
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

QERA: AN ANALYTICAL FRAMEWORK FOR QUANTI-
ZATION ERROR RECONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The growing number of parameters and computational demands of large lan-
guage models (LLMs) present significant challenges for their efficient deploy-
ment. Recently, there is an increasing interest in quantizing weights to extremely
low precision while offsetting the resulting error with low-rank, high-precision
error reconstruction terms. The combination of quantization and low-rank ap-
proximation is now popular in both adapter-based, parameter-efficient fine-tuning
methods such as LoftQ (Li et al., 2023) and low-precision inference techniques
including ZeroQuant-V2 (Yao et al., 2023). Usually, the low-rank terms are cal-
culated via the singular value decomposition (SVD) of the weight quantization
error, minimizing the Frobenius and spectral norms of the weight approximation
error. Recent methods like LQ-LoRA (Guo et al., 2023) and LQER (Zhang et al.,
2024a) introduced hand-crafted heuristics to minimize errors in layer outputs (ac-
tivations) rather than weights, resulting improved quantization results. However,
these heuristic-based methods lack an analytical solution to guide the design of
quantization error reconstruction terms. In this paper, we revisit this problem
and formulate an analytical framework, named Quantization Error Reconstruc-
tion Analysis (QERA), and offer a closed-form solution to the problem. We show
QERA benefits both existing low-precision fine-tuning and inference methods –
QERA achieves a fine-tuned accuracy gain for ∆acc = 6.05% of 2-bit RoBERTa-
base on GLUE compared to LoftQ; and obtains ∆acc = 2.97% higher post-training
quantization accuracy of 4-bit Llama-3.1-70B compared to ZeroQuant-V2 and
∆ppl = − 0.28 lower perplexity on WikiText2 compared to LQER.

1 INTRODUCTION

The demand for efficient deployment of large language models (LLMs) has been increasing (Faiz
et al., 2023). LLMs now typically contain billions of parameters (Kaplan et al., 2020; Dubey
et al., 2024), making their fine-tuning and inference computationally expensive and resource-
intensive (Ding et al., 2023). To address these challenges, there has been a surge of interest in
building efficient fine-tuning and inference methods. One popular formulation is to apply a low-
rank term to reconstruct the error after quantization. Given a linear layer y = xW , the weight
matrix W ∈ Rm×n is quantized to W̃ , and we rewrite W ≈ W̃ +AkBk such that both Ak and
Bk are low-rank yet high-precision terms with rank @Reviwer tFvD:k ≪ mn

m+n .

We call the problem of finding the optimal Ak and Bk quantization error reconstruction. Inter-
estingly, this problem has, coincidentally, seen widespread application in two actively researched
areas: quantized parameter-efficient fine-tuning (QPEFT) and post-training quantization (PTQ) for
model inference. QPEFT refers to fine-tuning techniques that adapt LLMs to specific tasks by quan-
tizing pretrained weights and updating only a small number of extra parameters, hence significantly
reducing memory requirements and training time, such as QLoRA (Guo et al., 2023). On the other
side, PTQ is a training-free method that reduces the model size and may accelerate the forward pass
if the underlying hardware supports it. Recently, researchers combined PTQ with quantization error
reconstruction (Yao et al., 2023; Liu et al., 2023a; Zhang et al., 2024a) to further reduce weight
precision. Works such as ZeroQuant-V2 (Yao et al., 2023) and LQER (Zhang et al., 2024a) have
shown that adding a high-precision low-rank component, as low as 8 or 32, can recover considerable
model performance for 3- or 4-bit weight quantization.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Although both the QPEFT and PTQ methods have demonstrated substantial performance improve-
ments in lowering the computational overhead of LLMs, a theoretical analysis of quantization error
reconstruction is lacking. Usually, Ak and Bk are calculated by applying truncated singular value
decomposition (SVD) to the weight quantization error (W − W̃), minimizing the Frobenius and
spectral norms of the weight approximation error. However, recent work on activation-aware quan-
tization and knowledge distillation implies that minimizing layer output error @Reviwer tFvD may
lead to a greater performance gain than minimizing weight approximation error (Lin et al., 2024;
Liu et al., 2023a; Shao et al., 2023).

Besides the unsettled minimization objective, it has remained unclear whether there exists a theo-
retically optimal solution for the values of Ak and Bk, and if so, how one can solve for it. A better
initialization or theoretically grounded initialization of Ak and Bk brings direct benefits for both
QPEFT and PTQ. In QPEFT, the initialization of LoRA (Hu et al., 2021), which uses element-wise
Gaussian random values for Ak and zeros for Bk, struggles under aggressive quantization since the
quantization error can derail fine-tuning. In PTQ, the quantized model performance is based on the
computation of the low-rank terms, given a specific quantization function q(·) and rank k.

In this paper, we aim to provide an analytical framework for the quantization error reconstruction
problem. To demonstrate the effectiveness of our theoretical framework, we further apply our ana-
lytical solutions to state-of-the-art QPEFT and PTQ methods and show the significant performance
improvements under the same computational budget. Specifically, our contributions are as follows:

• We show that the commonly used objective for solving the quantization error recon-
struction problem in prior work , i.e., minimizing the weight approximation error (e.g.,
||W − W̃ ||p), does not guarantee a reduced model output error. @Reviwer tFvDInstead,
we show that minimizing the layer output error (e.g., ||y − ỹ||p) is closely related to mini-
mizing the model output error.

• We derive the analytical solution to the low-rank terms Ak and Bk by minimizing the layer
output error. We demonstrate that under a statistical assumption, this solution can be found
in a particularly computationally efficient manner, also explaining the success of LQER.

• We empirically demonstrate the effectiveness of our solutions by applying them to state-
of-the-art QPEFT and PTQ methods. Our analytical framework, QERA, significantly im-
proves the performance of these methods. For example, QERA achieves ∆acc = 6.05%
higher accuracy of 2-bit RoBERTa-base on GLUE compared to LoftQ, improving the fine-
tuning accuracy and efficiency. Moreover, QERA obtains ∆acc = 2.97% higher accuracy
than ZeroQuant-V2, when quantizing LLaMA-3-70B to 4 bits, averaged across six tasks.
This narrows the model performance gap between error-reconstruction-based post-training
quantization and full-precision models.

2 RELATED WORK

In this section, we review the existing methods that combine weight quantization and low-rank
error reconstruction. These methods can be roughly categorized into two groups based on their
applications: QPEFT for training and PTQ for inference.

LoRA and QPEFT LoRA Hu et al. (2021) is a representative PEFT method that introduces train-
able low-rank terms to adapt the model to a specific task. Take a linear layer as an example,

y = x(W +AkBk) (1)

where W ∈ Rm×n is the pretrained weight matrix, row vector x ∈ Rm and y ∈ Rn are the input
and output, and Ak ∈ Rm×k and Bk ∈ Rk×n are trainable low-rank matrices (“adapter”) with
rank k ≪ min(m,n). During fine-tuning, the pretrained W is frozen and only the adapter Ak

and Bk are updated. To make the adapted layer’s output match the original one at the start of fine-
tuning, LoRA initializes Ak with Gaussian random values and Bk with zeros. Once the fine-tuning
is completed, the adapter is merged into the pre-trained weights.

QLoRA (Guo et al., 2023) extends LoRA by quantizing the pretrained weights stored in GPU mem-
ory to reduce memory footprint.

Wq = q(W) (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

One difference between QLoRA and LoRA is that during fine-tuning, Wq needs to be dequantized
before involved into matrix multiplications:

W̃ = dq(Wq), y = x(W̃ +AkBk) (3)

where dq(·) is the dequantization function. QLoRA introduces weight quantization error (W −
W̃), shifting the starting point of fine-tuning. To address this problem, LoftQ (Li et al., 2023)
initializes the adapter using the SVD-based low-rank approximation of (W − W̃) to reduce the
weight approximation error:

argmin
Ak,Bk

||W − W̃ −AkBk||F (4)

Specifically, LoftQ uses a heuristic-based algorithm to iteratively update the quantized weights and
the adapter (Algorithm 1 in the Appendix). Their experiments show that a larger number of iterations
leads to a smaller weight error.

LQ-LoRA (Guo et al., 2023) also adopts LoftQ’s iterative method but keeps track of a scaled variant
of the objective, argminAk,Bk

||Drow(W−W̃−AkBk)Dcol||F , where Drow and Dcol are heuristic
homogenous row/column matrices from activation statistics. LQ-LoRA exits the iteration when the
scaled objective function stops decreasing due to the lack of a theoretical justification for LoftQ.

Quantization Error Reconstruction for PTQ Similar to the forward pass of fine-tuning in
QLoRA, there are also PTQ methods that quantize the pretrained weights to low-precision for-
mats and recover the model performance with additional low-rank terms. With a small enough rank
k, the additional computation introduced is negligible. Note that unlike QPEFT which can utilize
fine-tuning to correct the quantization error, PTQ methods aim to recover the model performance as
much as possible without any training.

ZeroQuant-V2 (Yao et al., 2023) is the earliest weight-only quantization method introducing low-
rank quantization error reconstruction to the PTQ problem. They apply SVD to the weight quanti-
zation error (W − W̃) to calculate Ak and Bk (equivalent to LoftQ with one iteration). Combin-
ing low-rank terms and fine-grained quantization, ZeroQuant-V2 recovers the performance of 4-bit
LLMs to a level comparable to 8-bit.

Recent quantization works have shown that activation statistics play a crucial role in weight-only
LLM quantization (Liu et al., 2023b; Lin et al., 2024). QLLM (Liu et al., 2023a) trains the low-rank
terms using gradient descent with a loss function that minimizes the output error of the attention
layer. LQER (Zhang et al., 2024a) applies an activation-induced heuristic scale matrix S to the
quantization error before calculating SVD, UΣV T = SVD(S(W − W̃)), and assigns Ak :=
S−1U:,:k, Bk := Σ:k,:kV

T
:k,: (Refer to Algorithm 2 in the Appendix). LQER achieves significant

improvement over ZeroQuant-V2 and observes that in some layers singular values are shaped toward
a more desirable distribution where singular values decay faster. Note that ZeroQuant-V2 can also
be considered as a special case where S in LQER is an identity matrix. @Reviewer 8w8V: To
our knowledge, CALDERA (Saha et al., 2024) is the concurrent work close to ours. CALDERA
focuses on a different problem setup to find optimal W̃ , Ak, Bk all in low-precision formats that
minimizes output error, with a lemma agreeing with our exact solution. We elaborate the connection
and difference between CALDERA and QERA in Appendix A.3.

In summary, to solve the quantization error reconstruction (QER) problem, most of existing methods
target the minimization of the weight approximation error. Several recent works such as LQ-LoRA,
QLLM, and LQER introduce activation-induced heuristics to the calculation of adapters/low-rank
terms, but a justification for the optimization objective and the corresponding analytical frame-
work are still missing.

3 OUR ANALYTICAL FRAMEWORK

In this section, we formulate the optimization objective of quantization error reconstruction and
derive the analytical solution to the low-rank term Ck := AkBk.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 PROBLEM STATEMENT

Given a pretrained linear layer y = xW with input vector x ∈ Rm, output vector y ∈ Rn, and
weight matrix W ∈ Rm×n, our aim is to approximate it with a high-rank low-precision W̃ and a
low-rank high-precision term Ck ∈ Rm×n with rank k ≪ min(m,n).

ỹ = x(W̃ +Ck) (5)

This raises the question of the actual optimization target: Should we minimize the weight recon-
struction error ||W − W̃ ||F or the output reconstruction error ||y − ỹ||2? We separate these two
problems and introduce them formally below.

Problem 1 (Minimization of weight error). For a pretrained linear layer y = xW and its ap-
proximated form ỹ = x(W̃ + Ck), reconstructing the quantization error by minimizing weight
approximation error has the following objective:

argmin
Ck

||W − W̃ −Ck||F (6)

where ∥ · ∥F denotes the Frobenius norm.

Solution to Problem 1. From the Eckart-Young-Mirsky theorem (Eckart & Young, 1936), the
optimal solution to Problem 1 with respect to rank k is the truncated SVD of the weight error matrix:

Ck = U:,:kΣ:k,:kV
T
:k,: (7)

where U , Σ, and V T form the SVD of the weight quantization error, UΣV T = SVD(W − W̃).

As noted in Section 2, most existing works (Li et al., 2023; Yao et al., 2023; Guo et al., 2023) in
QPEFT and PTQ adopt this solution. However, we know that minimizing the weight approximation
error is not equivalent to minimizing the layer output error. Furthermore, does minimizing the weight
approximation error for each layer in a network effectively reduce the final model output error? We
will show that the answer is negative in Section 4.2.

Problem 2 (Minimization of layer output error). For a pretrained linear layer y = xW and its
approximated form ỹ = x(W̃ +Ck), approximating the layer by minimizing the error between y
and ỹ is to minimize the following expectation.

argmin
Ck

Ey∼Y{||ỹ − y||22} (8)

where || · ||2 denotes l2 norm, and Y ⊆ Rn is output space of the layer. We expand Equation (8) by
substituting ỹ and y:

argmin
Ck

Ex∼X{||x(W̃ +Ck)− xW ||22} (9)

where X ⊆ Rm is the input space. In practice, the expectation can be approximated as a sample
mean on a calibration dataset like a subset of the pretraining data set.

Problem 2 motivates some recent works (Liu et al., 2023a; Guo et al., 2023; Zhang et al., 2024a) to
involve activation-induced heuristics in the optimization of Ck. However, to our best knowledge,
there is no work providing an analytical solution to this problem. In the following two sections,
we will derive the analytical solution to Problem 2. More precisely, we present two solutions: one
exact solution in Section 3.2 and an approximated solution based on a suitable statistical assumption
in Section 3.3.

3.2 QERA-EXACT: ANALYTICAL SOLUTION

QERA-exact is our exact solution to Problem 2. QERA-exact is computationally expensive as it
calculates the autocorrelation matrix of the input space X. However, as we will show in Section 4,
QERA-exact recovers significant model performance in extremely low-precision quantization.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Theorem 1 (QERA-exact solution). The solution to Problem 2 is

Ck =
(
R

1
2

XX

)−1

U:,:kΣ:k,:kV
T
:k,:

(10)

where RXX is the autocorrelation matrix respect to the input space X,
RXX = Ex∼X

{
xTx

}
(11)

R
1
2

XX represents the unique symmetric positive semi-definite matrix square root of RXX, and
U:,:k, Σ:k,:k, and V:k,: form the truncated SVD of the following scaled weight error matrix,

UΣV T = SVD(R
1
2

XX(W − W̃)) (12)

Remark 1. R
1
2

XX is positive semi-definite. In the event that it has a zero eigenvalue, it would be
normal to add a small diagonal perturbation to recover invertibility. In practice, we ran extensive
experiments and find that R

1
2

XX is invertible for all the pretrained models and datasets we present
in Section 4.

Proof of Theorem 1

Proof. Define P := W̃ + Ck − W , and pi := Pi,: is the i-th row of P . Then we substitute
(W̃ +Ck −W) in the expanded objective Equation (9) of Problem 2 with P :

Ey∼Y{||ỹ − y||22} = Ex∼X{||xP ||22}

= Ex∼X{||
m∑
i=1

xipi||22}

= Ex∼X


m∑
i=1

m∑
j=1

xixjpip
T
j


(13)

We rewrite the last line of Equation (13) as:

Ey∼Y{||ỹ − y||22} = Ex∼X
{
e ·

(
(xTx)⊙ (PP T)

)
· eT

}
(14)

where e = [1 1 . . . 1] is a row vector of m ones, and ⊙ denotes the element-wise product.

Using the property of the element-wise product (Styan, 1973), the RHS of the above can be simpli-
fied.

Ey∼Y{||ỹ − y||22} = Ex∼X
{
Tr

(
(xTx)(PP T)T

)}
= Tr

(
Ex∼X

{
xTx

}
PP T

)
= Tr

(
RXXPP T

) (15)

where Tr(·) denotes trace and RXX = Ex∼X
{
xTx

}
is the autocorrelation matrix with respect to

the input space X.

Since RXX is a symmetric positive semi-definite matrix, it always has precisely one matrix square
root, denoted as R

1
2

XX, that is also symmetric and positive semi-definite (Horn & Johnson, 2012). We
reorganize Equation (15) as the following since both RXX and (PP T) are symmetric and positive
semi-definite:

Ey∼Y{||ỹ − y||22} = Tr
(
R

1
2

XXPP TR
1
2

XX

)
= Tr

(
R

1
2

XXPP T (R
1
2

XX)
T
)

= ||R
1
2

XXP ||2F

(16)

Now the objective of Problem 2 (Equation (8)) is equivalent to:

argmin
Ck

Ey∼Y{||ỹ − y||22} = argmin
Ck

||R
1
2

XXP ||2F

= argmin
Ck

||R
1
2

XX(W̃ +Ck −W)||2F
(17)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

If we assign Q := R
1
2

XX(W − W̃) and Qk := R
1
2

XXCk, the objective becomes:

argmin
Qk

||Qk −Q||2F (18)

Note that multiplication by the invertible matrix R
1
2

XX (Remark 1) does not change the rank of the
matrix Ck. According to the Eckart-Young-Mirsky theorem (Eckart & Young, 1936), the optimal
rank k approximation to Qk is the truncated SVD of Q:

Qk = U:,:kΣ:k,:kV
T
:k,: (19)

where UΣV T = SVD(Q) = SVD
(
R

1
2

XX(W − W̃)
)

. Thus the optimal rank-k solution to Ck is:

Ck =
(
R

1
2

XX

)−1

Qk =
(
R

1
2

XX

)−1

U:,:kΣ:k,:kV
T
:k,:

(20)

In practice, we assign Ak :=
(
R

1
2

XX

)−1

U:,:k and Bk := Σ:k,:kV
T
:k,:. Note that QERA adds no

constraints to the quantization (and dequantization) function q(·) (and dq(·)), i.e., the low-precision
W̃ can be obtained by any quantization method.

3.3 QERA-APPROX: AN ANALYTICAL SOLUTION WITH THE UNCORRELATED ASSUMPTION

QERA-approx is our analytical solution to Problem 2 based on the assumption that different em-
bedding dimensions are uncorrelated. This solution is more computationally efficient than the exact
solution, and the assumption is testable on real-world datasets. The complete proof of QERA-approx
is in Appendix A.2.
Assumption 1. For a pretrained linear layer y = xW , the expectation of the product of different
embedding dimensions is zero:

Ex∼X{xixj} = 0, ∀i ̸= j (21)

where xi and xj are the i-th and j-th elements of the input vector x.

We test this assumption on LLMs in Section 5.
Theorem 2 (QERA-approx solution). The solution to Problem 2 based on Assumption 1 is:

Ck = S−1U:,:kΣ:k,:kV
T
:k,: (22)

where S is a diagonal matrix built from activation statistics,

S = diag(
√
Ex∼X{x2

1},
√

Ex∼X{x2
2}, . . . ,

√
Ex∼X{x2

m}) (23)

and U , Σ, V T form the SVD of the following scaled weight error matrix,

UΣV T = SVD(S(W − W̃)) (24)

Remark 2. For the diagonal matrix S in Theorem 2 to be invertible, we need Ex∼X{x2
i } ≠ 0 for

all dimension i. In practice, this is almost always true for pretrained layers because no dimension
in the input embeddings is always zero.

For implementation, we assign Ak := S−1U:,:k and Bk := Σ:k,:kV:k,: to form the low-rank terms
to save the memory and computation cost. Interestingly, QERA-approx solution is similar to the
activation-induced heuristics in LQER (Zhang et al., 2024a), which calibrates the average absolute
value on the embedding dimension (Refer to Algorithm 2 in the Appendix). In Section 4.3, we
will show that our solution is more effective in practice and resolves the discrepancy between the
recovered model performance and the number of calibration samples in LQER.

4 EXPERIMENTS

In this section, we first introduce the experiment setup in Section 4.1. Then we present the results
of our experiments on QPEFT and PTQ in Section 4.2 and Section 4.3 respectively.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 8 16 32
Rank

1.0

1.5

2.0

2.5

3.0

3.5

M
od

el
 o

ut
pu

t e
rro

r

4-bit Weight
QLoRA
LoftQ (1-iter)
LoftQ (3-iter)
LoftQ (5-iter)
QERA

(a) Model output error vs. rank

1 2 3 4 5
LoftQ num iterations

6

8

10

12

14

16

18

20

22

M
od

el
 o

ut
pu

t e
rro

r

3-bit Weight
QLoRA
LoftQ (k=4)
LoftQ (k=8)
LoftQ (k=16)
QERA (k=4)
QERA (k=8)
QERA (k=16)

(b) Model output error vs. LoftQ iterations

Figure 1: The model output error of RoBERTa-base before fine-tuning. We feed 128 samples from
RoBERTa’s pretraining dataset and profile the output logits error between the adapted and the FP32
model. We sweep the rank k and the iteration number of LoftQ on 4-bit and 3-bit models. In LoftQ,
neither more iterations nor a higher rank guarantees lower model output error, though the weight
approximation error of every layer decreases. In contrast, QERA-approx consistently has the lowest
model output error across all settings, and the error monotonically decreases as the rank increases.

4.1 EXPERIMENT SETUP

We perform QPEFT and PTQ experiments separately, and compare with their respective SoTA meth-
ods. The experiments take around 6400 GPU hours in total. The hardware platform, separate GPU
hours, software dependencies, and random seed settings can be found in Appendix A.4.

For QPEFT experiments, we use Theorem 2, noted as QERA-approx, to initialize low-rank terms,
and compare with full-finetuning, LoRA (Hu et al., 2021), QLoRA (Dettmers et al., 2024), and
LoftQ (Li et al., 2023). Specifically, we adopt 5-iteration LoftQ, which is the officially recom-
mended setup. We include both encoder-only model experiments (fine-tuning RoBERTa-base (Liu,
2019) on GLUE (Ye et al., 2019)) and decoder-only LLM experiments (fine-tuning LLaMA-2 (Tou-
vron et al., 2023) and LLaMA-3.1 (Dubey et al., 2024) on continuous pretraining task SlimPa-
jama (Soboleva et al., 2023) and supervised fine-tuning task GSM8K (Cobbe et al., 2021)). For each
method/baseline, we sweep the learning rate and record the best result. The final results are averaged
over three random seeds. The learning rate ranges and batch sizes are listed in Appendix A.4.1.

For PTQ experiments, we use both Theorem 1, noted as QERA-exact, and Theorem 2 (QERA-
approx) to calculate the low-rank error reconstruction terms and report results separately. We
compare with BF16, quantized model without error reconstruction terms (w-only), ZeroQuant-
V2 (Yao et al., 2023), and LQER (Zhang et al., 2024a) at different precision setups. We also
include HQQ (Badri & Shaji, 2023), a leading 4-bit method that does not use quantization error
reconstruction. We quantize LLMs of various sizes and model family, including TinyLlama (Zhang
et al., 2024b), Gemma-2 (Team et al., 2024), Phi-3.5 (Abdin et al., 2024) and LLaMA-2/-3.1 (Tou-
vron et al., 2023; Dubey et al., 2024). We use lm-evaluation-harness to report results on
Wikitext2 (Merity et al., 2016), ARC (challenge) (Clark et al., 2018), BoolQ (Clark et al., 2019),
CommonSenseQA (Talmor et al., 2019), Winogrande (Sakaguchi et al., 2019), MMLU (Hendrycks
et al., 2021), and BigBench-Hard (Suzgun et al., 2022). We also evaluate instruction-tuned model,
Vicuna-v1.5 (Zheng et al., 2023), with AlpacaEval 2.0 (Dubois et al., 2024), which is an automatic
evaluation tool for instruction-following tasks. Detailed setup is in Appendix A.4.2.

@Reviwer 8w8V, Reviwer y1Fj:For practice, we recommend QERA-approx for QPEFT and
QERA-exact for PTQ. This is because QERA-approx is more computationally efficient and the
fine-tuning process can recover the quantization error. QERA-exact is more accurate and fits bet-
ter for PTQ, where no re-training is allowed. We justify this recommendation using experiments
in Appendix A.9.

4.2 IMPROVED QPEFT

We first identify a pitfall in the commonly-used iterative Algorithm 1, that is, minimizing the weight
approximation error for each layer does not necessarily minimize the model output error. Then we
show that our QERA initialization enables a clear reduction in the model output error at the start of
fine-tuning, leading to better fine-tuned accuracy/perplexity and faster convergence.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Fine-tuning results of RoBERTa-base on GLUE. QERA-approx outperforms LoftQ across
all bit widths, and the improvement is more obvious with aggressive quantization. QERA achieves
∆acc = 4.12% higher than LoftQ at 3-bit and 6.05% at 2-bit.

Rank W-bits Method MNLI QNLI RTE SST MRPC CoLA QQP STSB Avg.Acc Acc Acc Acc Acc Matt Acc P/S Corr

- 16 Full FT 87.61 92.95 73.16 94.88 92.15 60.41 91.61 90.44/90.25 85.38

8 16 LoRA 87.85 92.84 69.55 94.46 89.99 57.52 89.83 89.92/89.83 84.00

8 4.25
QLoRA 87.21 92.32 63.90 94.08 88.24 56.08 90.55 89.59/89.56 82.75
LoftQ (5-iter) 87.27 92.48 67.13 94.38 88.24 54.59 90.51 88.75/88.79 82.92
QERA-approx 87.28 92.45 70.40 94.38 88.97 55.99 90.39 89.83/89.72 83.71

8 3.25
QLoRA 84.87 89.58 53.67 91.02 73.94 3.12 89.31 84.80/84.38 71.29
LoftQ (5-iter) 85.24 89.65 58.24 92.05 75.82 11.00 88.93 85.55/85.27 73.31
QERA-approx 85.58 90.74 58.48 92.59 82.19 32.98 89.41 87.43/87.08 77.43

64 2.50
QLoRA 77.87 85.26 54.15 90.02 71.00 0 87.93 74.72/75.31 67.62
LoftQ (5-iter) 80.15 87.65 52.95 90.94 74.35 3.43 89.17 82.76/82.90 70.18
QERA-exact 84.64 90.05 58.48 92.32 84.72 26.43 89.69 86.48/86.40 76.23

Table 2: Fine-tuning results of LLaMA-2-7B and LLaMA-3.1-8B on SlimPajama and GSM8K. A
trend similar to RoBERTa experiments are observed, i.e., QERA outperforms QLoRA and LoftQ
and the improvement is more obvious on aggressive quantization.

W-bits Method LLaMA-2-7B LLaMA-3.1-8B

SlimPajama (∆ppl) GSM8K (∆acc) SlimPajama (∆ppl) GSM8K (∆acc)

16 LoRA 6.17 39.40 8.07 55.72

4.25
QLoRA 6.44 (+0.27) 30.71 (-8.69) 8.70 (+0.63) 54.81 (-0.91)
LoftQ (5-iter) 6.39 (+0.22) 28.58 (-10.82) 8.73 (+0.66) 54.23 (-1.49)
QERA-approx 6.33 (+0.16) 32.26 (-7.14) 8.68 (+0.61) 55.24 (-0.48)

2.25
QLoRA 53.95 (+47.78) 12.79 (-18.31) 71.90 (+63.83) 5.08 (-50.64)
LoftQ (5-iter) 12.30 (+6.13) 18.37 (-12.73) 27.16 (+19.09) 13.72 (-42.00)
QERA-approx 10.56 (+4.39) 18.78 (-12.32) 20.07 (+12.00) 19.41 (-36.31)

Reduced layer weight error ̸= reduced model output error We apply 4-bit and 3-bit QLoRA,
LoftQ, and QERA-approx to RoBERTa-base and inspect the model output error on RoBERTa’s
pretraining dataset before fine-tuning at rank k = 4, 8, 16, 32. For LoftQ, we also sweep the number
of iterations from 1 to 5. In Figure 1, we observe that

• For LoftQ, given a specific rank, increasing the optimization iterations does not guarantee a
reduced model output error. Though all the layers’ weight approximation errors monoton-
ically decrease with the number of iterations (as illustrated in Figure 6 in Appendix), the
model output error does not monotonically decrease. For example, in Figure 1a, the model
output error of LoftQ (5-iter) is larger than LoftQ (3-iter) at rank k = 8.

• For LoftQ, given a specific number of iterations, increasing the rank does not guarantee
a reduced model output error. For example, in Figure 1b, the output error of LoftQ (rank
k = 16) is larger than LoftQ (rank k = 4) and k = 8 at 2, 3, 4, and 5 iterations.

• The model output error of our QERA-approx is always smaller than LoftQ and QLoRA,
across all precision and rank settings. Moreover, the output error of QERA-approx mono-
tonically decreases as the rank increases.

This empirical evidence suggests a strong correlation between the reduction of layer output error
and the decrease in model output error @tFvD:in QER problem. Conversely, minimizing weight
approximation error using LoftQ does not have a comparable impact on overall model performance.

Better optimization quality Table 1 and Table 2 summarize the fine-tuning experiments of
RoBERTa-base on GLUE, and LLaMA-2-7B/-3.1-8B fine-tuned on SlimPajama and GSM8K, re-
spectively. QERA outperforms both LoftQ and QLoRA. In GLUE experiments, at 4-bit, QERA
enables an average accuracy gain of 0.96% and 0.79% higher than QLoRA and LoftQ respectively,
close to BF16 LoRA; At 3-bit and 2-bit, QERA achieves a 4.12% and 6.05% higher average ac-
curacy than LoftQ respectively. Similar trends are observed on LLM fine-tuning experiments, i.e.,
QERA outperforms QLoRA and LoftQ, and the advantage of QERA over LoftQ is more obvious
with more aggressive quantization.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Perplexity (↓) of LLMs on WikiText2. w-only denotes the quantized model without low-
rank error reconstruction. QERA-approx outperforms LQER on almost all setups and QERA-exact
achieves the lowest perplexity. The advantage of QERA is pronounced at 3-bit.

W-bits Method Rank TinyLlama Gemma-2 Phi-3.5 LLaMA-2 LLaMA-3.1

1.1B 2B 3.8B 7B 13B 8B 80B

- BF16 - 13.98 13.08 11.50 8.71 7.68 7.55 3.06

4.25 HQQ - 15.02 14.29 14.63 9.59 8.27 8.72 3.97

4.25

w-only - 19.40 16.23 14.16 9.45 8.06 8.78 4.55
ZeroQuant-V2

32

18.03 15.71 14.09 9.42 8.07 8.83 4.48
LQER 16.23 14.55 12.88 9.22 7.96 8.45 4.10
QERA-approx 15.66 14.60 12.81 9.17 7.95 8.45 4.10
QERA-exact 16.16 14.12 12.30 9.12 7.93 8.33 3.82

3.25

w-only - 32.82 41.13 47.78 13.32 10.24 18.96 16.46
ZeroQuant-V2

64

27.80 33.56 42.64 13.00 10.03 19.29 10.12
LQER 20.60 21.99 18.27 14.00 9.09 11.86 7.05
QERA-approx 20.43 21.93 17.99 10.99 9.04 11.73 6.99
QERA-exact 19.51 19.97 20.37 10.67 8.97 11.39 6.68

0 1 2 3 4 5
Epoch

0.0

0.2

0.4

0.6

0.8

Sp
ea

rm
an

 C
or

re
la

tio
n

QLoRA
LoftQ (5-iter)
QERA-approx

Figure 2: Faster convergence of
QERA-approx on STSB.

Faster Convergence QERA initialization also speeds up
the training convergence. For LLM fine-tuning, this is ex-
pected as QERA initialization is closer to the full-precision
model. Interestingly, in encoder-only experiments on GLUE
where the model classifier head is randomly initialized, we
also observe that QERA converges faster, especially on small
subsets such as STSB and MRPC where only a few thousand
samples are available (in comparison MNLI has 393k sam-
ples and QQP has 364k samples). For example, in Figure 2,
the Spearman correlation coefficient of QERA on STSB in-
creases and converges faster than LoftQ and QLoRA, as the
green line plateaus first.

4.3 IMPROVED PTQ

In this part, we first demonstrate that LQER, which depends on heuristics derived from activa-
tion values, does not guarantee improved performance with a larger calibration dataset. However,
QERA exhibits the opposite trend. Through extensive experiments, we show that QERA consis-
tently outperforms ZeroQuant-V2 and LQER, and QERA-exact exhibits better model performance
than QERA-approx at the cost of more computation in the quantization process. These results veri-
fied the effectiveness of our analytical solution.

22 23 24 26 28

Num calibration samples

10.66
10.68
10.70
10.72
10.74
10.76
10.78

Pe
rp

le
xi

ty
 (

)

LQER
QERA-approx

Figure 3: QERA resolves the discrep-
ancy between the recovered model
performance and the number of cali-
bration samples in LQER.

Model performance vs. calibration set size As men-
tioned at the end of Section 3.3, the scale matrix in
LQER (Zhang et al., 2024a) is similar to the one in QERA-
approx, but is based on hand-crafted heuristics. As a result,
we observe that the model performance of LQER varies
randomly as the number of calibration samples increases
(the purple curve in Figure 3). On the contrary, more cal-
ibration samples consistently lead to better model perfor-
mance for QERA until convergence.

Improved perplexity and downsteam task accuracy
We apply QERA-approx and QERA-exact to a range of
models and evaluate on both pretraining task and down-
stream tasks in Table 3 and Table 4 respectively. We also
compare to HQQ, a SoTA method that does not use quantization error reconstruction.

On most models, QERA-approx outperforms ZeroQuant-V2 and LQER, while QERA-exact
achieves the best performance. At 4-bit, QERA-exact is nearly lossless. At 3-bit, QERA-exact’s

1The average accuracy of TinyLlama-1.1B excludes BoolQ, CommonsenseQA, and MMLU since
TinyLlama-1.1B has random guess accuracy on these tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Average accuracy (↑) of LLMs on six downstream tasks. QERA-exact outperforms other
quantization-error reconstruction-based methods across almost all models. We also compare to
HQQ (Badri & Shaji, 2023), a SoTA PTQ method that does not adopt quantization-error recon-
struction or activation heuristics. QERA-exact achieves an average accuracy on par with HQQ.

W-bits Method Rank TinyLlama1 Gemma-2 Phi-3.5 LLaMA-2 LLaMA-3.1

1.1B 2B 3.8B 7B 13B 8B 80B

- BF16 - 40.59 53.96 66.91 49.61 55.74 63.88 72.05

4.25 HQQ - 40.35 52.54 59.17 48.26 54.53 62.59 71.31

4.25

w-only - 36.56 48.33 64.52 47.62 55.12 61.53 68.46
ZeroQuant-V2

32

37.26 48.24 64.44 47.43 55.15 61.70 68.45
LQER 40.45 49.77 64.46 48.47 55.40 61.75 70.94
QERA-approx 40.02 49.29 64.53 48.52 55.20 61.68 70.80
QERA-exact 40.36 51.73 65.08 48.91 55.42 62.05 71.42

improvement over QERA-approx (Table 3) is clear, indicating the superiority of QERA-exact for
aggressive quantization.

0 25 50 75 100

52.5% 44.4%ZeroQ

54.3% 43.3%LQER

56.2% 40.8%QERA

Win Tie Lost

Figure 4: AlpacaEval 2.0 evalua-
tion results. We compare quantized
models to the counterpart without
quantization-error reconstruction. A
higher win rate (↑) indicates better
instruction-following performance.

Higher win rate on AlpacaEval 2.0 To better understand
the impact on instruction-tuned models, we present the re-
sults of Vicuna-7b-v1.5 on AlpacaEval 2.0. In Figure 4, we
evaluate the quantization-error-reconstruction-based meth-
ods against the w-only quantization counterpart. QERA
outperforms ZeroQuant-V2 and LQER by a higher win rate,
indicating a better response quality.

5 DISCUSSION

In this section, we revisit the arguments, design choices,
and observations made in the previous sections, including a
test of Assumption 1, and the choice of the calibration set
for PEFT. We offer an extended discussion of the numeric stability and scalability in Appendix A.7,
complexity analysis in Appendix A.8, LoRA rank and model choices of PEFT experiments in Ap-
pendix A.10.

(a) 3.o proj (b) 7.k/q/v proj (c) 7.o proj (d) 7.gate proj

Figure 5: Normalized abs(RXX) of the layer inputs in LLaMA-3-8B. Dark elements denotes value
close to zero. There are a few layers with input dimensions strongly correlated with others, such as
the third attention layer in (a), but for most layers, our assumption of zero-expectation holds.

Test of Assumption 1 To test Assumption 1, we profile the autocorrelation matrix RXX of the
linear layer inputs in LLaMA-2-7B and LLaMA-3-8B. Note that RXXi,j = Ex∼X{xixj}, which
assumes to be zero for i ̸= j in Assumption 1. Figure 5 shows the normalized RXX magnitude,
abs(RXX)
||RXX||F , of four representative layers in LLaMA-3-8B where darker elements denote values closer

to zero. There are several layers with some input dimensions strongly correlated with others, such
as the inputs to the third attention layer in Figure 5a, but for most layers, our assumption holds,
especially the MLP layers, such as Figures 5b to 5d. More RXX plots are in Appendix A.13.

Choice of calibration set for QPEFT One problem is to determine the calibration set for QERA
before fine-tuning. In 2-bit RoBERTa-base fine-tuning experiment on SST2 (Appendix A.6), we find

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

that calibrating on the pretraining dataset, WikiText2, helps the loss to decrease. However, the loss
of the model calibrated on the fine-tuning dataset does not follow the same trend. We hypothesize
that the massive padding tokens in preprocessed SST2 samples cause this discrepancy, especially
considering that the sequence length of the raw SST2 dataset changes fiercely.

6 CONCLUSION

In this paper, we formulate the problem of quantization error reconstruction and propose QERA as
an analytical solution. Applying QERA to related works for efficient fine-tuning or inference, we
show that QERA resolves the discrepancy in existing methods, and outperforms SoTA methods in
both fine-tuning and quantization tasks by a clear margin.

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Hicham Badri and Appu Shaji. Half-quadratic quantization of large machine learning models,
November 2023. URL https://mobiusml.github.io/hqq_blog/.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization
of large language models with guarantees. Advances in Neural Information Processing Systems,
36, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Bita Darvish Rouhani, Ritchie Zhao, Venmugil Elango, Rasoul Shafipour, Mathew Hall, Maral Mes-
makhosroshahi, Ankit More, Levi Melnick, Maximilian Golub, Girish Varatkar, et al. With shared
microexponents, a little shifting goes a long way. In Proceedings of the 50th Annual International
Symposium on Computer Architecture, pp. 1–13, 2023.

Edvin Deadman, Nicholas J Higham, and Rui Ralha. Blocked schur algorithms for computing the
matrix square root. In International Workshop on Applied Parallel Computing, pp. 171–182.
Springer, 2012.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

11

https://mobiusml.github.io/hqq_blog/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936.

Ahmad Faiz, Sotaro Kaneda, Ruhan Wang, Rita Osi, Parteek Sharma, Fan Chen, and Lei Jiang.
Llmcarbon: Modeling the end-to-end carbon footprint of large language models. arXiv preprint
arXiv:2309.14393, 2023.

Han Guo, Philip Greengard, Eric P Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. arXiv preprint arXiv:2311.12023, 2023.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543,
2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. arXiv preprint
arXiv:2310.08659, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. Qllm:
Accurate and efficient low-bitwidth quantization for large language models. arXiv preprint
arXiv:2310.08041, 2023a.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023b.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. arXiv preprint arXiv:2404.02948, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Rajarshi Saha, Naomi Sagan, Varun Srivastava, Andrea J Goldsmith, and Mert Pilanci. Compress-
ing large language models using low rank and low precision decomposition. arXiv preprint
arXiv:2405.18886, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. An adversarial winograd
schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hes-
tness, and Nolan Dey. SlimPajama: A 627B token cleaned and dedu-
plicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

George PH Styan. Hadamard products and multivariate statistical analysis. Linear algebra and its
applications, 6:217–240, 1973.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A ques-
tion answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pp. 4149–4158, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL
https://aclanthology.org/N19-1421.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, and Yuxiong He. Zeroquant-v2: Exploring
post-training quantization in llms from comprehensive study to low rank compensation. arXiv
preprint arXiv:2303.08302, 2023.

Zhi-Xiu Ye, Qian Chen, Wen Wang, and Zhen-Hua Ling. Align, mask and select: A simple method
for incorporating commonsense knowledge into language representation models. arXiv preprint
arXiv:1908.06725, 2019.

Cheng Zhang, Jianyi Cheng, George A Constantinides, and Yiren Zhao. Lqer: Low-rank quantiza-
tion error reconstruction for llms. arXiv preprint arXiv:2402.02446, 2024a.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024b.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

13

https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://aclanthology.org/N19-1421

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ALGORITHMS IN RELATED WORK

Here we summarize the algorithm of LoftQ (Li et al., 2023) in Algorithm 1 and LQER (Zhang et al.,
2024a) in Algorithm 2 respectively. LQ-LoRA (Guo et al., 2023) adopts a variant of Algorithm 1.
ZeroQuant-V2 (Yao et al., 2023) can be considered as Algorithm 1 with one iteration, or a special
case of Algorithm 2 where the scale matrix S is an identity matrix.

Algorithm 1 LoftQ (Li et al., 2023)
Require: Pretrained weight W , target rank k, quantization function q(·), dequantization function dq(·), num-

ber of iterations T
1: Ak ← 0,Bk ← 0
2: for i = 1 to T do
3: Wq ← q(W −AkBk) ▷ Update quantized weight matrix
4: W̃ ← dq(Wq)

5: U ,Σ,V T ← SVD(W − W̃) ▷ SVD-based rank-k approximation
6: Ak ← U:,:k

√
Σ:k,:k, Bk ←

√
Σ:k,:kV

T
:k,:

7: end for

Algorithm 2 LQER (Zhang et al., 2024a)

Require: Pretrained weight W , target rank k, quantization function q(·), dequantization function dq(·), cali-
bration dataset X = {xi ∈ Rm|i = 1, . . . , N}

1: Initialize vector s← 0
2: for sample x in X do ▷ Calibration
3: s← s+ abs(x) ▷ Accumulate activation magnitude on each dimension
4: end for
5: S ← 1

N
diag(s) ▷ Construct a diagonal matrix S

6: Wq ← q(W)

7: W̃ ← dq(Wq)

8: U ,Σ,V T ← SVD(S(W − W̃)) ▷ SVD on the scaled weight error
9: Ak ← S−1U:,:k, Bk ← Σ:k,:kV

T
:k,: ▷ Rank-k approximation with un-scaling

A.2 PROOF OF THEOREM 2

Here we present the full proof of QERA-approx. QERA-approx is an approximated solution to
Problem 2 based on Assumption 1, which is suitable to initialize the low-rank terms in fine-tuning
for lower computation complexity.

Proof of Theorem 2

Proof. We continue at Equation (13). Since Ex∼X is the expectation with respect to the input space,
we move the expectation inside the summation of RHS of Equation (13).

Ey∼Y{||ỹ − y||22} =

m∑
i=1

m∑
j=1

Ex∼X{xixj}pip
T
j (25)

Under Assumption 1, Ex∼X{xixj} = 0 for i ̸= j, the RHS of Equation (25) simplifies to:

Ey∼Y{||ỹ − y||22} =

m∑
i=1

Ex∼X{x2
i }pip

T
i (26)

We can define diagonal matrix S = diag(
√
Ex∼X{x2

1},
√
Ex∼X{x2

2}, . . . ,
√

Ex∼X{x2
m}) and

rewrite the RHS of Equation (26) as:

Ey∼Y{||ỹ − y||22} = Tr(SPP TST) = ||SP ||2F (27)

where Tr(·) denotes the trace of a matrix.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Therefore, the objective of Problem 2 (Equation (8)) is equivalent to:

argmin
Ck

Ey∼Y{||ỹ − y||22} = argmin
Ck

||SP ||2F

= argmin
Ck

||S(W̃ +Ck −W)||2F
(28)

If we assign Q = S(W − W̃) and Qk = SCk, the objective becomes:

argmin
Q

||Qk −Q||2F (29)

Note that the invertible matrix S in Qk does not change the rank of the matrix Ck. According to the
Eckart-Young-Mirsky theorem, the optimal rank k approximation to Q is the truncated SVD of Q:

Qk = U:,:kΣ:k,:kV
T
:k,: (30)

where UΣV T = SVD(Q) = SVD
(
S(W − W̃)

)
.

Finally, we get the optimal solution to the low-rank term Ck:

Ck = S−1Qk = S−1U:,:kΣ:k,:kV
T
:k,: (31)

A.3 CONNECTION AND DIFFERENCE BETWEEN CALDERA AND QERA

@Reviewer 8w8V:

CALDERA (Saha et al., 2024) is the concurrent work close to QERA. Here we elaborate the con-
nection and difference between CALDERA and QERA, and highlight the contributions of QERA.

CALDERA focuses on a different problem setup. Specifically, CALDERA focuses on the following
problem:

min
W̃ ,Ak,q,Bk,q

||XW −X(W̃ +Aq,kBq,k)||2F (32)

where X ∈ Rb×m denotes a batch of calibration samples, and W̃ , Ak,q , and Bk,q are all quantized
variables to optimize. Note that this problem setup is different from QERA (Equation (9)):

argmin
Ck

Ex∼X{||x(W̃ +Ck)− xW ||22} (33)

where only the low-rank high-precision Ck := AkBk is the variable to optimize, and the quantized
weight W̃ is predefined given a quantization method.

Table 5: Notation Table for the Equivalence Derivation

Notation Description Comments

b Number of calibration samples (vectors)
m Layer input feature size
n Layer output feature size
X Calibration set Shape: b×m
x A sample in the calibration set Shape: 1×m
W Original full-precision layer weights Shape: m× n
Y Layer output matrix corresponding to X Shape: b× n
y Layer output vector corresponding to x Shape: 1× n
k Rank of the low-rank approximation
Ck Approximated rank-k weight Shape: m× n
U ,Σ,V SVD decomposition of X
SVDk(·) Truncated rank-k SVD

We find that CALDERA’s Lemma 4.2 is equivalent to Theorem 1 in QERA. Note that the proof
of QERA-exact is different from Caldera’s Lemma 4.2, though the final closed-form solution is

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

equivalent. Here we additionally show the derivation of the equivalence between QERA-exact and
Caldera’s Lemma 4.2 using the notation table in Table 5. For convenience, we remove the quantized
weight term W̃ from QERA (Problem 2 in Equation (9)), which does not change the proof. Now
the problem becomes finding the optimal low-rank approximation of the weight matrix, Ck that
minimizes the layer output error.

First we note that the objective of QERA, Equation (9), is equivalent to CALDERA’s Eq(5) scaled
by a constant n:

QERA : minCk
Ex{||x(Ck −W)||22}

CALDERA : minCk
||X(Ck −W)||2F

(34)

Then we show that Theorem 1 (QERA-exact) is equal to Caldera’s Lemma 4.2.

QERA-exact : Ck = (R
1
2

XX)
−1 · SVDk(R

1
2

XXW) (35)

CALDERA : C ′
k = V Σ · SVDk(U

TY) (36)

We firstly show that (R
1
2

XX)
−1 in Equation (35) equals to V Σ in Equation (36) scaled by a constant√

b:

RXX =
1

b
(XTX) = V ΣUTUΣV T = V Σ2V T

R
1
2

XX =
1√
b
ΣV T

(R
1
2

XX)
−1 =

√
bV Σ−1

(37)

Then we show that R
1
2

XXW in Equation (35) equals to UTY in Equation (36) scaled by the constant
1√
b
:

UTY = UTXW = UTUΣV TW = ΣV TW =
√
bR

1
2

XXW

R
1
2

XXW =
1√
b
UTY

(38)

Therefore Ck equals to C ′
k, and the two solutions are equivalent. Despite of the equivalence, we

shortlist the differences between CALDERA and our work:

• Different problem setup (Equation (34)).

• We simplify QERA-exact and derive QERA-approx, which is a computationally-efficient
approximated solution. Specifically, QERA-approx is more suitable for parameter-efficient
fine-tuning than QERA-exact/CALDERA. Moreover, QERA-approx overcomes the pitfalls
in existing methods and explains why previous heuristic methods like LQER work.

• The optimization objective is similar (vector form vs matrix form), and the final closed-
form solution is equivalent, but the proof of QERA-exact is different from CALDERA.

A.4 DETAILED EXPERIMENT SETUP

We mainly use PyTorch, Transformers, PEFT, and Accelerate to implement QERA. We use
SciPy’s implementation of blocked Schur algorithm (Deadman et al., 2012) to calculate the matrix
square root, which runs on CPUs. The evaluation is performed with lm-evaluation-harness,
Evaluate, and AlpacaEval 2.0 (Dubois et al., 2024).

A.4.1 QPEFT HYPERPARAMETERS

We perform fine-tuning experiments on four NVIDIA A100 80GB GPUs with AMD EPYC 64-Core
Processor with 1024GB RAM. The total fine-tuning time is around 2100 GPU hours.

16

https://pytorch.org/
https://github.com/huggingface/transformers
https://github.com/huggingface/peft
https://github.com/huggingface/accelerate/tree/main
https://docs.scipy.org/doc/scipy/index.html
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/huggingface/evaluate/tree/main
https://github.com/tatsu-lab/alpaca_eval

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: Learning rates of RoBERTa-base experiments on GLUE.

Rank W-bits Method Learning rates

- 16 Full FT 7e-5, 5e-5, 2e-5

8 16 LoRA 1e-4, 2e-4, 3e-4
8 4.25 QLoRA/LoftQ/QERA-approx 1e-4, 2e-4, 3e-4
8 3.25 QLoRA/LoftQ/QERA-approx 1e-4, 2e-4, 3e-4
64 2.50 QLoRA/LoftQ/QERA-exact 2e-5, 3e-5, 4e-5, 5e-5, 6e-5, 9e-5, 1e-4

RoBERTa-base on GLUE We sweep learning rates for each (method, task), and collect the
best accuracy. @Reviwer 8H2Q:Thus each (method, task) pair has its own tailored learning rate,
ensuring the best performance of baselines and QERA under the same trainable parameter budget.
The reported accuracy is the average value across random seeds 42, 1, and 2. The total batch size
is 64 for all GLUE experiments and we train the models for 5 epochs. For 4-bit experiments, we
use 4-bit floating point from the QLoRA implementation in PEFT. For 3-bit experiments, we use
emulated MXINT (Darvish Rouhani et al., 2023) with block size = 32 and for 2-bit experiments we
use MXINT with block size = 16. Table 6 lists the learning rates for each experiment.

LLaMA-2-7B/-3.1-8B on SlimPajama and GSM8K We adopt the learning rates in Meng et al.
(2024). The reported perplexity/accuracy is the average value across random seeds 42, 1, and 2. For
SlimPajama, we fine-tune the model on a subset for 1000 steps with rank = 8, total batch size = 64,
sequence length = 1024, learning rate = 3e-5. For GSM8K, we fine-tune the model for 10 epochs
with rank = 64, total batch size = 128, sequence length = 384, and learning rate = 3e-5.

A.4.2 PTQ HYPERPARAMETERS

We perform PTQ experiments on eight NVIDIA A6000 48GB GPUs with AMD EPYC 256-Core
Processor with 1024GB RAM. The total quantization and evaluation time is around 4500 GPU
hours. We report 0-shot accuracy or normalized accuracy (if available) for all tasks except Wiki-
Text2, in which we report word perplexity. The sequence length for reporting word perplexity is
the model’s context length by default, except for Phi-3.5 and LLaMA-3.1. For these two models,
we set the sequence length = 2048. We use the HuggingFace Transformers’s implementation of
HQQ, and reimplement ZeroQuant-V2 and LQER as baselines. We use MXINT with block size
= 32 as the quantization format for all quantization methods except HQQ, which uses its built-in
INT format with group size = 64. Thus, both formats have an average W-bits of 4.25. We evaluate
quantized Vicuna-v1.5-7B, which is an instruction-tuned LLaMA-2-7B, with AlpacaEval 2.0. and
use GPT4-Turbo as the evaluator. The reported win rate is the length-controlled win rate, which is a
debiased version of the win rate that controls for the length of the generated outputs.

A.5 DECREASING WEIGHT ERROR ̸= DECREASING OUTPUT ERROR FOR LOFTQ

We provide the weight approximation error, ||W − W̃ −Ck||F , in Figure 6, of all linaer layers in
RoBERTa-base by sweeping the number of iterations. We observe that the weight approximation
error monotonically decreases with the number of iterations, but as shown in Figure 1, the model out-
put error may increase. This observation indicates that the commonly used objective of minimizing
the weight approximation error and the corresponding algorithm are not ideal for the quantization
error reconstruction problem.

A.6 CHOICE OF CALIBRATION SET

We compare the QERA-adapted models calibrated on the pretraining dataset and the downstream
dataset. Specifically, we fine-tune two QERA-adapted 2-bit RoBERTa-base models. One is cali-
brated on its pretraining dataset, WikiText2, and the other on SST2. Figure 7 shows the loss curves
of the two models across three learning rates. None loss curves of the models calibrated on SST2 de-
creases, but the ones calibrated on WikiText2 successfully decrease and converge. We hypothesize
that this is due to the massive padding tokens in preprocessed SST2 considering that the raw sample
lengths change fiercely. However, WikiText2 samples were preprocessed in the masked language
modeling style, which means that only a few special tokens are added to the grouped texts.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1 2 3 4 5
LoftQ num iterations

6.5

7.0

7.5

8.0

8.5

9.0

W
ei

gh
t r

ec
on

st
ru

ct
io

n
er

ro
r

out_proj

1 2 3 4 5
LoftQ num iterations

14

16

18

20

22

key_proj

1 2 3 4 5
LoftQ num iterations

14

16

18

20

22

query_proj

1 2 3 4 5
LoftQ num iterations

8

9

10

11

12

W
ei

gh
t r

ec
on

st
ru

ct
io

n
er

ro
r

value_proj

1 2 3 4 5
LoftQ num iterations

18

20

22

24

26

28

fc1

1 2 3 4 5
LoftQ num iterations

14

16

18

20

22

fc2

Layer 0
Layer 1

Layer 2
Layer 3

Layer 4
Layer 5

Layer 6
Layer 7

Layer 8
Layer 9

Layer 10
Layer 11

Figure 6: Weight approximation error of 3-bit rank-16 LoftQ with different numbers of iterations on
RoBERTa-base. We observe that the weight reconstruction error of all the layers decreases as the
number of iterations increases, but as shown in Figure 1b, the model output error (k=16) increases
from the 4-th to 5-th iteration.

0 1000 2000 3000 4000 5000
Step

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Downstream_lr-1e-4
Pretraining_lr-1e-4

Downstream_lr-2e-4
Pretraining_lr-2e-4

Downstream_lr-3e-4
Pretraining_lr-3e-4

Figure 7: The fine-tuning loss curves of QERA-adapted 2-bit RoBERTa-base on SST2. The loss
fails to decrease if the calibration is performed on the downstream task SST2 due to the massive
padding tokens in preprocessed SST2 samples. In pretraining dataset, there are only a few special
tokens like padding tokens and mask tokens.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

1.1B 7B 13B 70B
Layer hidden size

10 23

10 22

10 21

10 20

10 19

R x
x e

rro
r r

at
io

 lo
g(

R x
x

Er
ro

r
F

R x
x

F
)

layer 4
layer 8
layer 12
layer 16
layer 20

(a) Estimated error ratio of the square root of RXX

1B 7B 13B
Model size

0

6h

12h

Qu
an

tiz
at

io
n

tim
e

3.9m
A

28.2m

A

55.7m

A

39.0m

E

4.7h

E

13.8h

E

Calibration
Matrix sqrt
SVD

(b) QERA quantization time

Figure 8: Scalability of QERA. (a) plots the estimated error ratio of the matrix square root calcu-
lation of RXX of some layers where the error increases as the model goes larger. (b) compares the
quantization time of QERA-approx and QERA-exact if all layers are quantized sequentially. The
matrix square root is time-consuming since it is executed on CPUs. One key optimization for accel-
erating the quantization process of QERA-exact will be the GPU-accelerated matrix square root.

A.7 SCALABILITY AND NUMERICAL STABILITY OF QERA

One may notice the diminishing model performance improvement of QERA-exact over QERA-
approx as the model size increases. The main reason is that larger LLMs are more resistant to
quantization (Chee et al., 2024). Another reason can be the error ratio of the matrix square root
calculation of the autocorrelation matrix increases with model hidden size (Figure 8a).

We find that the data type used in the calibration is important for the numeric stability of QERA-
exact due to the calculation of the matrix square root and SVD. To improve the stability of the
calculation in QERA-exact, a good practice we find is to perform the outer product of RXX in FP32,
accumulated outer product in FP64, and calculate the matrix square root in FP64 using the blocked
Schur algorithm (Deadman et al., 2012). Figure 8b illustrates the quantization time of QERA-approx
and QERA-exact on the platform described in Appendix A.4 where the linear layers are quantized
sequentially. QERA-exact is slow due to the calculation of matrix square roots on CPUs. GPU-
accelerated matrix square root will be the key optimization to reduce the quantization time. Note
that in QERA, the quantization of individual layers is independent, allowing more parallelization
and acceleration of the quantization process.

A.8 COMPLEXITY ANALYSIS

@Reviwer KXUq, @Reviewer 1yFJ

We briefly analyze the computational complexity and memory complexity of QERA-exact and
QERA-approx against LoftQ. Table 7, Table 8, and Table 9 summarize the computational com-
plexity of QERA-exact, QERA-approx, and LoftQ, respectively. Table 10, Table 11, and Table 12
summarize the memory complexity of QERA-exact, QERA-approx, and LoftQ, respectively. We
notice that QERA-exact has the highest computational complexity and memory complexity. QERA-
approx has a lower computational complexity but requires more memory footprint than LoftQ.

Table 7: Computational complexity of QERA-exact of a linear layer. (m,n) are the input and output
feature sizes, k denotes the rank, and b is the number of calibration samples.

Operation Complexity

Auto-correlation matrix RXX O(bm2)
Matrix square root of RXX O(m3)

Inverse of R
1
2
XX O(m3)

SVD on weight matrix O(mn ·min(m,n))
Product to form Ck O(m3)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 8: Computational complexity of QERA-approx. (m,n) are the input and output feature sizes,
k denotes the rank, and b is the number of calibration samples.

Operation Complexity

Scale matrix S O(m2 log2 m)
SVD on weight matrix O(mn ·min(m,n))
Product to form Ck O(m3)

Table 9: Computational complexity of LoftQ. (m,n) are the input and output feature sizes, k denotes
the rank, and t is the iteration number.

Operation Complexity

Update quantized weight O(tmnk)
Residual subtraction O(tmn)
SVD on weight matrix O(tmn ·min(m,n))

In Table 13, we show a runtime comparison between QERA-approx and LoftQ (5-iter) since these
two are designed for QPEFT experiments and the runtime (calibration + quantization time) should be
in a reasonable range. We profile the runtime across various model sizes (1B, 3B, 7B, 13B, 30B) and
find that QERA-approx is faster than LoftQ by 2-4 times. We attribute the larger overhead of LoftQ
to two factors: 1) The iterative SVD in LoftQ, an operation with the complexity O(tmn·min(m,n))
per layer, is performed for all linear layers. In contrast, QERA-approx only performs the SVD once
per layer. 2) In each iteration, LoftQ updates both the weights and low-rank terms. This requires
around O(tmn) memory read and store per layer between the GPU’s global memory and local
memory. For LLMs, this memory movement is bottlenecked by the limited bandwidth between
HBM and SRAM. In contrast, QERA only calculates the low-rank terms, which means one O(mn)
read for weights and one O((m+n)k) write where the rank value k is very small (k ≪ min(m,n))

A.9 CHOICE OF SOLUTIONS FOR QPEFT AND PTQ

@Reviewer 8w8V, @Reviwer 1yFj:

QPEFT and PTQ are two different application scenarios of QERA. We recommend QERA-approx
for QPEFT and QERA-exact for PTQ. PTQ aims to recover the model performance as much as
possible without re-training. For PTQ, it is desirable to recover more model performance even if it
takes longer to compute low-rank terms. Note that the low-rank terms are pre-computed once offline.
At inference time, QERA-exact introduces no overhead to the hardware since LQER, QERA-approx,
and QERA-exact all takes the same form of y = x(W̃ +AkBk).

However, for QPEFT experiments, it is unreasonable to pay a long time for initializing the low-rank
terms for the limited improvement in output approximation error (i.e., QERA-exact/CALDERA),
because 1) fine-tuning can recover the error, and 2) instead of spending much time on initialization,
increasing training steps or increasing the rank number brings more gain in the fine-tuned accuracy.
We run controlled experiments to support this claim. In Table 14 and Table 15, we run QPEFT ex-
periments of RoBERTA-base on MRPC and LLaMA-2-7B on SlimPajama respectively. Compared
to QERA-exact (Caldera’s Lemma 4.2), QERA-approx achieves better accuracy/perplexity while
taking 2

3 ∼ 1
2 of the time.

A.10 CHOICES OF LORA RANKS, MODELS, AND PRECISIONS FOR QPEFT

Rank = 8 for GLUE experiments We notice LoftQ paper uses a large rank of 16 and 32 for
fine-tuning on GLUE, which is larger than the commonly-used rank value of LoRA (4 or 8 in LoRA
paper (Hu et al., 2021)). If we consider LoRA as the upper limit of QLoRA-like QPEFT methods
(including LoftQ and QERA), to effectively compare these QPEFT methods, one easy way is to set
the rank as the minimum value required by LoRA and check which QPEFT method achieves an
accuracy closest to LoRA. This is why we choose rank = 8 for GLUE experiments (For 2-bit GLUE

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 10: Memory complexity of QERA-exact of a linear layer. (m,n) are the input and output
feature sizes, k denotes the rank, and b is the number of calibration samples.

Phase Operation Complexity

Calibration GEMM of linear forward pass O(bm+mn+ bn)
Partial sum of RXX O(m2)

Quantization

Full-precision weight matrix O(mn)
Quantized weight matrix O(mn)
SVD on the scaled weight matrix O(mn)
Matrix square root of RXX O(m2)

Matrix Inverse of (RXX
1/2)−1 O(m2)

Low-rank terms O(mk + nk)

Table 11: Memory complexity of QERA-approx of a linear layer. (m,n) are the input and output
feature sizes, k denotes the rank, and b is the number of calibration samples.

Phase Operation Complexity

Calibration GEMM of linear forward pass O(bm+mn+ bn)
Partial sum of S O(m)

Quantization

Full-precision weight matrix O(mn)
Quantized weight matrix O(mn)
SVD on the scaled weight matrix O(mn)
Inverse of S O(m)
Low-rank terms O(mk + nk)

experiments we use a large rank 64 since the quantization is very aggressive). If we use rank = 32,
LoRA and all the QPEFT methods may be over-parameterized and it will be hard to make a fair
comparison in terms of fine-tuned accuracy. @Reviewer 8H2Q:To support this claim, we sweep
the rank of LoRA-adapted RoBERTA-base on SST2 and MRPC and show a large rank k like 16 in
LoftQ has over-parallelization problem in Table 16 and Table 17.

RoBERTa vs. DeBERTa When investigating the related work, we find that both RoBERTa and
DeBERTaV3 (He et al., 2021) are used in QPEFT experiments (Guo et al., 2023; Li et al., 2023;
Meng et al., 2024; Guo et al., 2023; Zhang et al., 2023). The reason why we chose RoBERTa is
that the RoBERTa checkpoint on HuggingFace2 is complete and compatible with both Hugging-
Face’s official examples of sequence classification3 and masked language modeling4. Specifically,
the RoBERTa checkpoint contains both the base model and the masked language modeling head
but the DeBERTaV3’s checkpoint5 only contains the base model. As we know, the base model is
enough for fine-tuning on downstream tasks. However, to calibrate on the pretraining dataset, we
need the language modeling head to verify if our implementation of data preprocessing and calibra-
tion matches how the model was originally pretrained. Note that the quality of the statistic values

2RoBERTa-base checkpoint: link
3HuggingFace example of sequence classification: link
4HuggingFace example of masked language modeling: link
5DeBERTaV3’s checkpoint: link

Table 12: Memory complexity of QERA-approx of a linear layer. (m,n) are the input and output
feature sizes, k denotes the rank.

Phase Operation Complexity

Quantization

Full-precision weight matrix O(mn)
Quantized weight matrix O(mn)
SVD on the scaled weight matrix O(mn)
Low-rank terms O(mk + nk)

21

https://huggingface.co/FacebookAI/roberta-base
https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification
https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling
https://huggingface.co/microsoft/deberta-v3-base

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 13: Runtime comparison of LoftQ (5-iter) and QERA-approx across various model sizes. For
LoftQ the runtime denotes the quantization time, while for QERA-approx it denotes the calibration
time plus the quantization time. QERA-approx is faster than LoftQ by 2-4 times. @Reviwer 8w8V

Method 1B 3B 7B 13B 30B

LoftQ 170s 1037s 3068s 7084s 45361s
QERA-approx 70s 264s 738s 1952s 12495s
Speed up 2.4× 3.94× 4.16× 3.63× 3.62×

Table 14: Runtime comparison of QERA-exact and QERA-approx on MRPC. It is recommended
using QERA-approx for QPEFT instead of QERA-exact.

Method Rank Epochs Init. time Training time Total time (↓) Acc. (↑)
QERA-exact 8 4 1.6min 2.2min 3.8min 88.97
QERA-approx 12 4 21s 2.2min 2.6min 89.95
QERA-approx 8 5 21s 2.7min 3.1min 89.97

in QERA like RXX depends on the quality of the calibration set. Thus, without the language mod-
eling head in the checkpoint, we cannot perform the QERA’s calibration for DeBERTaV3 properly,
ensure the correctness of statistics in QERA, and explore the effect of the choice of calibration sets.

Reviwer 8H2Q:

LLaMA-2 and WikiText2 We add LLaMA-3.1 to the QPEFT experiments as this is the newest
LLaMA model when we conduct the experiments. However, LLaMA-3.1 was not released when
most of the QPEFT baselines in this paper were proposed. We also use SlimPajama (Soboleva
et al., 2023) instead of WikiText2, because WikiText2 is a very small dataset (¡1M tokens), and
usually included in the pretraining dataset of LLMs. Models fine-tuned on WikiText2 tend to have
overfitting problem. Even though, we still additionally add the QPEFT experiments of fine-tuning
LLaMA-2 on WikiText2 in Table 18.

Reviwer 8H2Q:

2-bit Experiments Since fine-grained quantization is adopted in QLoRA and LoftQ, the actual
average bit-width of the quantized weights can be calculated as B + 16/block size, where B is the
bit-width of the integer weights, and every block size consecutive weights shares the same FP16
scale. For example, if the block size is 32, the average bit-width of the INT2 weights is 2+16/32=2.5
bit. A larger block size leads to a smaller average bit-width, but a larger quantization error. We
additionally present 2.125-bit experiments matching LoftQ setup in Table 19. QERA-approx still
outperforms LoftQ in 2.125-bit experiments.

A.11 COMPARISON TO LQ-LORA

@Reviwer 1yFJ: As stated in Section 2, LQ-LoRA (Guo et al., 2023) is an activation-induced
heuristic method that exist the LoftQ iteration when the scaled objective function stops decreasing.
In contrast, QERA is an analytical solution to the quantization error reconstruction problem. Here
we compare LQ-LoRA and QERA through both QPEFT and PTQ experiments in Table 20 and Ta-
ble 21 respectively. We find that QERA-approx consistently outperforms LQ-LoRA in QPEFT
experiments and QERA-exact outperforms LQ-LoRA in PTQ experiments most of the time.

Table 15: Runtime comparison of QERA-exact and QERA-approx on SlimPajama. It is recom-
mended using QERA-approx for QPEFT instead of QERA-exact.

Method Rank Epochs Init. time Training time Total time (↓) PPL. (↓)
QERA-exact 16 2 4.9h 1.9h 6.8h 6.31
QERA-approx 64 2 29.6min 2.1h 2.6h 6.18
QERA-approx 16 4 28.2min 4.0h 4.5h 6.21

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 16: Over-parameterization problem. We sweep the rank k of LoRA on SST2 and reported
fine-tuned accuracy. The highest accuracy at rank k = 12 indicates over-parameterization happens
for k ≥ 12.

Method Rank k Learning rates Best Acc.

LoRA

4 1e-4/2e-4/3e-4/4e-4/5e-4/6e-4 94.38
8 1e-4/2e-4/3e-4/4e-4/5e-4/6e-4 94.46
12 1e-4/2e-4/3e-4/4e-4/5e-4/6e-4 94.73
16 1e-4/2e-4/3e-4/4e-4/5e-4/6e-4 94.50
20 1e-4/2e-4/3e-4/4e-4/5e-4/6e-4 94.50

Table 17: Over-parameterization problem. We sweep the rank k of LoRA on MRPC and reported
fine-tuned accuracy. The highest accuracy at rank k = 12 indicates over-parameterization happens
for k ≥ 12.

Method Rank k Learning rates Best Acc.

LoRA

4 1e-4/2e-4/3e-4/4e-4/5e-4/6e-4 87.99
8 1e-4/2e-4/3e-4/4e-4/5e-4/6e-4 88.97
12 1e-4/2e-4/3e-4/4e-4/5e-4/6e-4 89.95
16 1e-4/2e-4/3e-4/4e-4/5e-4/6e-4 89.46
20 1e-4/2e-4/3e-4/4e-4/5e-4/6e-4 89.71

Table 18: QPEFT experiments of LLaMA-2 on WikiText2 matching LoftQ setup. QERA-approx
outperforms LoftQ.

Method W-bits Llama-2-7B Llama-2-13B

WikiText (↓) GSM8K (↑) WikiText (↓) GSM8K (↑)
LoRA 16 5.02 39.4 5.09 46.4

LoftQ 4.25 5.26 34.7 5.14 44.8
QERA-approx 4.25 5.11 35.8 5.12 45.1

Table 19: QPEFT experiments of 2.125-bit RoBERTA-base on GLUE mathcing LoftQ setup.
QERA-approx still outperforms LoftQ though both fine-tuned models have poor performance.

Method W-bits MNLI QNLI RTE SST CoLA QQP STSB Avg. ∗

LoftQ 2.125 74.81 82.57 55.96 85.09 0 85.62 52.46 71.26
QERA-approx 80.26 85.72 55.96 89.11 0 87.34 66.68 77.51

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 20: Comparison of QERA-approx and LQ-LoRA on LLaMA-2-7B and LLaMA-3.1-8B via
QPEFT experiments. QERA-approx consistently outperforms LQ-LoRA.

W-bits Method LLaMA-2-7B LLaMA-3.1-8B

SlimPajama GSM8K SlimPajama GSM8K

16 LoRA 6.17 39.40 8.07 55.72

4.25 LQ-LoRA 6.36 31.12 8.71 54.67
QERA-approx 6.33 32.26 8.68 55.24

2.25 LQ-LoRA 11.49 18.63 22.14 17.84
QERA-approx 10.56 18.78 20.07 19.41

Table 21: Comparison of QERA-exact and LQ-LoRA on WikiText2 via PTQ experiments. QERA-
exact achieves lower perplexity most of the time.

W-bits Method TinyLlama Gemma-2 Phi-3.5 LLaMA-3.1

1.1B 2B 3.8B 8B

16 BF16 13.98 13.08 11.50 7.55

4.25 LQ-LoRA 15.98 14.76 13.43 8.64
QERA-exact 16.16 14.12 12.30 8.33

3.25 LQ-LoRA 20.38 21.53 19.15 11.77
QERA-exact 19.51 19.97 20.37 11.39

Besides the experiment results above, we shortlist other advantages of QERA over LQ-LoRA.

• QERA is the optimal solution to minimizing layer output error derived from math proof. In
contrast, LQ-LoRA is ultimate heuristic (The author of LQ-LoRA uses “ultimate heuristic”
to describe it in the Discussion and Limitations section of LQ-LoRA paper). Heuristic
methods may introduces more hyper-params such as the number of iterations in LQ-LoRA
and have potential pitfalls when applied to real word applications like the problems of
LoftQ and LQER we showed in Section 4. In contrast, QERA is neat and guaranteed by
math proof.

• The quantization procedure of QERA-approx is faster than LQ-LoRA when adopted for
parameter-efficient fine-tuning. We have shown that QERA-approx is faster than LoftQ
in Table 13. On top of LoftQ, LQ-LoRA introduces extra cost of calculating Fisher infor-
mation and tracking heuristic objective for early exit.

A.12 DETAILED PTQ RESULTS

Here we offer the detailed evaluation results for each downstream task in Tables 22 to 28.

Table 22: Post-training quantization evaluation of TinyLlama-1.1B.

rank Method w-bits ARC (challenge) BoolQ CommonSenseQA BBH MMLU WikiText2 Winogrande

Acc norm Acc Acc Acc norm Acc Word ppl Acc

- BF16 16 32.51 55.93 20.07 29.68 25.35 13.98 59.59

- HQQ

4.25

32.00 58.13 20.15 29.70 25.75 15.02 59.35
- w-only 28.67 58.23 19.49 28.99 23.81 19.40 52.01

32

ZeroQuant-V2 29.69 57.86 19.41 29.53 24.85 18.03 52.57
LQER 32.00 52.42 18.59 29.60 25.31 16.23 59.75
QERA-approx 31.83 52.08 17.20 29.51 25.22 15.66 58.72
QERA-exact 32.00 51.31 19.33 29.42 25.19 16.16 59.67

A.13 TEST OF ASSUMPTION 1

Reviewer 8w8V: We provide more plots of normalized RXX magnitude, abs(RXX)
||RXX||F , across LLaMA-

3.1-8B, LLaMA-2-7B, Mistral-7B-v0.3, and TinyLlama-1.1B in Figures 9 to 24, where dark pixels

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 23: Post-training quantization evaluation of Gemma-2-2B.

rank Method W-bits ARC (challenge) BoolQ CommonSenseQA BBH MMLU WikiText2 Winogrande

Acc norm Acc Acc Acc norm Acc Word ppl Acc

- BF16 16 49.91 72.60 50.29 32.67 49.44 13.08 68.82

- HQQ

4.25

48.81 71.77 48.40 32.32 46.52 14.29 67.40
- w-only 44.62 69.91 34.07 31.96 42.90 16.23 66.54

32

ZeroQuant-V2 44.45 69.94 34.07 31.50 43.27 15.71 66.22
LQER 46.08 68.84 37.59 32.60 45.78 14.55 67.72
QERA-approx 45.31 68.99 36.20 32.04 45.80 14.60 67.40
QERA-exact 46.84 72.32 42.75 33.36 47.29 14.12 67.80

Table 24: Post-training quantization evaluation of Phi3-3.5-mini.

rank Method W-bits ARC (challenge) BoolQ CommonSenseQA BBH MMLU WikiText2 Winogrande

Acc norm Acc Acc Acc norm Acc Word ppl Acc

- BF16 16 59.39 84.65 71.91 48.19 64.58 11.50 72.77

- HQQ

4.25

57.00 74.34 60.20 38.22 56.00 14.63 69.61
- w-only 59.73 82.72 68.22 44.45 61.54 14.16 70.48

32

ZeroQuant-V2 59.64 82.94 68.06 44.58 62.00 14.09 69.77
LQER 59.39 84.01 70.76 45.67 62.21 12.88 70.74
QERA-approx 59.45 84.82 70.84 45.67 62.26 12.81 70.17
QERA-exact 58.70 83.73 69.45 45.37 62.01 13.00 71.19

are elements close to zeros. There are strongly correlated embedding channels in some k proj and
o proj layers. The assumption fits better in MLP layers (gate proj, up proj, and down proj),
and holds for over 60% of the layers in LLMs.

k_proj (Layer 0) k_proj (Layer 3) k_proj (Layer 7) k_proj (Layer 11)

k_proj (Layer 15) k_proj (Layer 19) k_proj (Layer 23) k_proj (Layer 27)

k_proj (Layer 31)

Figure 9: Normalized abs(RXX) of inputs of k proj layers in LLaMA-3-8B. Note that the q proj
and v proj share the same inputs. Layers are sampled and only the first 96 dimensions are plotted
for clarity.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 25: Post-training quantization evaluation of LLaMA-2-7B.

rank Method W-bits ARC (challenge) BoolQ CommonSenseQA BBH MMLU WikiText2 Winogrande

Acc norm Acc Acc Acc norm Acc Word ppl Acc

- BF16 16 46.25 77.83 33.09 30.74 40.64 8.71 69.14

- HQQ

4.25

44.03 75.87 29.40 30.50 40.14 9.59 69.61
- w-only 45.22 75.87 25.47 30.71 40.03 9.45 68.43

32

ZeroQuant-V2 45.82 75.90 24.82 29.99 39.84 9.42 68.19
LQER 44.28 76.15 29.81 30.72 40.66 9.22 69.22
QERA-approx 44.28 75.96 30.96 30.72 40.59 9.17 68.59
QERA-exact 44.80 76.39 31.61 30.57 40.86 9.12 69.22

Table 26: Post-training quantization evaluation of LLaMA-2-13B.

rank Method W-bits ARC (challenge) BoolQ CommonSenseQA BBH MMLU WikiText2 Winogrande

Acc norm Acc Acc Acc norm Acc Word ppl Acc

- BF16 16 49.49 80.58 47.34 32.65 52.18 7.68 72.22

- HQQ

4.25

49.06 78.69 45.05 32.41 50.85 8.27 71.11
- w-only 50.43 80.58 44.06 33.45 50.21 8.06 71.98

32

ZeroQuant-V2 50.00 81.04 44.47 33.50 50.31 8.07 71.59
LQER 51.02 81.25 44.47 32.41 51.24 7.96 71.98
QERA-approx 51.11 80.83 44.06 32.48 51.07 7.95 71.67
QERA-exact 50.77 81.10 44.55 32.91 51.23 7.93 71.98

Table 27: Post-training quantization evaluation of LLaMA-3.1-8B.

rank Method W-bits ARC (challenge) BoolQ CommonSenseQA BBH MMLU WikiText2 Winogrande

Acc norm Acc Acc Acc norm Acc Word ppl Acc

- BF16 16 53.50 82.05 71.42 39.07 63.27 7.55 73.95

- HQQ

4.25

52.73 81.19 69.86 35.60 62.14 8.72 74.03
- w-only 50.68 81.31 67.24 37.34 59.03 8.78 73.56

32

ZeroQuant-V2 51.11 81.25 66.99 38.43 58.94 8.83 73.48
LQER 50.34 80.98 67.49 38.05 60.23 8.45 73.40
QERA-approx 50.77 81.04 66.75 37.94 60.09 8.45 73.48
QERA-exact 51.28 80.18 68.83 37.48 60.60 8.33 73.95

Table 28: Post-training quantization evaluation of LLaMA-3.1-70B.

rank Method W-bits ARC (challenge) BoolQ CommonSenseQA BBH MMLU WikiText2 Winogrande

Acc norm Acc Acc Acc norm Acc Word ppl Acc

- BF16 16 65.10 85.38 78.46 48.53 75.28 3.06 79.56

- HQQ

4.25

63.99 85.02 77.48 48.19 75.20 3.97 77.98
- w-only 60.58 83.82 73.63 41.28 73.06 4.55 78.37

32 ZeroQuant-V2 59.90 83.61 73.55 42.75 73.15 4.48 77.74
LQER 62.97 83.88 76.25 48.67 74.26 4.10 79.64
QERA-approx 62.12 83.79 76.74 48.53 73.98 4.10 79.64

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

o_proj (Layer 0) o_proj (Layer 3) o_proj (Layer 7) o_proj (Layer 11)

o_proj (Layer 15) o_proj (Layer 19) o_proj (Layer 23) o_proj (Layer 27)

o_proj (Layer 31)

Figure 10: Normalized abs(RXX) of inputs of o proj layers in LLaMA-3-8B. Layers are sampled
and only the first 96 dimensions are plotted for clarity.

gate_proj (Layer 0) gate_proj (Layer 3) gate_proj (Layer 7) gate_proj (Layer 11)

gate_proj (Layer 15) gate_proj (Layer 19) gate_proj (Layer 23) gate_proj (Layer 27)

gate_proj (Layer 31)

Figure 11: Normalized abs(RXX) of inputs of gate proj layers in LLaMA-3-8B. Note that the
up proj shares the same inputs. Layers are sampled and only the first 96 dimensions are plotted for
clarity.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

down_proj (Layer 0) down_proj (Layer 3) down_proj (Layer 7) down_proj (Layer 11)

down_proj (Layer 15) down_proj (Layer 19) down_proj (Layer 23) down_proj (Layer 27)

down_proj (Layer 31)

Figure 12: Normalized abs(RXX) of inputs of down proj layers in LLaMA-3-8B. Layers are sam-
pled and only the first 96 dimensions are plotted for clarity.

k_proj (Layer 0) k_proj (Layer 3) k_proj (Layer 7) k_proj (Layer 11)

k_proj (Layer 15) k_proj (Layer 19) k_proj (Layer 23) k_proj (Layer 27)

k_proj (Layer 31)

Figure 13: Normalized abs(RXX) of inputs of k proj layers in LLaMA-2-7B. Note that the q proj
and v proj share the same inputs. Layers are sampled and only the first 96 dimensions are plotted
for clarity.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

o_proj (Layer 0) o_proj (Layer 3) o_proj (Layer 7) o_proj (Layer 11)

o_proj (Layer 15) o_proj (Layer 19) o_proj (Layer 23) o_proj (Layer 27)

o_proj (Layer 31)

Figure 14: Normalized abs(RXX) of inputs of o proj layers in LLaMA-2-7B. Layers are sampled
and only the first 96 dimensions are plotted for clarity.

gate_proj (Layer 0) gate_proj (Layer 3) gate_proj (Layer 7) gate_proj (Layer 11)

gate_proj (Layer 15) gate_proj (Layer 19) gate_proj (Layer 23) gate_proj (Layer 27)

gate_proj (Layer 31)

Figure 15: Normalized abs(RXX) of inputs of gate proj layers in LLaMA-2-7B. Note that the
up proj shares the same inputs. Layers are sampled and only the first 96 dimensions are plotted for
clarity.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

down_proj (Layer 0) down_proj (Layer 3) down_proj (Layer 7) down_proj (Layer 11)

down_proj (Layer 15) down_proj (Layer 19) down_proj (Layer 23) down_proj (Layer 27)

down_proj (Layer 31)

Figure 16: Normalized abs(RXX) of inputs of down proj layers in LLaMA-2-7B. Layers are sam-
pled and only the first 96 dimensions are plotted for clarity.

k_proj (Layer 0) k_proj (Layer 3) k_proj (Layer 7) k_proj (Layer 11)

k_proj (Layer 15) k_proj (Layer 19) k_proj (Layer 23) k_proj (Layer 27)

k_proj (Layer 31)

Figure 17: Normalized abs(RXX) of inputs of k proj layers in Mistral-7B-v0.3. Note that the
q proj and v proj share the same inputs. Layers are sampled and only the first 96 dimensions are
plotted for clarity.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

o_proj (Layer 0) o_proj (Layer 3) o_proj (Layer 7) o_proj (Layer 11)

o_proj (Layer 15) o_proj (Layer 19) o_proj (Layer 23) o_proj (Layer 27)

o_proj (Layer 31)

Figure 18: Normalized abs(RXX) of inputs of o proj layers in Mistral-7B-v0.3. Layers are sampled
and only the first 96 dimensions are plotted for clarity.

gate_proj (Layer 0) gate_proj (Layer 3) gate_proj (Layer 7) gate_proj (Layer 11)

gate_proj (Layer 15) gate_proj (Layer 19) gate_proj (Layer 23) gate_proj (Layer 27)

gate_proj (Layer 31)

Figure 19: Normalized abs(RXX) of inputs of gate proj layers in Mistral-7B-v0.3. Note that the
up proj shares the same inputs. Layers are sampled and only the first 96 dimensions are plotted for
clarity.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

down_proj (Layer 0) down_proj (Layer 3) down_proj (Layer 7) down_proj (Layer 11)

down_proj (Layer 15) down_proj (Layer 19) down_proj (Layer 23) down_proj (Layer 27)

down_proj (Layer 31)

Figure 20: Normalized abs(RXX) of inputs of down proj layers in Mistral-7B-v0.3. Layers are
sampled and only the first 96 dimensions are plotted for clarity.

k_proj (Layer 0) k_proj (Layer 3) k_proj (Layer 7) k_proj (Layer 11)

k_proj (Layer 15) k_proj (Layer 19)

Figure 21: Normalized abs(RXX) of inputs of k proj layers in TinyLlama-1.1B. Note that the
q proj and v proj share the same inputs. Layers are sampled and only the first 96 dimensions are
plotted for clarity.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

o_proj (Layer 0) o_proj (Layer 3) o_proj (Layer 7) o_proj (Layer 11)

o_proj (Layer 15) o_proj (Layer 19)

Figure 22: Normalized abs(RXX) of inputs of o proj layers in TinyLlama-1.1B. Layers are sampled
and only the first 96 dimensions are plotted for clarity.

gate_proj (Layer 0) gate_proj (Layer 3) gate_proj (Layer 7) gate_proj (Layer 11)

gate_proj (Layer 15) gate_proj (Layer 19)

Figure 23: Normalized abs(RXX) of inputs of gate proj layers in TinyLlama-1.1B. Note that the
up proj shares the same inputs. Layers are sampled and only the first 96 dimensions are plotted for
clarity.

down_proj (Layer 0) down_proj (Layer 3) down_proj (Layer 7) down_proj (Layer 11)

down_proj (Layer 15) down_proj (Layer 19)

Figure 24: Normalized abs(RXX) of inputs of down proj layers in TinyLlama-1.1B. Layers are
sampled and only the first 96 dimensions are plotted for clarity.

33

	Introduction
	Related Work
	Our Analytical Framework
	Problem Statement
	LoQER+ (rxx): Analytical Solution
	LoQER+ (diag): An Analytical Solution with the Uncorrelated Assumption

	Experiments
	Experiment Setup
	Improved QPEFT
	Improved PTQ

	Discussion
	Conclusion
	Appendix
	Algorithms in Related Work
	Proof of Theorem 2
	Connection and Difference between CALDERA and QERA
	Detailed Experiment Setup
	QPEFT Hyperparameters
	PTQ Hyperparameters

	Decreasing Weight Error != Decreasing Output Error for LoftQ
	Choice of Calibration Set
	Scalability and Numerical Stability of QERA
	Complexity Analysis
	Choice of Solutions for QPEFT and PTQ
	Choices of LoRA Ranks, Models, and Precisions for QPEFT
	Comparison to LQ-LoRA
	Detailed PTQ Results
	Test of Assumption 1

