allocates an additional budget of γ×
b before inserting the trigger sentence the next time, where γ > 1 is a tunable hyperparameter. This
iterative process continues until reaching a maximum budget B, beyond which no further trigger
sentences are introduced. If the reasoning process reaches a natural stopping point—i.e., a complete
answer is generated within the allocated budget—the process terminates early. This is because
generating a full response from scratch generally leads to more reliable outputs than attempting to
refine an already complete solution. The complete procedure is outlined in Algorithm 1, where B0

represents the initial budget. The function LLM.generate conducts the generation within a given
budget and is adaptable to different tree-search strategies. The function PadTriggerSentence handles
the insertion of trigger sentences while ensuring redundancy is minimized if necessary.

The definition and allocation of computational budget depend on the specific test-time scaling al-
gorithm employed, leading to variations in implementation strategies. In this paper, we focus on
the setting where N responses are sampled independently, and we have provided an illustration of
ID-sampling in Fig. 2. Since response generation is independent and typically performed in par-
allel, the computational cost primarily depends on the total number of generated responses N and
their respective lengths. To manage computational efficiency, we define the budget as the maximum
number of tokens generated in a given round, which corresponds to the max token parameter in
LLM serving engines such as vLLM Kwon et al. (2023). Additionally, to avoid inserting the trigger
sentence mid-sentence, we extend generation until the completion of a reasoning step. Here, a step
is identified by token splits such as ‘\n’ or ‘\n\n’. This ensures that trigger sentence placement
aligns with the basic logical structure of the generated response, preserving coherence and stability
in the reasoning process. On the other hand, this also helps introduce some randomness in inserting
trigger sentence, avoiding inserting them on exactly the same token at each run.

In implementations, the maximum generation token limit is a common parameter provided by mod-
ern serving engines such as vLLM or OpenAI’s API services. Consequently, ID-sampling can still
efficiently leverage the speedups offered by these engines. The pseudocode is provided in Alg. 1.
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4.3 THEORETICAL ANALYSIS

A key challenge in ID-sampling is that budget control occurs before each manually triggered self-
evaluation and self-correction step without explicitly analyzing the actual generated responses. This
can lead to unnecessary iterations, potentially increasing computational costs. However, due to the
design of our ID-sampling method, we establish important theoretical guarantees. In particular,
we provide a bound on the total number of tokens generated before reaching the final answer, as
formalized in the following theorem.

Theorem 4.1. Suppose the final answer obtained through ID-Sampling needs a budget of L in
normal sampling without manual injection in the middle. Then the total number of additional budget
used is no more than γ∗L

γ−1 .

Proof Sketch Note that the budget for each generation iteration follows a geometric sequence
with common ratio γ. The theorem follows directly from a summation of this geometric series. A
complete proof is provided in the appendix.

The theorem does not guarantee the quality of the generated responses or the alignment of the output
distribution. Rather, it establishes that our method incurs no substantial additional computational
overhead when generating a single response. Our intuition, however, is that by introducing trigger
sentences at an early stage, ID-sampling can yield empirical gains in pass rate by biasing the model’s
output distribution toward higher-quality responses.

It is important to note that Iterative Deepening (ID) sampling does not impose any assumptions or
constraints on the model’s inherent self-correction or self-evaluation capabilities. In some cases,
the model may naturally generate a response that already includes a trigger sentence before an
explicit manual insertion. We observe that the built-in reasoning capabilities of recent state-of-
the-art models, such as OpenAI-o1 Jaech et al. (2024) and DeepSeek-R1 DeepSeek-AI et al. (2025),
significantly impact the effectiveness of ID-sampling. To better understand these effects, we conduct
a comprehensive study using DeepSeek-R1, which we present in the experimental section.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Models and Datasets In our experiments, we primarily target improvements in reasoning mod-
els where test-time scaling actually holds, while also reporting results for non-reasoning models as
a point of reference. We use Llama-3.1-1B-Instruct Dubey et al. (2024) and Phi-4 Abdin et al.
(2024) as examples for non-reasoning models, and DeepSeek-R1-Distill-Qwen-7BDeepSeek-AI
et al. (2025), Qwen3-8B and Qwen3-32B Yang et al. (2025) for reasoning models. For reward mod-
els for BoN, we employ Qwen-2.5-Math-PRM-7B Zhang et al. (2025). We evaluate ID-sampling
on three benchmark datasets: MATH-500 Lightman et al. (2023), AIME, and GPQA-diamond Rein
et al. (2024). The first two are math-focused datasets, while GPQA-diamond is a science QA bench-
mark. Due to space constraints, results on GPQA-diamond are presented in the appendix.

Baselines We compare our approach against two settings: (i) vanilla sampling without any manual
intervention, and (ii) S1 Muennighoff et al. (2025) without the training mentioned, which is simply
appends word ”wait” after the original reasoning process is completed twice.

Evaluation We report three key pass rate metrics across the datasets:

1. Best-of-N (BoN) – The accuracy when a reward model selects the best response from N
generated samples.

2. Pass@N - The pass rate, which measures whether or not at least one of the N total responses
is correct. We have used the unbiased estimation version Chen et al. (2021) with 40 total
samples to address the statistical significance problem.

3. Majority Voting (cons@N) – The accuracy when responses are aggregated via unweighted
majority voting, selecting the most frequent answer.
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(a) Llama-3.1-1B-Instruct (b) Phi-4 (c) Deepseek-R1-Distill-Qwen-7B

Figure 4: Math-500 dataset: Pass rate results for different models. The x-axis is the equivalent N
after considering the extra time used by ID-sampling.

For both BoN and majority voting, a single aggregated answer is compared against the ground-truth
solution to measure accuracy. We report BoN on Math500 datasets and for non-reasoning models on
AIME datasets, given that its response length is within the context length limit of the reward models,
and report Pass@n for reasoning models on AIME datasets because the normal response length is
> 12K and beyond the context length of popular reward models. 1

For both math benchmarks, we employ symbolic checkers to ensure that all mathematically equiva-
lent answers are accepted as correct.

Parameters For trigger sentence, we choose to use a whole sentence ”Wait! Maybe I made some
mistakes! I need to rethink from scratch.” for non-reasoning models and a single word ”wait” for
reasoning models. For the word ”wait”, the natural generation behavior without ID sampling follows
the same pattern shown in Fig. 3. We will provide a discussion about this choice later. By default,
we use γ = 2.0 for ID-sampling, and we will later provide ablation study results on this. For ID-
sampling with BoN, we set the initial budget B0 as 256 tokens. For reasoning models, we set the
thinking budget as 4096 for any model on Math-500 datasets, and 16384 for AIME datasets. If
the model fully used the thinking budget, an end-of-think token (</think>) is padded, and an
additional 1000 tokens are provided for the final answer to be provided. For non-thinking models,
we set a fixed max sequence length of 4096. Due to the page limit, we leave other hyperparameters
in the appendix.

5.2 RESULTS

5.2.1 MATH-500

Before evaluating the pass rate, we first analyze the runtime overhead of ID-sampling on Math-
500 datasets. We observe that ID-sampling incurs approximately 1.6–1.9× the total wall-clock time
compared to the baseline of vanilla sampling for non-reasoning models, and 1.1–1.3× for reasoning
models. Given that this additional computational cost could instead be allocated to generating more
responses and selecting the best one, we present our results in terms of an equivalent N. Specifically,
if the original results correspond to Bo8, we report them as equivalent N = 16, as ID-sampling
consistently completes within twice the runtime of the original method.

We present our results for different models on Math-500 in Fig. 4. We observe a notable difference
in the effectiveness of ID-sampling for non-reasoning models based on the aggregation method.
While ID-sampling yields performance gains with increasing sample size (N) under a Best-of-N
(BoN) selection strategy, it consistently performs poorly when results are combined via majority
voting. This suggests that for non-reasoning models lacking self-reflection capabilities, the patterns
of correct versus incorrect responses differ in ways that ID-sampling fails to exploit.

By contrast, our primary focus is on reasoning models with test-time scaling capabilities. With
the DeepSeek-R1-Distill-Qwen-7B, a strong reasoning model with built-in self-evaluation and self-
correction, ID-sampling consistently outperforms vanilla sampling. This is because while stronger

1We have tried to use techniques like Yarn to extend the context length limit to a longer context. However,
the model will lead to a consistent decrease rather than an increase when we increase the number of responses,
and thus, we decided to just report Pass@n on longer context answers.
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N Vanilla ID-sampling
BoN cons@N BoN cons@N

1 0.00 0.00 3.45 3.45
4 0.00 0.00 0.00 3.45
8 0.00 0.00 0.00 3.45

16 3.45 0.00 0.00 3.45
32 3.45 0.00 10.34 6.90

(a) Llama-3.1-1B-Instruct

N Vanilla ID-sampling
BoN cons@N BoN cons@N

1 17.24 17.24 20.69 20.69
4 13.79 17.24 24.14 24.14
8 13.79 20.69 27.59 24.14
16 13.79 20.69 27.59 20.69
32 13.79 20.69 27.59 20.69

(b) Phi-4

Table 1: AIME-24 dataset: Pass rate results for different models with different number of samples.
The best results in each setting are highlighted in bold. Since performance saturates quickly on
these weaker LLM models, meaning that even the highest pass rate with N = 32 does not exceed
the N = 1 pass rate for ID-sampling, we omit the use of equivalent N in this setting.

Figure 5: Qwen3-8B results on AIME-24. Figure 6: Deepseek-R1-distill-Qwen-7B re-
sults on AIME-25.

models excel at self-correction, they remain suboptimal at determining when to initiate the self-
correction process. Compared to earlier models, each trigger sentence has a more pronounced effect,
allowing ID-sampling to correct errors that might otherwise persist without explicit intervention.

5.2.2 AIME

The AIME datasets (AIME-24 and AIME-25) are highly challenging benchmarks that have become
widely adopted for evaluating reasoning models DeepSeek-AI et al. (2025); Huang et al. (2024). In
this setting, reward models exhibit substantially lower accuracy. Accordingly, rather than reporting
BoN, we adopt Pass@N and Cons@N as our evaluation metrics.

We first present the results for non-reasoning models in Table 1. We observe that ID-sampling can
help improve the pass rate, and because of the fast saturation of pass rate, ID-sampling can even help
the model to surpass its previous ceiling, i.e., N = 1 with ID-sampling is better than N = 32 with
vanilla sampling. More importantly, for reasoning models, the wall-clock-time difference between
vanilla sampling and ID-sampling becomes negligible. Specifically, for Qwen3 models, the time
ratio remains within 1±0.02, and for R1-distill models, it is within 1±0.1 with γ = 2.0. As a result,
the use of equivalent N has little practical effect in this context. We present results on reasoning
models in Fig. 5, 1, 6, 7, and Table 2. Across multiple models on the two most recent AIME

n 1 4 8 16

Vanilla Pass@n 67.8 81.6 85.9 88.4
S1 Pass @n 67.6 82.0 86.1 88.4
ID-sampling Pass@n 69.5 82.8 86.1 88.9
Vanilla Cons@n 56.7 76.7 80.0 83.3
S1 Cons@n 56.7 76.7 76.7 83.3
ID-sampling Cons@n 63.3 80.0 80.0 83.3

Table 2: Comparison between Vanilla sampling, S1, and ID-
sampling on Qwen3-32B on AIME-25.

Rel. Time

Vanilla 1.00
ID(2.5) 1.07
ID(2.0) 1.09
ID(1.5) 1.39

Table 3: Relative wall-clock time
cost of ID-sampling for varying γ
values using DeepSeek-R1-Distill-
Qwen-7B on the AIME-24 dataset.
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(a) Pass@N (b) cons@N

Figure 7: AIME-24 Dataset: Pass rate results for DeepSeek-R1-Distill-Qwen-7B with different γ for
ID-sampling, compared to vanilla sampling. The numbers in brackets are the γ used in ID-sampling.
As different values of γ result in significantly varying runtimes, as shown in Table 3, we again omit
the use of equivalent N in this analysis.

datasets, ID-sampling consistently outperforms both vanilla sampling and S1. This demonstrates the
general applicability of our method, without requiring any assumptions about the specifics of post-
training. By contrast, S1 only barely matches the performance of vanilla sampling on Deepseek-R1-
distill-Qwen-7B, reinforcing the need for training as originally emphasized in the S1 paper. This is
because S1 does not substantially alter the overall response pattern, particularly when measured by
the positional frequency of linguistic markers, and therefore derives no benefit from it. For Qwen3-
8B, which typically exhausts the full thinking budget, S1 has no opportunity to be applied, and its
performance largely overlaps with vanilla sampling on both AIME-24 and AIME-25. For clarity,
we therefore omit the S1 curve for Qwen3-8B models.

Ablation Study Given the stable performance gains of ID-sampling on AIME, here we conducted
an ablation study to analyze the impact of the scaling factor γ on ID-sampling. We present the pass
rate results for DeepSeek-R1-Distill-Qwen-7B on AIME-24 in Figures 7a and 7b, and report the
relative inference time for each setting in Table 3.

We find that adjusting γ significantly impacts both performance and computational cost. In terms
of runtime, γ = 1.5 yields the highest cost, whereas the other two settings remain within 1.1× the
wall-clock time of vanilla sampling. Regarding performance, γ = 2.0 consistently achieves the best
results in terms of Pass@N , while γ = 2.5 occasionally outperforms in terms of Cons@N , though
with a small margin. Overall, ID-sampling proves to be a more effective sampling strategy than
vanilla sampling, provided that γ is not too small, which would undermine our goal of emphasizing
early-stage trigger sentence injection.

We observed a non-convex relationship between γ and performance, even without accounting for
time, with one of the best settings at γ = 2.0. We attribute this to the fact that ID-sampling aims to
match the patterns of correct responses, but can mismatch when the trigger sentence is inserted too
frequently, i.e. γ is small. Overall, as most reasoning models right now share a similar reasoning
pattern, we recommend γ = 2.0 as it strikes a favorable balance between performance and efficiency,
and we have demonstrated its effectiveness through the extensive experiments presented above.

6 DISCUSSIONS

Choice of Trigger Sentence In our experiments, we use different trigger sentences for non-
reasoning models and reasoning models. The difference is caused by the nature of the models.
For non-reasoning models, a single word ”wait” cannot trigger the self-correction process and can
only introduce noise to the generation. For reasoning models, we found that for an unknown rea-
son, adding the whole sentence will trigger the generation of an end-of-think token for a certain
probability, and lead to an early stop in the generation sequence. While this does not always harm
the performance, this is not something we want, as we want to use the trigger sentence to trigger

9
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self-correction. Overall, as test-time scaling is highly correlated to reasoning models, a single word,
”wait,” will be sufficient as shown in our experiments.

Limitations Our proposed method also has several clear limitations. The most significant is that
the performance of our method could significantly depend on the underlying model. While we have
used our experiments to show that ID-sampling works on popular models, it is possible for some
models to be incompatible with the algorithm, especially if the models are trained with losses that in-
corporate more than just the accuracy of the final answer. Moreover, incorporating trigger sentences
into the generation process requires ID-sampling to invoke multiple generation steps. While this the-
oretically incurs no additional cost on the KV-cache, in practice, it can lead to increased inference
time. To address this concern, we use equivalent N in our experiments, which accounts for total
wall-clock time, to enable a fair comparison across different sampling methods. Additionally, due
to the need for multiple sampling steps, ID-sampling is currently tested only on open-source models.
While the same idea can also be applied to black-box models through multi-round generations, this
will introduce extra assistant tokens during generation, which may cause a slight distribution shift
when applied to black-box models.

7 CONCLUSIONS

In this paper, we introduced Iterative Deepening (ID) Sampling, a simple yet effective algorithm for
scaling test-time compute more efficiently than standard sampling. We showed that ID-sampling
improves test-time performance on challenging reasoning tasks like math across diverse reasoning
models. Our findings suggest that while current models possess strong self-correction capabilities,
they remain limited in autonomously deciding when to invoke such mechanisms. Furthermore, our
results highlight that guiding generation to mimic the patterns of correct responses can provide a
benefit at test-time.
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A DISCLAIMER OF LLM USAGE

Apart from being the subject of study, large language models were used solely to polish the writing
in this paper. All substantive contributions are attributable to the authors.

B COMPLETE PROOF FOR THEOREM 4.1

Let Ltotal represent the total generated length resulting from an iterative process. Let l denote the
length generated in the final iteration. We naturally have l ≤ L, otherwise the generation will be
finished earlier.

We aim to establish an upper bound for Ltotal. We analyze the contributions to the total length
by considering the sequence of generated lengths in reverse chronological order. Assume that this
sequence of lengths can be bounded above by a geometric sequence whose first term is l and whose
common ratio is r = 1/γ, where γ is a constant greater than 1 (γ > 1).

Under this assumption, the total length Ltotal is bounded by the sum of this infinite geometric series:

Ltotal ≤
∞∑
k=0

l

(
1

γ

)k
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Since it is assumed that γ > 1, the common ratio r = 1/γ satisfies 0 < r < 1. Therefore, the
geometric series converges, and its sum is:

∞∑
k=0

l

(
1

γ

)k

=
l

1− 1
γ

We can simplify the denominator of this expression:

l

1− 1
γ

=
l

γ−1
γ

=
γl

γ − 1

Thus, we have the bound:

Ltotal ≤
γl

γ − 1

Finally, using the given condition that l ≤ L, we substitute L to obtain the final upper bound for the
total length:

Ltotal ≤
γl

γ − 1
≤ γL

γ − 1

Therefore, the total generated length Ltotal is bounded above by γL
γ−1 .

C HYPERPARAMETERS

All experiments are conducted on an NVIDIA A100 GPU (80GB memory) using the vLLM serving
engine Kwon et al. (2023). By default, we use a carefully selected set of hyperparameters and
configurations to balance efficiency and performance:

• Based on the typical sampling budget used in training (10–40), we set the maximum num-
ber of N to 32 for sampling.

• All numbers are based on our implementations and the numbers are slightly different to the
ones reported on technical reports due to the prompt used and the early cut-off based on the
budget.

• By default, we use temperature = 0.6, top p = 0.95. For Qwen3, we additionally use
top k = 20 as recommended by the official technical report.

D ADDITIONAL DISCUSSIONS

Potential Extension to Search-based Test-time Scaling In this paper, our study primarily fo-
cuses on ID-sampling without integrating it into tree-search algorithms. However, we emphasize
that our proposed framework can be directly extended to methods such as beam search and Monte
Carlo Tree Search (MCTS). In these cases, the budget in Algorithm 1 can be directly interpreted as
the computational budget in MCTS or the number of iterations in beam search. One challenge in this
extension is that self-correction mechanisms reduce the reliance on early model outputs being cor-
rect, distinguishing the need for a new generation of PRMs from previously released ones. However,
future researchers who develop or have access to more accurate PRMs that explicitly model the self-
correction process can leverage our ID-sampling framework to enhance the reasoning capabilities
of fixed models.

Choice of Datasets In our experiments, we focus primarily on mathematical reasoning datasets,
with results on a science QA dataset provided in the appendix. While test-time scaling techniques
could, in principle, be extended to more general reasoning-related domains like coding, such exten-
sions are not directly applicable in our setting. Methodologically, the injection of trigger sentences
is ill-suited for code generation tasks, where inserting additional tokens may introduce syntactic or
semantic errors. We therefore leave the integration of ID-sampling to future work.
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Figure 8: Positional frequency of thinking-related linguistic markers in Deepseek-R1-distill-Qwen-
7B responses using ID-sampling on the AIME-2024 dataset.

E LINGUISTIC MARKERS

In the paper, we have presented the occurrence frequencies of the linguistic markers as our moti-
vation. We provide the full list of such markers here, which is the same as Wang et al. (2025a):
”however”, ”wait”, ”alternatively”, ”hmm”.

F ADDITIONAL EXPERIMENT RESULTS

F.1 GPQA RESULTS

Model Sampling Cons@1 Cons@4 Cons@8 Cons@16 Cons@32

Deepseek-R1-7B Vanilla Sampling 48.9 59.7 65.2 67.3 70.1
ID Sampling 50.0 60.8 66.8 67.9 71.1

Qwen3-8B Vanilla Sampling 55.4 65.2 71.1 73.9 74.4
ID Sampling 55.4 66.8 72.2 73.9 76.6

Table 4: ID-sampling performance on difference models on GPQA-diamond dataset. Specifically,
Deepseek-R1-7B denotes Deepseek-R1-distill-Qwen-7B.

In GPQA, the wall-clock time of ID-sampling and vanilla sampling differs by only about 1.10×, a
negligible overhead compared to the inherent runtime randomness of LLMs. Accordingly, we do
not report equivalent-N results in this setting. As shown in Table 4, we observe that on both models,
ID-sampling stably outperform vanilla sampling when combined with majority voting (Cons@n).
We choose not to report Pass@N, as for multiple-choice questions such as those in GPQA, as this
metric primarily incentivizes diversity in responses rather than better answer quality.

G FREQUENCY OF LINGUISTIC MARKER

In Fig. 8, we show the frequency of linguistic marker after using ID-sampling. Specifically, because
of the smooth applied to the curve, there are only a few spikes that are noticable. Aside from these
spikes, we do not observe significant changes in the overall shape of the frequency curves for either
correct or incorrect trajectories when comparing vanilla sampling to ID sampling. Nonetheless, the
average frequency for correct trajectories appears slightly higher, while the frequency for incorrect
trajectories is roughly the same.

We believe the lack of major change in incorrect trajectories is due to the limited number of ”wait”
prompts added. And these added patterns convert more incorrect to correct trajectories, without
significantly disrupting the overall generation patterns. Similarly, the slight increase in average fre-
quency for correct trajectories is likely due to a subset of previously incorrect paths being corrected.
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Figure 9: Performance of ID-sampling on Qwen3-8B evaluated on AIME-25. Results are averaged
over five random seeds, with shaded regions indicating standard deviation.

This increases the overall average, as these corrected trajectories tend to exhibit more frequent oc-
currences of reasoning-related linguistic markers in their earlier segments.

H STATISTICAL SIGNIFICANCE

Due to the constraints of computational resources and the breadth of domains and models required
to demonstrate the generalizability of our approach, we report results from a single run in the main
paper. Here, we supplement those findings with an illustrative statistical evaluation using Qwen3-8B
on AIME25.

As shown in Fig. 9, ID sampling consistently outperforms vanilla sampling. The standard deviation
of Pass@n is extremely small and almost imperceptible in the plot because we use an unbiased
estimator of Pass@n. Although the variance of Cons@n is larger, our proposed method remains
consistently superior across runs.
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